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Abstract. Recent results of Kaplan et al., building on work by Kuwakado
and Morii, have shown that a wide variety of classically-secure symmetric-
key cryptosystems can be completely broken by quantum chosen-plaintext
attacks (qCPA). In such an attack, the quantum adversary has the ability
to query the cryptographic functionality in superposition. The vulnerable
cryptosystems include the Even-Mansour block cipher, the three-round
Feistel network, the Encrypted-CBC-MAC, and many others.
In this article, we study simple algebraic adaptations of such schemes that
replace (Z/2)n addition with operations over alternate finite groups—such
as Z/2n—and provide evidence that these adaptations are qCPA-secure.
These adaptations furthermore retain the classical security properties
and basic structural features enjoyed by the original schemes.
We establish security by treating the (quantum) hardness of the well-
studied Hidden Shift problem as a cryptographic assumption. We observe
that this problem has a number of attractive features in this cryptographic
context, including random self-reducibility, hardness amplification, and—
in many cases of interest—a reduction from the “search version” to
the “decisional version.” We then establish, under this assumption, the
qCPA-security of several such Hidden Shift adaptations of symmetric-key
constructions. We show that a Hidden Shift version of the Even-Mansour
block cipher yields a quantum-secure pseudorandom function, and that
a Hidden Shift version of the Encrypted CBC-MAC yields a collision-
resistant hash function. Finally, we observe that such adaptations frustrate
the direct Simon’s algorithm-based attacks in more general circumstances,
e.g., Feistel networks and slide attacks.



1 Introduction

The discovery of efficient quantum algorithms for algebraic problems with long-
standing roles in cryptography, like factoring and discrete logarithm [30], has led
to a systematic re-evaluation of cryptography in the presence of quantum attacks.
Such attacks can, for example, recover private keys directly from public keys
for many public-key cryptosystems of interest. A 2010 article of Kuwakado and
Morii [18] identified a new family of quantum attacks on certain generic construc-
tions of private-key cryptosystems. While the attacks rely on similar quantum
algorithmic tools (that is, algorithms for the hidden subgroup problem), they
qualitatively differ in several other respects. Perhaps most notably, they break
reductions which are information-theoretically secure3 in the classical setting.
On the other hand, these attacks require a powerful “quantum CPA” setting
which permits the quantum adversary to make queries—in superposition—to the
relevant cryptosystem.

These quantum chosen-plaintext attacks (qCPA) have been generalized and
expanded to apply to a large family of classical symmetric-key constructions,
including Feistel networks, Even-Mansour ciphers, Encrypted-CBC-MACs, tweak-
able block ciphers, and others [14, 18, 19, 29]. A unifying feature of all these new
attacks, however, is an application of Simon’s algorithm for recovering “hidden
shifts” in the group (Z/2)n. Specifically, the attacks exploit an internal application
of addition (mod 2) to construct an instance of a hidden shift problem—solving
the hidden shift problem then breaks the cryptographic construction. As an
illustrative example, consider two (independent) uniformly random permutations
P,Q : {0, 1}n → {0, 1}n and a uniformly random element z of {0, 1}n. It is easy to
see that no classical algorithm can distinguish the function (x, y) 7→ (P (x), Q(y))
from the function (x, y) 7→ (P (x), P (y⊕ z)) with a polynomial number of queries;
this observation directly motivates the classical Even-Mansour block-cipher con-
struction. On the other hand, an efficient quantum algorithm with oracle access
to (x, y) 7→ (P (x), P (y ⊕ z)) can apply Simon’s algorithm to recover the “hidden
shift” z efficiently; this clearly allows the algorithm to distinguish the two cases
above.

While these attacks threaten many classical private-key constructions, they
depend on an apparent peculiarity of the group (Z/2)n—the Hidden Shift prob-
lem over (Z/2)n admits an efficient quantum algorithm. In contrast, Hidden
Shift problems in general have resisted over 20 years of persistent attention from
the quantum algorithms community. Indeed, aside from Simon’s polynomial-time
algorithm for hidden shifts over (Z/2)n, generalizations to certain groups of

constant exponent [10], and Kuperberg’s 2O(
√
logN) algorithm for hidden shifts

over Z/N [16], very little is known. This dearth of progress is not for lack of
motivation. In fact, it is well-known that efficient quantum algorithms for Hidden
Shift over Z/N would (via a well-known reduction from the Hidden Subgroup
Problem on DN ) yield efficient quantum attacks on important public-key cryp-

3 The adversary is permitted to query the oracle a polynomial number of times, but
may perform arbitrarily complex computations between queries.
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tosystems [26, 27], including prime candidates for quantum security and the
eventual replacement of RSA in Internet cryptography [3]. Likewise, efficient algo-
rithms for the symmetric group would yield polynomial-time quantum algorithms
for Graph Isomorphism, a longstanding challenge in the area.

On the other hand, (Z/2)n group structure is rather incidental to the security
of typical symmetric-key constructions. For example, the classical Even-Mansour
construction defines a block cipher Ek1,k2(m) by the rule

Ek1,k2(m) = P (m⊕ k1)⊕ k2 ,

where P is a public random permutation and the secret key (k1, k2) is given by a
pair of independent elements drawn uniformly from (Z/2)n. The security proofs,
however, make no particular assumptions about group structure, and apply if
the ⊕ operation is replaced with an alternative group operation, e.g., + modulo
N or multiplication in F2n .

This state of affairs suggests the possibility of ruling out quantum attacks
by the simple expedient of adapting the underlying group in the construction.
Moreover, the apparently singular features of (Z/2)n in the quantum setting
suggest that quite mild adaptations may be sufficient. As mentioned above,
many classical security proofs are unaffected by this substitution; our primary
goal is to add security against quantum adversaries. Our approach is to reduce
well-studied Hidden Shift problems directly to the security of these symmetric-key
cryptosystems. Thus, efficient quantum chosen-plaintext attacks on these systems
would resolve long-standing open questions in quantum complexity theory.

1.1 Contributions

Hidden Shift as a cryptographic primitive. We propose the intractability
of the Hidden Shift problem as a fundamental assumption for establishing
quantum security of cryptographic schemes. In the general problem, we are given
two functions on some finite group G, and a promise that one is a shift of the
other; our task is to identify the shift. Our assumptions have the following form:

Assumption 1 (The G-Hidden Shift Assumption, informal). Let G =
{Gi | i ∈ I} be a family of finite groups indexed by a set I ⊂ {0, 1}∗. For all
polynomial-time quantum algorithms A,

E
f

[
min
s∈Gi

Pr
[
Af,fs(i) = s

]]
≤ negl(|i|) ,

where fs(x) = f(sx), the expectation is taken over random choice of the function
f , the minimum is taken over all shifts s ∈ Gi, and the probability is taken over
internal randomness and measurements of A.

This assumption asserts that there is no quantum algorithm for Hidden
Shift (over G) in the worst-case over s, when function values are chosen randomly.
Note that the typical formulation in the quantum computing literature is worst
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case over s and f ; on the other hand, known algorithmic approaches are invariant
under arbitrary relabeling of the value space of f . The “random-valued” case
thus seems satisfactory for our cryptographic purposes. (In fact, our results can
alternatively depend on the case where f is injective, rather than random.) See
Section 3 below for further discussion and precise versions of Assumption 1. In
general, formulating such an assumption requires attention to the encoding of
the group. However, we will focus entirely on groups with conventional encodings
which directly provide for efficient group operations, inversion, generation of
random elements, etc. Specifically, we focus on the two following particular
variants:

Assumption 2 (The 2n-Cyclic Hidden Shift Assumption). This is the
Hidden Shift Assumption with the group family C2 = {Z/2n | n ≥ 0} where the
index consists of the number n written in unary.

Assumption 3 (The Symmetric Hidden Shift Assumption). This is the
Hidden Shift Assumption with the group family S = {Sn | n ≥ 0} where Sn
denotes the symmetric group on n symbols and the index consists of the number
n written in unary.

In both cases the size of the group is exponential in the length of the index.
We remark that the Hidden Shift problem has polynomial quantum query

complexity [7]—thus one cannot hope that Hidden-Shift-based schemes possess
information-theoretic security in the quantum setting (as they do in the classical
setting); this motivates introduction of Hidden Shift intractability assumptions.

To explore the hardness of Hidden Shift problems against quantum
polynomial-time (QPT) algorithms, we describe several reductions. First, we
prove that Hidden Shift is equivalent to a randomized version of the problem
where the shift s is random (Random Hidden Shift), and provide an ampli-
fication theorem which is useful in establishing security of schemes based on
Assumption 1.

Proposition (Amplification, informal). Assume there exists a QPT algo-
rithm which solves Random Hidden Shift for an inverse-polynomial fraction
of inputs. Then there exists a QPT algorithm for solving both Hidden Shift and
Random Hidden Shift for all but a negligible fraction of inputs.

We then show that, for many group families, Hidden Shift over the relevant
groups is equivalent to a decisional version of the problem. In the decisional
version, we are guaranteed that the two functions are either (i.) both random
and independent, or (ii.) one is random and the other is a shift; the goal is to
decide which is the case.

Theorem (Search and decision are equivalent, informal). Let G be the
group family C2 or the group family S (or a group family with an efficient subgroup
series). Then there exists a QPT algorithm for Random Hidden Shift (with
at most inverse-poly error) over G if and only if there exists a QPT algorithm for
Decisional Random Hidden Shift (with at most inverse-poly error) over G.
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Finally, we provide some evidence that Hidden Shift over the family C2 is
as hard as Hidden Shift over general cyclic groups. Specifically, we show that
efficient algorithms for an approximate version of Hidden Shift over C2 give
rise to efficient algorithms for the same problem over C, the family of all cyclic
groups.

We also briefly discuss the connections between Hidden Shift, the assump-
tions above, and assumptions underlying certain candidates for quantum-secure
public-key cryptography [5, 26]. For completeness, we recall known connections
to the Hidden Subgroup Problem. Both the Hidden Shift and Hidden
Subgroup Problem families have received significant attention from the quan-
tum algorithms community, and are believed to be quantumly hard with the
exception of particular families of groups [5, 12, 21, 22, 26].

Quantum-secure symmetric-key cryptographic schemes. With the above
results in hand, we describe a generic method for using Assumption 1 to “adapt”
classically-secure schemes in order to remove vulnerabilities to quantum chosen-
plaintext attacks. The adaptation is simple: replace the underlying (Z/2)n struc-
ture of the scheme with that of either C2 or S. This amounts to replacing bitwise
XOR with a new group operation. In the case of C2, the adaptation is particularly
simple and efficient.

While our basic approach presumably applies in broad generality, we focus
on three emblematic examples: the Even-Mansour construction—both as a PRF
and as a block cipher—and the CBC-MAC construction. We focus throughout on
the group families C2 and S, though we also discuss some potential advantages
of other choices (see Section 3.2). Finally, we discuss related quantum attacks on
cryptographic constructions, including the 3-round Feistel cipher and quantum
slide attacks [14]. We remark that the Feistel cipher over groups other than
(Z/2)n has been considered before, in a purely classical setting [24].

Hidden Shift Even-Mansour. Following the prescription above, we define group
variants of the Even-Mansour cipher. We give a reduction from the worst-case Hid-
den Shift problem to the natural distinguishability problem (i.e., distinguishing
an Even-Mansour cipher from a random permutation). Thus, under the Hidden
Shift Assumption, the Even-Mansour construction is a quantum-query-secure
pseudorandom function (qPRF). In particular, key-recovery is computationally
infeasible, even for a quantum adversary. We also provide (weaker) reductions
between Hidden Shift and the problem of breaking Even-Mansour in the more
challenging case where the adversary is provided access to both the public permu-
tation and its inverse (and likewise for the encryption map). In any case, these
adaptations frustrate the “Simon algorithm key recovery attack” [19, 14], as this
would now require a subroutine for Hidden Shift in the relevant group family.
Moreover, one can also apply standard results (see, e.g., [13]) to show that, over
some groups, all bits of the key are as hard as the entire key (and hence, by
our reductions, as hard as Hidden Shift). We remark that considering Z/2n
structure to define an adaptation of Even-Mansour has been considered before in
the context of classical slide attacks [6].
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Hidden Shift CBC-MAC. Following our generic method for transforming schemes,
we define group variants of the Encrypted-CBC-MAC. We establish that this
primitive is collision-free against quantum adversaries. Specifically, we show that
any efficient quantum algorithm which discovers collisions in the Hidden-Shift
Encrypted-CBC-MAC with non-negligible probability would yield an efficient
worst-case quantum algorithm for Hidden Shift over the relevant group family.
As with Even-Mansour, this adaptation also immediately frustrates the Simon’s
algorithm collision-finding attacks [14, 29].

Feistel ciphers, slide attacks. We also define group variants of the well-known
Feistel cipher for constructing pseudorandom permutations from pseudorandom
functions. Our group variants frustrate Simon-style attacks [18]; a subroutine
for the more general Hidden Shift problem is now required. Finally, we also
address the exponential quantum speedup of certain classical slide attacks, as
described in [14]. We show how one can once again use Hidden Shift to secure
schemes vulnerable to these “quantum slide attacks.”

2 Preliminaries

Notation; remarks on finite groups. For a finite group G and an element s ∈ G,
let Ls : G → G denote the permutation given by left multiplication by s, so
Ls : x 7→ s · x. We discuss a number of constructions in the paper requiring
computation in finite groups and assume, throughout, that elements of the group
in question have an encoding that efficiently permits such natural operations
as product, inverse, selection of uniformly random group elements, etc. As our
discussion focuses either on specific groups—such as (Z/2)n or Z/N—where such
encoding issues are straightforward or, alternatively, generic groups in which we
assume such features by fiat, we routinely ignore these issues of encoding.

Classical and quantum algorithms. Throughout we use the abbreviation PPT for
“probabilistic polynomial time,” referring to an efficient classical algorithm, and
QPT for “quantum polynomial time,” referring to an efficient quantum algorithm.
Our convention is to denote algorithms of either kind with calligraphic letters,
e.g., A will typically denote an algorithm which models an adversary. If f is a
function, the notation Af stands for an algorithm (either classical or quantum)
with oracle access to the function f . A classical oracle is simply the black-box gate
x 7→ f(x); a quantum oracle is the unitary black-box gate |x〉|y〉 7→ |x〉|y ⊕ f(x)〉.
Unless stated otherwise, oracle QPT algorithms are assumed to have quantum
oracle access.

Quantum-secure pseudorandomness. We now set down a way of quantifying the
ability of a QPT adversary to distinguish between families of functions. Fix a
function family F ⊂ {h : {0, 1}m → {0, 1}`}, a function f : {0, 1}n × {0, 1}m →
{0, 1}`, and define fk := f(k, ·). We say that f is an indexed subfamily of
F if fk ∈ F for every k ∈ {0, 1}n. We will generally assume that m and `
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are polynomial functions of n and treat n to be the complexity (or security)
parameter.

Definition 1. Let F be a function family, f an indexed subfamily, and D an
oracle QPT algorithm. The distinguishing advantage of D is the quantity

AdvDF,f :=

∣∣∣∣ Pr
k∈R{0,1}n

[
Dfk(1n) = 1

]
− Pr
g∈RF

[
Dg(1n) = 1

]∣∣∣∣ .
Next, we define efficient indexed function families which are pseudorandom

against QPT adversaries. We emphasize that these function families are computed
by deterministic classical algorithms.

Definition 2. Let Fn be the family of all functions from m(n) bits to `(n) bits,
and f a efficiently computable, indexed subfamily of

⋃
n Fn (so that fk ∈ Fn for

|k| = n). We say that f is a quantum-secure pseudorandom function (qPRF ) if
AdvDFn,f ≤ negl(n) for all QPT D.

It is known how to construct qPRFs from standard assumptions (i.e., existence
of quantum-secure one-way functions) [33].

The pseudorandom function property is not enough in certain applications,
e.g., in constructing block ciphers. It is then often useful to add the property that
each function in the family is a permutation, which can be inverted efficiently
(provided the index is known).

Definition 3. Let P be the family of all permutations, and f an efficiently com-
putable, indexed subfamily of P. We say that f is a quantum-secure pseudorandom
permutation (qPRP) if (i.) f is a qPRF, (ii.) each fk is a permutation, and (iii.)
there is an efficient algorithm which, given k, computes the inverse f−1k of fk.

A recent result shows how to construct qPRPs from one-way functions [32].
Finding simpler constructions is an open problem. Two simple constructions
which are known to work classically, Even-Mansour and the 3-round Feistel, are
both broken by a simple attack based on Simon’s algorithm for Hidden Shift on
(Z/2)n. As we discuss in detail later, we conjecture that the adaptations of these
constructions to other group families are qPRPs.

We will also make frequent use of a result of Zhandry (Theorem 3.1 in [34])
which states that 2k-wise independent functions are indistinguishable from ran-
dom to quantum adversaries making no more than k queries.

Theorem 1. Let H be a 2k-wise independent family of functions with domain
X and range Y. Let D be a quantum algorithm making no more than k oracle
queries. Then

Pr
h∈RH

[
Dh(1n) = 1

]
= Pr
g∈RYX

[
Dg(1n) = 1

]
.
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Collision-freeness. We will also need a (standard) definition of collision-resistance
against efficient quantum adversaries with oracle access.

Definition 4. Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be an efficiently-computable
function family defined for all (k, x) for which |x| = m(|k|) (for a polynomial m).
We say that f is collision-resistant if for all QPT A,

Pr
k∈R{0,1}n

[
Afk(1n) = (x, y) ∧ fk(x) = fk(y) ∧ x 6= y

]
≤ negl(n) .

3 Hidden Shift as a cryptographic primitive

We begin by discussing a few versions of the basic oracle promise problem related
to finding hidden shifts of functions on groups. In the problems below, the
relevant functions are given to the algorithm via black-box oracle access and we
are interested in the setting where the complexity of the algorithm (both number
of queries and running time) scales in poly(log |G|).

3.1 Hidden Shift problems

Basic definitions. We begin with the Hidden Shift problem. As traditionally
formulated in the quantum computing literature, the problem is the following:

Problem 1 (The traditional Hidden Shift problem). Let G be a group and V a
set. Given oracle access to an injective function f : G→ V and an unknown shift
g = f ◦ Ls of f , find s.

It is convenient for us to parameterize this definition in terms of a specific
group family and fix the range of the oracles f and g. This yields our basic
asymptotic definition for the problem.

Problem 2 (Hidden Shift (HS)). Let G = {Gi | i ∈ I} be a family of groups
with index set I ⊂ {0, 1}∗ and let ` : N→ N be a polynomial. Then the Hidden
Shift problem over G (with length parameter `) is the following: given an index i
and oracle access to a pair of functions f, g : Gi → {0, 1}`(|i|) where g(x) = f(sx),
determine s ∈ Gi. We assume, throughout, that 2`(|i|) � |Gi|.

This generic formulation is more precise, but technically still awkward for cryp-
tographic purposes as it permits oracle access to completely arbitrary functions f .
To avoid this technical irritation, we focus on the performance of Hidden Shift
algorithms over specific classes of functions f . Specifically, we either assume f
is random or that it is injective. When a Hidden Shift algorithm is applied
to solve problems in a typical computational setting, the actual functions f, g
are injective and given by efficient computations. We remark that established
algorithmic practice in this area ignores the actual function values altogether,
merely relying on the structure of the level sets of the function

Φ(x, b) =

{
f(x) if b = 0,

g(x) if b = 1.
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In particular, such structural conditions of f appear to be irrelevant to the success
of current quantum-algorithmic techniques for the problem. This motivates the
following notion of “success” for an algorithm.

Definition 5 (Completeness). Let A be an algorithm for the Hidden
Shift problem on G with length parameter `. Let f be a function defined on
all pairs (i, x) where x ∈ Gi so that f(i, x) ∈ {0, 1}`(|i|). Then we define the
completeness of A relative to f to be the quantity

1− εf (i) , min
s∈Gi

Pr[Af,fs(i) = s] .

The completeness of A relative to random functions is the average

1− εR(i) , E
f

[
min
s∈Gi

Pr[Af,fs(i) = s]

]
= E

f
[1− εf (i)] ,

where f(i, x) is drawn uniformly at random. Note that these notions are worst-case
in s, the shift.

Note that this definition does not specify how the algorithm should behave on
instances that are not hidden shifts. For simplicity, we assume that the algorithm
returns a value for s in any case, with no particular guarantee on s in the case
when the functions are not shifts of each other.

Our basic hardness assumption is the following:

Assumption 4 (The G-Hidden Shift Assumption; randomized). Let G =
{Gi | i ∈ I} be a family of finite groups indexed by a set I ⊂ {0, 1}∗ and ` : N→ N
be a length parameter. Then for all efficient algorithms A, 1− εR(i) = negl(|i|).

For completeness, we also record a version of the assumption for injective f .
In practice, our cryptographic constructions will rely only on the randomized
version.

Assumption 5 (The G-Hidden Shift Assumption; injective). Let G =
{Gi | i ∈ I} be a family of finite groups indexed by a set I ⊂ {0, 1}∗ and ` : N→ N
be a length parameter. Then for all efficient algorithms A there exists an injective
f (satisfying the criteria of Definition 5 above), so that 1− εf (i) = negl(|i|).

In preparation for establishing results on security amplification, we define
two additional variants of the Hidden Shift problem: a variant where both
the function and the shift are randomized, and a decisional variant. Our general
approach for constructing security proofs will be to reduce one of these variants
to the problem of breaking the relevant cryptographic scheme. As we will later
show, an efficient solution to either variant implies an efficient solution to both,
which in turn results in a violation of Assumption 4 above.

Problem 3 (Random Hidden Shift (RHS)). Let G = {Gi | i ∈ I} be a family
of finite groups indexed by a set I ⊂ {0, 1}∗ and ` : N→ N be a length parameter.
Then the Random Hidden Shift problem over G is the Hidden Shift problem
where the input function f(i, x) is drawn uniformly and the shift s is drawn
(independently and uniformly) from Gi.
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We define the completeness 1− ε(i) for a Random Hidden Shift algorithm
A analogously to Definition 5. Observe that a small error is unavoidable for any
algorithm, as there exist pairs of functions for which s is not uniquely defined.
We will also need a decisional version of the problem, defined as follows.

Problem 4 (Decisional Random Hidden Shift (DRHS)). Let G = {Gi | i ∈
I} be a family of finite groups indexed by a set I ⊂ {0, 1}∗ and ` : N → N be
a length parameter. The Decisional Random Hidden Shift problem is the
following: Given i and oracle access to two functions f, g : Gi → {0, 1}`(|i|) with
the promise that either (i.) both f and g are drawn independently at random, or
(ii.) f is random and g = f ◦ Ls for some s ∈ G, decide which is the case.

We say that an algorithm for DRHS has completeness 1− ε(i) and soundness
δ(i) if the algorithm errs with probability no more than ε(i) in the case that the
functions are shifts and errs with probability no more than δ(i) in the case that
the functions are drawn independently.

Next, we briefly recall the definition of the (closely-related) Hidden Sub-
group Problem. The problem is primarily relevant in our context because of
its historical significance (and relationship to Hidden Shift); we will not use it
directly in any security reductions.

Problem 5 (Hidden Subgroup Problem (HSP)). Let G be a group and S a
set. Given a function f : G → S, and a promise that there exists H ≤ G such
that f is constant and distinct on the right cosets of H, output a complete set of
generators for H.

Some further details, including explicit reductions between HS and HSP, are
given in Appendix A.

Of interest are both classical and quantum algorithms for solving the various
versions of HS and HSP. The relevant metrics for such algorithms are the query
complexity (i.e., the number of times that the functions are queried, classically
or quantumly) as well as their time and space complexity. An algorithm is said
to be efficient if all three are polynomial in log |G|.

Hardness results. Next, we establish several reductions between these problems.
Roughly, these results show that the average-case and decisional versions of the
problem are as hard as the worst-case version.

Self-reducibility and amplification. First, we show that (i.) both HS and RHS are
random self-reducible, and (ii.) an efficient solution to RHS implies an efficient
solution to HS.

Proposition 1. Let G = {Gi | i ∈ I} be a family of finite groups indexed by a
set I ⊂ {0, 1}∗ and ` : N→ N be a length parameter. Assume there exists a QPT
A which solves Random Hidden Shift over G (with parameter `(|i|)) with
inverse-polynomial completeness. Then there exists a QPT A′ which satisfies all
of the following:
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1. A′ solves Hidden Shift with random f with completeness 1− negl(|i|);
2. A′ solves Hidden Shift for any injective f with completeness 1− negl(|i|);
3. A′ solves Random Hidden Shift with completeness 1− negl(|i|).

Proof. We are given oracles f, g and a promise that g = f ◦ Ls. For a particular
choice of n, there is an explicit (polynomial-size) bound k on the running time
of A. Let H be a 2k-wise independent function family which maps the range of
f to itself. The algorithm A′ will repeatedly execute the following subroutine.
First, an element h ∈ H and an element t ∈ Gi are selected independently and
uniformly at random. Then A is executed with oracles

f ′ := h ◦ f and g′ := h ◦ g ◦ Lt .

It’s easy to see that g′ = f ′ ◦ Lst. If A outputs a group element r, A′ checks if
g′(x) = f ′(rx) at a polynomial number of random values x. If the check succeeds,
A′ outputs rt−1 and terminates. If the check fails (or if A outputs garbage), we
say that the subroutine fails. The subroutine is repeated m times, each time with
a fresh h and t.

Continuing with our fixed choice of f and g, we now argue that A (when used
as above) cannot distinguish between (f ′, g′) and the case where f ′ is uniformly
random, and g′ is a uniformly random shift of f ′. First, the fact that the shift is
randomized is clear. Second, if f is injective, then f ′ is simply h with permuted
inputs, and is thus indistinguishable from random (by the 2k-wise independence
of h and Theorem 1). Third, if f is random, then it is indistinguishable from
injective (by the collision bound of [35]), and we may thus apply the same
argument as in the injective case.

It now follows that, with inverse-polynomial probability ε (over the choice
of h and t), the instance (f ′, g′) is indistinguishable from an instance (ϕ,ϕst)
on which the subroutine succeeds with inverse-polynomial probability δ. After
m repetitions of the subroutine, A′ will correctly compute the shift r = st with
probability at least (1− εδ)m ≈ e−εδm, as desired. ut

Decision versus search. Next, we consider the relationship between searching
for shifts (given the promise that one exists,) and deciding if a shift exists or
not. Roughly speaking, we establish that the two problems are equivalent for
most group families of interest. We begin with a straightforward reduction from
DRHS to RHS.

Proposition 2. If there exists a QPT algorithm for Random Hidden Shift on
G with completeness 1− ε(i), then there exists a QPT algorithm for Decisional
Random Hidden Shift on G with completeness 1−ε(i), and negligible soundness
error.

Proof. Let `(·) be the relevant length parameter. Consider an RHS algorithm for
G with completeness 1− ε and the following adaptation to DRHS.

– Run the RHS algorithm.
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– When the algorithm returns a purported shift s, check s for veracity with
a polynomial number of (classical) oracle queries to f and g (ensuring that
g(xi) = f(sxi) for k(n) distinct samples x1, . . . , xk(n)).

Observe that if f and g are indeed hidden shifts, this procedure will determine
that with probability 1 − ε. When f and g are unrelated random functions,
the “testing” portion of the algorithm will erroneously succeed with probability
no more than |G| · 2−k·`(|i|). Thus, under the assumption that |G| ≥ k(n), the
resulting DRHS algorithm has completeness 1− ε and soundness |G| · 2−k·`(|i|).
For any nontrivial length function `, this soundness can be driven exponentially
close to zero by choosing k = log |G|+ k′. ut

On the other hand, we are only aware of reductions from RHS to DRHS under
the additional assumption that G has a “dense” tower of subgroups. In that case,
an algorithmic approach of Fenner and Zhang [9] can be adapted to provide a
reduction. Both Sn and Z/2n have such towers.

Proposition 3. Let G be either the group family {Z/2n}, or the group fam-
ily {Sn}. If there exists a QPT algorithm for Decisional Random Hidden
Shift on G with at most inverse-polynomial completeness and soundness er-
rors, then there exists a QPT algorithm for Random Hidden Shift on G with
negligible completeness error.

Proof. The proof adapts techniques of [9] to our probabilistic setting, and relies
on the fact that these group families have an efficient subgroup tower. Specifically,
each Gi possesses a subgroup series {1} = G(0) < G(1) < G(2) < · · · < G(s) =
Gi for which (i.) uniformly random sampling and membership in G(t) can be
performed efficiently for all t, and (ii.) for all t, there is an efficient algorithm
for producing a left transversal of G(t−1) in G(t). For Z/2n, the subgroup series
is {1} < Z/2 < Z/22 < Z/23 < · · · . For Sn (i.e., the group of permutations of
n letters), the subgroup series is {1} < S1 < S2 < S3 < · · · , where each step
of the series adds a new letter. We remark that such series can be efficiently
computed for general permutation groups using a strong generating set, which can
be efficiently computed from a presentation of the group in terms of generating
permutations [11].

We recursively define a RHS algorithm by considering the case of a group
G with a subgroup H of polynomial index with a known left transversal A =
{a1, . . . , ak} (so that G is the disjoint union of the aiH). Assume that the
DRHS algorithm for H has soundness δH and completeness 1− εH . In this case,
the algorithm (for G) may proceed as follows:

1. For each α ∈ A, run the DRHS algorithm on the two functions f and
ǧ : x 7→ g(αx) restricted to the subgroup H.

2. If exactly one of these recursive calls reports that the function f and x 7→
g(αx) are hidden shifts, recursively apply the RHS algorithm to recover the
hidden shift s′ (so that f(x) = g(αs′x) for x ∈ H). Return the shift s = αs′.

3. Otherwise assert that the functions are unrelated random functions.
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In the case that f and g are independent random functions, the algorithm above
errs with probability no more than [G : H]δH .

Consider instead the case that f : G→ S is a random function and g(x) =
f(sx) for an element s ∈ G. Observe that if s−1 ∈ αiH, so that s−1 = αihs for an
element hs ∈ H, we have g(αihsx) = f(x). It follows that f and ǧ : x 7→ g(αix)
are shifts of each other; in particular, this is true when restricted to the subgroup
H. Moreover, the hidden shift s can be determined directly from the hidden shift
between f and ǧ. Note that, as above, the probability that any of the recursive
calls to DRHS are answered incorrectly is no more than [G : H]δH + εH .

It remains to analyze the completeness of the resulting recursive RHS algo-
rithm: in the case of the subgroup chain above, let γt denote the completeness of
the resulting RHS algorithm on G(t+1) and note that

γt+1 ≤ [G(t+1) : G(t)]δG(t) + εG(t) + γt

and thus that the resulting error on G is no more than∑
t

[G(t+1) : G(t)]δG(t) +
∑
t

εG(t) . (3.1)

As mentioned above, both the group families {Z/2n | n ≥ 0} and {Sn | n ≥ 0}
satisfy this subgroup chain property. ut

Remark. Note that the groups Z/N for general N are not treated by the results
above; indeed, when N is prime, there is no nontrivial tower of subgroups. (Such
groups do have other relevant self-reducibility and amplification properties [13].)
We remark, however, that a generalization of the Hidden Shift problem which
permits approximate equality results in a tight relationship between Hidden Shift
problems for different cyclic groups. In particular, consider the δ-Approximate
Hidden Shift problem given by two functions f, g : G→ S with the promise
that there exists an element s ∈ G so that Prx[g(x) = f(sx)] ≥ 1− δ (where x is
chosen uniformly in G); the problem is to identify an element s′ ∈ G with this
property. Note that s′ may not be unique in this case.

In particular, consider an instance f, g : Z/n→ V of a Hidden Shift problem
on a cyclic group Z/n. We wish to “lift” this instance to a group Z/m for m� n
in such a way that a solution to the Z/m instance yields a solution to the Z/n
instance. For a function φ : Z/n→ V , define the function φ̂ : Z/m→ V by the

rule φ̂(x) = φ(x mod n). Note, then, that Prx[f̂(x) = ĝ(ŝ+x)] ≥ 1−n/m for the
shift ŝ = s; moreover, recovering any shift for the Z/m problem which achieves
equality with probability near 1− n/m yields a solution to the Z/n problem (by
taking the answer modulo n, perhaps after correcting for the m mod n overhang
at the end of the Z/m oracle). Note that this function is not injective.

We remark that the Hidden Shift problem for non-injective Boolean
functions (i.e., with range Z/2) sometimes admits efficient algorithms (see,
e.g., [23, 28]). Whether these techniques can be extended to the general set-
ting above is an interesting open problem.
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3.2 Selecting hard groups

Efficiently solvable cases. For some choices of underlying group G, some
of the above problems admit polynomial-time algorithms. A notable case is
the Hidden Subgroup Problem on G = Z, which can be solved efficiently
by Shor’s algorithm [30]. The HSP with arbitrary abelian G also admits a
polynomial-time algorithm [15]. The earliest and simplest example was Simon’s
algorithm [31], which efficiently solves the HSP in the case G = (Z/2)n and
H = {1, s} for unknown s, with only O(n) queries to the oracle. Due to the
fact that (Z/2)n o Z/2 ∼= (Z/2)n+1, Simon’s algorithm also solves the Hidden
Shift problem on (Z/2)n. Additionally, Friedl et al. [10] have given efficient (or
quasi-polynomial) algorithms for hidden shifts over solvable groups of constant
exponent; for example, their techniques yield efficient algorithms for the groups
(Z/p)n (for constant p) and (S4)n.

Cyclic groups. In contrast with the Hidden Subgroup Problem, the general
abelian Hidden Shift is believed to be hard. The only nontrivial algorithm
known is due to Kuperberg, who gave a subexponential-time algorithm for the
HSP on dihedral groups [16]. He also gave a generalization to the abelian Hidden
Shift problem, as follows.

Theorem 2. (Theorem 7.1 in [16]) The abelian Hidden Shift problem has a

quantum algorithm with time and query complexity 2O((log |G|)1/2), uniformly for
all finitely-generated abelian groups.

Regev and Kuperberg later improved the above algorithm (so it uses polynomial
quantum space, and gains various knobs for tuning complexity parameters), but
the time and query complexity remains the same [17, 25].

There is also evidence connecting HSP on the dihedral group DN (and hence
also HS on Z/N) to other hard problems. Regev showed that, if there exists
an efficient quantum algorithm for the dihedral HSP which uses coset sampling
(the only nontrivial technique known), then there’s an efficient quantum algo-
rithm for poly(n)-unique-SVP [26]. This problem, in turn, is the basis of several
lattice-based cryptosystems. However, due to the costs incurred in the reduc-
tion, Kuperberg’s algorithm only yields exponential-time attacks. An efficient
solution to HS on Z/N could also be used to break a certain isogeny-based
cryptosystem [4].

We will focus particularly on the case Z/2n. This is the simplest group
for which all of our constructions and results apply. Moreover, basic computa-
tional tasks (encoding/decoding group elements as bitstrings, sampling uniformly
random group elements, performing basic group operations, etc.) all have straight-
forward and extremely efficient implementations over Z/2n. The existence of a
quantum attack with complexity 2O(

√
n) in this case will only become practically

relevant in the very long term, when the costs of quantum and classical computa-
tions become somewhat comparable. If such attacks are truly a concern, then
there are other natural group choices, as we discuss below.
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Permutation groups. In the search for quantum algorithms for HSP and HS,
arguably the most-studied group family is the family of symmetric groups Sn. It
is well-known that an algorithm for HSP over Sn o (Z/2) would yield a polynomial-
time quantum algorithm for Graph Isomorphism. As discussed in Appendix A,
this is precisely the case of HSP relevant to the Hidden Shift problem over Sn.

For these groups, the efforts of the quantum algorithms community have so
far amounted only to negative results. First, it was shown that the standard Shor-
type approach of computing with individual “coset states” cannot succeed [22].
In fact, entangled measurements over Ω(n log n) coset states are needed [12],
matching the information-theoretic upper bound [7]. Finally, the only nontrivial
technique for performing entangled measurements over multiple registers, the
so-called Kuperberg sieve, is doomed to fail as well [21].

While encoding, decoding, and computing over the symmetric groups is more
complicated and less efficient than the cyclic case, it is a well-understood subject
(see, e.g., [11]). When discussing these groups below, we will assume (without
explicit mention) an efficient solution to these problems.

Matrix groups. Another relevant family of groups are the matrix groups
GL2(Fq) and SL2(Fq) over finite fields. These nonabelian groups exhibit many
structural features which are similar to the symmetric groups, such as high-
dimensional irreducible representations. Many of the negative results concerning
the symmetric groups also carry over to matrix groups [12, 21].

Efficient encoding, decoding, and computation over finite fields Fq is standard.
Given these ingredients, extending to matrix groups is not complicated. In the
case of GL2(Fq), we can encode an arbitrary pair (not both zero) (a, c) ∈ F2

q in
the first column, and any pair (b, d) which is not a multiple of (a, c) in the second
column. For SL2(Fq), we simply have the additional constraint that d is fixed to
a−1(1 + bc) by the choices of a, b, c.

Product groups. Arguably the simplest group family for which the negative
results of [12] apply, are certain n-fold product groups. These are groups of
the form Gn where G is a fixed, constant-size group (e.g., S5). This opens up
the possibility of simply replacing the XOR operation (i.e., Z/2 addition) with
composition in some other constant-size group (e.g., S5), and retaining the same
n-fold product structure.

Some care is needed, however, because there do exist nontrivial algorithms in
this case. When the base group G is solvable, then there are efficient algorithms
for both HSP and Hidden Shift (see Theorem 4.17 in [10]). It is important to
note that this efficient algorithm applies even to some groups (e.g., (S4)n) for
which the negative results of [12] also apply. Nevertheless, solvability seems crucial
for [10], and choosing G = S5 for the base group gives a family for which no
nontrivial Hidden Shift algorithms are known. We remark that there is however
a 2O(

√
n logn)-time algorithm for order-2 Hidden Subgroup Problems on Gn

based on Kuperberg’s sieve [1]; this suggests the possibility of subexponential

(i.e., 2O(nδ) for δ < 1) algorithms for Hidden Shift over these groups.
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4 Hidden Shift Even-Mansour ciphers

We now address the question of repairing classical symmetric-key schemes which
are vulnerable to Simon’s algorithm. We begin with the simplest construction,
the so-called Even-Mansour cipher [8].

4.1 Generalizing the Even-Mansour scheme

The standard scheme. The Even-Mansour construction turns a publicly known,
random permutation P : {0, 1}n → {0, 1}n into a keyed, pseudorandom permuta-
tion

EPk1,k2 : {0, 1}n −→ {0, 1}n

x 7−→ P (x⊕ k1)⊕ k2

where k1, k2 ∈ {0, 1}n, and ⊕ denotes bitwise XOR. This scheme is relevant in
two settings:

1. simply as a source of pseudorandomness; in this setting, oracle access to P is
provided to all parties.

2. as a block cipher; now oracle access to both P and P−1 is provided to all
parties. Access to P−1 is required for decryption. One can then ask if EP

is a PRP (adversary gets access to EP ), or a strong PRP (adversary gets
access to both EP and its inverse).

In all of these settings, Even-Mansour is known to be information-theoretically
secure against classical adversaries making at most polynomially-many queries [8].

Quantum chosen plaintext attacks on the standard scheme. The proofs of classical
security of Even-Mansour carry over immediately to the setting of quantum
adversaries with only classical access to the relevant oracles. However, if an
adversary is granted quantum oracle access to the P and EP oracles, but no
access at all to the inverse oracles, then Even-Mansour is easily broken. This
attack was first described in [19]; a complete analysis is given in [14]. The attack
is simple: First, one uses the quantum oracles for P and EP to create a quantum
oracle for P ⊕ EP , i.e., the function

f(x) = P (x)⊕ P (x⊕ k1)⊕ k2 .

One then runs Simon’s algorithm [31] on the function f . The claim is that,
with high probability, Simon’s algorithm will output k1. To see this, note that
f satisfies half of Simon’s promise, namely f(x ⊕ k1) = f(x). Moreover, if it
is classically secure, then it almost satisfies the entire promise. More precisely,
for any fixed P and random pair (x, y), either the probability of a collision
f(x) = f(y) is low enough for Simon’s algorithm to succeed, or there are so many
collisions that there exists a classical attack [14]. Once we have recovered k1, we
also immediately recover k2 with a classical query, since k2 = EPk1,k2(x)⊕P (x⊕k1)
for any x.
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Hidden Shift Even-Mansour. To address the above attack, we propose simple
variants of the Even-Mansour scheme. The construction generalizes the standard
Even-Mansour scheme in the manner described in Section 1. Each variant is
parameterized by a family of exponentially-large finite groups G. The general
construction is straightforward to describe. We begin with a public permutation
P : G→ G, and from it construct a family of keyed permutations

EPk1,k2(x) = P (x · k1) · k2 ,

where k1, k2 are now uniformly random elements of G, and · denotes composition
in G. The formal definition, as a block cipher, follows.

Scheme 1 (Hidden Shift Even-Mansour block cipher). Let G be a family
of finite, exponentially large groups, satisfying the efficient encoding conditions
given in Section 3.2. The scheme consists of three polynomial-time algorithms,
parameterized by a permutation P of the elements of a group G in G:

– KeyGen : N→ G×G; on input |G|, outputs (k1, k2) ∈R G×G;
– EncPk1,k2 : G→ G; defined by m 7→ P (m · k1) · k2;

– DecPk1,k2 : G→ G; defined by c 7→ P−1(c · k−12 ) · k−11 .

For simplicity of notation, we set EPk1,k2 := EncPk1,k2 . Note that DecPk1,k2 =(
EPk1,k2

)−1
. Correctness of the scheme is immediate; in the next section, we present

several arguments for its security in various settings. All of these arguments are
based on the conjectured hardness of certain Hidden Shift problems over G.

4.2 Security reductions

We consider two settings. In the first, the adversary is given oracle access to the
permutation P , and then asked to distinguish the Even-Mansour cipher EPk1,k2
from a random permutation unrelated to P . In the second setting, the adversary
is given oracle access to P , P−1, as well as EPk1,k2 and its inverse; the goal in this
case is to recover the key (k1, k2) (or some part thereof).

Distinguishability from random. We begin with the first setting described
above. We fix a group G, and let PG denote the family of all permutations of G.
Select a uniformly random P ∈ PG. The encryption map for the Hidden Shift
Even-Mansour scheme over G can be written as

EPk1,k2 = Lk2 ◦ P ◦ Lk1 .

If we have oracle access to P , then this is clearly an efficiently computable
subfamily of PG, indexed by key-pairs. For pseudorandomness, the relevant
problem is then to distinguish EP from a random permutation which is unrelated
to the oracle P .

17



Problem 6 (Even-Mansour Distinguishability (EMD)). Given oracle access to
permutations P,Q ∈ PG and a promise that either (i.) both P and Q are random,
or (ii.) P is random and Q = EPk1,k2 for random k1, k2, decide which is the case.

It is straightforward to connect this problem to the decisional version of
Random Hidden Shift, as follows.

Proposition 4. If there exists a QPT D for EMD on G, then there exists a QPT
algorithm for the DRHS problem on G, with soundness and completeness at most
negligibly different from those of D.

Proof. Let f, g be the two oracle functions for the DRHS problem over G. We
know that f is a random function from G to G, and we must decide if g is also
random, or simply a shift of f . We sample t1, t2 uniformly at random from G,
and provide D with oracles f (in place of P ), and g′ := Lt2 ◦ g ◦ Lt1 (in place
of EP ). We then simply output what D outputs. Note that (f, g) are uniformly
random permutations if and only if (f, g′) are. In addition, g = f ◦ Ls if and
only if g′ = Lt2 ◦ f ◦ Lst1 . It follows that the input distribution to D is as in
EMD, modulo the fact that the oracles in DRHS are random functions rather
than random permutations. The error resulting from this is at most negligible,
by the collision-finding bound of Zhandry [35]. ut

Next, we want to amplify the DRHS distinguisher, and then apply the reduction
from Hidden Shift given in Proposition 3. Combining this with Proposition 4,
we arrive at a complete security reduction.

Theorem 3. Let G be either the Z/2n group family or the Sn group family. Under
Assumption 4, the Hidden Shift Even-Mansour cipher over G is a quantum-secure
pseudorandom function.

Proof. Let G be either the Z/2n group family, or the Sn group family. If the
Even-Mansour cipher over G is not a qPRP, then by Definition 3, there exists
an algorithm DEMD for the EMD problem with total (i.e., completeness plus
soundness) error at most 1− 1/s(n) for some polynomial s. To give the adversary
as much freedom as possible, we assume that the probability of selecting the
public permutation P is taken into account here; that is, DEMD need only succeed
with inverse-polynomial probability over the choices of permutation P , keys
k1, k2, and its internal randomness.

By Proposition 4, we then also have a DRHS algorithm DDRHS with error at
most 1−1/s(n) (up to negligible terms). We can amplify this algorithm by means
of a 2k-wise independent hash function family H, where k is an upper bound on
the running time of DDRHS (for the given input size n and required error bound
1/s(n)). Given functions f, g for the DRHS problem on G, we select a random
function h ∈ H and a random group element t ∈ G. We then call DDRHS with
oracles

f ′ := h ◦ f and g′t := h ◦ g ◦ Lt
Note that, to any efficient quantum algorithm, (i.) f and g are random if and
only if f ′ and g′t are, and (ii.) g(x) = f(sx) if and only if g′t(x) = f ′(stx). We
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know that DDRHS will succeed with probability 1− 1/s(n), except the probability
is now taken over the choice of t and h (rather than f and g). We repeat this
process with different random choices of h and t. A straightforward application
of a standard Chernoff bound shows that, after O(p(n)) runs, we will correctly
distinguish with 1− negl(n) probability.

Finally, we apply Proposition 3, to get an algorithm for Random Hidden
Shift with negligible error; by Proposition 1, we get an equally strong algorithm
for Hidden Shift. ut

Key recovery attacks. We now consider partial or complete key recovery
attacks, in the setting where the adversary also gets oracle access to the inverses
of P and EPk1,k2 . Note that, for the Even-Mansour cipher on any group G, knowing
the first key k1 suffices to produce the second key k2, since

k2 = P (x · k1)−1EPk1,k2(x)

for every x ∈ G.
We remark that giving security reductions is now complicated by the fact that

Random Hidden Shift and its variants all become trivial if we are granted even
a partial ability to invert f or g; querying f−1 ◦g on any input x produces x ·s−1,
which immediately yields the shift s. However, we can still give a nontrivial
reduction, as follows.

Theorem 4. Consider the Even-Mansour cipher over G×G, for any group G.
Suppose there exists a QPT algorithm which, when granted oracle access to P ,
EPk1,k2 , and their inverses, outputs k1, k2. Then there exists an efficient quantum
algorithm for the Hidden Shift problem over G.

Proof. We are given oracle access to functions f, g : G → G and a promise
that there exists s ∈ G such that f(x) = g(x · s) for all x ∈ G. We define the
following oracles, which can be constructed from access to f and g. First, we
have permutations Pf , Pg : G×G→ G×G defined by

Pf (x, y) = (x, y · f(x)) and Pg(x, y) = (x, y · g(x)) .

Now we sample keys k1 = (x1, y1), k2 = (x2, y2) from G × G and define the

function E := E
Pf
k1,k2

. To the key-recovery adversary A for Even-Mansour over

G×G, we provide the oracles E and E−1 for the encryption/decryption oracles,
and the oracles Pg and P−1g for the public permutation oracles.

To see that we can recover the shift s from the output of A, we rewrite E in
terms of g, as follows:

E(x, y) = Pf (xx1, yy1) · (x2, y2)

= (xx1, yy1f(xx1)) · (x2, y2)

= (xx1s, yy1f(xx1)) · (s−1x2, y2)

= (xx1s, yy1g(xx1s)) · (s−1x2, y2)

= Pg(xx1s, yy1) · (s−1x2, y2) .
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After complete key recovery, A will output (x1s, y1) and (s−1x2, y2), from which
we easily deduce s. ut

Remark. The reduction above focuses on the problem of recovering the entire
key. Note that for certain groups, e.g., Z/p for prime p, predicting any bit of
the key with inverse-polynomial advantage is sufficient to recover the entire key
(see H̊astad and N̊aslund [13]). In such cases we may conclude that predicting
individual bits of the key is difficult.

5 Hidden Shift CBC-MACs

5.1 Generalizing the Encrypted-CBC-MAC scheme

The standard scheme. The standard Encrypted-CBC-MAC construction requires
a pseudorandom permutation Ek : {0, 1}n → {0, 1}n. A message m is subdivided
into blocks m = m1||m2|| · · · ||ml, each of length n. The tag is then computed
by repeatedly encrypting-and-XORing the message blocks, terminating with one
additional round of encryption with a different key. Specifically, we set

CBC-MACk,k′ := Ek′(Ek(ml ⊕ Ek(· · ·Ek(m2 ⊕ Ek(m1)) · · · ))) .

This yields a secure MAC for variable-length messages.

Quantum chosen plaintext attacks on the standard scheme. If we are granted
quantum CPA access to CBC-MACk,k′ , then there is a (Z/2)n-hidden-shift attack,
described below. This attack was described in [14]; another version of the attack
appears in [29]. Consider messages consisting of two blocks, and fix the first block
to be one of two distinct values α0 6= α1. We use the oracle for CBC-MACk,k′ to
construct an oracle for the function

f(b, x) := CBC-MACk,k′(αb||x) = Ek′(Ek(x⊕ Ek(αb))) .

Note that f satisfies Simon’s promise, since

f(b⊕ 1, x⊕ Ek(α0)⊕ Ek(α1)) = f(b, x)

for all b, x. We can thus run Simon’s algorithm to recover the string sk =
Ek(α0)⊕ Ek(α1). Knowledge of sk enables us to find an exponential number of
collisions, since

CBC-MACk,k′(α0||x) = CBC-MACk,k′(α1||x⊕ Ek(α0)⊕ Ek(α1)) .

In particular, this CBC-MAC does not satisfy the Boneh-Zhandry notion of a
secure MAC in the quantum world [2].
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Hidden Shift CBC-MAC. We propose generalizing the Encrypted-CBC-MAC
construction above, by allowing the bitwise XOR operation to be replaced by
composition in some exponentially-large family of finite groups G. Each message
block is then identified with an element of G, and we view the pseudorandom
permutation Ek as a permutation of the group elements of G. We then define

CBC-MACGk,k′ : G∗ −→ G

(m1, . . . ,ml) 7−→ Ek′(Ek(ml · Ek(· · ·Ek(m2 · Ek(m1)) · · · ))) ,

where · denotes the group operation in G.

Scheme 2 (Hidden Shift Encrypted-CBC-MAC). Let G be a family of
finite, exponentially large groups satisfying the efficient encoding conditions given
in Section 3.2. Let Ek : G→ G be a quantum-secure pseudorandom permutation.
The scheme consists of three polynomial-time algorithms:

– KeyGen; on input |G|, outputs two keys k, k′ using key generation for E;
– Mack,k′ : m 7−→ Ek′(Ek(ml · Ek(· · ·Ek(m2 · Ek(m1)) · · · );
– Verk,k′ : (m, t) 7→ accept if Mack,k′(m) = t, and reject otherwise.

We consider the security of this scheme in the next section.

5.2 Security reduction

We now give a reduction from the Random Hidden Shift problem to collision-
finding in the above CBC-MAC.

Theorem 5. Let G be either the Z/2n group family or the Sn group family.
Under Assumption 4, the Hidden-Shift CBC-MAC over G is a collision-resistant
function.

Proof. For simplicity, we assume that the collision-finding adversary finds colli-
sions between equal-length messages. This is of course trivially true, for example,
if the MAC is used only for messages of some a priori fixed length.

Suppose we are given an instance of the Hidden Shift problem, i.e., a pair
of functions F0, F1 with the promise that F0 is random and F1 is a shift of F0.
We have at our disposal a QPT A which finds collisions in the Hidden Shift
Encrypted-CBC-MAC. We assume without loss of generality that, whenever A
outputs a collision (c, c′), there is no pair of prefixes of (c, c′) that also give a
valid collision; indeed, we can easily build an A′ which, whenever such prefixes
exist, simply outputs the prefix collision instead.

We assume for the moment that the number of message blocks in c and c′

is the same number t. Since the number of blocks and the running time of A
are polynomial, we can simply guess t, and we will guess correctly with inverse-
polynomial probability. We run A with a modified oracle O which “inserts” our
hidden shift problem at stage t. This is defined as follows.
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Let m be our input message, and l the number of blocks. If l < t, we simply
output the usual Encrypted-CBC-MAC of m. If l ≥ t, we first perform t − 1
rounds of the CBC procedure, computing a function

h(m) := Ek(mt−1 · Ek(· · ·Ek(m2 · Ek(m1)) · · · ) .

Note that h only depends on the first t−1 blocks of m. Next, we choose a random
bit b and compute Fb(m)(mt · h(m)). We then finish the rest of the rounds of the
CBC procedure, outputting

O(m) := E′k(Ek(ml · Ek(· · ·Ek(Fb(m)(mt · h(m))) · · · ) .

It’s not hard to see that the distribution that the adversary observes will be
indistinguishable from the usual Encrypted-CBC-MAC. Suppose a collision
(m,m′) is output. We set x1 = m1||m2|| · · · ||mt−1 and x2 = m′1||m′2|| · · · ||m′t−1
and y1 = mt and y2 = m′t. The collision then means that

Fb(m)(y1 · h(x1)) = Fb(m′)(y2 · h(x2)) .

Since m 6= m′, with probability 1/2 we have b(m) 6= b(m′). We repeat A until
we achieve inequality of these bits. We then have

F0(y1 · h(x1)) = F1(y2 · h(x2)) = F0(y2 · h(x2) · s)

and so the shift is simply s = y−12 h(x2)−1y1h(x1). ut

6 Thwarting the Simon attack on other schemes

It is reasonable to conjecture that our transformation secures (classically secure)
symmetric-key schemes against quantum CPA, generically. So far, we have only
been able to give complete security reductions in the cases of the Even-Mansour
cipher and the Encrypted-CBC-MAC. For the case of all other schemes vulnerable
to the Simon algorithm attacks of [18, 19, 14], we can only say that the attack
is thwarted by passing from (Z/2)n to Z/2n or Sn. We now briefly outline two
cases of particular note. For further details, see Appendix B.

The first case is the Feistel network construction, which transforms random
functions into pseudorandom permutations. While the three-round Feistel cipher
is known to be classically secure [20], no security proof is known in the quantum
CPA case, for any number of rounds. In [18], a quantum chosen-plaintext attack
is given for the three-round Feistel cipher, again based on Simon’s algorithm.
The attack is based on the observation that, if one fixes the first half of the input
to one of two fixed values α0 6= α1, then the output contains one of two functions
fα0 , fα1 , which are (Z/2)n-shifts of each other. However, if we instead replace
each bitwise XOR in the Feistel construction with addition modulo Z/2n, the
two functions become Z/2n-shifts, and the attack now requires a cyclic Hidden
Shift subroutine.
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The second case is what [14] refer to as the “quantum slide attack,” which
uses Simon’s algorithm to give a linear-time quantum chosen-plaintext attack, an
exponential speedup over classical slide attacks. The attack works against ciphers
Ek,t(x) := k⊕ (Rk)t(x) which consist of t rounds of a function Rk(x) := R(x⊕k).
In the attack, one simply observes that Ek,t(R(x)) is a shift of R(Ek,t(x)) by the
key k, and then applies Simon’s algorithm. To defeat this attack, we simply work
over Z/2n, setting Ek,t(x) := k + (Rk)t(x) and Rk(x) := R(x+ k). It’s easy to
see that the same attack now requires a Hidden Shift subroutine for Z/2n.
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A Hidden Subgroups and Hidden Shifts

Basic definitions. We now briefly discuss the Hidden Subgroup Problem,
which is closely related to Hidden Shift.

Problem 7 (Hidden Subgroup Problem (HSP)). Let G be a group and S a
set. Given a function f : G → S, and a promise that there exists H ≤ G such
that f is constant and distinct on the right cosets of H, output a complete set of
generators for H.

Another, equivalent formulation of the HSP promise on f is that for x 6= y,
f(x) = f(y) iff x = h · y for h ∈ H. As before, one can also consider decision
versions of HSP (e.g., where one has to decide if f hides a trivial or nontrivial
subgroup) and promise versions where the function f is a random function
satisfying the constraint that f(hx) = x for all x ∈ G and h ∈ H. This last
variant is important for our purposes so we separately define it.
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Problem 8 (Random Hidden Subgroup Problem (RHSP)). Let G be a group
and S a set. Given a function f : G→ S chosen uniformly among all functions for
which f(x) = f(hx) for all x ∈ G and h ∈ H, output a complete set of generators
for H.

Some reductions. Traditionally, the Hidden Subgroup problem (HSP) has
played a prominent role in the literature, as it offers a simple framework to which
many other problems can be directly reduced. Indeed, there is a general reduction
from HS to HSP.

A canonical reduction from HS to HSP. Consider an instance of a Hidden
Shift problem over G given by the functions f0, f1 : G→ S such that f0(x) =
f1(x · s). Recall that the wreath product K = G o Z/2 is the semi-direct product
(G ×G) o Z/2, where the action of the nontrivial element of Z/2 on G ×G is
the swap (a, b) 7→ (b, a). Now define the function

ϕ : (G×G) o Z/2 −→ S × S
((x, y), b) 7−→ (fb(x), fb⊕1(y)) .

One then easily checks that the function ϕ is constant and distinct on the cosets
of the order-two subgroup of K generated by ((s, s−1), 1).

We remark that the reduction above can significantly “complicate” the un-
derlying group. In particular, note that Ao Z/2 is always non-abelian (unless
the action of 1 ∈ Z/2 = {0, 1} on A is trivial). Note that this reduction does
not yield a reduction from RHS to RHSP as the resulting HSP instance is not
uniformly random in the fully random case.

The special case of (Z/2)n; reductions from RHS to RHSP. On (Z/2)n, the Hid-
den Shift problem can be reduced to the Random Hidden Subgroup Prob-
lem on (Z/2)n via a special reduction that exploits Z/2 structure. Specifically,
for a pair of injective functions f0, f1 : (Z/2)n → S (for which f0(x) = f1(x⊕ s),)
construct the function f : (Z/2)n+1 → S so that

g(bx) = fb(x) , for b ∈ Z/2 and x ∈ (Z/2)n.

Then observe that g hides the subgroup generated by 1s.
Note, furthermore, that if the fi are (independent) random functions, then

the same can be said of g; likewise, if f1 is a shift of the random function f0,
the function g is precisely a random function subject to the constraint that
g(x) = g(x ⊕ 1s); thus this reduces RHS to RHSP. In this RHS setting, it is
possible to develop an alternate reduction that more closely resembles the attacks
we discussed above. Specifically, given the functions f0, f1 : (Z/2)n → (Z/2)n (so
that S = (Z/2)n), consider the oracle g = f0 ⊕ f1. When f1(x) = f0(x⊕ s), note
that this oracle satisfies the symmetry condition

[f0 ⊕ f1](x⊕ s) = f0(x⊕ s)⊕ f1(x⊕ s)
= f1(x⊕ s⊕ s)⊕ f0(x) = f0(x)⊕ f1(x) = [f0 ⊕ f1](x)
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so that g = f0 ⊕ f1 is a random function subject to the constraint that g(x) =
g(x⊕ s), as desired. If the functions fi are independent, the function g has the
uniform distribution. Thus this reduces RHS to RHSP.

B Other Hidden Shift Constructions

B.1 Feistel ciphers

The standard scheme. The Feistel cipher is a method for turning random functions
into pseudorandom permutations. The core ingredient is a one-round Feistel
cipher, which, for a function f : {0, 1}n → {0, 1}n, is given by

Ff : {0, 1}2n −→ {0, 1}2n

x||y 7−→ y ⊕ f(x)||x .

The function f is called the “round function.” The multi-round version of the
Feistel cipher is defined by concatenating multiple one-round ciphers, each with a
different choice of round function. Of particular interest is the three-round cipher,
defined by

FR1,R2,R3
(x||y) = FR3

(FR2
(FR1

(x||y))) .

A well-known result of Luby and Rackoff says that, if the Rj are random and
independent, then FR1,R2,R3

is indistinguishable from a random permutation [20].

Quantum chosen plaintext attacks on the standard scheme. Suppose we are given
quantum oracle access to a function F , and promised that F is either a random
permutation, or that F := FR1,R2,R3

for some unknown, random functions Rj .
The following attack was first shown in [18]; a thorough analysis appears in [14].
We first fix two n-bit strings α0 6= α1. We then use the oracle for F to build
oracles f0, f1 defined by

fb(y) := F (αb||y)
∣∣2n
n+1
⊕ αb .

Here s|kj := sjsj+1 · · · sk. We then run Simon’s algorithm to see if there’s a shift
between f0 and f1. If a shift is produced, we output “Feistel.” Otherwise we
output “random.”

To see why the attack is sucessful, first note that if F is a random permutation,
then the fb are random functions. On the other hand, if F = FR1,R2,R3

, then one
easily checks that fb(y) = R2(y ⊕R1(αb)). We then have

f1(y) = f0(y ⊕ (R1(α0)⊕R1(α1)))

for all y. Since the Rj are random, one can check that there are not too many
other collisions [14]. It follows that Simon’s algorithm will output R1(α0)⊕R1(α1)
with high probability.
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Hidden Shift Feistel cipher. For simplicity, we will work over the group Z/2n.
Our construction generalizes to other group families in a straightforward way.
Given a function f : Z/2n → Z/2n, we define the one-round Feistel cipher using
round function f to be

Ff : Z/2n × Z/2n −→ Z/2n × Z/2n

(x, y) 7−→ (y + f(x), x) .

Since Z/2n × Z/2n ∼= Z/22n, we can then view Ff as a permutation on 2n-bit
strings. For multi-round ciphers, we define composition as before. In particular,
given three functions R1, R2, R3 on G, we get the three-round Feistel cipher

FR1,R2,R3
: Z/2n × Z/2n −→ Z/2n × Z/2n

(x, y) 7−→ FR3
(FR2

(FR1
(x, y))) .

Next, we check that the attack of [18] now appears to require a subroutine
for the Hidden Shift problem over Z/2n, contrary to our Cyclic Hidden Shift
Assumption (Assumption 2). We are given a function F on Z/22n with the
promise that F is either random or a Feistel cipher FR1,R2,R3

as above. Proceeding
precisely as before, we pick two elements α0 6= α1 of Z/2n and build two functions

fb(y) := F (αb, y)|2nn+1 − αb .

If F is random, then clearly so are f0 and f1. But if F = FR1,R2,R3
then one

easily checks that

fb(y) = R2(y +R1(αb)) ,

from which it follows that

f1(y) = R2(y +R1(α1)) = R2(y +R1(α0)−R1(α0) +R1(α1)) = f0(y + s)

where we set s := R1(α1) − R1(α0). We are thus presented with a Hidden
Shift problem over the group Z/2n, which is hard according to Assumption 2.
The only known subroutine (analogous to Simon) that one could apply here
would be Kuperberg’s algorithm, which would find s in time 2Θ(

√
n) [16]. Defining

the Feistel network over other groups (such as Sn) would frustrate all nontrivial
quantum-algorithmic approaches, including the Kuperberg approach [21].

B.2 Protecting against quantum slide attacks

Quantum slide attack. Classically, slide attacks are a class of subexponential-
time attacks against ciphers which encrypt simply by repeatedly applying some
function Rk, with a fixed key k. Kaplan et al. [14] showed how Simon’s algorithm
can be used to give a polynomial-time “quantum slide attack” against ciphers of
the form

Ek,t := k ⊕Rtk(x) = k ⊕ (Rk ◦Rk · · · ◦Rk)(x) ,

29



where Rk(x) = R(x⊕ k), and R is a known permutation. As usual, the attack
requires quantum CPA access to Ek,t. The attack follows directly from the
observation that the functions

fb(x) =

{
Ek,t(R(x))⊕ x if b = 0,

R(Ek,t(x))⊕ x if b = 1.

are shifts of each other by the key k, i.e., f0(x⊕ k) = f1(x) for all x. This means
we can extract k with Simon’s algorithm.

Eliminating the attack via hidden shifts. Following our established pattern, we
adapt schemes Ek,t to use modular addition over Z/2n instead of bitwise XOR.
Given a permutation R of {0, 1}n, we now set

Rk(x) := R(x+ k) and Ek,t := k +Rtk(x) .

Proceeding with the attack as before, we now define

fb(x) =

{
Ek,t(R(x))− x if b = 0,

R(Ek,t(x))− x if b = 1.

We then check that

f0(x+ k) = Ek,t(R(x+ k))− (x+ k)

= k +Rtk(R(x+ k))− x− k
= R(Ek,t(x))− x
= f1(x) .

Continuing as in the Simon attack would now require a solution to the Hidden
Shift problem over Z/2n.
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