
Lattice-Based SNARGs and Their Application
to More Efficient Obfuscation∗

Dan Boneh1,2, Yuval Ishai1,3,4, Amit Sahai1,4, and David J. Wu1,2

1 Center for Encrypted Functionalities
2 Stanford University

3 Technion
4 UCLA

Abstract. Succinct non-interactive arguments (SNARGs) enable
verifying NP computations with substantially lower complexity than
that required for classical NP verification. In this work, we give the
first lattice-based SNARG candidate with quasi-optimal succinctness
(where the argument size is quasilinear in the security parameter).
Further extension of our methods yields the first SNARG (from any
assumption) that is quasi-optimal in terms of both prover overhead
(polylogarithmic in the security parameter) as well as succinctness.
Moreover, because our constructions are lattice-based, they plausibly
resist quantum attacks. Central to our construction is a new notion
of linear-only vector encryption which is a generalization of the
notion of linear-only encryption introduced by Bitansky et al. (TCC
2013). We conjecture that variants of Regev encryption satisfy our
new linear-only definition. Then, together with new information-
theoretic approaches for building statistically-sound linear PCPs
over small finite fields, we obtain the first quasi-optimal SNARGs.

We then show a surprising connection between our new lattice-
based SNARGs and the concrete efficiency of program obfuscation.
All existing obfuscation candidates currently rely on multilinear
maps. Among the constructions that make black-box use of the
multilinear map, obfuscating a circuit of even moderate depth (say,
100) requires a multilinear map with multilinearity degree in excess
of 2100. In this work, we show that an ideal obfuscation of both the
decryption function in a fully homomorphic encryption scheme and a
variant of the verification algorithm of our new lattice-based SNARG
yields a general-purpose obfuscator for all circuits. Finally, we give
some concrete estimates needed to obfuscate this “obfuscation-
complete” primitive. We estimate that at 80-bits of security, a (black-
box) multilinear map with ≈ 212 levels of multilinearity suffices. This
is over 280 times more efficient than existing candidates, and thus,
represents an important milestone towards implementable program
obfuscation for all circuits.

∗The full version of this paper is available from https://crypto.stanford.edu/people/

dwu4/snargs.html.

2 Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu

1 Introduction

Interactive proofs systems [49] are fundamental to modern cryptography and
complexity theory. In this work, we consider computationally sound proof sys-
tems for NP languages, also known as argument systems. An argument system
is succinct if its communication complexity is polylogarithmic in the running
time of the NP verifier for the language. Notably, the size of the argument is
polylogarithmic in the size of the NP witness.

Kilian [53] gave the first succinct four-round interactive argument system for
NP based on collision-resistant hash functions and probabilistically-checkable
proofs (PCPs). Subsequently, Micali [63] showed how to convert Killian’s four-
round argument into a single-round argument for NP by applying the Fiat-
Shamir heuristic [38]. Micali’s “computationally-sound proofs” (CS proofs) is
the first candidate construction of a succinct non-interactive argument (i.e., a
“SNARG” [46]) in the random oracle model. In the standard model, single-round
argument systems are impossible for sufficiently hard languages, so we consider
the weaker goal of two-message succinct argument systems where the verifier’s
initial message is generated independently of the statement being proven. This
message is often referred to as the common reference string (CRS).

In this work, we are interested in minimizing the prover complexity and
proof length of SNARGs. Concretely, for a security parameter λ, we measure the
asymptotic cost of achieving soundness against provers of circuit size 2λ with
negl(λ) error. We say that a SNARG has quasi-optimal succinctness if its proof

length is Õ(λ) and that it is quasi-optimal if in addition, the SNARG prover’s
running time is larger than that of a classical prover by only a polylogarithmic
factor (in λ and the running time). In this paper, we construct the first SNARG
that is quasi-optimal in this sense. The soundness of our SNARG is based on
a new plausible intractability assumption, which is in the spirit of assumptions
on which previous SNARGs were based (see Section 1.2). Moreover, based on
a stronger variant of the assumption, we get a SNARK [15] (i.e., a SNARG of
knowledge) with similar complexity (see Remark 4.9). All previous SNARGs,
including heuristic ones, were suboptimal in at least one of the two measures by a
factor of Ω(λ). For a detailed comparison with previous approaches, see Table 1.

We give two SNARG constructions: one with quasi-optimal succinctness
based on standard lattices, and another that is quasi-optimal based on ideal
lattices over polynomial rings. Because all of our SNARGs are lattice-based, they
plausibly resist known quantum attacks. All existing SNARGs with quasi-optimal
succinctness rely, at the minimum, on number-theoretic assumptions such as the
hardness of discrete log. Thus, they are vulnerable to quantum attacks [72, 73].

Application to efficient obfuscation. Independently of their asymptotic efficiency,
our SNARGs can also be used to significantly improve the concrete efficiency
of program obfuscation. Program obfuscation is the task of making code un-
intelligible such that the obfuscated program reveals nothing more about the
implementation details beyond its functionality. The theory of program obfusca-
tion was first formalized by Barak et al. [12]. In their work, they introduced the

Lattice-Based SNARGs and Their Application to More Efficient Obfuscation 3

natural notion of virtual black-box (VBB) obfuscation, and moreover, showed
that VBB obfuscation for all circuits is impossible in the standard model. In
the same work, Barak et al. also introduced the weaker notion of indistinguisha-
bility obfuscation (iO); subsequently, Garg et al. [41] gave the first candidate
construction of iO for general circuits based on multilinear maps [24, 39, 33, 43].

Since the breakthrough result of Garg et al., there has been a flurry of works
showcasing the power of iO [41, 69, 25, 40, 19]. However, in spite of the numer-
ous constructions and optimizations that have been developed in the last few
years [11, 30, 5, 10, 74, 7], concrete instantiations of program obfuscation remain
purely theoretical. Even obfuscating a relatively simple function such as the
AES block cipher requires multilinear maps capable of supporting unimaginable
levels of multilinearity (� 2100 [74]). In this work, we show that our new lattice-
based SNARG constructions can be combined with existing lattice-based fully
homomorphic encryption schemes (FHE) to obtain an “obfuscation-complete”
primitive1 with significantly better concrete efficiency. Targeting 80 bits of secu-
rity, we show that we can instantiate our obfuscation-complete primitive over
a composite-order multilinear map supporting ≈ 212 levels of multilinearity.
The number of multilinear map encodings in the description of the obfuscated
program is ≈ 244. While the levels of multilinearity required is still beyond
what we can efficiently realize using existing composite-order multilinear map
candidates [33], future multilinear map candidates with better efficiency as well
as further optimizations to the components that underlie our transformation will
bring our constructions closer to reality. Concretely, our results are many orders
of magnitude more efficient than existing constructions (that make black-box use
of the underlying multilinear map), and thus, represent an important stepping
stone towards implementable obfuscation.

Non-black-box alternatives. Nearly all obfuscation constructions [11, 30, 5, 10,
74, 7] rely on the underlying multilinear map as a black-box. Recently, sev-
eral works [57, 59, 58, 4] gave the first candidate constructions of iO based on
constant-degree multilinear maps (by going through the functional encryption
route introduced in [3, 20]). Even more impressively, the most recent constructions
by Lin [58] as well as Ananth and Sahai [4] only require a degree-5 multilinear
map, which is certainly implementable [56]. However, this reduction in mul-
tilinearity comes at the cost of a non-black-box construction. Notably, their
construction requires a gate-by-gate transformation to be applied to a Boolean
circuit description of the encoding function of the underlying multilinear map.
While further investigation of non-black-box approaches is certainly warranted,

1An “obfuscation-complete” primitive is a function whose ideal obfuscation (e.g., using
tamper-proof hardware) can be used for obfuscating arbitrary functions. While we
do not provide a provably secure instantiation of this primitive using iO, it can be
heuristically instantiated using existing iO candidates. Moreover, our obfuscation-
complete primitive has the appealing property that it needs to be invoked exactly
once regardless of the function being obfuscated. This is in contrast to alternative
constructions [50, 6] where the obfuscated primitive needs to be invoked for each gate
in the circuit or each step of a Turing machine evaluation.

4 Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu

due to the complexity of existing multilinear map constructions [39, 33], this
approach faces major hurdles with regards to implementability. In this work, we
focus on constructions that use the multilinear map in a black-box manner.

1.1 Background

Constructing SNARGs. Gentry and Wichs [46] showed that no SNARG (for
a sufficiently difficult language) can be proven secure under any “falsifiable”
assumption [65]. Consequently, all existing SNARG constructions for NP in
the standard model (with a CRS) have relied on non-falsifiable assumptions
such as knowledge-of-exponent assumptions [35, 14, 64, 51, 61, 42], extractable
collision-resistant hashing [15, 36], homomorphic encryption with a homomor-
phism extraction property [17] and linear-only encryption [18].

Designated-verifier arguments. Typically, in a non-interactive argument system,
the arguments can be verified by anyone. Such systems are said to be “publicly
verifiable.” In some applications (notably, bootstrapping certain types of obfus-
cation), it suffices to consider a relaxation where the setup algorithm for the
argument system also outputs a secret verification state which is needed for proof
verification. Soundness holds provided that the prover does not know the secret
verification state. These systems are said to be designated verifier. A key question
that arises in the design and analysis of designated verifier arguments is whether
the same common reference string can be reused for multiple proofs. Formally,
this “multi-theorem” setting is captured by requiring soundness to hold even
against a prover that makes adaptive queries to a proof verification oracle. If
the prover can choose its queries in a way that induces noticeable correlations
between the outputs of the verification oracle and the secret verification state,
then the adversary can potentially compromise the soundness of the scheme.
Thus, special care is needed to construct designated-verifier argument systems in
the multi-theorem setting.

SNARGs from linear-only encryption. Bitansky et al. [18] introduced a generic
compiler for building SNARGs in the “preprocessing” model based on a notion
called “linear-only” encryption. In the preprocessing model, the setup algorithm
that constructs the CRS can run in time that depends polynomially on a time
bound T of the computations that will be verified. The resulting scheme can
then be used to verify computations that run in time at most T . The compiler
of [18] can be decomposed into an information-theoretic transformation and a
cryptographic transformation, which we outline here:

– First, they restrict the interactive proof model to only consider “affine-
bounded” provers. An affine-bounded prover is only able to compute affine
functions (over a ring) of the verifier’s queries.2 Bitansky et al. give several

2Bitansky et al. [18] refer to this as “linear-only,” even though the prover is allowed
to compute affine functions. To be consistent with their naming conventions, we will
primarily write “linear-only” to refer to “affine-only.”

Lattice-Based SNARGs and Their Application to More Efficient Obfuscation 5

constructions of succinct two-message interactive proofs in this restricted
model by applying a generic transformation to existing “linear PCP” con-
structions.

– Next, they introduce a new cryptographic primitive called linear-only en-
cryption, which is a (public-key) encryption scheme that only supports linear
homomorphisms on ciphertexts. Bitansky et al. show that combining a linear-
only encryption scheme with the affine-restricted interactive proofs from
the previous step suffices to construct a designated-verifier SNARG in the
preprocessing model. The construction is quite natural: the CRS for the
SNARG system is a linear-only encryption of what would be the verifier’s
first message. The prover then homomorphically computes its response to
the verifier’s encrypted queries. The linear-only property of the encryption
scheme constrains the prover to only using affine strategies. This ensures
soundness for the SNARG. To check a proof, the verifier decrypts the prover’s
responses and applies the decision algorithm for the underlying two-message
proof system. Bitansky et al. give several candidate instantiations for their
linear-only encryption scheme based on Paillier encryption [66] as well as
bilinear maps [52, 22].

Linear PCPs. Like [18], our SNARG constructions rely on linear PCPs (LPCPs).
A LPCP of length m over a finite field F is an oracle computing a linear function
π : Fm → F. On any query q ∈ Fm, the LPCP oracle responds with q>π. More
generally, if ` queries are made to the LPCP oracle, the ` queries can be packed
into the columns of a query matrix Q ∈ Fm×`. The response of the LPCP oracle
can then be written as Q>π. We provide more details in Section 3.

1.2 Our Results: New Constructions of Preprocessing SNARGs

In this section, we summarize our main results on constructing preprocessing
SNARGs based on a more advanced form of linear-only encryption. Our results
extend the framework introduced by Bitansky et al. [18].

New compiler for preprocessing SNARGs. The preprocessing SNARGs we con-
struct in this work enjoy several advantages over those of [18]. We enumerate
some of them below:

– Direct construction of SNARGs from linear PCPs. Our compiler
gives a direct compilation from linear PCPs over a finite field F into a
preprocessing SNARG. In contrast, the compiler in [18] first constructs a
two-message linear interactive proof from a linear PCP by introducing an
additional linear consistency check. The additional consistency check not
only increases the communication complexity of their construction, but also
introduces a soundness error O(1/ |F|). As a result, their construction only
provides soundness when working over a large field (that is, when |F| is super-
polynomial in the security parameter). By using a direct compilation of linear
PCPs into SNARGs, we avoid both of these problems. Our construction does

6 Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu

not require any additional consistency checks and moreover, it preserves the
soundness of the underlying linear PCP. Thus, as long as the underlying linear
PCP is statistically sound, applying our compiler yields a computationally
sound argument (even if |F| is small).

– Constructing linear PCPs with strong soundness. As noted in the
previous section, constructing multi-theorem designated-verifier SNARGs can
be quite challenging. In [18], this is handled at the information-theoretic level
(by constructing interactive proof systems satisfying a notion of “strong” or
“reusable” soundness) and at the cryptographic level (by introducing strength-
ened definitions of linear-only encryption). A key limitation in their approach
is that the information-theoretic construction of two-round interactive proof
systems again requires LPCPs over super-polynomial-sized fields. This is a
significant barrier to applying their compiler to natural LPCP constructions
over small finite fields (which are critical to our approach for bootstrapping
obfuscation). In this work, we show how to apply soundness amplification
to standard LPCPs with constant soundness error against linearly-bounded
provers (and which do not necessarily satisfy strong soundness) to obtain
strong, statistically-sound LPCPs against affine-bounded provers. Coupled
with our direct compilation of LPCPs to preprocessing SNARGs, we obtain
multi-theorem designated-verifier SNARGs.

We describe our construction of strong statistically sound LPCPs against affine
provers from LPCPs with constant soundness error against linear provers in
Section 3. Applying our transformation to linear PCPs based on the Walsh-
Hadamard code [9] as well as those based on quadratic-span programs (QSPs) [42],
we obtain two LPCPs with strong statistical soundness against affine provers
over polynomial-size fields.

From linear PCPs to preprocessing SNARGs. The primary tool we use con-
struction of preprocessing SNARGs from linear PCPs is a new cryptographic
primitive we call linear-only vector encryption. A vector encryption scheme is an
encryption scheme where the plaintexts are vectors of ring (or field) elements.
Next, we extend the notion of linear-only encryption [18] to the context of vector
encryption. We say that a vector encryption scheme is linear-only if the only
homomorphisms it supports is addition (and scalar multiplication) of vectors.

Our new notion of linear-only vector encryption gives an immediate method
of compiling an `-query linear PCP (over a finite field F) into a designated-verifier
SNARG. The construction works as follows. In a `-query linear PCP over F,
the verifier’s query can be written as a matrix Q ∈ Fm×` where m is the query
length of the LPCP. The LPCP oracle’s response is Q>π where π ∈ Fm is the
proof. To compile this LPCP into a preprocessing SNARG, we use a linear-
only vector encryption scheme with plaintext space F`. The setup algorithm
takes the verifier’s query matrix Q (which is independent of the statement being
proved) and encrypts each row of Q using the vector encryption scheme. The key
observation is that the product Q>π is a linear combination of the rows of Q.
Thus, the prover can homomorphically compute an encryption of Q>π. To check

Lattice-Based SNARGs and Their Application to More Efficient Obfuscation 7

the proof, the verifier decrypts to obtain the prover’s responses and then invokes
the decision algorithm for the underlying LPCP. Soundness is ensured by the
linear-only property of the underlying vector encryption scheme. The advantage
of linear-only vector encryption (as opposed to standard linear-only encryption)
is that the prover is constrained to evaluating a single linear function on all of
the query vectors simultaneously. This insight enables us to remove the extra
consistency check introduced in [18], and thus, avoids the soundness penalty
O(1/ |F|) incurred by the consistency check.3 Consequently, we can instantiate
our transformation with statistically-sound linear PCPs over any finite field F.
We describe our construction in Section 4.

New lattice-based SNARG candidates. We then conjecture that the Regev-
based [68] encryption scheme of Peikert, Vaikuntanathan, and Waters [67] is
a secret-key linear-only vector encryption scheme over Z`p where p is a prime
whose bit-length is polynomial in the security parameter λ. Then, applying
our generic compiler from LPCPs to SNARGs (Construction 4.5) to our new
LPCP constructions over polynomial-size fields Zp, we obtain a lattice-based
construction of a designated-verifier SNARG (for Boolean circuit satisfiability)
in the preprocessing model.4 Specifically, starting with a QSP-based LPCP [42],
we obtain a SNARG with quasi-optimal succinctness. As discussed above, this
is the first such SNARG that can plausibly resist quantum attacks. We note
here that a direct instantiation of the construction in [18] with a Regev-based
candidate for linear-only encryption yields a SNARG that is suboptimal in both
prover complexity and proof length (Remark 4.13). Thus, for Boolean circuit
satisfiability, using lattice-based linear-only vector encryption provides some
concrete advantages over vanilla linear-only encryption.

Quasi-optimal SNARGs. In the full version of this paper, we further extend our
techniques to obtain the first instantiation of a quasi-optimal SNARG for Boolean
circuit satisfiability—that is, a SNARG where the prover complexity is Õ(s) and

the argument size is Õ(λ), where s is the size of the Boolean circuit and λ is a
security parameter guaranteeing soundness against 2λ-size provers with negl(λ)
error. All previous constructions with quasi-optimal succinctness (including our
lattice-based candidate described above) achieved at best prover complexity

Õ(sλ). We refer to Table 1 for a detailed comparison. Our construction relies on
a new information-theoretic construction of a linear PCP operating over rings.

3This is the main difference between our approach and that taken in [18]. By making
the stronger assumption of linear-only vector encryption, we avoid the need for an
extra consistency check, thus allowing for a direct compilation from linear PCPs to
SNARGs. In contrast, [18] relies on the weaker assumption of linear-only encryption,
but requires an extra step of first constructing a two-message linear interactive proof
(incorporating the consistency check) from the linear PCP.

4While it would be preferable to obtain a construction based on the hardness of standard
lattice assumptions like learning with errors (LWE) [68], the separation results of
Gentry and Wichs [46] suggest that stronger, non-falsifiable assumptions may be
necessary to construct SNARGs.

8 Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu

In conjunction with a linear-only vector encryption scheme where the underlying
message space is a ring, we can apply our compiler to obtain a SNARG. To
achieve quasi-optimality, we require that the ciphertext expansion factor of the
underlying vector encryption scheme be polylogarithmic. Using Regev-based
vector encryption based on the ring learning with errors (RLWE) problem [62]
and conjecturing that it satisfies our linear-only requirements, we obtain the first
quasi-optimal SNARG construction. We leave open the question of realizing a
stronger notion of quasi-optimality, where the soundness error (against 2λ-size
provers) is 2−λ rather than negl(λ).

1.3 Our Results: Concrete Efficiency of Bootstrapping Obfuscation

In spite of the numerous optimizations and simplifications that have been
proposed for indistinguishability obfuscation (iO) and VBB obfuscation (in
a generic model), obfuscating even relatively simple functions like AES remains
prohibitively expensive. In this section, we describe how the combination of our
new lattice-based SNARG candidate and fully homomorphic encryption (FHE)
allows us to obtain VBB obfuscation for all circuits (in a generic model) with
concrete parameters that are significantly closer to being implementable. Our
construction is over 280 times more efficient than existing constructions.

Background. The earliest candidates of iO and VBB obfuscation operated on
matrix branching programs [41, 11, 30], which together with multilinear maps [39,
33, 43], yielded obfuscation for NC1 (via Barrington’s theorem [13]).5 The primary
source of inefficiency in these branching-program-based obfuscation candidates is
the enormous overhead incurred when converting NC1 circuits to an equivalent
branching program representation. While subsequent work [5, 10] has provided
significant asymptotic improvements for representing NC1 circuits as matrix
branching programs, the levels of multilinearity required to obfuscate a com-
putation of depth d still grows exponentially in d. Thus, obfuscating even a
simple function like AES, which has a circuit of relatively low depth (≈ 100), still
requires a multilinear map capable of supporting � 2100 levels of multilinearity
and a similarly astronomical number of encodings. This is completely infeasible.

Zimmerman [74] as well as Applebaum and Brakerski [7] showed how to
directly obfuscate circuits. While their constructions do not incur the exponential
overhead of converting NC1 circuits to matrix branching programs, due to the noise
growth in existing multilinear map candidates, the level of multilinearity required
again grows exponentially in the depth of the circuit d. However, the number
of multilinear map encodings is substantially smaller with these candidates. In
the case of VBB obfuscation of AES, Zimmerman estimates that the obfuscation
would contain ≈ 217 encodings of a multilinear map capable of supporting� 2100

levels of multilinearity. Despite the more modest number of encodings required,
the degree of multilinearity required remains prohibitively large.

5Garg et al. [41] as well as Brakerski and Rothblum [30] show how to combine obfuscation
for NC1 together with fully homomorphic encryption (FHE) and low-depth checkable
proofs to bootstrap iO and VBB obfuscation from NC1 to P/poly.

Lattice-Based SNARGs and Their Application to More Efficient Obfuscation 9

Revisiting the branching-program based obfuscation. In this work, we revisit the
branching-program-based constructions of obfuscation. However, rather than
follow the traditional paradigm of taking a Boolean circuit, converting it to a
matrix branching program via Barrington’s theorem, and then obfuscating the
resulting branching program, we take the more direct approach of using the matrix
branching program to compute simple functions over Zq (for polynomial-sized q).
The key observation is that the additive group Zq embeds into the symmetric
group Sq of q × q permutation matrices. This technique was previously used by
Alperin-Sheriff and Peikert [2] for improving the efficiency of bootstrapping for
FHE. While the functions that can be evaluated in this way are limited, they
are expressive enough to include both the decryption function for lattice-based
FHE [31, 28, 27, 45, 2, 37] and the verification algorithm of our new lattice-based
SNARG. Using a variant of the bootstrapping theorem in [30], VBB obfuscation
of these two functionalities suffice for VBB obfuscation of all circuits.

We remark here that Applebaum [6] described a simpler approach for boot-
strapping VBB obfuscation of all circuits based on obfuscating a pseudorandom
function (PRF) in conjunction with randomized encodings. While this approach
is conceptually simpler, it is unclear whether this yields a scheme with con-
crete efficiency. One problem is that we currently do not have any candidate
PRFs that are amenable to existing obfuscation candidates. Constructing an
“obfuscation-friendly” PRF remains an important open problem. Perhaps more
significantly, this approach requires invoking the obfuscated program multiple
times (a constant number of times per gate in the circuit, or per step of the
computation in the case of Turing machines [55]). In contrast, in this work, we
focus on building an “obfuscation-complete” primitive such that a single call to
the obfuscated program suffices for program evaluation.

Computing in Zq via matrix branching programs. By leveraging the power of
bootstrapping, it suffices to obfuscate a program that performs FHE decryption
and SNARG verification. Using FHE schemes based on standard lattices [31, 28,
27, 45, 2, 37] and our new lattice-based SNARG, both computations effectively
reduce to computing rounded inner products over Zq—that is, functions where
we first compute the inner product 〈x,y〉 of two vectors x and y in Z`q and then
reduce the result modulo a smaller value p. In our setting, one of the vectors y
is embedded within the obfuscated program. We briefly describe the technique
here. Our presentation is adapted from [2], who use this technique to improve
the efficiency of FHE bootstrapping.

The key idea is to embed the group Zq in the symmetric group Sq. The
embedding is quite straightforward. A group element y ∈ Zq is represented by
the basis vector ey ∈ {0, 1}q (i.e., the vector with a single 1 in the yth position).
Addition by an element x ∈ Zq corresponds to multiplying by a permutation
matrix that implements a cyclic rotation by x positions. Specifically, to implement
the function fx(y) = x+ y where x, y ∈ Zq, we define the permutation matrix
Bx ∈ {0, 1}q×q where Bxey = ex+y mod q for all y ∈ [q]. Then, to compute fx
on an input y, we simply take the q-by-q permutation matrix Bx and multiply
it with the basis vector ey representing the input. Scalar multiplication can be

10 Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu

implemented by repeated additions. Finally, modular reduction with respect to
p can be implemented via multiplication by a p-by-q matrix where the ith row
sums the entries of the q-dimensional indicator vector corresponding to those
values in Zq that reduce to i modulo p. As long as q is small, this method gives
an efficient way to compute simple functions over Zq.

Optimizing the SNARG construction. While computing a single rounded inner
product suffices for FHE decryption, it is not sufficient for SNARG verification.
We introduce a series of additional optimizations to make our SNARG verification
algorithm more branching-program-friendly and minimize the concrete parameters
needed to obfuscate the functionality. These optimizations are described in detail
in the full version. We highlight the most significant ones here:

– Modulus switching. Recall that the SNARG verifier has to first decrypt
a proof (encrypted under the linear-only vector encryption scheme) before
applying the underlying LPCP decision procedure. While decryption in this
case does consist of evaluating a rounded inner product, the size of the
underlying field scales quadratically in the running time of the computation
being verified.6 As a result, the width of the branching programs needed to
implement the SNARG verification scales quadratically in the running time
of the computation, which can quickly grow out of hand. However, since the
ciphertexts in question are essentially LWE ciphertexts, we can apply the
modulus switching trick that has featured in many FHE constructions [31,
28, 37]. With modulus switching, after the prover homomorphically computes
its response (a ciphertext vector over a large ring), the prover rescales each
component of the ciphertext to be defined with respect to a much smaller
modulus (one that grows polylogarithmically with the running time of the
computation). The actual decryption then operates on the rescaled ciphertext,
which can be implemented as a (relatively) small branching program.

– Strengthening the linear-only assumption. To further reduce the over-
head of the SNARG verification, we also consider strengthened definitions
of (secret-key) linear-only vector encryption. In particular, we conjecture
that our candidate lattice-based vector encryption scheme only supports a
restricted set of affine homomorphisms. This allows us to use LPCPs with
simpler and more branching-program-friendly verification procedures. We
introduce the definition and state our conjecture in the full version. We note
that when considering the public-key notion of linear-only encryption [18],
one cannot restrict the set of affine homomorphisms available to the adversary.
By definition, the adversary can compute arbitrary linear functions on the
ciphertexts, and moreover, it can also encrypt values of its choosing and
linearly combine those values with the ciphertexts. This allows the adversary
to realize arbitrary affine functions in the public-key setting. However, in the
secret-key setting, the adversary does not have the flexibility of constructing
arbitrary ciphertexts of its own, and so, it is plausible that the encryption

6This is fine from the SNARG perspective since the number of bits in the proof is still
growing logarithmically in the running time of the computation.

Lattice-Based SNARGs and Their Application to More Efficient Obfuscation 11

scheme only permits more limited homomorphisms. Our techniques here are
not specific to our particular SNARG instantiation, and thus, may be useful
in optimizing other SNARG constructions (at the expense of making stronger
linear-only assumptions).

– Parallelization via CRT. Unlike FHE decryption, the SNARG verification
algorithm requires computing a matrix-vector product of the form Ax, where
the matrix A ∈ Zm×`q is embedded inside the program and x ∈ Z`q is
part of the input. The verification algorithm then applies an (independent)
test to each of the components of Ax. Verification succeeds if and only if
each of the underlying tests pass. While a matrix-vector product can be
computed by iterating the algorithm for computing an inner product m
times and performing the m checks sequentially, this increases the length
of the branching program by a factor of m. A key observation here is that
since the components of Ax are processed independently of one another, this
computation can be performed in parallel if we consider matrix branching
programs over composite-order rings. Then, each of the rows of A can be
embedded in the different sub-rings according to the Chinese Remainder
Theorem (CRT). Assuming the underlying multilinear map is composite-
order, this method can potentially yield a factor m reduction in the length
of the branching program. Indeed, using the CLT multilinear map [33], the
plaintext space naturally decomposes into sufficiently many sub-rings, thus
allowing us to take advantage of parallelism with essentially no extra cost.
A similar technique of leveraging CRT to parallelize computations was also
used in [2] to improve the concrete efficiency of FHE bootstrapping.

A concrete obfuscation construction. In the full version, we describe our method-
ology for instantiating the building blocks for our obfuscation-complete primitive
(for VBB obfuscation). Our parameter estimates show that targeting λ = 80 bits
of security, implementing FHE decryption together with SNARG verification can
be done with a branching program (over composite-order rings7 of length 4150
and size ≈ 244. While publishing 244 encodings of a multilinear map capable of
supporting 4150 levels of multilinearity is likely beyond the scope of existing
candidates, further optimizations to the underlying multilinear map as well as
to the different components of our pipeline can lead to a realizable construction.
Compared to previous candidates which require � 2100 levels of multilinearity,
our construction is over 280 times more efficient.

2 Preliminaries

We begin by defining the notation that we use throughout this paper. For an
integer n, we write [n] to denote the set of integers {1, . . . , n}. For a positive

7To minimize the degree of multilinearity required, we require a composite-order ring
that splits into ≈ 200 sub-rings. Instantiating our construction with the composite-
order CLT multilinear map [33], the plaintext ring already supports the requisite
number of sub-rings, so using CRT for parallelization does not incur any overhead.

12 Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu

integer p, we write Zp to denote the ring of integers modulo p. We typically use
bold uppercase letters (e.g., A, B) to denote matrices and bold lowercase letters
(e.g., u,v) to denote vectors.

For a finite set S, we write x
r←− S to denote that x is drawn uniformly

at random from S. For a distribution D, we write x ← D to denote a sample
from D. Unless otherwise noted, we write λ to denote a computational security
parameter and κ to denote a statistical security parameter. We say a function
f(λ) is negligible in λ if f(λ) = o(1/λc) for all c ∈ N. We write f(λ) = negl(λ)
to denote that f is a negligible function in λ and f(λ) = poly(λ) to denote that
f is a polynomial in λ. We say an algorithm is efficient if it runs in probabilistic

polynomial time. For two families of distributions D1 and D2, we write D1
c
≈ D2 if

the two distributions are computationally indistinguishable (that is, if no efficient
algorithm is able to distinguish D1 from D2, except with negligible probability).
We will also use the Schwartz-Zippel lemma [71, 75]:

Lemma 2.1 (Schwartz-Zippel Lemma [71, 75]). Let p be a prime and let
f ∈ Zp[x1, . . . , xn] be a multivariate polynomial of total degree d, not identically
zero. Then,

Pr[α1, . . . , αn
r←− Zp : f(α1, . . . , αn) = 0] ≤ d

p
.

In the full version, we also review the standard definitions of succinct non-
interactive arguments (SNARGs).

3 Linear PCPs

We begin by reviewing the definition of linear probabilistically checkable proofs
(LPCPs). In an LPCP system for a binary relation R over a finite field F, the
proof consists of a vector π ∈ Fm and the PCP oracle is restricted to computing
a linear function on the verifier’s query vector. Specifically, on input a query
matrix Q ∈ Fm×`, the PCP oracle responds with y = Q>π ∈ F`. We now give a
formal definition adapted from [18].

Definition 3.1 (Linear PCPs [18]). Let R be a binary relation, F be a finite
field, PLPCP be a deterministic prover algorithm, and VLPCP be a probabilistic
oracle verification algorithm. Then, (PLPCP, VLPCP) is a `-query linear PCP for
R over F with soundness error ε and query length m if it satisfies the following
requirements:

– Syntax: For a vector π ∈ Fm, the verification algorithm V π
LPCP = (QLPCP,

DLPCP) consists of an input-oblivious probabilistic query algorithm QLPCP

and a deterministic decision algorithm DLPCP. The query algorithm QLPCP

generates a query matrix Q ∈ Fm×` (independently of the statement x) and
some state information st. The decision algorithm DLPCP takes the statement
x, the state st, and the response vector y = Q>π ∈ F` and either “accepts”
or “rejects.”

Lattice-Based SNARGs and Their Application to More Efficient Obfuscation 13

– Completeness: For every (x,w) ∈ R, the output of PLPCP(x,w) is a vector
π ∈ Fm such that V π

LPCP(x) accepts with probability 1.
– Soundness: For all x where (x,w) /∈ R for all w and for all vectors

π∗ ∈ Fm, the probability that V π∗

LPCP(x) accepts is at most ε.

We say that (PLPCP, VLPCP) is statistically sound if ε(κ) = negl(κ), where κ is a
statistical security parameter.

Soundness against affine provers. In Definition 3.1, we have only required sound-
ness to hold against provers that employ a linear strategy, and not an affine
strategy. Our construction of SNARGs (Section 4), will require the stronger
property that soundness holds against provers using an affine strategy—that is, a
strategy which can be described by a tuple Π = (π,b) where π ∈ Fm represents
a linear function and b ∈ F` represents an affine shift. Then, on input a query
matrix Q ∈ Fm×`, the response vector is constructed by evaluating the affine
relation y = Q>π + b. We now define this stronger notion of soundness against
an affine prover.

Definition 3.2 (Soundness Against Affine Provers). Let R be a relation
and F be a finite field. A linear PCP (PLPCP, VLPCP) is a `-query linear PCP for R
over F with soundness error ε against affine provers if it satisfies the requirements
in Definition 3.1 with the following modifications:

– Syntax: For any affine function Π = (π,b), the verification algorithm VΠ
LPCP

is still specified by a tuple (QLPCP, DLPCP). Algorithms QLPCP, DLPCP are the
same as in Definition 3.1, except that the response vector y computed by the
PCP oracle is an affine function y = Q>π + b ∈ F` of the query matrix Q
rather than a linear function.

– Soundness against affine provers: For all x where (x,w) /∈ R for all w,
and for all affine functions Π∗ = (π∗,b∗) where π∗ ∈ Fm and b∗ ∈ F`, the
probability that VΠ∗

LPCP(x) accepts is at most ε.

Algebraic complexity. There are many ways one can measure the complexity
of a linear PCP system such as the number of queries or the number of field
elements in the verifier’s queries. Another important metric also considered
in [18] is the algebraic complexity of the verifier. In particular, the verifier’s
query algorithm QLPCP and decision algorithm DLPCP can both be viewed as
multivariate polynomials (equivalently, arithmetic circuits) over the finite field
F. We say that the query algorithm QLPCP has degree dQ if the output of QLPCP

can be computed by a collection of multivariate polynomials of maximum degree
dQ in the verifier’s choice of randomness. Similarly, we say that the decision
algorithm DLPCP has degree dD if the output of DLPCP can be computed by a
multivariate polynomial of maximum degree dD in the prover’s response and the
verification state.

Strong soundness. In this work, we focus on constructing designated-verifier
SNARGs. An important consideration that arises in the design of designated-
verifier SNARGs is whether the same reference string σ can be reused across many

14 Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu

proofs. This notion is formally captured by stipulating that the SNARG system
remains sound even if the prover has access to a proof-verification oracle. While
this property naturally follows from soundness if the SNARG system is publicly-
verifiable, the same is not true in the designated-verifier setting. Specifically,
in the designated-verifier setting, soundness is potentially compromised if the
responses of the proof-verification oracle is correlated with the verifier’s secrets.
Thus, to construct a multi-theorem designated-verifier SNARG, we require linear
PCPs with a stronger soundness property, which we state below.

Definition 3.3 (Strong Soundness [18]). A `-query LPCP (PLPCP, VLPCP)
with soundness error ε satisfies strong soundness if for every input x and every
proof π∗ ∈ Fm, either V π∗

LPCP(x) accepts with probability 1 or with probability at
most ε.

Roughly speaking, in an LPCP that satisfies strong soundness, every LPCP
prover either causes the LPCP verifier to accept with probability 1 or with
bounded probability. This prevents correlation attacks where a malicious prover is
able to submit (potentially malformed) proofs to the verifier and seeing responses
that are correlated with the verifier’s secrets. We can define an analogous notion
of strong soundness against affine provers.

3.1 Constructing Linear PCPs with Strong Soundness

A natural first question is whether linear PCPs with strong soundness against
affine provers exist. Bitansky et al. [18] give two constructions of algebraic LPCPs
for Boolean circuit satisfaction problems: one from the Hadamard-based PCP
of Arora et al. [9], and another from the quadratic span programs (QSPs) of
Gennaro et al. [42]. In both cases, the linear PCP is defined over a finite field F and
the soundness error scales inversely with |F|. Thus, the LPCP is statistically sound
only if |F| is superpolynomial in the (statistical) security parameter. However,
when we apply our LPCP-based SNARGs to bootstrap obfuscation, the size of
the obfuscated program grows polynomially in |F|, and so we require LPCPs
with statistical soundness over small (polynomially-sized) fields.

In this section, we show that starting from any LPCP with constant soundness
error against linear provers, we can generically obtain an LPCP that is statistically
sound against affine provers. Our generic transformation consists of two steps.
The first is a standard soundness amplification step where the verifier makes κ
sets of independently generated queries (of the underlying LPCP scheme) to the
PCP oracle, where κ is a statistical security parameter. The verifier accepts only
if the prover’s responses to all κ sets of queries are valid. Since the queries are
independently generated, each of the κ sets of responses (for a false statement) is
accepted with probability at most ε (where ε is proportional to 1/ |F|). Thus, an
honest verifier only accepts with probability at most εκ = negl(κ).

However, this basic construction does not achieve strong soundness against
affine provers. For instance, a malicious LPCP prover using an affine strategy
could selectively corrupt the responses to exactly one set of queries (by applying

Lattice-Based SNARGs and Their Application to More Efficient Obfuscation 15

an affine shift to its response for a single set of queries). When this selective
corruption is applied to a well-formed proof and the verifier’s decision algorithm
has low algebraic complexity, then the verifier will accept with some noticeable
probability less than 1, which is sufficient to break strong soundness. To address
this problem, the verifier first applies a (secret) random linear shift to its queries
before submitting them to the PCP oracle. This ensures that any prover using
an affine strategy with a non-zero offset will corrupt its responses to every set of
queries, and the proof will be rejected with overwhelming probability. We now
describe our generic construction in more detail.

Construction 3.4 (Statistically Sound Linear PCPs over Small Fields)
Fix a statistical security parameter κ. Let R be a binary relation, F be a

finite field, and
(
P

(weak)
LPCP , V

(weak)
LPCP

)
be an `-query linear PCP for R, where

V
(weak)
LPCP =

(
Q

(weak)
LPCP , D

(weak)
LPCP

)
. Define the (κ`)-query linear PCP (PLPCP, VLPCP)

where VLPCP = (QLPCP, DLPCP) as follows:

– Prover’s Algorithm PLPCP: On input (x,w), output P
(weak)
LPCP (x,w).

– Verifier’s Query Algorithm QLPCP: The query algorithm invokes Q
(weak)
LPCP

a total of κ times to obtain (independent) query matrices Q1, . . . ,Qκ ∈ Fm×`
and state information st1, . . . , stκ. It constructs the concatenated matrix Q =

[Q1|Q2| · · · |Qκ] ∈ Fm×κ`. Finally, it chooses a random matrix Y
r←− Fκ`×κ`

and outputs the queries Q′ = QY and state st = (st1, . . . , stκ,Y
′) where

Y′ = (Y>)−1.
– Verifier’s Decision Algorithm DLPCP: On input the statement x, the

prover’s response vector a′ ∈ Fκ` and the state st = (st1, . . . , stκ,Y
′), the

verifier’s decision algorithm computes a = Y′a′ ∈ Fκ`. Next, it writes
a> = [a>1 |a>2 | · · · |a>κ] where each ai ∈ F` for i ∈ [κ]. Then, for each i ∈ [κ],

the verifier runs D
(weak)
LPCP (x,ai, sti) and accepts if D

(weak)
LPCP accepts for all κ

instances. It rejects otherwise.

Theorem 3.5. Fix a statistical security parameter κ. Let R be a binary relation,

F be a finite field, and (P
(weak)
LPCP , V

(weak)
LPCP) be a strongly-sound `-query linear PCP

for R with constant soundness error ε ∈ [0, 1) against linear provers. If |F| > dD,

where dD is the degree of the verifier’s decision algorithm D
(weak)
LPCP , then the linear

PCP (PLPCP, VLPCP) from Construction 3.4 is a (κ`)-query linear PCP for R with
strong statistical soundness against affine provers.

Proof. Completeness follows immediately from completeness of the underlying
LPCP system, so it suffices to check that the linear PCP is statistically sound
against affine provers. Take any statement x, and consider an affine prover
strategy Π∗ = (π∗,b∗), where π∗ ∈ Fm and b∗ ∈ Fκ`. We consider two cases:

– Suppose b∗ 6= 0κ`. Then, the decision algorithm DLPCP starts by computing

a = Y′a′ = Y′(Y>Q>π∗ + b∗) = Q>π∗ + Y′b∗ ∈ Fκ`.

16 Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu

Next, the verifier invokes the decision algorithm D
(weak)
LPCP for the underlying

LPCP on the components of a. By assumption, D
(weak)
LPCP is a polynomial

of maximum degree dD in the components of the prover’s response a, and
by extension, in the components of the matrix Y′. Since b∗ is non-zero,
this is a non-zero polynomial in the Y′. Since Y′ is sampled uniformly at
random (and independently of Q,π∗,b∗), by the Schwartz-Zippel lemma,

D
(weak)
LPCP (x,ai, sti) accepts with probability at most dD/ |F| for each i ∈ [κ].

Thus, the verifier rejects with probability at least 1− (dD/ |F|)κ = 1−negl(κ)
since |F| > dD.

– Suppose b∗ = 0κ`. Then, the prover’s strategy is a linear function π∗. Since
the underlying PCP satisfies strong soundness against linear provers, it follows

that D
(weak)
LPCP (ai, sti) either accepts with probability 1 or with probability at

most ε. In the former case, DLPCP also accepts with probability 1. In the
latter case, because the verifier constructs the κ queries to the underlying
LPCP independently, DLPCP accepts with probability at most εκ = negl(κ).
We conclude that the proof system (PLPCP, VLPCP) satisfies strong soundness
against affine provers. ut

Remark 3.6 (Efficiency of Transformation). Construction 3.4 incurs a κ overhead
in the number of queries made to the PCP oracle and a quadratic overhead in the
algebraic complexity of the verifier’s decision algorithm. Specifically, the degree of
the verifier’s decision algorithm in Construction 3.4 is d2D, where dD is the degree
of the verifier’s decision algorithm in the underlying LPCP. The quadratic factor
arises from undoing the linear shift in the prover’s responses before applying the
decision algorithm of the underlying LPCP. In many existing LPCP systems,
the verifier’s decision algorithm has low algebraic complexity (e.g., dD = 2 for
both the Hadamard-based LPCP [9] as well as the QSP-based LPCP [42]), so
the verifier’s algebraic complexity only increases modestly. However, the increase
in degree means that we can no longer leverage pairing-based linear-only one-way
encodings [18] to construct publicly-verifiable SNARGs (since these techniques
only apply when the algebraic complexity of the verifier’s decision algorithm is
exactly 2). No such limitations apply in the designated-verifier setting.

Remark 3.7 (Comparison with [18, Lemma C.3]). Bitansky et al. [18, Lemma C.3]
previously showed that any algebraic LPCP over a finite field F with soundness

error ε is also strongly sound with soundness error ε′ = max
{
ε,
dQdD
|F|

}
. For

sufficiently large fields F (e.g., when |F| is superpolynomial), statistical soundness
implies strong statistical soundness. However, when |F| is polynomial, then their
lemma is insufficient to argue strong statistical soundness of the underlying
LPCP. In contrast, using our construction (Construction 3.4), any LPCP with
just constant soundness against linear provers can be used to construct an
algebraic LPCP with strong statistical soundness against affine provers (at the
cost of increasing the query complexity and the verifier’s algebraic complexity).

Concrete instantiations. Applying Construction 3.4 to the algebraic LPCPs for
Boolean circuit satisfaction of Bitansky et al. [18], we obtain statistically sound

Lattice-Based SNARGs and Their Application to More Efficient Obfuscation 17

LPCPs for Boolean circuit satisfaction over small finite fields. In the following,
fix a (statistical) security parameter κ and let C be a Boolean circuit of size s.

– Starting from the Hadamard-based PCP of Arora et al. [9] over a finite field F,
there exists a 3-query LPCP with strong soundness error 2/ |F|. The algebraic
complexity of the decision algorithm for this PCP is dD = 2. Applying
Construction 3.4 and working over any finite field where |F| > 2, we obtain a
(3κ)-query LPCP with strong statistical soundness against affine provers and
where queries have length O(s2).

– Starting from the quadratic span programs of Gennaro et al. [42], there
exists a 3-query LPCP over any (sufficiently large) finite field F with strong
soundness error O(s/ |F|). The algebraic complexity of the decision algorithm
for this PCP is dD = 2. Applying Construction 3.4 and working over a
sufficiently large finite field of size |F| = Õ(s), we obtain a (3κ)-query LPCP
with strong statistical soundness against affine provers where queries have
length O(s).

4 SNARGs from Linear-Only Vector Encryption

In this section, we introduce the notion of a linear-only vector encryption scheme.
We then show how linear-only vector encryption can be directly combined with
the linear PCPs from Section 3 to obtain multi-theorem designated-verifier
preprocessing SNARGs in the standard model. We conclude by describing a
candidate instantiation of our linear-only vector encryption scheme using the
LWE-based encryption scheme of Peikert, Vaikuntanathan, and Waters [67]. In
the full version of this paper, we also show how using linear-only vector encryption
over polynomial rings, our techniques can be further extended to obtain the
first quasi-optimal SNARG from any assumption (namely, a SNARG that is
quasi-optimal in both the prover complexity and the proof length). Our notion of
linear-only vector encryption is a direct generalization of the notion of linear-only
encryption first introduced by Bitansky et al. [18].

4.1 Vector Encryption and Linear Targeted Malleability

A vector encryption scheme is an encryption scheme where the message space
is a vector of ring elements. In this section, we take Zp as the underlying ring
and Z`p as the message space (for some dimension `). In the full version, we also
consider vector encryption schemes where the ring R is a polynomial ring and
the message space is R`. We introduce the basic schema below:

Definition 4.1 (Vector Encryption Scheme over Z`p). A secret-key vector

encryption scheme over Z`p consists of a tuple of algorithms Πenc = (Setup,Encrypt,
Decrypt) with the following properties:

– Setup(1λ, 1`)→ sk: The setup algorithm takes as input the security parameter
λ and the dimension ` of the message space and outputs the secret key sk.

18 Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu

– Encrypt(sk,v)→ ct: The encryption algorithm takes as input the secret key
sk and a message vector v ∈ Z`p and outputs a ciphertext ct.

– Decrypt(sk, ct) → Z`p ∪ {⊥}: The decryption algorithm takes as input the

secret key sk and a ciphertext ct and either outputs a message vector v ∈ Z`p
or a special symbol ⊥ (to denote an invalid ciphertext).

We can define the usual notions of correctness and semantic security [48]
for a vector encryption scheme. Next, we say that a vector encryption scheme
over Z`p is additively homomorphic if given encryptions ct1, ct2 of two vectors

v1,v2 ∈ Z`p, respectively, there is a public operation8 that allows one to compute

an encryption ct12 of the (component-wise) sum v1+v2 ∈ Z`p. Note that additively
homomorphic vector encryption can be constructed directly from any additively
homomorphic encryption scheme by simply encrypting each component of the
vector separately. However, when leveraging vector encryption to build efficient
SNARGs, we require that our encryption scheme satisfies a more restrictive
homomorphism property. We define this now.

A vector encryption scheme satisfies linear targeted malleability [23] if the only
homomorphic operations the adversary can perform on ciphertexts is evaluate
affine functions on the underlying plaintext vectors. We now state our definition
more precisely. Note that our definition is a vector generalization of the “weaker”
notion of linear-only encryption introduced by Bitansky et al. [18]. This notion
already suffices for constructing a designated-verifier SNARG.

Definition 4.2 (Linear Targeted Malleability [23, adapted]). Fix a secu-
rity parameter λ. A (secret-key) vector encryption scheme Πvenc = (Setup,Encrypt,
Decrypt) for a message space Z`p satisfies linear targeted malleability if for all

efficient adversaries A and plaintext generation algorithms M (on input 1`,
algorithm M outputs vectors in Z`p), there exists a (possibly computationally

unbounded) simulator S such that for any auxiliary input z ∈ {0, 1}poly(λ), the
following two distributions are computationally indistinguishable:

Real Distribution:

1. sk← Setup(1λ, 1`)
2. (s,v1, . . . ,vm)←M(1`)
3. cti ← Encrypt(sk,vi) for all i ∈ [m]
4. ct′ ← A({cti}i∈[m] ; z) where

Decrypt(sk, ct′) 6= ⊥
5. Output(
{vi}i∈[m] , s,Decrypt(sk, ct

′)
)

Ideal Distribution:

1. (s,v1, . . . ,vm)←M(1`)
2. (π,b) ← S(z) where π ∈ Zmp ,

b ∈ Z`p
3. v′ ← [v1|v2| · · · |vm] · π + b

4. Output
(
{vi}i∈[m] , s,v

′
i

)

Remark 4.3 (Multiple Ciphertexts). Similar to [23, 18], we can also define a
variant of linear targeted malleability where the adversary is allowed to output

8In principle, homomorphic evaluation might require additional public parameters to
be published by the setup algorithm. For simplicity of presentation, we will assume
that no additional parameters are required, but all of our notions extend to the setting
where the setup algorithm outputs a public evaluation key.

Lattice-Based SNARGs and Their Application to More Efficient Obfuscation 19

multiple ciphertexts ct′1, . . . , ct
′
m. In this case, the simulator should output an

affine function (Π,B) where Π ∈ Zm×mp and B ∈ Z`×mp that “explains” the
ciphertexts ct′1, . . . , ct

′
m. However, the simple variant we have defined above where

the adversary just outputs a single ciphertext is sufficient for our construction.

Remark 4.4 (Auxiliary Input Distributions). In Definition 4.2, the simulator is
required to succeed for all auxiliary inputs z ∈ {0, 1}poly(λ). This requirement
is quite strong since z can be used to encode difficult cryptographic problems
that the simulator needs to solve in order to correctly simulate the output
distribution [16]. However, many of these pathological auxiliary input distributions
are not problematic for Definition 4.2, since the simulator is allowed to be
computationally unbounded. In other cases where we require the simulator to
be efficient (e.g., to obtain succinct arguments of knowledge via Remark 4.9),
we note that Definition 4.2 can be relaxed to only consider “benign” auxiliary
input distributions for which the definition plausibly holds. For instance, for the
multi-theorem SNARK construction described in the full version, it suffices that
the auxiliary information is a uniformly random string.

Construction 4.5 (SNARG from Linear-Only Vector Encryption) Fix a
prime p (so the ring Zp is a field), and let C = {Ck}k∈N be a family of arithmetic
circuits over Zp.9 Let RC be the relation associated with C. Let (PLPCP, VLPCP) be
an `-query input-oblivious linear PCP for C. Let Πvenc = (Setup,Encrypt,Decrypt)
be a secret-key vector encryption scheme for Z`p. Our single-theorem, designated-
verifier SNARG ΠSNARG = (Setup,Prove,Verify) in the preprocessing model for
RC is defined as follows:

– Setup(1λ, 1k) → (σ, τ): On input the security parameter λ and the circuit
family parameter k, the setup algorithm first invokes the query algorithm
QLPCP for the LPCP to obtain a query matrix Q ∈ Zm×`p and some state
information st. Next, it generates a secret key for the vector encryption scheme
sk← Setup(1λ, 1`). Then, it encrypts each row (an element of Z`p) of the query

matrix Q. More specifically, for i ∈ [m], let qi ∈ Z`p be the ith row of Q. Then,
the setup algorithm computes ciphertexts cti ← Encrypt(sk,qi). Finally, the
setup algorithm outputs the common reference string σ = (ct1, . . . , ctm) and
the verification state τ = (sk, st).

– Prove(σ,x,w): On input a common reference string σ = (ct1, . . . , ctm), a
statement x, and a witness w, the prover invokes the prover algorithm PLPCP

for the LPCP to obtain a vector π ∈ Zmp . Viewing ct1, . . . , ctm as vector

encryptions of the rows of a query matrix Q ∈ Zm×`p , the prover uses the
linear homomorphic properties of Πvenc to homomorphically compute an
encryption of the matrix vector product Q>π. In particular, the prover
homomorphically computes the sum ct′ =

∑
i∈[m] πi · cti. The prover outputs

the ciphertext ct′ as its proof.

9While we describe a SNARG for arithmetic circuit satisfiability (over Zp), the problem
of Boolean circuit satisfiability easily reduces to arithmetic circuit satisfiability with
only constant overhead [18, Claim A.2].

20 Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu

– Verify(τ,x, π): On input the (secret) verification state τ = (sk, st), the state-
ment x, and the proof π = ct′, the verifier decrypts the proof ct′ using the
secret key sk to obtain the prover’s responses a← Decrypt(sk, ct′). If a = ⊥,
the verifier stops and outputs 0. Otherwise, it invokes the verification decision
algorithm DLPCP on the statement x, the responses a, and the LPCP verifi-
cation state st to decide whether the proof is valid or not. The verification
algorithm echoes the output of the decision algorithm.

Theorem 4.6 ([18, Lemma 6.3]). Let (PLPCP, VLPCP) be a linear PCP that is
statistically sound against affine provers, and let Πvenc = (Setup,Encrypt,Decrypt)
be a vector encryption scheme with linear targeted malleability. Then, applying
Construction 4.5 to (PLPCP, VLPCP) and Πvenc yields a (non-adaptive) designated-
verifier SNARG in the preprocessing model.

Proof. Our proof is similar to the proof of [18, Lemma 6.3]. Let P ∗ be a malicious
prover that convinces the verifier of some false statement x /∈ LC with non-
negligible probability ε(λ), where LC is the language associated with C. Since
Πenc satisfies linear targeted malleability (Definition 4.2), there exists a simulator
S such that the following distributions are computationally indistinguishable:

Real Distribution:

1. sk← Setup(1λ, 1`)
2. (st,Q)← QLPCP where Q ∈ Zm×`p

3. cti ← Encrypt(sk,qi) where qi is the
ith row of Q for i ∈ [m]

4. ct′ ← P ∗(ct1, . . . , ctq;x) such that
Decrypt(sk, ct′) 6= ⊥

5. a← Decrypt(sk, ct′) ∈ Z`p
6. Output (Q, st,a)

Ideal Distribution:

1. (st,Q)← QLPCP where Q ∈ Zm×`p

2. (π,b) ← S(x) where π ∈ Zmp and
b ∈ Z`p

3. â← Q>π + b
4. Output (Q, st, â)

By assumption, P ∗ convinces an honest verifier with probability ε = ε(λ), or
equivalently, in the real distribution, DLPCP(x, st,a) = 1 with probability at least
ε. Since DLPCP is efficiently computable, computational indistinguishability of
the real and ideal experiments means that DLPCP(x, st, â) = 1 with probability at
least ε− negl(λ). However, in the ideal distribution, the affine function (π,b) is
generated independently of the verifier’s queries Q and state st. By an averaging
argument, this means that there must exist some affine function (π∗,b∗) such
that with probability at least ε− negl(λ) taken over the randomness of QLPCP,
the verifier’s decision algorithm DLPCP on input x /∈ LC, st, and Q>π∗ + b∗

accepts. But this contradicts statistical soundness (against affine provers) of the
underlying linear PCP. ut

Remark 4.7 (Adaptivity). In Theorem 4.6, we showed that instantiating Construc-
tion 4.5 with a vector encryption scheme with linear targeted malleability and a
linear PCP yields a non-adaptive SNARG in the preprocessing model. The same
construction can be shown to satisfy adaptive soundness for proving efficiently
decidable statements. As noted in [18, Remark 6.5], we can relax Definition 4.2

Lattice-Based SNARGs and Their Application to More Efficient Obfuscation 21

and allow the adversary to additionally output an arbitrary string in the real
distribution which the simulator must produce in the ideal distribution. Invoking
Construction 4.5 with an encryption scheme that satisfies this strengthened linear
targeted malleability definition yields a SNARG with adaptive soundness for
the case of verifying deterministic polynomial-time computations. Note that the
proof system necessary to bootstrap obfuscation is used to verify correctness
of a polynomial-time computation (i.e., FHE evaluation), so adaptivity for this
restricted class of statements is sufficient for our primary application.

Remark 4.8 (Multi-Theorem SNARGs). Our basic notion of linear targeted mal-
leability for vector encryption only suffices to construct a single-theorem SNARG.
While the same construction can be shown secure for an adversary that is allowed
to make any constant number of queries to a proof verification oracle, we are
not able to prove that the construction is secure against a prover who makes
polynomially many queries to the proof verification oracle. In the full version, we
present an analog of the strengthened version of linear-only encryption from [18,
Appendix C] that suffices for constructing a multi-theorem SNARG. Combined
with a linear PCP that is strongly sound against affine provers, Construction 4.5
can then be applied to obtain a multi-theorem, designated-verifier SNARG. This
raises the question of whether the same construction using the weaker notion of
linear targeted malleability also suffices when the underlying linear PCP satisfies
strong soundness. While we do not know how to prove security from this weaker
definition, we also do not know of any attacks. This is especially interesting
because at the information-theoretic level, the underlying linear PCP satisfies
strong soundness, which intuitively would suggest that the responses the malicious
prover obtains from querying the proof verification oracle are uncorrelated with
the verifier’s state (strong soundness states that for any proof, either the verifier
accepts with probability 1 or with negligible probability).

Remark 4.9 (Arguments of Knowledge). Theorem 4.6 shows that instantiating
Construction 4.5 with a linear PCP with soundness against affine provers and a
vector encryption scheme with linear targeted malleability suffices for a SNARG.
In fact, the same construction yields a SNARK (that is, a succinct non-interactive
argument of knowledge) if the soundness property of the underlying LPCP is
replaced with a corresponding knowledge property,10 and the vector encryption
scheme satisfies a variant of linear targeted malleability (Definition 4.2) where the
simulator is required to be efficient (i.e., polynomially-sized). For more details,
we refer to [18, Lemma 6.3, Remark 6.4].

4.2 A Candidate Linear-Only Vector Encryption Scheme

The core building block in our new SNARG construction is a vector encryption
scheme for Z`p that plausible satisfies our notion of linear targeted malleability

10Roughly, the knowledge property states that there exists an extractor such that for
every affine strategy Π∗ that convinces the verifier of some statement x with high
probability, the extractor outputs a witness w such that (x,w) ∈ R. The Hadamard
LPCP from [9] also satisfies this stronger knowledge property.

22 Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu

(Definition 4.2). In particular, we conjecture that the Regev-based encryption
scheme [68] due to Peikert, Vaikuntanathan, and Waters [67, §7.2] satisfies our
required properties. Before describing the scheme, we review some notation as
well as the learning with errors (LWE) assumption which is essential (though not
sufficient) for arguing security of the vector encryption scheme.

Notation. For x ∈ Z and a positive odd integer q, we write [x]q to denote the value
x mod q, with values in the interval (−q/2, q/2]. For a lattice Λ and a positive real
value σ > 0, we write DΛ,σ to denote the discrete Gaussian distribution over Λ
with standard deviation σ. In particular, DΛ,σ assigns a probability proportional

to exp(−π ‖x‖2 /σ2) to each element x ∈ Λ.

Learning with errors. The learning with errors problem [68] is parameterized
by a dimension n ≥ 1, an integer modulus q ≥ 2 and an error distribution χ
over the integers Z. In this work, the noise distribution is always the discrete
Gaussian distribution χ = DZ,σ. For s ∈ Znq , the LWE distribution As,m,χ over

Zm×nq × Znq is specified by choosing a uniformly random matrix A
r←− Zm×nq and

error e← χn and outputting the pair (A,As + e) ∈ Zm×nq × Zmq . The learning
with errors assumption LWEn,q,χ (parameterized by parameters n, q, χ) states
that for all m = poly(n), the LWE distribution As,m,χ for a randomly sampled

s
r←− Znq is computationally indistinguishable from the uniform distribution over

Zm×nq × Zmq .

The PVW encryption scheme. We now review the encryption scheme due to
Peikert, Vaikuntanathan, and Waters [67, §7.2]. To slightly simplify the notation,
we describe the scheme where the message is embedded in the least significant
bits of the plaintext. Note that when the modulus q is odd, this choice of “most
significant bit” and “least significant bit” encoding makes no difference and the
encodings are completely interchangeable [1, Appendix A]. In our setting, it
suffices to just consider the secret-key setting. Let Z`p be the plaintext space. The
vector encryption scheme Πvenc = (Setup,Encrypt,Decrypt) in [67] is defined as
follows:

– Setup(1λ, 1`): Choose Ā
r←− Zn×mq , S̄

r←− Zn×`q , and Ē ← χ`×m, where n =
n(λ), m = m(λ), and q = q(λ) are polynomials in the security parameter.

Define the matrices A ∈ Z(n+`)×m
q and S ∈ Z(n+`)×`

q as follows:

A =

[
Ā

S̄>Ā + pĒ

]
S =

[
−S̄
I`

]
,

where I` ∈ Z`×`q is the `-by-` identity matrix. Output the secret key sk =
(A,S).

– Encrypt(sk,v): To encrypt a vector v ∈ Z`p, choose r
r←− {0, 1}m and output

the ciphertext c ∈ Zn+`q where

c = Ar +

[
0n

v

]
.

Lattice-Based SNARGs and Their Application to More Efficient Obfuscation 23

– Decrypt(sk, c): Compute and output [[S>c]q]p.

Remark 4.10 (Low-Norm Secret Keys). For some of our applications (namely,
those that leverage modulus switching), it is advantageous to sample the LWE
secret s ∈ Znq from a low-norm distribution. Previously, Applebaum et al. [8] and
Brakerski et al. [29] showed that the LWE variant where the secret key s← χn

is sampled from the error distribution is still hard under the standard LWE
assumption. In the same work, Brakerski et al. also showed that LWE instances
with binary secrets (i.e., s ∈ {0, 1}n) is as hard as standard LWE (with slightly
larger parameters). Sampling the secret keys from a binary distribution has been
used to achieve significant concrete performance gains in several implementations
of lattice-based cryptosystems [44, 37].

Correctness. Correctness of the encryption scheme follows as in [67]. In the
full version of this paper, we provide the concrete bounds on the parameters
under which correctness holds. This analysis will prove useful for estimating the
concrete parameters needed to instantiate our candidate obfuscation scheme in
Section 5.

Additive homomorphism. Like Regev encryption, the scheme is additively ho-
momorphic and supports scalar multiplication. Since the error is additive, to
compute a linear combination of ξ ciphertexts (where the coefficients for the
linear combination are drawn from Zp), we need to scale the modulus q by a
factor ξp for correctness to hold. In the full version, we show that this encryption
scheme supports modulus switching, and thus, it is possible to work with a smaller
modulus during decryption. However, this optimization is not necessary when
using the vector encryption scheme to construct a SNARG (via Construction 4.5).
It becomes important when we combine the SNARG with other tools to obtain
more efficient bootstrapping of obfuscation for all circuits (Section 5).

Semantic security. Security of this construction follows fairly naturally from
the LWE assumption. We state the main theorem here, but refer readers to [67,
Section 7.2.1] for the formal analysis.

Theorem 4.11 (Semantic Security [67]). Fix a security parameter λ and let
n, q = poly(λ). Let χ = DZ,σ be a discrete Gaussian distribution with standard
deviation σ = σ(λ). Then, if m ≥ 3(n + `) log q, and assuming the LWEn,q,χ
assumption holds, then the vector encryption scheme Πvenc is semantically secure.

4.3 Our Lattice-Based SNARG Candidate

We now state our concrete conjecture on the vector encryption scheme Πvenc from
Section 4.2 that yields the first lattice-based candidate of a designated-verifier,
preprocessing SNARG with quasi-optimal succinctness.

Conjecture 4.12. The PVW vector encryption scheme Πvenc from Section 4.2
satisfies linear targeted malleability (Definition 4.2).

24 Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu

Under Conjecture 4.12, we can apply Construction 4.5 in conjunction with
algebraic LPCPs to obtain designated-verifier SNARGs in the preprocessing
model (Theorem 4.6). To conclude, we give an asymptotic characterization of the
complexity of our lattice-based SNARG system, and compare against existing
SNARG candidates for Boolean circuit satisfiability. Let λ be a security parameter,
and let C be a Boolean circuit of size s = s(λ). We describe the parameters
needed to achieve 2−λ soundness against provers of size 2λ.

– Prover complexity. In Construction 4.5, the prover performs m homo-
morphic operations on the encrypted vectors, where m is the length of the
underlying linear PCP. When instantiating the vector encryption scheme
Πvenc over the plaintext space Z`p where p = poly(λ), the ciphertexts consist
of vectors of dimension O(λ + `) over a ring of size q = poly(λ).11 Homo-
morphic operations on ciphertexts corresponds to scalar multiplication (by
values from Zp) and vector additions. Since all operations are performed
over a polynomial-sized domain, all of the basic arithmetic operations can
be performed in polylog(λ) time. Thus, as long as the underlying LPCP

operates over a polynomial-sized field, the prover’s overhead is Õ(m(λ+ `)).

If the underlying LPCP is instantiated with the Arora et al. [9] PCP based
on the Walsh-Hadamard code, then m = O(s2) and ` = O(λ). The overall

prover complexity in this case is thus Õ(λs2). If the underlying LPCP is
instead instantiated with one based on the QSPs of Gennaro et al. [42], then

m = Õ(s) and ` = O(λ). The overall prover complexity in this case is Õ(λs).
– Proof length. Proofs in Construction 4.5 consist of a single ciphertext of

the vector encryption scheme, which has length Õ(λ+ `). Thus, both of our
candidate instantiations of the LPCP (based on the Hadamard code and on

QSPs) yield proofs of size Õ(λ).
– Verifier complexity. In Construction 4.5, the verifier first invokes the

decryption algorithm of the underlying vector encryption scheme and then
applies the verification procedure for the underlying linear PCP. Decryption
consists of a rounded matrix-vector product over a polynomial-sized ring,
which requires Õ(λ(λ + `)) operations. In both of our candidate LPCP
constructions, the verifier’s decision algorithm runs in time O(n), where
n is the length of the statement. Moreover, the decision algorithm for the
underlying LPCP is applied O(λ) times for soundness amplification. Thus,
the overall complexity of the verifier for both of our candidate instantiations
is Õ(λ2 + λn).

Note that we can generically reduce the verifier complexity to Õ(λ2 + n) by
first applying a collision-resistant hash function to the statement and having

11More precisely, the ciphertexts are actually vectors of dimension n+ `, where n is the
dimension of the lattice in the LWE problem. Currently, the most effective algorithms
for solving LWE rely either on BKW-style [21, 54] or BKZ-based attacks [70, 32].
Based on our current understanding [60, 32, 54, 26], the best-known algorithms for
LWE all require time 2Ω(n/ logc n) for some constant c. Thus, in terms of a concrete
security parameter λ, we set the lattice dimension to be n = Õ(λ).

Lattice-Based SNARGs and Their Application to More Efficient Obfuscation 25

the prover argue that it knows a preimage to the hash function and that the
preimage is in the language. After applying this transformation, the length
of the statement is simple the output length of of a collision-resistant hash
function, namely O(λ).

Remark 4.13 (Comparison with [18]). An alternative route to obtaining a lattice-
based SNARG is to directly instantiate [18] with Regev-based encryption. How-
ever, to achieve soundness error 2−λ, Bitansky et al. [18] require a LPCP (and
consequently, an additively homomorphic encryption) over a field of size 2λ.
Instantiating the construction in [18] with Regev-based encryption over a plain-

text space of size 2λ, the resulting SNARGs have length Õ(λ2) and the prover

complexity is Õ(sλ2). Another possibility is to instantiate [18] with Regev-based
encryption over a polynomial-size field (thus incurring 1/poly(λ)-soundness error)
and perform parallel repetition at the SNARG level to amplify the soundness.
But this method suffers from the same drawback as above. While each individual
SNARG instance (over a polynomial-size field) is quasi-optimally succinct, the

size of the overall proof is still Õ(λ2) and the prover’s complexity remains at

Õ(sλ2). This is a factor λ worse than using linear-only vector encryption over a
polynomial-size field. We provide a concrete comparison in Table 1.

In Table 1, we compare our new lattice-based SNARG constructions to
existing constructions for Boolean circuit satisfiability (the same results apply for
arithmetic circuit satisfiability over polynomial-size fields). Amongst SNARGs

with quasi-optimal succinctness (proof size Õ(λ)), Construction 4.5 instantiated
with a QSP-based LPCP achieves the same prover efficiency as the current
state-of-the-art (GGPR [42] and BCIOP [18]). However, in contrast to current
schemes, our construction is lattice-based, and thus, plausibly resists quantum
attacks. One limitation is that our new constructions are designated-verifier,
while existing constructions are publicly verifiable. We stress here though that a
common limitation of designated-verifier SNARGs—that the common reference
string cannot be reused for multiple proofs [34, 47, 15]—does not apply to our
construction. As noted by [18], this limitation can be circumvented by SNARG
constructions relying on algebraic PCPs such as ours. We show in the full version
that a variant of our construction (with the same asymptotic complexity) gives a
multi-theorem designated-verifier SNARG in the preprocessing model.

Remark 4.14 (Arithmetic Circuit Satisfiability over Large Fields). Construc-
tion 4.5 also applies to arithmetic circuit satisfiability over large finite fields (say,
Zp where p = 2λ). However, if the size of the plaintext space for the vector encryp-
tion scheme Πvenc from Section 4.2 is 2λ, then the bit-length of the ciphertexts
becomes Õ(λ2) bits. Consequently, the proof system is no longer quasi-optimally
succinct. In contrast, the QSP-based constructions [42, 18] remain quasi-optimally
succinct for arithmetic circuit satisfiability over large fields.

Quasi-optimal SNARG. In the full version of this paper, we also show how vector
encryption over polynomial rings that satisfy linear targeted malleability can be

26 Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu

Construction Type∗
Prover Proof

Assumption
Complexity Size

CS Proofs [63] PV Õ(s+ λ2) Õ(λ2) Random Oracle

Groth [51] PV Õ(s2λ+ sλ2) Õ(λ) Knowledge

GGPR [42] PV Õ(sλ) Õ(λ) of Exponent

BCIOP [18]† (Paillier) DV Õ(sλ3) Õ(λ3)
Linear-Only

BCIOP [18]† (Pairing) PV Õ(sλ) Õ(λ)
Encryption

BCIOP [18]† (Regev)‡ DV Õ(sλ2) Õ(λ2)

Const. 4.5§ (Hadamard LPCP) DV Õ(s2λ) Õ(λ) Linear-Only

Const. 4.5§ (QSP-based LPCP) DV Õ(sλ) Õ(λ) Vector Enc.

Const. 4.5 (RLWE-based)¶ DV Õ(s) Õ(λ)
Linear-Only
Vector Enc.

∗We write “PV” to denote public verifiability and “DV” for designated verifiability.
†Instantiated using a LPCP based on QSPs.
‡Based on a direct instantiation of [18] using Regev-based encryption (Remark 4.13).
§Instantiated with the PVW [67] encryption scheme from Section 4.2.
¶Instantiated with the RLWE-based vector encryption scheme described in the full
version. This construction is the first which is quasi-optimal with respect to both prover
complexity and proof size.

Table 1. Asymptotic performance of different SNARG systems for Boolean circuit
satisfiability. Here, s is the size of the circuit and λ is a security parameter guaranteeing
negl(λ) soundness error against provers of size 2λ. (Some of the schemes can achieve
2−λ soundness error with the same complexity.) All of the schemes can be converted
into an argument of knowledge (i.e., a SNARK)—in some cases, this requires a stronger
cryptographic assumption.

leveraged to obtain the first SNARG construction that achieves quasi-optimal
prover complexity as well as quasi-optimal succinctness. Our construction makes
use of a new information-theoretic construction of LPCPs over rings.

5 Concrete Efficiency of Bootstrapping VBB Obfuscation

Due to space limitations, we defer our results on the concrete efficiency of boot-
strapping obfuscation to the full version, and give an outline of our main results
here. We start by describing how matrix branching programs can be used to per-
form simple computations over Zq. In particular, we show how we can implement
FHE decryption and SNARG verification as a matrix branching program. Then,
we introduce a series of algorithmic as well as heuristic optimizations to improve
the concrete efficiency of the candidate obfuscator. We conclude by giving an
estimate of the parameters needed to instantiate our obfuscation candidate.

To summarize, after applying our optimizations, implementing FHE decryp-
tion together with SNARG verification can be done with a branching program
(over composite-order rings) of length 4150 and size ≈ 244 (at a security level

Lattice-Based SNARGs and Their Application to More Efficient Obfuscation 27

of λ = 80). While publishing 244 encodings of a multilinear map capable of
supporting 4150 levels of multilinearity is likely beyond the scope of existing
candidates, further optimizations to the underlying multilinear map as well as
to the different components of our pipeline can plausibly lead to a realizable
construction. Thus, our construction represents an important milestone towards
the ultimate goal of implementable program obfuscation.

Acknowledgments

We thank the anonymous reviewers for helpful feedback on the presentation.
D. Boneh and D. J. Wu are supported by NSF, DARPA, a grant from ONR, the
Simons Foundation, and an NSF Graduate Research Fellowship. Y. Ishai and
A. Sahai are supported in part from a DARPA/ARL SAFEWARE award, NSF
Frontier Award 1413955, NSF grants 1619348, 1228984, 1136174, and 1065276,
BSF grant 2012378, NSF-BSF grant 2015782, a Xerox Faculty Research Award,
a Google Faculty Research Award, an equipment grant from Intel, and an Okawa
Foundation Research Grant. Y. Ishai is additionally supported by ISF grant
1709/14. This material is based upon work supported by the Defense Advanced
Research Projects Agency through the ARL under Contract W911NF-15-C-0205.
The views expressed are those of the authors and do not reflect the official policy
or position of the Department of Defense, the National Science Foundation, or
the U.S. Government.

References

1. Alperin-Sheriff, J., Peikert, C.: Practical bootstrapping in quasilinear time.
In: CRYPTO (2013)

2. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error.
In: CRYPTO (2014)

3. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional
encryption. In: CRYPTO (2015)

4. Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indis-
tinguishability obfuscation from degree-5 multilinear maps. In: EUROCRYPT
(2017)

5. Ananth, P.V., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: Avoid-
ing barrington’s theorem. In: ACM CCS (2014)

6. Applebaum, B.: Bootstrapping obfuscators via fast pseudorandom functions.
In: ASIACRYPT (2014)

7. Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order
graded encoding. In: TCC (2015)

8. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: CRYPTO
(2009)

9. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification
and the hardness of approximation problems. In: FOCS (1992)

28 Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu

10. Badrinarayanan, S., Miles, E., Sahai, A., Zhandry, M.: Post-zeroizing ob-
fuscation: New mathematical tools, and the case of evasive circuits. In:
EUROCRYPT (2016)

11. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: EUROCRYPT (2014)

12. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan,
S.P., Yang, K.: On the (im)possibility of obfuscating programs. In: CRYPTO
(2001)

13. Barrington, D.A.M.: Bounded-width polynomial-size branching programs
recognize exactly those languages in nc1. In: STOC (1986)

14. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round
zero-knowledge protocols. In: CRYPTO (2004)

15. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back
again. In: ITCS (2012)

16. Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of ex-
tractable one-way functions. In: STOC (2014)

17. Bitansky, N., Chiesa, A.: Succinct arguments from multi-prover interactive
proofs and their efficiency benefits. In: CRYPTO (2012)

18. Bitansky, N., Chiesa, A., Ishai, Y., Ostrovsky, R., Paneth, O.: Succinct
non-interactive arguments via linear interactive proofs. In: TCC (2013)

19. Bitansky, N., Paneth, O., Wichs, D.: Perfect structure on the edge of chaos -
trapdoor permutations from indistinguishability obfuscation. In: TCC (2016)

20. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from
functional encryption. In: FOCS (2015)

21. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity
problem, and the statistical query model. In: STOC (2000)

22. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing.
In: CRYPTO (2001)

23. Boneh, D., Segev, G., Waters, B.: Targeted malleability: homomorphic en-
cryption for restricted computations. In: ITCS (2012)

24. Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography.
Contemporary Mathematics 324(1) (2003)

25. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing,
and more from indistinguishability obfuscation. In: CRYPTO (2014)

26. Bos, J., Costello, C., Ducas, L., Mironov, I., Naehrig, M., Nikolaenko, V.,
Raghunathan, A., Stebila, D.: Frodo: Take off the ring! practical, quantum-
secure key exchange from lwe. IACR Cryptology ePrint Archive 2016 (2016)

27. Brakerski, Z.: Fully homomorphic encryption without modulus switching
from classical gapsvp. In: CRYPTO (2012)

28. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: ITCS (2012)

29. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical
hardness of learning with errors. In: STOC (2013)

30. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits
via generic graded encoding. In: TCC (2014)

Lattice-Based SNARGs and Their Application to More Efficient Obfuscation 29

31. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption
from (standard) LWE. In: FOCS (2011)

32. Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better lattice security estimates. In:
ASIACRYPT (2011)

33. Coron, J., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the
integers. In: CRYPTO (2013)

34. Crescenzo, G.D., Lipmaa, H.: Succinct NP proofs from an extractability
assumption. In: 4th Conference on Computability (2008)

35. Damg̊ard, I.: Towards practical public key systems secure against chosen
ciphertext attacks. In: CRYPTO (1991)

36. Damg̊ard, I., Faust, S., Hazay, C.: Secure two-party computation with low
communication. In: TCC (2012)

37. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption
in less than a second. In: EUROCRYPT (2015)

38. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identifica-
tion and signature problems. In: CRYPTO (1986)

39. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal
lattices. In: EUROCRYPT (2013)

40. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from
indistinguishability obfuscation. In: TCC (2014)

41. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In:
FOCS (2013)

42. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs
and succinct nizks without pcps. In: EUROCRYPT (2013)

43. Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from
lattices. In: TCC (2015)

44. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with
polylog overhead. In: EUROCRYPT (2012)

45. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In:
CRYPTO (2013)

46. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from
all falsifiable assumptions. In: STOC (2011)

47. Goldwasser, S., Lin, H., Rubinstein, A.: Delegation of computation without
rejection problem from designated verifier cs-proofs. IACR Cryptology ePrint
Archive 2011 (2011)

48. Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental
poker keeping secret all partial information. In: STOC (1982)

49. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interac-
tive proof-systems (extended abstract). In: STOC (1985)

50. Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryp-
tography on tamper-proof hardware tokens. In: TCC (2010)

51. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In:
ASIACRYPT (2010)

52. Joux, A.: A one round protocol for tripartite diffie-hellman. In: ANTS (2000)

30 Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu

53. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: STOC (1992)

54. Kirchner, P., Fouque, P.: An improved BKW algorithm for LWE with appli-
cations to cryptography and lattices. In: CRYPTO (2015)

55. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for
turing machines with unbounded memory. In: STOC (2015)

56. Lewi, K., Malozemoff, A.J., Apon, D., Carmer, B., Foltzer, A., Wagner,
D., Archer, D.W., Boneh, D., Katz, J., Raykova, M.: 5gen: A framework
for prototyping applications using multilinear maps and matrix branching
programs. In: ACM CCS (2016)

57. Lin, H.: Indistinguishability obfuscation from constant-degree graded encod-
ing schemes. In: EUROCRYPT (2016)

58. Lin, H.: Indistinguishability obfuscation from DDH on 5-linear maps and
locality-5 prgs. IACR Cryptology ePrint Archive 2016 (2016)

59. Lin, R., Vaikuntanathan, V.: Indistinguishability obfuscation from ddh-like
assumptions on constant-degree graded encodings. In: FOCS (2016)

60. Lindner, R., Peikert, C.: Better key sizes (and attacks) for lwe-based encryp-
tion. In: CT-RSA (2011)

61. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive
zero-knowledge arguments. In: TCC (2012)

62. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with
errors over rings. In: EUROCRYPT (2010)

63. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4) (2000)
64. Mie, T.: Polylogarithmic two-round argument systems. J. Mathematical

Cryptology 2(4), 343–363 (2008)
65. Naor, M.: On cryptographic assumptions and challenges. In: CRYPTO (2003)
66. Paillier, P.: Public-key cryptosystems based on composite degree residuosity

classes. In: EUROCRYPT (1999)
67. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and

composable oblivious transfer. In: CRYPTO (2008)
68. Regev, O.: On lattices, learning with errors, random linear codes, and cryp-

tography. In: STOC (2005)
69. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable

encryption, and more. In: STOC (2014)
70. Schnorr, C., Euchner, M.: Lattice basis reduction: Improved practical algo-

rithms and solving subset sum problems. Math. Program. 66 (1994)
71. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial

identities. J. ACM 27(4) (1980)
72. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and

factoring. In: FOCS (1994)
73. Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5)

(1997)
74. Zimmerman, J.: How to obfuscate programs directly. In: EUROCRYPT

(2015)
75. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: EUROSAM

(1979)

