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Abstract. AES is probably the most widely studied and used block
cipher. Also versions with a reduced number of rounds are used as a
building block in many cryptographic schemes, e.g. several candidates of
the SHA-3 and CAESAR competition are based on it.
So far, non-random properties which are independent of the secret key are
known for up to 4 rounds of AES. These include differential, impossible
differential, and integral properties.
In this paper we describe a new structural property for up to 5 rounds
of AES, differential in nature and which is independent of the secret
key, of the details of the MixColumns matrix (with the exception that
the branch number must be maximal) and of the SubBytes operation.
It is very simple: By appropriate choices of difference for a number of
input pairs it is possible to make sure that the number of times that
the difference of the resulting output pairs lie in a particular subspace is
always a multiple of 8.
We not only observe this property experimentally (using a small-scale
version of AES), we also give a detailed proof as to why it has to exist.
As a first application of this property, we describe a way to distinguish
the 5-round AES permutation (or its inverse) from a random permutation
with only 232 chosen texts that has a computational cost of 235.6 look-
ups into memory of size 236 bytes which has a success probability greater
than 99%.
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1 Introduction

Block ciphers play an important role in symmetric cryptography providing the
basic tool for encryption. They are the oldest and most scrutinized cryptographic
tools. Consequently, they are the most trusted cryptographic algorithms that are

The extended version of this paper can be found in [13]. It includes a more formal
description of the main result of this paper which exploits the subspace trail notation
[14] recently introduced at FSE 2017.



often used as the underlying tool to construct other cryptographic algorithms,
whose proofs of security are performed under the assumption that the underlying
block cipher is ideal.

While the security of public-key encryption schemes are related to the hard-
ness of well-defined mathematical problems, informally a block cipher is consid-
ered secure if an (efficient) adversary, with access to the encryptions of messages
of its choice, cannot tell apart those encryptions from the values of a truly ran-
dom permutation. In other words, this means that an (efficient) adversary, with
access to the encryptions of messages of its choice, cannot tell the difference
between the block cipher (equipped with a random key) and a truly random
permutation. This notion of block cipher security was introduced and formally
modeled by Luby and Rackoff [19] in 1988, and it was motivated by the design of
DES. To be a bit more precise (but without going into the details), a secret key
distinguisher is one of the weakest cryptographic attacks that can be launched
against a secret-key cipher. In this attack, there are two oracles: one that sim-
ulates the cipher for which the cryptographic key has been chosen at random
and the other simulates a truly random permutation. The adversary can query
both oracles and his task is to decide which oracle is the cipher and which is the
random permutation. The attack is considered to be successful if the number of
queries required to make a correct decision is below a well defined level.

The Rijndael block cipher [8] has been designed by Daemen and Rijmen in
1997 and was chosen as the AES (Advanced Encryption Standard) by NIST in
2000. Nowadays, it is probably the most used and studied block cipher. The
possibility to set up a secret key distinguisher for 5-round of AES that exploits
a property which is independent of the secret key was already considered in
[21] and improved in [14]. However, only partial solutions have been proposed
and the problem is still open. As we will argue below, the solutions so far are
partial because the distinguishers are derived from a key-recovery attack and
they actually exploit as property the existence of a sub-key for which a property
on 4 rounds holds.

In this paper, we present (and practical verify) the first secret-key distin-
guisher for 5-round AES which exploits a new structural/differential property
which is independent of the secret key, that is a property that can be practically
verified without needing to know or to get to know any information of the secret
key. As we are going to show, it requires 233 chosen plaintexts/ciphertexts and
has a computational cost of 236.6 table look-ups.

1.1 Secret-Key Distinguishers for AES-128

In the usual security model, the adversary is given a black box (oracle) access to
an instance of the encryption function associated with a random secret key and
its inverse. The goal is to find the key or more generally to efficiently distinguish
the encryption function from a random permutation.

More formally, a block cipher is a family of functions E : K×S → S, with K
a finite set called the key space and S a finite set called the domain or message
space. For every k ∈ K, the function Ek(·) = E(k, ·) is a permutation. The
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inverse of the block cipher E is defined as a function E−1 : K × S → S that
satisfies E−1k (Ek(s)) = s for each k ∈ K and for each s ∈ S. A block cipher
Ek(·) with key space K is a (q, t, ε)-pseudorandom permutation (PRP) if any
adversary making at most q oracle queries and running in time at most t can
distinguish Ek (for a random key k) from a uniformly random permutation with
advantage at most ε.

Definition 1. Let E be block cipher defined as before, and Perm(S) be the set
of all permutations of S. Let D be a distinguisher with oracle access to a permu-
tation and its inverse, and returning a single bit. The (Strong PseudoRandom
Permutation) SPRP-advantage of D against E is defined as

AdvsprpE (D) = |Prob(π ← Perm(S) : Dπ(·),π−1(·) = 1)

− Prob(k ← K : DEk(·),E−1
k (·) = 1)|.

For integers q and t, the SPRP-advantage of E is defined as

AdvsprpE (q, t) = max
D

AdvsprpE (D),

where the maximum is taken over all distinguishers making at most q oracle
queries and running in time at most t. E is a (q, t, ε)-SPRP if AdvsprpE (q, t) ≤ ε.

Note that if AdvE(D) ' 0, then the Ek(·) behaves (exactly) like a random
permutation from the distinguisher point of view.

Before we focus on the 5-round distinguisher, we briefly summarize the prop-
erties exploited by the secret key distinguisher on AES-like permutations up to
4 rounds. We stress that, even if a key-recovery attack can also be used as a
secret key distinguisher in this paper we focus only on secret-key distinguisher
that are independent of the secret key.

The most competitive secret-key distinguishers up to 3-round are based on
the differential [5] and on the truncated differential cryptanalysis [17]. These dis-
tinguishers exploit the fact that some r-round differential characteristics exist
with higher probability for an AES permutation than for a random one. In [7],
Daemen et al. proposed an attack vector that uses a 3-round distinguisher to
attack up to 6 rounds of the cipher and later became known as integral attacks.
In an integral distinguisher, given inputs with particular properties, one exploits
the fact that the sum of the corresponding ciphertexts is zero with probability
1 for an AES permutation, while this happens with a (much) lower probabil-
ity for a random permutation. Finally, another possible distinguisher exploits
the impossible-differential cryptanalysis, which was independently proposed by
Knudsen [18] and by Biham et al. [3]. In impossible-differential cryptanalysis,
the idea is to exploit the fact that some differential trails hold with probability
0 for an AES permutation (i.e. impossible differential trails), while they have
probability greater than 0 for a random permutation.
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5-Round “Distinguisher” for AES-128: State of Art. A distinguisher
for five rounds of AES-128 has been recently proposed by Sun, Liu, Guo, Qu,
and Rijmen at Crypto 2016 [21]. This distinguisher - which requires the whole
input-output space to work - has been improved in [14], where authors set up
a secret key distinguisher in the same setting of the one proposed in [21], but
which requires only 298.2 chosen plaintexts.

Both these two distinguishers are derived by a key-recovery attack on AES-
128 with a secret S-Box. In particular, they are able to distinguish a random
permutation from an AES one exploiting the existence of a (secret) key for
which a property on 4-round is verified. In more details, the property on 4-
round used in [21] is the balance property, while the one used in [14] is the
impossible differential one. With respect to a classical key-recovery attack, these
distinguishers require the knowledge only of a single byte of the secret subkey
to distinguish an AES permutation with a secret S-Box from a random one.

For a complete comparison with the distinguisher presented in this paper,
we briefly recall how they are set up, and we refer to [21] and [14] for a complete
discussion. In both cases, authors first assume to know the difference of two bytes
(i.e. 1 byte) of one secret subkey. Using this knowledge, they are able to extend
a four rounds distinguisher to five rounds. In order to turn these distinguishers
into secret-key ones, the idea is simply to iterate these distinguishers on all the
28 possible values of the difference of these two bytes of the secret subkey. The
idea is that for an AES permutation there exists one difference of these two
bytes for which a property (which is independent of the secret key) on 4-round
is satisfied, while for a random permutation this property on 4-round is never
satisfied (with high probability) for any of the 28 possible values.

We stress that both these distinguishers require to find part of the secret key
in order to verify a property on 4-round, i.e. they work as key-recovery attacks.
Note that the research of a secret-key distinguisher which is independent of
the secret key is of particular interest and importance since it (theoretically)
allows to set up key recovery attacks, as it already happened for the secret-key
distinguishers up to 4 rounds just described. Moreover, we highlight that both
these distinguishers are independent of the details of the S-Box, but they depend
on the details of the MixColumns matrix (in particular, they exploit the fact that
for at least one column of the MixColumns matrix or its inverse two elements
are identical).

1.2 Our Result: the First 5-Round Secret-Key Distinguisher for
AES-128 Independent of the Secret Key

The results presented in the previous two papers don’t solve the problem to set
up a 5-round secret key distinguisher of AES which exploits a property which is
independent of the secret key. In Sect. 3 of this paper, we provide a solution to
this problem, that is we propose the first secret-key distinguisher on 5-round of
AES which exploits a new property which is independent of the secret key and
of the details of the S-Box.
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The high-level idea is very easily described. By appropriate choices of differ-
ence for a number of input pairs it is possible to make sure that the number of
times that the difference of the resulting output pairs assumes certain values is
always a multiple of 8. More concretely, given a set of plaintexts which are equal
in certain bytes, consider the corresponding ciphertexts after 5 rounds. The idea
is to count the total number of different ciphertext pairs with zero-difference in
certain bytes. As we show in detail in the paper, for an AES permutation this
number can only be a multiple of 8, while it does not have any particular prop-
erty for the case of a random permutation. As we will see in the comparison, the
resulting distinguisher proposed in this paper is much more efficient than those
proposed earlier, it works both in the encryption and in the decryption mode of
AES and it does not depend on the details of the MixColumns matrix (with the
exception that the branch number must be five) or/and of the SubBytes opera-
tion. A formal statement of this property used by our distinguisher is given in
Theorem 1 in Sect. 3.1, and its detailed proof is given in Sect. 4.

Comparison with 4-Round Secret-Key Distinguishers. These last prop-
erties also highlight a difference between our new distinguisher and the others
currently used in literature. In most cases, especially in the cryptanalysis of
AES, one does not have the necessity to investigate the details of the S-Boxes.
Consider for example the 4-round secret-key distinguishers, based on the inte-
gral [12] and on the impossible-differential [4] properties. In the first one, given
a set of chosen plaintexts of which part is held constant and another part varies
through all possibilities, it is possible to prove that their XOR-sum after 4-round
is always equal to 0. In the second one, given the same set of chosen plaintexts,
it is possible to prove that the difference of each possible pair of ciphertexts after
4-round can not take some values (some differences have prob. 0, i.e. they are
impossible). In both cases, the corresponding results are independent of the key
and of the non-linear components. That is, if some other S-Boxes with similar
differential/linear properties are chosen in a cipher, the corresponding cryptan-
alytic results remain the same.

Although there are already 4-round impossible differentials and zero-correlation
linear hulls for AES, the effort to find new impossible differentials and zero-
correlation linear hulls that could cover more rounds has never been stopped. In
Eurocrypt 2016, Sun et al. [22] proved that, unless the details of the S-Boxes are
exploited, one cannot find any impossible differential or zero-correlation linear
hull of the AES that covers 5 or more rounds. Moreover, due to the link among
impossible differential, integral and zero correlation linear cryptanalysis [23], an
analogous result holds also for the integral case. On the other hand, our new
property presented in this paper holds up to 5-round of AES independently of
the key and of the details of the S-Box (and of the MixColumns operation), and
allows to answer an almost 20-year old problem: given a set of chosen plaintexts
similar to the one used by the integral and impossible differential distinguishers
just recalled, is there any property which is independent of the secret key after
5-round AES?
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Table 1. 5-round Secret-Key Distinguishers for AES with a Single Secret S-Box. In this
table, we limit ourselves to consider the distinguishers that exploit a property which is
independent of the key, or which are derived by a key-recovery attack but are indepen-
dent of the S-Box and require the knowledge of only part of the key. The complexity is
measured in minimum number of chosen plaintexts CP or/and chosen ciphertexts CC
which are needed to distinguish the AES permutation from a random one with proba-
bility higher than 99%. Time complexity is measured in memory accesses (M) or XOR
operations (XOR). The case in which the final MixColumns operation is omitted is de-
noted by “r.5 round”, i.e. r full rounds and the final one. “Key-Independence” denotes
a distinguisher which is able to distinguish 5-round AES from a random permutation
without discovering any information of the secret key or of part of it.

Property Rounds Data CP CC Cost Key-Independence Ref.

Structural Diff. 4.5− 5 233 3 3 236.6 M 3 Sect. 3

Impossible Diff. 4.5− 5 298.2 3 2107 M [14]

Integral 5 2128 3 2128 XOR [21]

Comparison of 5-Round Secret-Key Distinguishers. For a better com-
parison between this new secret-key distinguisher proposed in this paper and
earlier ones, we propose to classify the secret-key distinguishers in the following
way (from strongest to weakest):

1. a distinguisher which is completely independent of the secret key (e.g., it
exploits properties that are not related to the existence of a key) and inde-
pendent of the details of the S-Box;

2. a distinguisher which depends on the existence of a key and is derived by a
key-recovery attack.

A comparison between our new distinguisher and the ones proposed in [21]
and [14] is given in Table 1, where “Key-Independence” denotes a secret-key
distinguisher which is derived by a key-recovery attack, i.e. that does not exploit
a property which is independent of the secret key. Moreover, with respect to the
previous classification, a complete comparison of all the secret key distinguishers
and key-recovery attacks (used as distinguishers) for 5-round AES is provided
in Table 2 - App. C of the full version of the paper [13].

2 Preliminary - Description of AES

The Advanced Encryption Standard [8] is a Substitution-Permutation network
that supports key size of 128, 192 and 256 bits. The 128-bit plaintext initializes
the internal state as a 4 × 4 matrix of bytes as values in the finite fields F256,
defined using the irreducible polynomial x8 + x4 + x3 + x + 1. Depending on
the version of AES, Nr round are applied to the state: Nr = 10 for AES-128,
Nr = 12 for AES-192 and Nr = 14 for AES-256. An AES round applies four
operations to the state matrix:
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Fig. 1. Differential Trail over 2-round AES.

– SubBytes (S-Box) - applying the same 8-bit to 8-bit invertible S-Box 16 times
in parallel on each byte of the state (it provides non-linearity in the cipher);

– ShiftRows (SR) - cyclic shift of each row to the left;
– MixColumns (MC) - multiplication of each column by a constant 4 × 4

invertible matrix MMC (MC and SR provide diffusion in the cipher1);
– AddRoundKey (ARK) - XORing the state with a 128-bit subkey.

One round of AES can be described as R(x) = K ⊕MC ◦ SR ◦ S-Box(x). In
the first round an additional AddRoundKey operation (using a whitening key) is
applied, and in the last round the MixColumns operation can be omitted. For the
following, we assume that the last MixColumns operation is always omitted. In
the case in which the last MixColumns is not omitted, it is sufficient to exchange
the order of the last MixColumns operation and of the AddRoundKey operation
- they are linear.

Finally, as we don’t use the details of the AES key schedule in this paper, we
refer to [8] for a complete description.

The Notation Used in the Paper. Let x denote a plaintext, a ciphertext,
an intermediate state or a key. Then xi,j with i, j ∈ {0, ..., 3} denotes the byte
in the row i and in the column j. We denote by kr the key of the r-th round,
where k0 is the secret key. If only the key of the final round is used, then we
denote it by k to simplify the notation. Finally, we denote by R one round of
AES, while we denote r rounds of AES by Rr. We sometimes use the notation
RK instead of R to highlight the round key K. If the MixColumns operation is
omitted in the last round, then we denote it by Rf .

2.1 Differential Trail over 2-round AES

For the following, we recall a 2-round truncated differential trail of AES (see [9]
or [10] for details), largely used in the paper and illustrated in Fig. 1.

1 SR makes sure column values are spread, MC makes sure each column is mixed.
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Let R2(·) denote two AES rounds with fixed random round keys. Consider
two plaintexts which are equal in all bytes except for the ones in the i-th diagonal
for a certain i = 0, 1, 2, 3, i.e. for the bytes in row j and column i + j for each
j = 0, 1, 2, 3 (the index i+ j is taken modulo 4). After one round, the two texts
are equal in all bytes except for the ones in the i-th column, i.e. for the bytes in
row j and column i for each j. After the second and last round - assuming the
final MixColumns is omitted, the two texts are equal in all bytes except for the
ones in the i-th anti-diagonal, that is for the bytes in row j and column i− j for
each j (the index i− j is taken modulo 4) by definition of anti-diagonal.

For the following, we work with diagonal sets of 232 plaintexts, defined as
sets of texts which are equal in 3 diagonals, i.e. texts with active bytes in the i-th
diagonal for a certain i = 0, 1, 2, 3 and with constant bytes in the other three:

A C C C
C A C C
C C A C
C C C A

 R(·)−−→


A C C C
A C C C
A C C C
A C C C

 Rf (·)−−−→


A C C C
C C C A
C C A C
C A C C

 ,
where A denotes an active byte (i.e. a byte in which every value in F28 appears
the same number of times) and C denotes a constant byte (i.e. a byte in which
the value is fixed to a constant for all texts). For completeness, we label the last
set by inverse-diagonal set, i.e. a set of texts where the bytes in one (or more)
anti-diagonal(s) are active while the others are constant.

If the final MixColumns is not omitted, certain linear relations - which are
given by the definition of the MixColumns matrix - hold between the bytes of
the texts that lie in the same column:

A C C C
C A C C
C C A C
C C C A

 R(·)−−→


A C C C
A C C C
A C C C
A C C C

 R(·)−−→MC ×


A C C C
C C C A
C C A C
C A C C

 ,
In this case, we label the last set by mixed set. As an example, consider two
plaintexts p1 and p2 which are equal in all bytes except for the ones in the 0-
th diagonal, i.e. except for the bytes in positions (j, j) for each j = 0, 1, 2, 3.
After 2 (complete) rounds, there exist x, y, z, w ∈ F28 such that their difference
R2(p1)⊕R2(p2) can be re-written as:

R2(p1)⊕R2(p2) =


0x02 · x y z 0x03 · w

x y 0x03 · z 0x02 · w
x 0x03 · y 0x02 · z w

0x03 · x 0x02 · y z w

 . (1)

Finally, the same truncated differential analysis of 2-round can be generalized
to the cases of an initial diagonal set with more than a single active diagonal,
i.e. a set of plaintexts which are equal in all bytes except for the ones that lie in
two or three diagonals (instead of only one).
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3 New 5-round Secret Key Distinguisher for AES

3.1 Statement of the Property

Consider a diagonal set of plaintexts - i.e. a set of 232 plaintexts which are
equal in all bytes except for the ones in i-diagonal for a certain i = 0, 1, 2, 3,
and the corresponding ciphertexts after 5 rounds. Assume the final MixColumns
operation is omitted. In order to set up the distinguisher on 5 rounds of AES, the
idea is to count the number of different pairs of ciphertexts which are equal in d
anti-diagonals for a certain 1 ≤ d ≤ 3 - that is the number of pairs of ciphertexts
with zero-difference in the bytes in positions (i, j − i) for all i = 0, 1, 2, 3 and
j ∈ J for a certain J ⊆ {0, 1, 2, 3} with |J | = d - and to exploit the property
that for an AES-like permutation this number is a multiple of 8 with prob. 1.

In more detail, given a set of plaintexts/ciphertexts (pi, ci) for i = 0, ..., 232−1
- where all the plaintexts are in the same diagonal set, the idea is to construct
all the possible pairs of ciphertexts (ci, cj) for i 6= j and to count the number
of different pairs2 of ciphertexts (ci, cj) for which the bytes of the difference
ci ⊕ cj that lie in d anti-diagonals are equal to zero (where 1 ≤ d ≤ 3 and
the anti-diagonals are fixed in advance). It is possible to prove that for 5-round
AES this number has the special property to be a multiple of 8 independently
of d - that is on the number of considered anti-diagonals. Instead, for a random
permutation the same number does not have any special property (e.g. it has
the same probability to be even or odd). This allows to distinguish 5-round AES
from a random permutation.

Theorem 1. Given 232 plaintexts in the same diagonal set defined as before,
consider the corresponding ciphertexts after 5 rounds, that is (pi, ci) for i =
0, ..., 232 − 1 where ci = R5(pi) The number n of different pairs of ciphertexts
(ci, cj) for i 6= j for which the bytes of the difference ci ⊕ cj that lie in d anti-
diagonals are equal to zero (where 1 ≤ d ≤ 3 and the anti-diagonals are fixed in
advance) is a multiple of 8, that is ∃n′ ∈ N such that n = 8 · n′.

Idea of the Proof - Lemma 1. As we have seen in the previous section,
a diagonal set is always mapped after two rounds into a mixed set. In other
words, if two plaintexts have equal bytes expect for the ones in one diagonal,
then after two rounds some particular linear relationships (given in (1)) hold
among the bytes of the difference of these two texts that lie in the same column
with probability 1. In the same way, if two ciphertexts have equal bytes in d anti-
diagonals, then these two texts have equal bytes in d diagonals two rounds before
(due to the 2-round differential trail described in Sect. 2.1). In other words, a
inverse-diagonal set is mapped into a diagonal set two rounds before (assuming
the final MixColumns operation is omitted).

2 The two pairs (ci, cj) and (cj , ci) are considered equivalent. To formalize this concept,
one can consider the number of ciphertexts (ci, cj) with i < j for which the bytes of
the difference ci ⊕ cj that lie in d anti-diagonals are equal to zero.
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Assume for simplicity that the 232 plaintexts are chosen in a diagonal set
with the active bytes in the first diagonal (analogous for the other cases). Due
to these two previous considerations, Theorem 1 on 5 rounds of AES (and its
proof) is strongly related to the following lemma on 1-round AES.

Lemma 1. Given 232 plaintexts in a mixed set of the form

MC ·


A C C C
C C C A
C C A C
C A C C

 , (2)

consider the corresponding ciphertexts after 1 round, that is (p̂i, ĉi) for i =
0, ..., 232 − 1 where ĉi = R(p̂i). The number n of different pairs of ciphertexts
(ĉi, ĉj) for i 6= j for which the bytes of the difference ci⊕cj that lie in d diagonals
are equal to zero (where 1 ≤ d ≤ 3 and the diagonals are fixed in advance) is a
multiple of 8, that is ∃n′ ∈ N s.t. n = 8 · n′.

The complete proof is provided in the next section - Sect. 4. We emphasize that
the proof of Theorem 1 follows immediately by the proof of Lemma 1, due to
the 2-round truncated differential trail described in Sect. 2.1. In particular, note
that considering 232 plaintexts in the same diagonal set (that is 232 plaintexts
which are equal in three diagonals and with active bytes in the other one) is
equivalent to consider 232 texts in the same mixed set as defined in (2) after two
rounds. In other words, all 232 plaintexts of Lemma 1 are definitely reachable in
2 rounds from the initial plaintext (diagonal) structure defined in Theorem 1.

To prove the lemma, the idea is show that given one pair of ciphertexts
for which the bytes that lie in d diagonals are equal, then also other pairs of
ciphertexts have the same property with probability 1. The complete proof is
given in Sect. 4. We highlight that the statement given in Theorem 1 (or Lemma
1) does not depend on the details of the MixColumns matrix (with the exception
that the branch number must be five) or/and of the SubBytes operation. In other
words, the only property that the proof - given in the next section - exploits is
the branch number of the MixColumns matrix.

3.2 Setting Up the Distinguisher

Our 5-round distinguisher exploits the property just described that the above
defined number n is a multiple of 8 for 5-round AES, while it can take any
possible value in the case of a random permutation. In the following we show
how to set up the previous distinguisher in an efficient way for the case d = 1
(analougos for the other cases).

To implement the distinguisher, one has to count the number of pairs of
ciphertexts for which the difference in d = 1 anti-diagonal is equal to zero (where
this anti-diagonal is fixed in advance). First of all, since the probability that two
ciphertexts satisfy this property is 2−32 (in general, 2−32·d for d anti-diagonals),
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we expect that on average(
232

2

)
· 2−32 = 231 · (232 − 1) · 2−32 ' 231

different pairs of ciphertexts have difference zero in one fixed anti-diagonal both
for an AES permutation and for a random one. However, while for an AES
permutation this number is a multiple of 8 with probability 1, for a random
permutation this happens only with probability 0.125 ≡ 2−3. In particular, con-
sider s initial arbitrary diagonal sets of plaintexts and for each of them count
the number of different pairs of ciphertexts that have difference zero in d anti-
diagonals. For an AES permutation, each of these numbers is a multiple of 8,
while the probability that this happens for a random permutation is only 2−3·s.
In order to distinguish the AES permutation from the random one with proba-
bility at least pr, it is sufficient that for a random permutation at least one of
these numbers is not a multiple of 8, which happens with probability pr:

pr = 1− 2−3·s.

Thus, the probability of success of this distinguisher is greater than 99% (i.e.
pr ≥ 0.99) for s ≥ 3. Note that for each initial diagonal set, one can count
the above defined number n for each one of the four possible anti-diagonals.
In other words, there are four different anti-diagonals for which one can count
the number n of pairs of ciphertexts with zero difference in that anti-diagonal. It
follows that using a single initial diagonal set, it is possible to distinguish 5-round
AES from a random permutation with a probability of success of approximately
1− (2−12) = 99.975%.

In conclusion, 232 chosen plaintexts in a single initial arbitrary diagonal set
- i.e. a set of 232 plaintexts which are equal in all bytes except for the ones
in the i-th diagonal for a certain i = 0, 1, 2, 3 - are sufficient to distinguish a
random permutation from an AES one. An approximation of the computational
cost is given in the following. For completeness, it is also possible to set up a
distinguisher for the cases d = 2 and d = 3 - i.e. the cases in which one count the
number n of pairs of ciphertexts for which the bytes in d = 2, 3 anti-diagonals are
equal. However, it should be noticed that the average number of collisions in these
cases are respectively 231 · (232− 1) · 2−64 ' 2−1 and 231 · (232− 1) · 2−96 ' 2−33.
As a consequence, the data and computational cost of these cases is not lower
than for the case d = 1.

3.3 The Computational Cost

We have just seen that 232 chosen plaintexts in a single diagonal set are sufficient
to distinguish a random permutation from 5 rounds of AES, simply counting the
number of pairs of ciphertexts with equal bytes in d anti-diagonal and checking
if it is a multiple of 8 or not. Here we give an estimation of the computational
cost of the distinguisher, which is approximately given by the sum of the cost to
construct all the pairs and of the cost to count the number of pairs of ciphertexts
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with the previous property. As a result, the total computational cost can be well
approximated by 235.6 table look-ups.

Assume the final MixColumns operation is omitted. As we have just said,
for each initial diagonal set the two steps of the distinguisher are (1) construct
all the possible pairs of ciphertexts and (2) count the number of collisions. First
of all, given pair of ciphertexts, note that the cost to check that the bytes in d
anti-diagonals are equal corresponds to the cost of a XOR operation3. As we are
going to show, the major cost of this distinguisher regards the construction of all
the possible different pairs, which corresponds to step (1). Since it is possible to
construct approximately 263 pairs for each initial diagonal set, the simplest way
to do it requires 263 table look-ups. In the following, we present a way to reduce
the total cost to approximately 235.6 table look-ups, where the used tables are
of size 232 texts (or equivalently 232 · 16 = 236 byte).

The basic idea is to implement the distinguisher using a data structure. The
goal is to count the number of pairs of ciphertexts (c1, c2) for which the bytes
in one of the anti-diagonal are equal, that is such that for a fixed j ∈ {0, 1, 2, 3}
the following condition is satisfied:

c1i,j−i = c2i,j−i ∀i = 0, 1, 2, 3 (3)

where the index is computed modulo 4. To do this, consider an array A of
232 elements completely initialized to zero. The element of A in position x for
0 ≤ x ≤ 232 − 1 - denote by A[x] - represents the number of ciphertexts c that
satisfy the following equivalence (in the integer field N):

x = c0,0−j + 256 · c1,1−j + c2,2−j · 2562 + c3,3−j · 2563.

It’s simple to observe that if two ciphertexts c1 and c2 satisfy (3), then they
increment the same element x of the array A. It follows that given r ≥ 0 texts
that increment the same element x of the array A, then it is possible to construct(

r

2

)
=
r · (r − 1)

2

different pairs of texts that satisfy (3). The complete pseudo-code of such an
algorithm is given in Algorithm 1.

What is the total computational cost of this procedure? Given a set of 232

(plaintexts, ciphertexts) pairs, one has first to fill the array A using the strategy
just described, and then to compute the number of total of pairs of ciphertexts
that satisfy the property, for a cost of 3 · 232 = 233.6 table look-ups - each one
of these three operations require 232 table look-ups. Since one has to repeat this
algorithm 4 times - one time for each one of the four anti-diagonal, the total cost
is of 4 · 233.6 = 235.6 table look-ups, or equivalently 229 five-round encryptions of
AES (using the approximation4 1 table look-up ≈ 1 round of AES).

3 As example, let J ⊆ {0, 1, 2, 3} with d = |J |. Given a pair (c1, c2), this operation can
be reduced to check that c̃k,j−k = 0 for each k = 0, ..., 3 and j ∈ J , where c̃ ≡ c1⊕c2.

4 We highlight that even if this approximation is not formally correct - the size of the
table of an S-Box look-up is lower than the size of the table used for our proposed
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Data: 232 (plaintext, ciphertext) pairs (pi, ci) for i = 0, ..., 232 − 1 in a single
diagonal set.

Result: 1 for an AES permutation, 0 otherwise (prob. ≥ 99%)
Let (pi, ci) for i = 0, ..., 232 − 1 the (plaintext, ciphertext) pairs;
for all j ∈ {0, 1, 2, 3} do

Let A[0, ..., 232 − 1] an array initialized to zero;
for i from 0 to 232 − 1 do

x← 0;
for k from 0 to 3 do

x← x+ cik,j−k · 256k; // cik,j−k denotes the byte of ci in row k
and column j − k mod 4

end
A[x]← A[x] + 1; // A[x] denotes the value stored in the x-th
address of the array A

end
n← 0;
for i from 0 to 232 − 1 do

n← n + A[i] · (A[i]− 1)/2;
end
if (n mod 8) 6= 0 then

return 0;
end

end
return 1.

Algorithm 1: Secret-Key Distinguisher for 5 rounds of AES which exploits a
property which is independent of the secret key - probability of success: ≥ 99%.

Another possible way to implement our distinguisher exploits a re-ordering
algorithm. The goal is again to count the number of pairs of ciphertexts for which
the bytes that lie in d fixed anti-diagonals are equal. In this case, the idea is to re-
order the texts using a particular numerical order which depends - in a “certain
way” - on these d anti-diagonals. Then, given a set of ordered texts, the idea is
to work only on two consecutive elements in order to count the total number of
pairs of ciphertexts with the required property. In other words, given ordered
ciphertexts, one can work only on approximately 232 different pairs (composed
of consecutive elements with respect to the used order) instead of 263 for each
initial diagonal set. All the details of this method are given in App. D of [13].
This second implementation could be in some cases more efficient than the one
proposed in details in this section when e.g. it is required to do further operations
on the pairs of ciphertexts which are equal in the d fixed anti-diagonals.

distinguisher, it allows to give a comparison between our proposed distinguisher and
the others currently present in literature. At the same time, we note that the same
approximation is largely used in literature.
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3.4 Practical Verification

Using a C/C++ implementation5, we have practically verified the distinguisher
on a small scale variant of AES, as presented in [6]. While in “real” AES, each
word is composed of 8 bits, in this variant each word is composed of 4 bits.
We refer to [6] for a complete description of this small-scale AES, and we limit
ourselves to describe the results of our 5-round distinguisher in this case.

First of all, note that Theorem 1 holds exactly in the same way also for this
small-scale variant of AES (the proof is independent by the fact that each word
of AES is of 4 or 8 bits). Thus, our verification on the small-scale variant of AES
is strong evidence for it to hold for the real AES.

We have verified the theorem for each possible value of d (i.e. for 1, 2, 3). For
the verification of the secret-key distinguisher, we have chosen plaintexts in the
diagonal sets with a single active diagonal and d = 1. As result, we have verified
that for 5-round AES the number of collisions is a multiple of 2, while this number
does not have any particular property for a random permutation. Moreover, we
have found that 2 initial diagonal sets are largely sufficient to distinguish a
random permutation from an AES permutation also from a practical point of
view, as predicted.

The differences between this small-scale AES and the real AES regard the
total number of pairs of ciphertexts that satisfy the required property (equal
bytes in 1 fixed diagonal), which in this case is well approximated by 215 · (216−
1)·2−16 ≈ 215 for each diagonal set, and the lower computational cost, which can
be approximated by 217.6 · 4 ≈ 219.6 memory look-ups for each initial diagonal
set, besides the memory costs. The average practical results of our experiments
are in accordance with these numbers.

3.5 Generalizations of the Central Theorem

Until now we have considered only a particular case in order to set up our
distinguisher. However, here we show that it is possible to generalize Theorem
1 as follows.

Firstly, note that the same distinguisher works also in the reverse direction
(i.e. in the decryption mode) with the same complexity. Assume that the final
MixColumns operation is omitted. In this case the strategy is to choose 232

ciphertexts in the same inverse-diagonal set, i.e. a set of 232 ciphertexts which
are equal in all the bytes expect for the ones in the i-th anti-diagonal for a
certain i = 0, 1, 2, 3 (similar definition of the diagonal set). As before, the idea
is to count the number of different pairs of plaintexts for which the bytes that
lie in d diagonals are equal, for d fixed diagonals with 1 ≤ d ≤ 3. This number
has the same properties given in Theorem 1, while for a random permutation it
can take any possible value.

5 The source code is available at https://github.com/Krypto-iaik/AES_5round_

SKdistinguisher
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Theorem 2. Assume the final MixColumns operation is omitted. Given 232 ci-
phertexts in the same inverse-diagonal set - that is, a set of texts with equal bytes
expect the ones in the i-th anti-diagonal for a certain i ∈ {0, 1, 2, 3}, consider
the corresponding plaintexts 5 rounds before, that is (pi, ci) for i = 0, ..., 232 − 1
where pi = R−5(ci) The number n of different pairs of plaintexts (pi, pj) for
i 6= j for which the bytes of the difference pi⊕pj that lie in d diagonals are equal
to zero (where 1 ≤ d ≤ 3 and the diagonals are fixed in advance) is a multiple of
8, that is ∃n′ ∈ N such that n = 8 · n′.

A complete proof of this Theorem can be found in App. A of the full version of
the paper [13].

Secondly, Theorem 1 can be generalized for the cases of diagonal sets in which
more than a single diagonal is active. As an example, diagonal sets with 2 or 3
active diagonals can be

A A C C
C A A C
C C A A
A C C A

 or


A A A C
C A A A
A C A A
A A C A

 .
It is possible to prove that the result given in Theorem 1 is completely inde-
pendent of the number of active diagonals. In other words, independently of the
number of active diagonals of the initial diagonal set of the plaintexts, then the
number of pairs of ciphertexts for which the bytes that lie in d anti-diagonals
are equal (for d fixed anti-diagonals with 1 ≤ d ≤ 3) is a multiple of 8. A formal
statement is the following:

Theorem 3. Given 232·D plaintexts in the same diagonal set with 1 ≤ D ≤ 3
active diagonals defined as before, consider the corresponding ciphertexts after 5
rounds, that is (pi, ci) for i = 0, ..., 232 − 1 where ci = R5(pi) The number n of
different pairs of ciphertexts (ci, cj) for i 6= j for which the bytes of the difference
ci ⊕ cj that lie in d anti-diagonals are equal to zero (where 1 ≤ d ≤ 3 and the
anti-diagonals are fixed in advance) is a multiple of 8, that is ∃n′ ∈ N such that
n = 8 · n′.

The proof of this theorem is given in App. A - it is simply a generalization of
the proof of Theorem 1 given in the next section.

4 A Detailed Proof of Theorem 1 - Lemma 1

In this section we give a detailed and formal proof of Theorem 1. As we have
already said, since it is sufficient to prove Lemma 1 in order to prove the The-
orem, we focus on this Lemma, which is recalled in the following. Moreover, we
assume that for simplicity that the 232 plaintexts are chosen in a diagonal set
with the active bytes in the first diagonal (analogous for the other cases).
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Lemma 1. Given 232 plaintexts in the same mixed set of the form (2)

MC ·


A C C C
C C C A
C C A C
C A C C

 ,
consider the corresponding ciphertexts after 1 round, that is (p̂i, ĉi) for i =
0, ..., 232 − 1 where ĉi = R(p̂i). The number n of different pairs of ciphertexts
(ĉi, ĉj) for which the bytes of the difference ci ⊕ cj that lie in d diagonals are
equal to zero (where 1 ≤ d ≤ 3 and the diagonals are fixed in advance) is a
multiple of 8, that is ∃n′ ∈ N s.t. n = 8 · n′.

Proof. Consider two elements p1 and p2 in the set just defined. By definition,
there exist x, y, z, w ∈ F28 , x′, y′, z′, w′ ∈ F28 and a constant a ∈ F4×4

28 such that:

p1 = a⊕


2 · x y z 3 · w
x y 3 · z 2 · w
x 3 · y 2 · z w

3 · x 2 · y z w

 , p2 = a⊕


2 · x′ y′ z′ 3 · w′
x′ y′ 3 · z′ 2 · w′
x′ 3 · y′ 2 · z′ w′

3 · x′ 2 · y′ z′ w′


where 2 ≡ 0x02 and 3 ≡ 0x03. For the following, we say that p1 is “generated” by
the variables 〈x, y, z, w〉 and that p2 is “generated” by the variables 〈x′, y′, z′, w′〉.

First case. First, we consider the case in which three variables are equal.
W.l.o.g. we assume for example that y = y′, z = z′, w = w′ and x 6= x′

(the other cases are analogous). As we are going to show, in this case it is not
possible that after one round the bytes of one diagonal (e.g. the j-th diagonal
for j ∈ {0, 1, 2, 3}) of the two texts are equal). In other words, it is not possible
that (R(p1)⊕R(p2))i,j+i = 0 for each i = 0, ..., 3 (i.e. the four bytes of the j-th
diagonal of R(p1)⊕R(p2) are equal to zero), where the indexes are taken modulo
4. As we are going to show, this is due to the given hypothesis of this case and to
the fact that the branch number of the MixColumns operation is equal to five.

By simple computation, the first column (analogues for the other ones)
of SR◦ S-Box(p1) ⊕ SR◦ S-Box(p2) - denoted by (SR◦ S-Box(p1) ⊕ SR◦ S-
Box(p2))·,0 - is equal to:

(SR◦ S-Box(p1)⊕SR◦ S-Box(p2))·,0 =


S-Box(2 · x⊕ a0,0)⊕ S-Box(2 · x′ ⊕ a0,0)

0
0
0

 .
After the MixColumns operation (note R(p1)⊕R(p2) = MC(SR ◦ S-Box(p1)⊕
SR◦ S-Box(p2)) = MC◦SR◦ S-Box(p1)⊕MC◦SR◦ S-Box(p2)), since only one
input byte6 is different from zero, it follows that at least four output bytes must

6 Note that S-Box(2 · x⊕ a0,0)⊕ S-Box(2 · x′ ⊕ a0,0) = 0 if and only if x = x′, which
can never happen for hypothesis.
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be different from zero, that is all the output bytes are different from zero. This
simply implies that it is not possible that the bytes of one or more diagonals of
R(p1)⊕R(p2) are equal to zero. As a consequence, this case does not contribute
to the number n.

Second case. Secondly, we consider the case in which two variables are equal,
that is w.l.o.g. we assume for example that z = z′ and w = w′, while x 6= x′ and
y 6= y′ (the other cases are analogous).

Assume there exist two elements p1 (generated by 〈x, y〉) and p2 (generated
by 〈x′, y′〉) defined as before such that they have zero-difference in the j-th
diagonal after one round. In other words, let j ∈ {0, 1, 2, 3} and assume that
there exist x, y and x′, y′ such that the generated elements p1 and p2 satisfy
(R(p1) ⊕ R(p2))i,i+j = 0 for each i = 0, 1, 2, 3, where the indexes are taken
modulo 4.

This implies that other two elements p̂1 (generated by 〈x, y′〉) and p̂2 (gen-
erated by 〈x, y′〉), that is

p̂1 = a⊕


2 · x′ y 0 0
x′ y 0 0
x′ 3 · y 0 0

3 · x′ 2 · y 0 0

 and p̂2 = a⊕


2 · x y′ 0 0
x y′ 0 0
x 3 · y′ 0 0

3 · x 2 · y′ 0 0

 ,
satisfy the condition (R(p̂1) ⊕ R(p̂2))i,i+j = 0 for each i = 0, 1, 2, 3 and for a
certain j after one round. To prove this fact, it is sufficient to compute R(p1)⊕
R(p2) and R(p̂1)⊕R(p̂2), and to prove that they are equal, i.e.

R(p1)⊕R(p2) = R(p̂1)⊕R(p̂2).

Since (R(p1)⊕R(p2))i,i+j = 0 for each i = 0, 1, 2, 3, it also follows that (R(p̂1)⊕
R(p̂2))i,i+j = 0 for each i. In particular, by simple computation the first column
of R(p1)⊕R(p2) is given by:

(R(p1)⊕R(p2))0,0 = 2 · (S-Box(2 · x⊕ a0,0)⊕ S-Box(2 · x′ ⊕ a0,0))⊕
⊕ 3 · (S-Box(y ⊕ a1,1)⊕ S-Box(y′ ⊕ a1,1),

(R(p1)⊕R(p2))1,0 = S-Box(2 · x⊕ a0,0)⊕ S-Box(2 · x′ ⊕ a0,0)⊕
⊕ 2 · (S-Box(y ⊕ a1,1)⊕ S-Box(y′ ⊕ a1,1)),

(R(p1)⊕R(p2))2,0 = S-Box(2 · x⊕ a0,0)⊕ S-Box(2 · x′ ⊕ a0,0)⊕
⊕ S-Box(y ⊕ a1,1)⊕ S-Box(y′ ⊕ a1,1),

(R(p1)⊕R(p2))3,0 = 3 · (S-Box(2 · x⊕ a0,0)⊕ S-Box(2 · x′ ⊕ a0,0))⊕
⊕ S-Box(y ⊕ a1,1)⊕ S-Box(y′ ⊕ a1,1).

Due to the definition of p̂1 and p̂2, it follows immediately that (R(p1)⊕R(p2))·,0 =
(R(p̂1)⊕R(p̂2))·,0. The same happens for the other columns. Note that the two
elements p̂1 and p̂2 exist for sure since we are working with all the 232 plaintexts
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in the same mixed set (2). This implies that the number of collisions must be
even, that is a multiple of 2.

Question: given p1 and p2 as before, is it possible that x, y, x′, y′ exist such
that (R(p1) ⊕ R(p2))i,i+j = 0 for each i = 0, 1, 2, 3? Yes, again because the
branch number of the MixColumns operation is five. Indeed, compute SR◦ S-
Box(p1)⊕SR◦ S-Box(p2) and analyze the first column (the others are analogous):

(SR◦ S-Box(p1)⊕SR◦ S-Box(p2))·,0 =


S-Box(2 · x⊕ a0,0)⊕ S-Box(2 · x′ ⊕ a0,0)

S-Box(y ⊕ a1,1)⊕ S-Box(y′ ⊕ a1,1)
0
0

 .
After the MixColumns operation (note R(p1)⊕R(p2) = MC(SR ◦ S-Box(p1)⊕
SR ◦ S-Box(p2))), since two input bytes7 are different from zero, it follows that
at least three output bytes must be different from zero, or at most one output
byte could be equal to zero (similar for the other columns). Moreover, this also
implies that it is not possible that two or more output bytes in the same column
are equal to zero.

Moreover, observe that (R(p1)⊕R(p2))i,i+j = 0 for each i if and only if four
bytes (one per column) of R(p1)⊕R(p2) are equal to zero. Since there are four
“free” variables (i.e. x, y, x′, y′) and a system of four equations, such a system
can have a non-negligible solution.

Finally, since the previous result is independent of the values of z = z′ and
w = w′, it follows that the number of collisions for this case must be a multiple
of 217. Indeed, assume that for certain ẑ and ŵ there exist x, y, x′, y′ such that
the two elements p1 and p2 generated respectively by 〈x, y〉 by 〈x′, y′〉 satisfy
the condition that R(p1) ⊕ R(p2) has zero-difference in the j-th diagonal. By
simple computation, the difference R(p1)⊕R(p2) doesn’t depend on z = z′ and
on w = w′, that is for each byte of (R(p1) ⊕ R(p2))k,l for k, l = 0, 1, 2, 3 there
exist constant Ai, Bi, Ci for i = 0, 1, 2, 3 - that depend only on the coefficients
of the MixColumns matrix or/and of the secret-key - such that

(R(p1)⊕R(p2))k,l =A0 · (S-Box(B0 · x⊕ C0)⊕ S-Box(B0 · x′ ⊕ C0))⊕
⊕A1 · (S-Box(B1 · y ⊕ C1)⊕ S-Box(B1 · y′ ⊕ C1)⊕
⊕A2 · (S-Box(B2 · z ⊕ C2)⊕ S-Box(B2 · z′ ⊕ C2)⊕
⊕A3 · (S-Box(B3 · w ⊕ C3)⊕ S-Box(B3 · w′ ⊕ C3) =

=A0 · (S-Box(B0 · x⊕ C0)⊕ S-Box(B0 · x′ ⊕ C0))⊕
⊕A1 · (S-Box(B1 · y ⊕ C1)⊕ S-Box(B1 · y′ ⊕ C1).

It follows that - under the previous hypothesis - each pair of elements p1 and p2

respectively generated by (1) 〈x, y, z, w〉 and by 〈x′, y′, z, w〉 or (2) 〈x, y′, z, w〉
and by 〈x′, y, z, w〉 for each possible value of z and w satisfy the condition that

7 Note that S-Box(2 ·x⊕a0,0)⊕S-Box(2 ·x′⊕a0,0) = 0 if and only if x = x′, which can
never happen for hypothesis. In the same way, S-Box(y⊕a1,1)⊕S-Box(y′⊕a1,1) = 0
if and only if y = y′, which can never happen for hypothesis.
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R(p1) ⊕ R(p2) has zero-difference in the j-th diagonal. Thus, the number of
collisions for this case must be a multiple of 2 · (28)2 = 217. As before, the
existence of all these elements is guaranteed by the fact that we are working
with all the 232 plaintexts in the same mixed set (2).

Third case. Thirdly, we consider the case in which only one variable is equal,
that is w.l.o.g. we assume for example w = w′, while x 6= x′, y 6= y′ and z 6= z′

(the other cases are analogous).
Assume there exist two elements p1 (generated by 〈x, y, z〉) and p2 (generated

by 〈x′, y′, z′〉) defined as before and J ⊆ {0, 1, 2, 3} with 1 ≤ d = |J | ≤ 2 such
that the bytes of the two texts are equal after one round in the j-th diagonals
for j ∈ J . In other words, assume there exist x, y, z and x′, y′, z′ such that
the generated elements p1 and p2 satisfy (R(p1) ⊕ R(p2))i,j+i for j ∈ J with
1 ≤ |J | ≤ 2. Similar to before, it follows that also the following three pairs of
plaintexts generated by:

– 〈x′, y, z〉 and 〈x, y′, z′〉
– 〈x, y′, z〉 and 〈x′, y, z′〉
– 〈x, y, z′〉 and 〈x′, y′, z〉

have the same property (that is, the bytes in the j-th diagonals for j ∈ J are
equal after one round), for a total of four different pairs. As before, in order to
prove this fact it is sufficient to show that R(p1)⊕R(p2) = R(p̂1)⊕R(p̂2), where
p̂1 and p̂2 are generated by the previous combinations of variables. Note that
the two elements p̂1 and p̂2 exist for sure since we are working with all the 232

plaintexts in the same mixed set (2). This implies that the number of collisions
must be a multiple of 4.

Finally, we have only to prove that such x, y, z and x′, y′, z′ can exist. As
before, we compute SR◦ S-Box(p1)⊕SR◦ S-Box(p2) and analyze the first column
(the others are analogous):

(SR◦ S-Box(p1)⊕SR◦ S-Box(p2))·,0 =


S-Box(2 · x⊕ a0,0)⊕ S-Box(2 · x′ ⊕ a0,0)

S-Box(y ⊕ a1,1)⊕ S-Box(y′ ⊕ a1,1)
S-Box(2 · z ⊕ a2,2)⊕ S-Box(2 · z′ ⊕ a2,2)

0

 .
After the MixColumns operation, since three input bytes8 are different from
zero, it follows that at least two output bytes must be different from zero, or
at most two output bytes could be equal to zero. This implies that the event
(R(p1)⊕R(p2))i,j+i = 0 for all i = 0, 1, 2, 3 and j ∈ J with 1 ≤ |J | ≤ 2 is possible.
Moreover, this also implies that it is not possible that three output bytes (of the
same column) are equal to zero, or in other words that (R(p1)⊕R(p2))i,j+i = 0
for all i and all j ∈ J with d = |J | = 3 is not possible Also in this case, variables

8 Note that S-Box(2·x⊕a0,0)⊕S-Box(2·x′⊕a0,0) = S-Box(y⊕a1,1)⊕S-Box(y′⊕a1,1) =
S-Box(2 · z ⊕ a2,2)⊕ S-Box(2 · z′ ⊕ a2,2) = 0 if and only if x = x′, y = y′ and z = z′,
which can never happen for hypothesis.
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x, y, z and x′, y′, z′ can exist since the number of equations is less or equal than
the number of variables.

Finally, since the previous result is independent of the values of w = w′, it
follows that the number of collisions for this case must be a multiple of 4·28 = 210.
As before, assume that for a certain ŵ there exist x, y, z, x′, y′, z′ such that the
two elements p1 and p2 generated respectively by 〈x, y, z〉 and by 〈x′, y′, z′〉
satisfy the condition that R(p1)⊕R(p2) has zero-difference in the j-th diagonals
for j ∈ J . Also in this case, the idea is to show that the difference R(p1)⊕R(p2)
doesn’t depend on w = w′, that is for each byte of (R(p1)⊕R(p2))i,j there exist
constant Ai, Bi, Ci for i = 0, 1, 2 - that depend only on the coefficients of the
MixColumns matrix or/and of the secret-key - such that

(R(p1)⊕R(p2))i,j = A0 · (S-Box(B0 · x⊕ C0)⊕ S-Box(B0 · x′ ⊕ C0))⊕
⊕A1 · (S-Box(B1 · y ⊕ C1)⊕ S-Box(B1 · y′ ⊕ C1)⊕
⊕A2 · (S-Box(B2 · z ⊕ C2)⊕ S-Box(B2 · z′ ⊕ C2).

It follows that - under the previous hypothesis - each pair of elements p1 and p2

respectively generated by one of the four different combinations of the variables
〈x, y, z, w〉 and 〈x′, y′, z′, w〉 for each possible value of w satisfy the condition
that R(p1)⊕R(p2) has zero-difference in the j-th diagonals for j ∈ J . As before,
the existence of all these elements is guaranteed by the fact that we are working
with all the 232 plaintexts in the same mixed set (2).

Fourth case. Fourthly, we consider the case in which all the variables are
different, that is w.l.o.g. we assume that x 6= x′, y 6= y′, z 6= z′ and w 6= w′.

Assume there exist two elements p1 (generated by 〈x, y, z, w〉) and p2 (gener-
ated by 〈x′, y′, z′, w′〉) defined as before and J ⊆ {0, 1, 2, 3} with 1 ≤ d = |J | ≤ 3
such that the bytes of the two texts are equal after one round in the j-th diago-
nals for j ∈ J . In other words, assume there exist x, y, z, w and x′, y′, z′, w′ such
that the generated elements p1 and p2 satisfy (R(p1) ⊕ R(p2))i,j+i = 0 for all
i = 0, 1, 2, 3 and for all j ∈ J with 1 ≤ d = |J | ≤ 3. Similar to before, it follows
that also the following seven pairs of plaintexts generated by:

– 〈x′, y, z, w〉 and 〈x, y′, z′, w′〉
– 〈x, y′, z, w〉 and 〈x′, y, z′, w′〉
– 〈x, y, z′, w〉 and 〈x′, y′, z, w′〉
– 〈x, y, z, w′〉 and 〈x′, y′, z′, w〉
– 〈x′, y′, z, w〉 and 〈x, y, z′, w′〉
– 〈x′, y, z′, w〉 and 〈x, y′, z, w′〉
– 〈x′, y, z, w′〉 and 〈x, y′, z′, w〉

have the same property (thta is, the bytes in the j-th diagonals for j ∈ J are
equal after one round), for a total of eight different pairs. As before, in order
to prove this fact it is sufficient to show that R(p1) ⊕ R(p2) = R(p̂1) ⊕ R(p̂2).
Moreover, as before note that the two elements p̂1 and p̂2 exist for sure since we
are working with all the 232 plaintexts in the same mixed set (2). This implies
that the number of collisions must be a multiple of 8.
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Finally, we have only to prove that such x, y, z, w and x′, y′, z′, w′ can exist.
As before, we compute SR◦ S-Box(p1) ⊕ SR◦ S-Box(p2) and analyze the first
column (the others are analogous):

(SR◦ S-Box(p1)⊕SR◦ S-Box(p2))·,0 =


S-Box(2 · x⊕ a0,0)⊕ S-Box(2 · x′ ⊕ a0,0)

S-Box(y ⊕ a1,1)⊕ S-Box(y′ ⊕ a1,1)
S-Box(2 · z ⊕ a2,2)⊕ S-Box(2 · z′ ⊕ a2,2)

S-Box(w ⊕ a3,3)⊕ S-Box(w′ ⊕ a3,3)

 .
After the MixColumns operation, since four input bytes9 are different from zero,
it follows that at least one output byte must be different from zero, or at most
three output bytes could be equal to zero. This implies that the event (R(p1)⊕
R(p2))i,j+i = 0 for all i = 0, 1, 2, 3 and for all j ∈ J with 1 ≤ |J | ≤ 3 is possible.
Also in this case, variables x, y, z, w and x′, y′, z′, w′ can exist since the number
of equations is less or equal than the number of variables.

Conclusion. We summarize the previous results and we prove the lemma. Given
a set (2), we analyze the number of pairs of texts for which the bytes of d
diagonals are equal after one round.

If d = 3, it is possible to have a collision only in the case in which all the
variables that generate the two texts are different, that is x 6= x′, y 6= y′, and so
on. In this case, the number of collisions n must be a multiple of 8, that is there
exists n′ ∈ N such that n = 8 · n′.

If d = 2, it is possible to have a collision only if at least three variables that
generate the two texts are different (i.e. at most one variable can be equal). If
all the variables are different, the number of collisions is a multiple of 8, while if
one is equal then the number of collisions is a multiple of 1024 ≡ 210. In other
words, there exist n′, n′2 ∈ N such that the total number of collisions n is equal
to n = 8 · n′ + 1024 · n′2 = 8 · (n′ + 128 · n′2), i.e. it is a multiple of 8.

If d = 3, it is possible to have a collision only if at least two variables that
generate the two texts are different (i.e. at most two variables can be equal). If
all the variables are different, the number of collisions is a multiple of 8, if one
is equal then the number of collisions is a multiple of 1024 ≡ 210, while if two
are equal then the number of collisions is a multiple of 131072 ≡ 217. In other
words, there exist n′, n′2, n

′
3 ∈ N such that the total number of collisions n is

equal to n = 8 · n′ + 210 · n′2 + 217 · n′3 = 8 · (n′ + 27 · n′2 + 214 · n′3), i.e. it is a
multiple of 8.

This proves the lemma. ut

For completeness, we briefly recall why the proof of Lemma 1 implies Theo-
rem 1. As we have already seen, if two plaintexts are in the same diagonal set,
then after two rounds some particular linear relationships (given in (1)) hold

9 Note that S-Box(2·x⊕a0,0)⊕S-Box(2·x′⊕a0,0) = S-Box(y⊕a1,1)⊕S-Box(y′⊕a1,1) =
S-Box(2·z⊕a2,2)⊕S-Box(2·z′⊕a2,2) = S-Box(w⊕a3,3)⊕S-Box(w′⊕a3,3) = 0 if and
only if x = x′, y = y′, z = z′ and w = w′, which can never happen for hypothesis.
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among the bytes of the two texts that lie in the same column with probability
1. In the same way, if two ciphertexts have equal bytes in d anti-diagonals, then
two rounds before - assuming the final MixColumns operation is omitted - the
the two texts have equal bytes in d diagonals (due to the 2-round differential
trail described in Sect. 2.1). Thus, it is sufficient to prove that given a mixed set
of the form (2), the number of pairs of texts for which the bytes of d diagonals
are equal after one round is a multiple of 8, which is the statement of Lemma 1.
This finally proves the theorem.

5 Conclusion, Applications and Open Problems

In this paper, we have presented a new non-random property for 5 rounds of
AES. Additionally, we showed how to set up an efficient 5-round secret-key dis-
tinguisher for AES which exploits this property, which is independent of the
secret key, improving the very recent results [21] and providing answers to the
questions posed in [21]. This distinguisher is structural in the sense that it is in-
dependent of the details of the MixColumns matrix (with the exception that the
branch number must be five) and also independent of the SubBytes operation.
As such it will be straightforward to apply to many other AES-like constructions.
Starting from our results, a range of new questions arise for future investigations:

Application to Schemes that directly use round-reduced AES. Round-
reduced AES is a popular construction to build different schemes. For example,
in the on-going “Competition for Authenticated Encryption: Security, Applica-
bility, and Robustness” (CAESAR) [1], which is currently at its third round,
several candidates are designed based on an AES-like SPN structure. Focusing
only on the third-round candidates10, among many others, AEGIS [15] uses four
AES round-functions in the state update functions while ELmD [20] recommends
to use round-reduced AES including 5-round AES to partially encrypt the data.
Although the security of these candidates does not completely depend on the
underlying primitives, we believe that a better understanding of the security of
round-reduced AES can help get insights to both the design and cryptanalysis
of authenticated encryption algorithms.

Further Extensions. Is it possible to set up a secret-key distinguisher for 6-
round of AES which exploits a property which is independent of the secret key?
Is it possible to set up efficient key recovery attacks for 6- or more rounds of AES
that exploits this new 5-round secret-key distinguisher proposed in this paper or
a modified version of it?

10 Among previous-round candidates, it is also possible to include PRIMATEs [11]
which design is based on an AES-like SPN structure, while 4-round AES is adopted
by Marble [16] and used to build the AESQ permutation in PAEQ [2].
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Permutation and Known-Key Distinguishers. The new 5-round property
(or its approach to derive it) might find applications to permutation distinguish-
ers or known-key distinguishers. Permutation distinguisher are usually set up by
combining two secret-key distinguishers in an inside-out fashion. It is not im-
mediately clear how the 5-round secret-key distinguisher presented in this paper
used in an inside-out approach would be able to maintain the property in both
directions simultaneously, but it seems interesting to investigate this direction
also.
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A Generalization of Theorem 1

In Theorem 1 given in Sect. 3, we only considered the case of chosen plaintexts
in the same diagonal set with a single active diagonal - i.e. D = 1. A natural
question arises: is it possible to generalize the theorem also for D = 2 or/and
D = 3, that is for chosen plaintexts in the same diagonal set with two or three
active diagonals? The answer is yes, and it is given in Theorem 3 recalled in
the following. In particular, we prove in this section that the result obtained
in Theorem 1 is independent of the number of initial active diagonals D, or, in
other words, the property of n to be a multiple of 8 is independent of D.

Theorem 1. Given 232·D plaintexts in the same diagonal set with 1 ≤ D ≤ 3
active diagonals defined as before, consider the corresponding ciphertexts after 5
rounds, that is (pi, ci) for i = 0, ..., 232 − 1 where ci = R5(pi) The number n of
different pairs of ciphertexts (ci, cj) for i 6= j for which the bytes of the difference
ci ⊕ cj that lie in d anti-diagonals are equal to zero (where 1 ≤ d ≤ 3 and the
anti-diagonals are fixed in advance) is a multiple of 8, that is ∃n′ ∈ N such that
n = 8 · n′.
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Since the proof for the case D = 1 is given in Sect. 4, we focus on the cases
D = 2 and D = 3. Also for these cases, the idea is to analyze the middle round
and to study each possible case, as done in Sect. 4. Thus, given pair of texts of
the form

MC ·


A A C C
A C C A
C C A A
C A A C

 or MC ·


A A A C
A A C A
A C A A
C A A A

 , (4)

we analyze the property of the number of pairs of texts which are equal in d
diagonals after one round.

Since the idea of the proof for D = 2 and D = 3 is analogous to that given for
D = 1, we limit ourselves to do some considerations which justify the theorem.
A complete proof can be easily obtained exploiting the following considerations
and using the same strategy proposed in Sect. 4.

First Consideration. As first consideration, note that we are considering pairs
of plaintexts/ciphertexts (p1, c1) and (p2, c2) such that the plaintexts are in the
same diagonal set with at least 2 active diagonals. On the other hand, such a
set can be seen as a collection of diagonal set with only 1 active diagonal. Since
Theorem 1 holds for each one of these sets, it follows that if n is a multiple of
2m then m must satisfy m ≤ 3. This follows immediately by Theorem 1 and the
corresponding proof of App. 4.

Thus, we have to prove that n is a multiple of 2m and that m = 3 also for
the cases D = 2 and D = 3.

A.1 Case D = 2

We start studying the case D = 2. As we show in details in the following, the
same analysis can be simply modified and adapted for the case D = 3.

Consider two texts p1 and p2 in the same set (4) (the other cases are anal-
ogous). By definition, there exist x0, x1, y0, y1, z0, z1, w0, w1 ∈ F28 , x′0, x

′
1, y
′
0,

y′1, z
′
0, z
′
1, w

′
0, w

′
1 ∈ F28 and a ∈ F4×4

28 such that:

p1 = a⊕MC ·


x0 y0 0 0
x1 0 0 w0

0 0 z0 w1

0 y1 z1 0

 , p2 = a⊕MC ·


x′0 y

′
0 0 0

x′1 0 0 w′0
0 0 z′0 w

′
1

0 y′1 z
′
1 0

 .
For the following, let 2 ≡ 0x02 and 3 ≡ 0x03.

Following the same strategy of Sect. 4, the idea is to consider all the possible
cases in which some or no-one variables of p1 are equal to the ones of p2. Note
that the case x1 = x′1, y1 = y′1, z1 = z′1 and w1 = w′1 (i.e. two texts that belong
into the same set (2)) has already been considered. In particular, by Theorem 1
it follows that in this case the number n is a multiple of 8.
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First Case. W.l.o.g. we consider the case y1 = y′1, wi = w′i and zi = z′i for
i = 0, 1, while y0 6= y′0 and xi 6= x′i for i = 0, 1 (the other cases are analogous).

Assume there exist x0, x1, y0 and x′0, x
′
1, y
′
0 such that the generated elements

p1 and p2 satisfy the condition (R(p1)⊕R(p2))i,j+i = 0 for all i = 0, 1, 2, 3 and
for a certain j ∈ 0, 1, 2, 3 - i.e. the bytes of one diagonal of the two texts are equal
after one round. First of all, we show that such variables can exist. The condition
(R(p1) ⊕ R(p2))i,j+i = 0 for all i and a certain j ∈ {0, 1, 2, 3} implies that four
bytes (one per column) of R(p1)⊕R(p2) must be equal to 0. Since there are six
independent variables, a solution can exist (note that the number of variables is
higher than the number of equations, so two variables are still “free”). Moreover,
this is also due to the branch number of the MixColumns operation, which is five.
Indeed, by simple computation the first column of SR(S-Box(p1)⊕ S-Box(p2))
(analogous for the others) is given by:

SR(S-Box(p1)⊕ S-Box(p2))0,0 = S-Box(2 · x0 ⊕ 3 · x1 ⊕ a0,0 ⊕ a1,0)⊕
⊕ S-Box(2 · x′0 ⊕ 3 · x′1 ⊕ a0,0 ⊕ a1,0),

SR(S-Box(p1)⊕ S-Box(p2))1,0 = S-Box(y0 ⊕ a1,1)⊕ S-Box(y′0 ⊕ a1,1),

SR(S-Box(p1)⊕ S-Box(p2))2,0 = SR(S-Box(p1)⊕ S-Box(p2))3,0 = 0.

Thus, if we compute MC ◦SR(S-Box(p1)⊕ S-Box(p2)) (that is, R(p1)⊕R(p2)),
since at most two input bytes are different from zero, then it follows that at
least three output bytes must be different from zero, or equivalently at most
one output byte can be equal to zero. As a consequence, it is possible that
(R(p1) ⊕ R(p2))i,j+i = 0 for all i and a certain j ∈ {0, 1, 2, 3}. Note that the
same can not happen for d ≥ 2 diagonals. We emphasize that with respect to the
caseD = 1, it is possible that one input byte of the MixColumns operation can be
equal to zero. Indeed, it is possible that exist x0 and x′0 such that SR(S-Box(p1)⊕
S-Box(p2))0,0 (analogous for the others columns).

As before, the idea is to consider the pairs of texts generated by all the
possible combinations of these six variables, as for example 〈x0, x1, y′0〉 and
〈x′0, x′1, y0〉, 〈x0, x′1, y0〉 and 〈x′0, x1, y′0〉, 〈x′0, x1, y0〉 and 〈x0, x′1, y′0〉, 〈x1, x0, y′0〉
and 〈x′0, x′1, y0〉 (note that the elements generated by 〈x0, x1, y′0〉 and by 〈x1, x0, y′0〉
are different) and so on.

We analyze these cases. It is simple to observe that if p1 generated by
〈x0, x1, y0〉 and p2 generated by 〈x′0, x′1, y′0〉 satisfy the condition that (R(p1) ⊕
R(p2))i,j+i = 0 for all i and a certain j ∈ {0, 1, 2, 3} - i.e. one diagonal of the two
texts are equal after one round, then also the elements generated by 〈x0, x1, y′0〉
and 〈x′0, x′1, y0〉 have the same property. To prove this fact, it is sufficient to show
that R(p1)⊕R(p2) = R(p̂1)⊕R(p̂2). As an example, by simple computation, it
is simple to observe that for the first column:

SR(S-Box(p̂1)⊕ S-Box(p̂2))i,0 = SR(S-Box(p1)⊕ S-Box(p2))i,0 ∀i,

which implies the statement.
Consider now the elements p̂1 generated by 〈x0, x′1, y0〉 and p̂2 generated by

〈x′0, x1, y′0〉 (similar for the elements generated by 〈x′0, x1, y0〉 and 〈x0, x′1, y′0〉). By
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simple computation, the first column of SR(S-Box(p̂1)⊕ S-Box(p̂2)) (analogous
for the others) is given by:

SR(S-Box(p̂1)⊕ S-Box(p̂2))0,0 = S-Box(2 · x0 ⊕ 3 · x′1 ⊕ a0,0 ⊕ a1,0)⊕
⊕ S-Box(2 · x′0 ⊕ 3 · x1 ⊕ a0,0 ⊕ a1,0)

and for i = 1, 2, 3

SR(S-Box(p̂1)⊕ S-Box(p̂2))i,0 = SR(S-Box(p1)⊕ S-Box(p2))i,0.

Since the S-Box is a non-linear operation, three different cases can happen:

1. SR(S-Box(p̂1)⊕ S-Box(p̂2))0,0 = 0;
2. SR(S-Box(p̂1) ⊕ S-Box(p̂2))0,0 6= 0 and the elements p̂1 and p̂2 satisfy the

condition (R(p̂1)⊕R(p̂2))i,j+i = 0 for all i and a certain j ∈ {0, 1, 2, 3};
3. SR(S-Box(p̂1)⊕ S-Box(p̂2))0,0 6= 0 and the elements p̂1 and p̂2 don’t satisfy

the condition (R(p̂1)⊕R(p̂2))i,j+i = 0 for all i and a certain j ∈ {0, 1, 2, 3}.

We analyze in details these three cases, starting from the first one. As first thing,
note that this case can happen since the condition (R(p1)⊕ R(p2))i,j+i = 0 for
all i and a certain j ∈ {0, 1, 2, 3} imposes a condition only on four out of six
variables, that is two variables are still “free”. If SR(S-Box(p̂1)⊕ S-Box(p̂2))0,0 =
0, it follows that only one byte (i.e. the second one) of the first column of
SR(S-Box(p̂1) ⊕ S-Box(p̂2)) is different from 0 (since y0 6= y′0). Thus, since
MixColumns operation has branch number 5, all the bytes of the first column
of R(p̂1) ⊕ R(p̂2) must be different from zero, that is no diagonals of R(p̂1)
and R(p̂2) can be equal. However, note that also in this case it is possible to
deduce something. Indeed, by the previous consideration, it follows that the
elements generated by 〈x0, x′1, y′0〉 and by 〈x′0, x1, y0〉 don’t satisfy the condition
(R(p1)⊕R(p2))i,j+i = 0 for all i and a certain j ∈ {0, 1, 2, 3}

Consider now the other two cases. Since the S-Box is a non-linear operation,
it is not possible to guarantee that

SR(S-Box(p̂1)⊕ S-Box(p̂2))0,0 = SR(S-Box(p1)⊕ S-Box(p2))0,0.

In other words, they can be equal (which implies that the condition (R(p̂1) ⊕
R(p̂2))i,j+i = 0 for all i and a certain j ∈ {0, 1, 2, 3} - the same j of p1 and p2 -
holds) or different. In this second case, one can not say anything about the fact
that the elements p̂1 and p̂2 satisfy or not the condition (R(p̂1)⊕R(p̂2))i,j+i = 0
for all i and a certain j ∈ {0, 1, 2, 3} (the same j of p1 and p2). However, suppose
that p̂1 and p̂2 satisfy it after one round for the same j of p1 and p2 (which is
independent by the previous condition). In the same way of before, note that
also the elements generated by 〈x0, x′1, y′0〉 and p̂2 generated by 〈x′0, x1, y0〉 have
the same property.

Thus, assume that p1 generated by 〈x0, x1, y0〉 and p2 generated by 〈x′0, x′1, y′0〉
satisfy or not the condition (R(p1) ⊕ R(p2))i,j+i = 0 for all i and a certain
j ∈ {0, 1, 2, 3} after one round. By previous considerations, it follows that also
the p̂1 generated by 〈x0, x′1, y0〉 and p̂2 generated by 〈x′0, x1, y′0〉 have the same
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property. Thus, even if we can not do any claim for the other texts generated
by a different combination of these six variables, it is possible to conclude that
- for fixed y1 = y′1, wi = w′i and zi = z′i for i = 0, 1 - the number of collisions
must be a multiple of 2 for this case.

Finally, since we are working with the entire set of the form (4) - that is,
y1 = y′1, wi = w′i and zi = z′i for i = 0, 1 can take any possible value - and due to
the same considerations of Sect. 4, it follows that the number of collisions must
be a multiple of 2 · (28)5 = 241 for this case.

Second Case. Similar considerations can be done for the case wi = w′i and
zi = z′i for i = 0, 1, while xi 6= x′i and yi 6= y′i for i = 0, 1 (the other cases are
analogous).

Assume there exist x0, x1, y0, y1 and x′0, x
′
1, y
′
0, y
′
1 such that the generated

elements p1 and p2 satisfy the condition (R(p1)⊕R(p2))i,j+i = 0 for all i and a
certain j ∈ {0, 1, 2, 3}. As before, note that this is possible since this implies that
four bytes of R(p1) ⊕ R(p2) (one per column) must be equal to 0. Since there
are eight independent variables, a solution can exist (note that the number of
variables is higher than the number of equations, so four variables are still “free”).
Due to the branch number of the MixColumns operation, even if four variables
are still “free” it is not possible that the condition (R(p1) ⊕ R(p2))i,j+i = 0
for all i holds for two different j. Indeed, the first column of SR(S-Box(p1)⊕
S-Box(p2)) (analogous for the others) is given by:

SR(S-Box(p1)⊕ S-Box(p2))0,0 = S-Box(2 · x0 ⊕ 3 · x1 ⊕ a0,0 ⊕ a1,0)⊕
⊕ S-Box(2 · x′0 ⊕ 3 · x′1 ⊕ a0,0 ⊕ a1,0),

SR(S-Box(p1)⊕ S-Box(p2))1,0 = S-Box(y0 ⊕ y1 ⊕ a0,1 ⊕ a3,0)⊕
⊕ S-Box(y′0 ⊕ y′1 ⊕ a0,1 ⊕ a3,0),

SR(S-Box(p1)⊕ S-Box(p2))2,0 = SR(S-Box(p1)⊕ S-Box(p2))3,0 = 0.

After the MixColumns operation MC◦SR(S-Box(p1)⊕ S-Box(p2)), since at most
two input bytes are different from zero, then it follows that at least three output
bytes must be different from zero.

Thus, given x0, x1, y0, y1 and x′0, x
′
1, y
′
0, y
′
1, the idea is to consider all the

possible combinations as before. Also in this case, we can do a claim only on
one of them. In particular, if two elements p1 generated by 〈x0, x1, y0, y1〉 and p2

generated by 〈x′0, x′1, y′0, y′1〉 satisfies the condition (R(p1) ⊕ R(p2))i,j+i = 0 for
all i and a certain j ∈ {0, 1, 2, 3}, we can only claim that also the elements p̂1

generated by 〈x′0, x′1, y0, y1〉 and p̂2 generated by 〈x0, x1, y′0, y′1〉 have the same
property. Considerations for the other combinations are similar to the previous
case. Thus, we can claim that - for fixed wi = w′i and zi = z′i for i = 0, 1 - also
for this case the number of collisions is a multiple of 2.

Finally, since we are working with the entire set of the form (4) - that is,
wi = w′i and zi = z′i for i = 0, 1 can take any possible value - and due to the
same considerations of Sect. 4, it follows that the number of collisions must be
a multiple of 2 · (28)4 = 233 for this case.
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Second Consideration. What can we deduce by the previous two cases? Sup-
pose to have two texts p1 generated by 〈x ≡ (x0, x1), y ≡ (y0, y1)〉 and p2

generated by 〈x′ ≡ (x′0, x
′
1), y′ ≡ (y′0, y

′
1)〉 that satisfy the condition (R(p̂1) ⊕

R(p̂2))i,j+i = 0 for all i and a certain j ∈ {0, 1, 2, 3} and where x, y ∈ F28×F28 ≡
F2
28 . We have seen that given these two elements, one can only claim that

also the texts p̂1 generated by 〈x′ ≡ (x′0, x
′
1), y ≡ (y0, y1)〉 and p̂2 generated

by 〈x ≡ (x0, x1), y′ ≡ (y′0, y
′
1)〉 have the same property, that is the condition

(R(p̂1)⊕ R(p̂2))i,j+i = 0 for all i and a certain j ∈ {0, 1, 2, 3} for the same j of
p1 and p2.

As a consequence, the idea for the case D = 2 is not to consider the variables
that generate the texts and that are in the same column as independent. In
other words, the idea is to work with variables in F2

28 and not in F28 , i.e. to
consider only all the possible combinations of x ≡ (x0, x1), y ≡ (y0, y1) and
x′ ≡ (x′0, x

′
1), y′ ≡ (y′0, y

′
1), and not of x0, x1, y0, y1 and x′0, x

′
1, y
′
0, y
′
1. Using this

strategy and working in the same way of Sect. 4, it is possible to analyze all the
possible cases.

For example, consider the case in which wi = w′i for i = 0, 1 and x ≡
(x0, x1) 6= x′ ≡ (x′0, x

′
1), y ≡ (y0, y1) 6= y′ ≡ (y′0, y

′
1) and z ≡ (z0, z1) 6= z′ ≡

(z′0, z
′
1). In the same way of before, it is only possible to prove that if there

exist p1 generated by 〈x, y, z〉 and p2 generated by 〈x′, y′, z′〉 such that (R(p1)⊕
R(p2))i,j+i = 0 for all i and certain j ∈ J where J ⊆ {0, 1, 2, 3} and |J | = 2 -
i.e. two diagonals are equal, then a total of four elements generated by

– 〈x, y, z〉 and 〈x′, y′, z′〉
– 〈x′, y, z〉 and 〈x, y′, z′〉
– 〈x, y′, z〉 and 〈x′, y, z′〉
– 〈x, y, z′〉 and 〈x′, y′, z〉

have the same property. No claim can be made about other combinations of
variables (as before, this is due to the fact that the S-Box is non-linear). It
follows that - for fixed wi = w′i for i = 0, 1- the number of collisions must be a
multiple of 4 for this case. As before, since we are working with the entire set
of the form (4) it follows that the number of collisions must be a multiple of
4 · (28)2 = 218. Moreover, since the branch number of the MixColumns operation
is five, note that it is not possible that (R(p1) ⊕ R(p2))i,j+i = 0 for all i and
certain j ∈ {0, 1, 2, 3} if wl = w′l for l = 0, 1 (even if (R(p1)⊕R(p2))i,j+i = 0 for
all i and certain j ∈ J where J ⊆ {0, 1, 2, 3} imposes only 8 conditions while the
number of variables is 12, so 4 variables are still “free”).

Similar considerations can be done for the case in which all the variables are
different. As a consequence, the theorem is proved for the case |I| = 2.

A.2 Case D = 3

The case D = 3 is analogous to the case D = 2 and to the proof given in Sect.
4. For this reason, we limit ourselves to show how to adapt the proof of the case
D = 2 for this case.

29



W.l.o.g consider two texts p1 and p2 in the same set (4) (the other cases are
analogous). By definition, there exist x0, x1, x2, y0, y1, y2, z0, z1, z2, w0, w1, w2 ∈
F28 , x′0, x

′
1, x
′
2, y
′
0, y
′
1, y
′
2, z
′
0, z
′
1, z
′
2, w

′
0, w

′
1, w

′
2 ∈ F28 and a ∈ F4×4

28 such that:

p1 = a⊕MC ·


x0 y0 z0 0
x1 y1 0 w0

x2 0 z1 w1

0 y2 z2 w2

 , p2 = a⊕MC ·


x′0 y

′
0 z
′
0 0

x′1 y
′
1 0 w′0

x′2 0 z′1 w
′
1

0 y′2 z
′
2 w
′
2

 .
Similarly to the case D = 2, the idea is to work with variables in F3

28 ≡ F28 ×
F28 × F28 , e.g. x ≡ (x0, x1, x2), y ≡ (y0, y1, y2) and so on. In other words, the
idea is to consider the variables in the same column as not independent, that is
to consider the possible combinations only of variables in F3

28 and not in F28 .
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