
Public-Seed Pseudorandom Permutations

Pratik Soni and Stefano Tessaro

University of California, Santa Barbara
{pratik soni,tessaro}@cs.ucsb.edu

Abstract. This paper initiates the study of standard-model assump-
tions on permutations – or more precisely, on families of permutations
indexed by a public seed. We introduce and study the notion of a public-
seed pseudorandom permutation (psPRP), which is inspired by the UCE
notion by Bellare, Hoang, and Keelveedhi (CRYPTO ’13). It considers
a two-stage security game, where the first-stage adversary is known as
the source, and is restricted to prevent trivial attacks – the security no-
tion is consequently parameterized by the class of allowable sources. To
this end, we define in particular unpredictable and reset-secure sources
analogous to similar notions for UCEs.
We first study the relationship between psPRPs and UCEs. To start with,
we provide efficient constructions of UCEs from psPRPs for both reset-
secure and unpredictable sources, thus showing that most applications of
the UCE framework admit instantiations from psPRPs. We also show a
converse of this statement, namely that the five-round Feistel construc-
tion yields a psPRP for reset-secure sources when the round function is
built from UCEs for reset-secure sources, hence making psPRP and UCE
equivalent notions for such sources.
In addition to studying such reductions, we suggest generic instantiations
of psPRPs from both block ciphers and (keyless) permutations, and ana-
lyze them in ideal models. Also, as an application of our notions, we show
that a simple modification of a recent highly-efficient garbling scheme by
Bellare et al. (S&P ’13) is secure under our psPRP assumption.

Keywords: Symmetric cryptography, UCE, permutation-based cryp-
tography, assumptions, indifferentiability

1 Introduction

Many symmetric cryptographic schemes are built generically from an underlying
component, like a hash function or a block cipher. For several recent examples
(e.g., hash functions [15,39], authenticated-encryption schemes [4], PRNGs [16],
garbling schemes [10]), this component is a (keyless) permutation, which is either
designed from scratch to meet certain cryptanalytic goals (as in the case of SHA-
3 and derived algorithms based on the sponge paradigm) or is instantiated by
fixing the key in a block cipher like AES (as in the garbling scheme of [10]).

The security of these schemes is usually proved in the ideal-permutation
model, that is, the permutation is randomly chosen, and all parties are given

2 Pratik Soni and Stefano Tessaro

(black-box) access to it. Essentially no non-tautological assumptions on per-
mutations are known which are sufficient to imply security.1 This situation is
in sharp contrast to that of hash functions, where despite the popularity of
the random-oracle model, we have a good understanding of plausible security
assumptions that can be satisfied by these functions. This is particularly impor-
tant – not so much because we want to put ideal models in question, but because
we would like to assess what is really expected from a good permutation or hash
function that makes these schemes secure.

Our contributions, in a nutshell. This paper initiates the study of com-
putational assumptions for permutation-based cryptography. Akin to the case
of hash functions, we extend permutations with a public seed, that is, πs is used
in lieu of π, where s is a public parameter of the scheme. We introduce a new
framework – which we call public-seed pseudorandom permutations, or psPRPs,
for short – which we investigate, both in terms of realizability, as well as in
terms of applications. Our approach takes inspiration from Bellare, Hoang, and
Keelveedhi’s UCE framework [8], which we extend to permutations. As we will
see, psPRPs are both useful and interesting objects of study.

Beyond definitions, we contribute in several ways. First off, we build UCEs
from psPRPs via efficient permutation-based hash functions, and show con-
versely how to build psPRPs from UCEs using the Feistel construction. We
also discuss generic instantiations of psPRPs from block ciphers and keyless
permutations. Finally, we show a variant of the garbling scheme from [10] whose
security can be based on a psPRP assumption on the underlying block cipher,
without compromising efficiency. Our reductions between psPRPs and UCEs are
established by general theorems that connect them with a weak notion of indif-
ferentiability, which is of independent interest. We explain all of this in detail in
the remainder of this introduction; an overview of the results is in Fig. 1.

The UCE framework: A primer.Bellare, Hoang, and Keelveedhi (BHK) [8]
introduced the notion of a universal computational extractor (UCE). For a seeded
hash function H : {0, 1}s × {0, 1}∗ → {0, 1}h, the UCE framework considers a
two-stage security game. First, a source S is given oracle access to either H(s, ·)
(for a random, and for now secret, seed s), or a random function ρ : {0, 1}∗ →
{0, 1}h. After a number of queries, the source produces some leakage L ∈ {0, 1}∗.
In the second stage, the distinguisher D learns both L and the seed s, and needs
to decide whether S was interacting with H(s, ·) or ρ – a task we would like to
be hard. Clearly, this is unachievable without restrictions on S, as it can simply
set L = y∗, where y∗ is the output of the oracle on a fixed input x∗, and D then
checks whether H(s, x∗) = y∗, or not.

BHK propose to restrict the set of allowable sources – the security notion
UCE[S] corresponds to a function H being secure against all sources within a
class S. For example, unpredictable sources are those for which a predictor P ,

1 A notable exception is the line of work on establishing good bounds on the PRF-
security of MACs derived from sponge-based constructions, as e.g. in [37,3,26],
where one essentially assumes that the underlying permutation yields a secure Even-
Mansour [25] cipher.

Public-Seed Pseudorandom Permutations 3

psPRP[S?up]

psPRP[S?rs]

UCE[S?up]

UCE[S?rs]ideal
cipher

random
permutation

Even-Mansour

?

direct keying

indiff.

5-round Feistel

Chop

?

Fig. 1: Relations established in this paper. Here, ? is set consistently ev-
erywhere either to c or to s. Lack of arrow indicates a separation, dashed lines
indicate implications that are open and which we conjecture to hold true. Also
note that in the ideal-cipher model, a random permutation is obtained by fixing
the cipher key (e.g., to the all-zero string). We do not know whether the converse
is true generically – indifferentiable constructions of ideal ciphers from random
permutations (e.g., [1]) do not apply here [38].

given the leakage L
$← Sρ, cannot guess any of S’s queries. They further distin-

guish between the class of computationally unpredictable sources Scup and the
class of statistically unpredictable sources Ssup, depending on the powers of P .
A somewhat stronger notion – referred to as reset-security – demands that a dis-

tinguisher R given L
$← Sρ accessing the random function ρ cannot tell whether

it is given access to the same oracle ρ, or to a completely independent random
oracle ρ′. One denotes as Ssrs and Scrs the classes of statistical and computational
reset-secure sources, respectively.

While UCE[Scup]-security (even under meaningful restrictions) was shown
impossible to achieve in the standard model [17,14] assuming indistinguishabil-
ity obfuscation (IO) [5], there is no evidence of impossibility for UCE[Ssup] and
UCE[Ssrs], and several applications follow from them. Examples include provid-
ing standard-model security for a number of schemes and applications previ-
ously only secure in the random-oracle model, including deterministic [8] and
hedged PKE [7], immunizing backdoored PRGs [24], message-locked encryp-
tion [8], hardcore functions [8], point-function obfuscation [8,13] simple KDM-
secure symmetric encryption [8], adaptively-secure garbling [8], and CCA-secure
encryption [34]. Moreover, as also pointed out by Mittelbach [36], and already
proved in the original BHK work, UCE[Scrs] and UCE[Scup] are achievable in
ideal models, and act as useful intermediate security notions for two-stage secu-
rity games, where indifferentiability does not apply [38].

Public-seed PRPs. We extend the UCE approach to the case of a seeded per-
mutation π : {0, 1}s × {0, 1}n → {0, 1}n, that is, πs = π(s, ·) is an efficiently

4 Pratik Soni and Stefano Tessaro

invertible permutation on n-bit strings. As in the UCE case, the security game
will involve a source making queries to a permutation P and its inverse P−1. In
the real case, P / P−1 give access to πs and π−1s , whereas in the ideal case they
give access to a random permutation ρ and its inverse ρ−1. Then, S passes on
the leakage L to the distinguisher D, which additionally learns s. The psPRP[S]
security notion demands indistinguishability of the real and ideal cases for all
PPT D and all S ∈ S.

This extension is straightforward, but it is not clear that it is useful at all. For
instance, UCEs naturally generalize the notion of an extractor, yet no such natu-
ral “generalization” exists here, except that of extending the PRP game (played
by the source) with a public-seed stage (and hence, the name psPRP). In addi-
tion, necessary source restrictions are somewhat less intuitive than in the UCE
case. For instance, for psPRPs, for statistically/computationally unpredictable
sources (we abuse notation, and denote the corresponding source classes also as
Ssup and Scup) it must be hard for a predictor to guess an input or an output of
the queries made by S.

UCEs from psPRPs. We first show that psPRPs are not only useful, but es-
sentially allow to recover all previous applications of UCEs through simple con-
structions of UCEs from psPRPs.

Our first result shows that all permutation-based constructions which are
indifferentiable from a random oracle [35,20] transform a psPRP[S?rs]-secure per-
mutation into UCE[S?rs]-secure hash function, where ? ∈ {c, s}.2 In particular,
this implies that the sponge paradigm by Bertoni et al [15], which underlies the
SHA-3 hash function, can be used for such transformation, thus giving extra
validation for the SHA-3 standard. We note that the permutation underlying
SHA-3 is not seeded, but under the assumption that the underlying permuta-
tion is psPRP[S?rs]-secure when seeded via the Even-Mansour construction [25],
it is easy to enhance the sponge construction with a seed.

Note that S?rs is a strictly larger class than S?up (for both psPRP and UCE).
Therefore, when an application only needs UCE[S?up]-secure hashing, one may
ask whether the assumption on the underlying psPRP can also be reduced. We
will prove that this is indeed the case, and show that whenever π is psPRP[S?up]-
secure, then the simple construction that on input X outputs πs(X)[1 . . . r], that
is, the first r bits of πs(X) is a secure fixed-input length UCE[S?up] as long as
r < n − ω(log λ). This result can be combined with the domain extender of [9]
to obtain a variable-input-length UCE[S?up]-secure hash function.3

CP-sequential indifferentiability.The technique behind the above results
is inspired by Bellare, Hoang, and Keelveedhi’s work [9] on UCE domain exten-
sion. They show that every construction that transforms a fixed-input length

2 We note that the computational case, by itself, is not that useful, given we know
that UCE[Scup] and hence also UCE[Scrs] security is unachievable, unless IO does not
exist. However, we may want to occasionally apply these results in ideal models,
where the notion is achievable, and thus they are worth stating.

3 Their construction pre-processes the arbitrary-long input with an almost universal
hash function, as e.g. one based on polynomial evaluation.

Public-Seed Pseudorandom Permutations 5

random oracle into a variable-input length one in the sense of indifferentiabil-
ity [35,20] is a good domain extender for UCEs.

We extend their result along three axes. First off, we show that it applies to
arbitrary pairs of ideal primitives – e.g., a fixed-input-length or variable-input
length random function or a random permutation. For example, a construction
using a permutation which is indifferentiable from a random oracle transforms
psPRP[S?rs]-secure permutations into UCE[S?rs]-secure functions. Through such
a general treatment, our above result on sponges is a corollary of the indifferen-
tiability analysis of [15].

Second, we show that a weaker version of indifferentiability, which we call
CP-sequential indifferentiability, suffices. Recall that indifferentiability of a con-
struction M transforming an ideal primitive I into an ideal primitive J means
that there exists a simulator Sim such that (MI, I) and (J,SimJ) are indistin-
guishable. CP-sequential indifferentiability only demands this for distinguishers
that make all of their construction queries to MI / J before they proceed to
primitive queries to I / SimJ. As we will see, this significantly enlarges the set
of constructions this result applies to. For example, truncating the permutation
output to r < n bits does not achieve indifferentiability, because a simulator
on an inverse query Y needs to fix π−1(Y) to some X such that, for the given
random function ρ : {0, 1}n → {0, 1}r, ρ(X) is consistent with Y on the first
r bits, which is infeasible. Yet, the same construction is CP-sequentially indif-
ferentiable, intuitively because there is no way for a distinguisher to catch an
inconsistent random X, as this would require an extra query to ρ. CP-sequential
indifferentiability is dual to the sequential indifferentiability notion of Mandal,
Patarin, and Seurin [33], which considers the opposite order of construction and
primitive queries. In fact, the two notions are incomparable, as we explain below.

Finally, we will also show that under suitable restrictions on the construction
M, the result extends from reset-secure sources to unpredictable ones. This will
allow to lift our result for truncation to unpredictable sources.

Constructing psPRPs.Obviously, a central question is whether the assump-
tion of being a psPRP is, by itself, attainable. Our general theorem answers
this question already – existing indifferentiability result for Feistel construc-
tions [29,21,22,23] imply already that the 8-round Feistel construction transforms
a function which is UCE[S?rs]-secure into a psPRP[S?rs]-secure permutation.

It is important however to assess whether simpler constructions achieve this
result. Here, we show that the five-round Feistel construction suffices. Our proof
heavily exploits our connection to CP-indifferentiability. Indeed, the six-round
lower bound of [21] does not apply for CP-indifferentiabiliy, as it requires the
ability to ask construction queries after primitive queries, and we show that CP-
indifferentiability is achieved at five rounds already. Our result is not merely a
simplification of earlier ones, and our simulation strategy is novel. In particular,
while we still follow the chain-completion approach of previous works, due to
the low number of rounds, we need to introduce new techniques to bound the
complexity of the simulator. To our rescue will come the fact that no construction

6 Pratik Soni and Stefano Tessaro

queries can be made after primitive queries, and hence only a limited number of
chain types will need to be completed.

We also note that the we are not aware of any obvious lower bound that shows
that more than four rounds are really necessary – four rounds are necessary alone
to reach PRP security in the eyes of the source. We leave it as an open problem
to show whether four rounds are sufficient. We also note that our result only
deals with reset-secure sources, and we leave it as an open problem to find a
similar result for unpredictable sources. For reasons we explain in the body, it
seems reasonable to conjecture that a heavily unbalanced Feistel network with
Ω(n) rounds achieves this transformation.

Constructing psPRPs, in ideal models. While the main purpose of the
psPRP framework is that of removing ideal model assumptions, it is still valuable
to assess how psPRPs are built in the first place. To this end, we also show how
to heuristically instantiate psPRPs from existing cryptographic primitives, and
here validation takes us necessarily back to ideal models. Plus, for ideal-model
applications that require psPRP security as an intermediate notion (for instance,
because we are analyzing two-stage games), these provide instantiations.

We validate two strategies: (1) Using a block cipher, and seed it through the
key, and (2) Using a keyless permutation, and seeding via the Even-Mansour
construction [25]. We prove that the first approach is psPRP[Scrs]-secure in the
ideal-cipher model, and prove the second psPRP[Scup]-secure in the random per-
mutation model.4

Fixed-key block-cipher based garbling from psPRPs. As a benchmark
for psPRPs, we revisit the garbling schemes from [10] based on fixed-key block
ciphers, which achieve high degrees of efficiency by eliminating re-keying costs.
Their original security analysis was in the ideal-cipher model, and their simplicity
is unmatched by schemes with standard-model reductions.

We consider a simple variant of their Ga scheme and prove it secure under
the assumption the underlying block cipher, when seeded through its key input,
is psPRP[Ssup]-secure. Our construction is slightly less efficient than the scheme
from [10], since a different seed/key is used for every garbling. However, we
still gain from the fact that no re-keying is necessary throughout a garbling
operation, or the evaluation of a garbled circuit. We also note that our approach
also extends to the GaX scheme of [10] with further optimizations.

Extra related work.A few works gave UCE constructions. Brzuska and Mit-
telbach [18] gave constructions from auxiliary-input point obfuscation (AIPO)
and iO. In a recent paper, under the exponential DDH assumption, Zhandry [41]
built a primitive (called an AI-PRG) which is equivalent to a UCE for a subset
of Scup which is sufficient for instantiating point obfuscators. (The observation is
not made explicit in [41], but the definitions are equivalent.) None of these results
is sufficiently strong to instantiate our Feistel-based construction of psPRPs.

The cryptanalysis community has studied block-cipher security under known
keys, albeit with a different focus. For example, Knuden and Rijmen [30] gave

4 Again, recall that IO-based impossibility for Scup and Scrs do not apply because we
are in ideal models.

Public-Seed Pseudorandom Permutations 7

attacks against Feistel networks and reduced-round versions of AES that find
input-output pairs with specific properties (given the key) in time faster than
it should be possible if the block cipher were a random permutation. Several
such attacks were later given for a number of block ciphers. We are not aware
of these attacks however invalidating psPRP security. Andreeva, Bogdanov, and
Mennink [2] gave formal models for known-key security in ideal models based
on a weak form of indifferentiability, where construction queries are to the con-
struction under a known random key. These are however unrelated.

Outline. Section 2 proposes a general framework for public-seed pseudorandom
notions, and Section 3 puts this to use to provide general reduction theorems
between pairs of such primitives, and defines in particular CP-sequential indif-
ferentiability. UCE constructions from psPRPs are given in Section 4, whereas
Section 5 presents our main result on building psPRPs via the Feistel construc-
tion. Heuristic constructions are presented in Section 6, and finally we apply
psPRPs to the analysis of garbling schemes in Section 7.

Notational preliminaries.Throughout this paper, we denote by Funcs(X,Y)
the set of functions X → Y , and in particular use the shorthand Funcs(m,n)
whenever X = {0, 1}m and Y = {0, 1}n. We also denote by Perms(X) the set of
permutations on the set X, and analogously, Perms(n) denotes the special case
where X = {0, 1}n. We say that a function f : N → R≥0 is negligible if for all
c ∈ N, there exists a λ0 such that f(λ) ≤ λ−c for all λ ≥ λ0.

Our security definitions and proofs will often use games, as formalized by
Bellare and Rogaway [12]. Typically, our games will have boolean outputs – that
is, either true or false – and we use the shorthand Pr [G] to denote the probability
that a certain game outputs the value true, or occasionally 1 (when the output
is binary, rather than boolean).

2 Public-seed Pseudorandomness

We present a generalization of the UCE notion [8], which we term public-seed
pseudorandomness. We apply this notion to define psPRPs as a special case, but
the general treatment will be useful to capture transformations between UCEs
and psPRPs in Section 3 via one single set of theorems.

2.1 Ideal Primitives and their Implementations

We begin by formally defining ideal primitives using notation inspired by [27,6].

Ideal primitives.An ideal primitive is a pair I = (Σ, T), where Σ = {Σλ}λ∈N
is a family of sets of functions (such that all functions in Σλ have the same
domain and range), and T = {Tλ}λ∈N is a family of probability distributions,
where Tλ’s range is a subset of Σλ for all λ ∈ N. The ideal primitive I, once the
security parameter λ is fixed, should be thought of as an oracle that initially
samples a function I as its initial state according to Tλ from Σλ. We denote this

8 Pratik Soni and Stefano Tessaro

sampling as I ←$ Iλ. Then, I provides access to I via queries, that is, on input
x it returns I(x).5

Examples.We give a few examples of ideal primitives using the above notation.
In particular, let κ,m, n : N→ N be functions.

Example 1. The random function Rm,n = (ΣR, T R) is such that for all λ ∈
N, ΣR

λ = Funcs(m(λ), n(λ)), and T R
λ is the uniform distribution on ΣR

λ . We
also define R∗,n to be the same for Funcs(∗, n(λ)), that is, when the domain is
extended to arbitrary length input strings.6

Example 2. The random permutation Pn = (ΣP, T P) is such that for all λ ∈ N,

ΣP
λ =

{
P : {+, -} × {0, 1}n(λ) → {0, 1}n(λ) |

∃π ∈ Perms(n(λ)) : P (+, x) = π(x), P (-, x) = π−1(x)
}
,

and moreover, T P
λ is the uniform distribution on ΣP

λ .

Example 3. The ideal cipher ICκ,n = (ΣIC, T IC) is such that

ΣIC
λ =

{
E : {0, 1}κ(λ) × {+, -} × {0, 1}n(λ) → {0, 1}n(λ) |

∀k ∈ {0, 1}κ(λ)∃πk ∈ Perms(n(λ)) : E(k, +, x) = πk(x), E(k, -, x) = π−1k (x)
}
,

and T IC
λ is the uniform distribution on ΣIC

λ .

Efficiency considerations. Usually, for an ideal primitive I = (Σ, T), the
bit-size of the elements of Σλ grows exponentially in λ, and thus one would not
implement a primitive I by sampling I from Σλ, but rather using techniques such
as lazy sampling. An implementation of a primitive I is a stateful randomized

PPT algorithm A such that A(1λ, ·) behaves as I
$← Iλ for all λ ∈ N. We say

that I is efficiently implementable if such an A exists. All the above examples –
Rm,n,R∗,n,Pn, and ICκ,n – are efficiently implementable as long as m,n, κ are
polynomially bounded functions.

Σ-compatible function families. A function family F = (Kg,Eval) consists
of a key (or seed) generation algorithm F.Kg and an evaluation algorithm F.Eval.
In particular, F.Kg is a randomized algorithm that on input the unary represen-
tation of the security parameter λ returns a key k, and we let [F.Kg(1λ)] denote
the set of all possible outputs of F.Kg(1λ). Moreover, F.Eval is a deterministic
algorithm that takes three inputs; the security parameter in unary form 1λ, a
key k ∈ [F.Kg(1λ)] and a query x such that F.Eval(1λ, k, ·) implements a function
that maps queries x to F.Eval(1λ, k,x). We say that F is efficient if both Kg and
Eval are polynomial-time algorithms.

5 The reader may wonder whether defining Σ is necessary, but this will allow us to
enforce a specific format on valid implementations below.

6 Note that this requires some care, because Σλ is now uncountable, and thus sampling
from it requires a precise definition. We will not go into formal details, similar to
many other papers, but it is clear that this can easily be done.

Public-Seed Pseudorandom Permutations 9

MAIN psPRS,DF,I (λ):

(1n, t)←$S(1λ, ε)
b←$ {0, 1}
k1, . . . , kn ←$F.Kg(1λ)
f1, . . . , fn ←$ Iλ
L←$SO(1λ, t)
b′ ←$D(1λ, k1, . . . , kn, L)
return b′ = b

ORACLE O(i,x):
if b = 1 then

return F.Eval(1λ, ki,x)
else

return fi(x)

Fig. 2: Game psPR used to define pspr-security for a primitive F that is Σ-
compatible with I. Here, S is the source and D is the distinguisher. Recall that
the notation f ←$ Iλ indicates picking a function from Σλ using Tλ.

Definition 1 (Σ-compatibility). A function family F is Σ-compatible with
I = (Σ, T) if F.Eval(1λ, k, ·) ∈ Σλ for all λ ∈ N and k ∈ [F.Kg(1λ)].

2.2 Public-seed Pseudorandomness, psPRPs, and Sources

We now define a general notion of public-seed pseudorandom implementations
of ideal primitives.

The general definition. Let F = (Kg,Eval) be a function family that is Σ-
compatible with an ideal primitive I = (Σ, T). Let S be an adversary called
the source and D an adversary called the distinguisher. We associate to them,
F and I, the game psPRS,DF,I (λ) depicted in Fig. 2. The source initially chooses
the number of keys n. Then, in the second stage, it is given access to an oracle
O and we require any query (i,x) made to this oracle be valid, that is, x is
a valid query for any fi ∈ Σλ and i ∈ [n], for n output by the first stage
of the source. When the challenge bit b = 1 (“real”) the oracle responds via
F.Eval under the key ki (F.Eval(1λ, ki, ·)) that is chosen by the game and not
given to the source. When b = 0 (“ideal”) it responds via fi where fi←$ Iλ.
After its interaction with the oracle O, the source S communicates the leakage
L ∈ {0, 1}∗ to D. The distinguisher is given access to the keys k1, . . . , kn and
must now guess b′ ∈ {0, 1} for b. The game returns true iff b′ = b and we describe
the pspr-advantage of (S,D) for λ ∈ N as

Adv
pspr[I]
F,S,D(λ) = 2 Pr

[
psPRS,DF,I (λ)

]
− 1 . (1)

In the following, we are going to use the shorthands UCE[m,n] for pspr[Rm,n],
UCE[n] for pspr[R∗,n], and psPRP[n] for pspr[Pn].

Note that our security game captures the multi-key version of the security
notions, also considered in past works on UCE, as it is not known to be implied
by the single-key version, which is recovered by having the source initially output
n = 1.

10 Pratik Soni and Stefano Tessaro

MAIN PredPI,S(λ):

done← false;Q← ∅; (1n, t)←$S(1λ, ε)
f1, . . . , fn ←$ Iλ
L←$SO(1λ, t); done← true
Q′ ←$PO(1λ, 1n, L)
return (Q ∩Q′ 6= ∅)

ORACLE O(i,x):
if ¬done then Q← Q ∪ {x}
return fi(x)

MAIN ResetRI,S(λ):

done← false; (1n, t)←$S(1λ, ε)
f0
1 , f

1
1 , . . . , f

0
n, f

1
n ←$ Iλ

L←$SO(1λ, t); done← true
b←$ {0, 1}; b′ ←$RO(1λ, 1n, L)
return b′ = b

ORACLE O(i,x):

if ¬done then return f0
i (x)

else return fbi (x)

Fig. 3: Games Pred and Reset are used to define the unpredictability and reset-
security of the source S respectively against the ideal primitive I. Here, S is the
source, P is the predictor and R is the reset adversary.

Restricting sources. One would want to define F as secure if Adv
pspr[I]
F,S,D(λ) is

negligible in λ for all polynomial time sources S and distinguishers D. However,
as shown already in the special case of UCEs [8], this is impossible, as one can
always easily construct (at least for non-trivial I’s) a simple source S which leaks
the evaluation of O on a given point, and D can check consistency given k.

Therefore to obtain meaningful and non-empty security definitions we restrict
the considered sources to some class S, without restricting the distinguisher class.

Consequently, we denote by psPR[I,S] the security notion that asks Adv
pspr[I]
F,S,D(λ)

to be negligible for all polynomial time distinguishers D and all sources S ∈ S.
Following [8], we also use psPR[I,S] to denote the set of F’s which are psPR[I,S]-
secure. Note that obviously, if S1 ⊆ S2, then psPR[I,S2] ⊆ psPR[I,S1] where S1
and S2 are source classes for the ideal primitive I. We will use the shorthands
psPRP[n,S] for psPR[Pn,S] and UCE[m,n,S] for psPR[Rm,n,S], where m = ∗
if the domain is unbounded.

Below, we discuss two important classes of restrictions, which are fundamen-
tal for the remainder of this paper – unpredictable and reset-secure sources.

Unpredictable sources. Let S be a source. Consider the game PredPI,S(λ)
of Fig. 3 associated to S and an adversary P called the predictor. Given the
leakage, the latter outputs a set Q′. It wins if this set contains any O-query of
the source. For λ ∈ N we let

Adv
pred[I]
S,P (λ) = Pr

[
PredPI,S(λ)

]
. (2)

We say that P is a computational predictor if it is polynomial time, and it is
a statistical predictor if there exists polynomials q, q′ such that for all λ ∈ N,
predictor P makes at most q(λ) oracle queries and outputs a set Q′ of size at
most q′(λ) in game PredPI,S(λ). We stress that in this case the predictor need not
be polynomial time, even though it makes a polynomial number of queries. We

say S is computationally unpredictable if Adv
pred[I]
S,P (λ) is negligible for all com-

putational predictors P . We say S is statistically unpredictable if Adv
pred[I]
S,P (λ) is

Public-Seed Pseudorandom Permutations 11

negligible for all statistical predictors P . We let Scup be the class of all polyno-
mial time, computationally unpredictable sources and Ssup ⊆ Scup be the class
of all polynomial time statistically unpredictable sources.7

Reset-secure sources. Let S be a source. Consider the game ResetRI,S(λ) of
Fig. 3 associated to S and an adversary R called the reset adversary. The latter
wins if given the leakage L it can distinguish between f0 used by the source S
and an independent f1 where f0, f1←$ Iλ. For λ ∈ N we let

Adv
reset[I]
S,R (λ) = 2 Pr

[
ResetRI,S(λ)

]
− 1 . (3)

We say that R is a computational reset adversary if it is polynomial time, and
it is a statistical reset adversary if there exists a polynomial q such that for all
λ ∈ N, reset adversary R makes at most q(λ) oracle queries in game ResetRI,S(λ).
We stress that in this case the reset adversary need not be polynomial time. We

say S is computationally reset-secure if Adv
reset[I]
S,R (λ) is negligible for all compu-

tational reset adversaries R. We say S is statistically reset-secure if Adv
reset[I]
S,R (λ)

is negligible for all statistical reset adversaries R. We let Scrs be the class of all
polynomial time, computationally reset-secure sources and Ssrs ⊆ Scrs the class
of all polynomial time statistically reset-secure sources.

Relationships. For the case of psPRPs, we mention the following fact, which
is somewhat less obvious than in the UCE case, and in particular only holds if
the permutation’s domain grows with the security parameter.

Proposition 1. For all n ∈ ω(log λ), we have psPRP[n,S?rs] ⊆ psPRP[n,S?up]
where ? ∈ {c, s}.

Proof (Sketch). In the reset secure game, consider the event that R queries its
oracle O on input (i, σ, x) which was queried by S already as an O(i, σ, x) query,
or it was the answer to a query O(i, σ, y). Here (like elsewhere in the paper), we
use the notational convention + = - and - = +. The key point here is proving
that as long as this bad event does not happen, the b = 0 and b = 1 case are hard
to distinguish. A difference with the UCE case is that due to the permutation
property, they will not be perfectly indistinguishable, but a fairly standard (yet
somewhat tedious) birthday argument suffices to show that indistinguishability
still holds as long as the overall number of O queries (of S and R) is below
2n(λ)/2, which is super-polynomial for n(λ) = ω(log λ). ut

3 Reductions and Indifferentiability

We present general theorems that we will use to obtain reductions between
psPRPs and UCEs. Our general notation for public-seed pseudorandom primi-
tives allows us to capture the reductions through two general theorems.

7 We note that computational unpredictability is only meaningful for sufficiently re-
stricted classes of sources or in ideal models, as otherwise security against Scup is
not achievable assuming IO, using essentially the same attack as [17].

12 Pratik Soni and Stefano Tessaro

MAIN CP[I→ J]AM,Sim(λ):

b←$ {0, 1}; f ←$ Iλ; g←$Jλ
st←$AFunc

1 (1λ)
b′ ←$APrim

2 (1λ, st)
return b′ = b

ORACLE Func(x):
if b = 1 then

return Mf (x)
else

return g(x)

ORACLE Prim(u):
if b = 1 then

return f(u)
else

return Simg(u)

Fig. 4: Game CP used to define cpi-security for a construction M implementing
the primitive J using primitive I. Here, Sim is the simulator and A = (A1, A2)
is the two-stage distinguisher.

CP-sequential indifferentiability. Indifferentiability was introduced in [35]
by Maurer, Renner, and Holenstein to formalize reductions between ideal prim-
itives. Following their general treatment, it captures the fact that a (key-less)
construction M using primitive I (which can be queried by the adversary directly)
is as good as another primitive J by requiring the existence of a simulator that
can simulate I consistently by querying J.

Central to this paper is a weakening of indifferentiability that we refer to
as CP-sequential indifferentiability, where the distinguisher A makes all of its
construction queries to MI (or J) before moving to making primitive queries to
I (or SimJ, where Sim is the simulator). Note that this remains a non-trivial
security goal, since Sim does not learn the construction queries made by A, but
needs to simulate correctly nonetheless. However, the hope is that because A has
committed to its queries before starting its interaction with Sim, the simulation
task will be significantly easier. (We will see that this is indeed the case.)

More concretely, the notion is concerned with constructions which implement
J from I, and need to at least satisfy the following syntactical requirement.

Definition 2 ((I→ J)-compatibility). Let I = (I.Σ, I.T) and J = (J.Σ,J.T)
be ideal primitives. A construction M is called (I → J)-compatible if for every
λ ∈ N, and every f ∈ I.Σλ, the construction M implements a function x 7→
Mf (1λ, x) which is in J.Σλ.

The game CP is described in Fig. 4. For ideal primitives I,J, a two-stage
adversary A = (A1, A2), an (I → J)-compatible construction M, and simulator
Sim, as well as security parameter λ ∈ N, we define

Adv
cpi[I→J]
M,Sim,A(λ) = 2 · Pr

[
CP[I→ J]AM,Sim(λ)

]
− 1 . (4)

We remark that the CP-sequential indifferentiability notion is the exact
dual of sequential indifferentiability as introduced by Mandal, Patarin, and
Seurin [33], which postpones construction queries to the end. As we will show
below in Section 4.2, there are CP-indifferentiable constructions which are not
sequentially indifferentiable in the sense of [33].

Reductions. We show that CP-sequential indifferentiability yields a reduction
between public-seed pseudorandomness notions. A special case was shown in [9]

Public-Seed Pseudorandom Permutations 13

by Bellare, Hoang, and Keelvedhi for domain extension of UCEs. Our result
goes beyond in that: (1) It is more general, as it deals with arbitrary ideal
primitives, (2) It only relies on CP-sequential indifferentiability, as opposed to
full indifferentiability, and (3) The reduction of [9] only considered reset-secure
sources, whereas we show that under certain conditions on the construction, the
reduction also applies to unpredictable sources. Nonetheless, our proofs follow
the same approach of [9], and the main contribution is conceptual.

We let F = (F.Kg,F.Eval) be a function family which is Σ-compatible with an
ideal primitive I. Further, let M be an (I → J)-compatible construction. Then,
overloading notation, we define the new function family M[F] = (M.Kg,M.Eval),
where M.Kg = F.Kg, and for every k ∈ [M.Kg(1λ)], we let

M.Eval(1λ, k, x) = MO(1λ, x) , (5)

where O(z) = F.Eval(1λ, k, z).

Reset-secure sources.The following is our general reduction theorem for the
case of reset-secure sources. Its proof follows similar lines as the one in [9] and
we refer the reader to the full version for details.

Theorem 1 (Composition theorem, reset-secure case). Let M, F, I, and
J be as above. Fix any simulator Sim. Then, for every source-distinguisher pair
(S,D), where S requests at most N(λ) keys, there exists a source-distinguisher
pair (S,D), and a further distinguisher A, such that

Adv
pspr[J]
M[F],S,D(λ) ≤ Adv

pspr[I]

F,S,D
(λ) +N(λ) · Advcpi[I→J]

M,Sim,A(λ) . (6)

Here, in particular: The complexities of D and D are the same. Moreover, if S,
D, and M are polynomial time, and I, J are efficiently implementable, then A,
S and D are also polynomial-time.

Moreover, for every reset adversary R, there exists a reset adversary R′ and
a distinguisher B such that

Adv
reset[I]

S,R
(λ) ≤ Adv

reset[J]
S,R′ (λ) + 3N(λ) · Advcpi[I→J]

M,Sim,B(λ) , (7)

where R′ makes a polynomial number of query / runs in polynomial time if R
and Sim make a polynomial number of queries / run in polynomial time, and
I,J are efficiently implementable. �

Query extractable constructions. Next, we show that under strong con-
ditions on the construction M, Theorem 1 extends to the case of unpredictability.

In particular, we consider constructions which we term query extractable.
Roughly, what such constructions guarantee is that every query made by M to
an underlying ideal primitive I can be assigned to a (small) set of possible inputs
to M that would result in this query during evaluation. Possibly, this set of inputs
may be found by making some additional queries to I. We define this formally
through the game EXTS,PM,I,Ext(λ) in Fig. 5. It involves a source S and a predictor

14 Pratik Soni and Stefano Tessaro

GAME EXTS,PM,I,Ext(λ) :

done← false
QI, QM ← ∅
(1n, st)←$S(1λ, ε)
f1, . . . , fn ←$ Iλ
L←$SOM(1λ, 1n, st)
done← true
Q←$PO(1λ, 1n, L); Q∗ ← ExtO(Q)
return ((Q ∩QI 6= ∅) ∧ (Q∗ ∩QM = ∅))

ORACLE O(i, x) :

if ¬done then QI
∪← {x}

return fi(x)

ORACLE OM(i, x) :

if ¬done then QM
∪← {x}

y ← MO(i,·)(x)
return y

Fig. 5: Game EXTS,PM,I,Ext(λ) in the definition of query extractability.

P , as well as an extractor Ext. Here, S selects an integer n, which results in n
instances f1, . . . , fn of I being spawned, and then makes queries to n instances
of Mfi , gives some leakage to the predictor P , and the predictor makes further
query to the I-instances, until it outputs a set Q. Then, we run the extractor Ext
on Q, and the extractor can also make additional queries to the I-instances, and
outputs an additional set Q∗. We are interested in the event that Q contains one
of queries made to the fi’s by M in the first stage of the game, yet Q∗ does not
contain any of S’s queries to Mfi for some i. In particular, we are interested in

Adv
ext[I]
M,S,P,Ext(λ) = Pr

[
EXTS,PM,I,Ext(λ)

]
.

We say that M is query extractable with respect to I if there exists a polynomial

time Ext such that Adv
ext[I]
M,S,P,Ext(λ) is negligible for all PPT P and S. We say it

is perfectly query extractable if the advantage is 0, rather than simply negligible.
The next theorem provides an alternative to Theorem 1 for the case of un-

predictable sources whenever M guarantees query extractability.

Theorem 2 (Composition theorem, unpredictable case). Let M, F, I,
and J be as before. Fix any simulator Sim. Then, for every source-distinguisher
pair (S,D), where S requests at most N(λ) keys, there exists a source-distinguisher
pair (S,D), and a further distinguisher A, such that

Adv
pspr[J]
M[F],S,D(λ) ≤ Adv

pspr[I]

F,S,D
(λ) +N(λ) · Advcpi[I→J]

M,Sim,A(λ) . (8)

Here, in particular: The complexities of D and D are the same. Moreover, if S,
D, and M are polynomial time, and I, J are efficiently implementable, then A,
S and D are also polynomial-time.

Moreover, for every predictor P and extractor Ext, there exists a predictor
adversary P ′ and a distinguisher B such that

Adv
pred[I]

S,P
(λ) ≤ Adv

pred[J]
S,P ′ (λ) + Adv

ext[I]
M,S,P,Ext(λ) +N(λ) · Advcpi[I→J]

M,Sim,B(λ) , (9)

where P ′ makes a polynomial number of query / runs in polynomial time if P ,
Sim and Ext make a polynomial number of queries / run in polynomial time, and
I,J are efficiently implementable. �

Public-Seed Pseudorandom Permutations 15

4 From psPRPs to UCEs

We consider the problem of building UCEs from psPRPs. On the one hand,
we want to show that all applications of UCEs can be recovered modularly by
instantiating the underlying UCE with a psPRP-based construction. Second, we
want to show that practical permutation-based designs can be instantiated by
assuming the underlying permutation (when equipped with a seed) is a psPRP.

4.1 Reset-secure Sources and Sponges

The case of reset-secure sources follows by a simple application of Theorem 1:
A number of constructions from permutations have been proved indifferentiable
from a random oracle, and all of these yield a construction of a UCE for S?rs
when the underlying permutation is a psPRP for S?rs, where ? ∈ {c, s}.8

Sponges. A particular instantiation worth mentioning is the sponge construc-
tion by Bertoni et al. [15], which underlies KECCAK/SHA-3. In particular, let
Spongen,r be the (Pn → R∗,r)-compatible construction which operates as fol-

lows, on input 1λ, M ∈ {0, 1}∗, and given oracle access to a permutation ρ :
{0, 1}n(λ) → {0, 1}n(λ). The message M is split into r-bit blocks M [1], . . . ,M [`],
and the computation keeps a state Si ‖Ti, where Si ∈ {0, 1}r and Ti ∈ {0, 1}n−r.
Then, Spongeρn,r(1

λ,M) = S`[1..r], where

S0 ‖T0 ← 0n , Si ‖Ti ← ρ((Si−1 ⊕M [i]) ‖Ti−1) for i = 1, . . . , ` .

Then, the following theorem follows directly from Theorem 1 and the indifferen-
tiability analysis of [15]. (We state here only the asymptotic version, but concrete
parameters can be obtained from these theorems.)

Theorem 3 (UCE-security for Sponges). For ? ∈ {c, s} and n(λ) polyno-
mially bounded in λ, if F ∈ psPRP[n,S?rs], then Spongen,r[F] ∈ UCE[∗, r,S?rs]
whenever n(λ)− r(λ) = ω(log λ). �

Heuristic instantiation.We wish to say this validates SHA-3 as being a good
UCE. One caveat of Theorem 3 is that the actual sponge construction (as used
in SHA-3) uses a seedless permutation π. We propose the following assumption
on such a permutation π that – if true – implies a simple way to modify an
actual Sponge construction to be a secure UCE using Theorem 3. In particular,
we suggest using the Even-Mansour [25] paradigm to add a seed to π. Given
a family of permutations Π = {πλ}λ∈N, where πλ ∈ Perms(n(λ)), define then
EM[Π] = (EM.Kg,EM.Eval) where EM.Kg outputs a random n(λ)-bit string s
on input 1λ, and

EM.Eval(1λ, s, (+, x)) = s⊕ πλ(x⊕ s) , EM.Eval(1λ, s, (-, y)) = s⊕ π−1λ (y ⊕ s)
8 One caveat is that some of these constructions use a few independent random per-

mutations, whereas Theorem 1 assumes only one permutation is used. We point out
in passing that Theorem 1 can easily be adapted to this case.

16 Pratik Soni and Stefano Tessaro

for all s, x ∈ {0, 1}n(λ). Now, if Π is such that EM[Π] is psPRP[n,Ssrs]-secure,
then Sponge[EM[Π]] is UCE[∗, r,Ssrs]-secure by Theorem 3. We discuss the con-
jecture that EM is psPRP[n,Ssrs]-secure further below in Section 6.

The attractive feature of Sponge[EM[Π]] is that it can be implemented in a
(near) black-box way from Sponge[Π], that is, the original sponge construction
run with fixed oracle Π, by setting (1) The initial state S0 ‖T0 to the seed s
(rather than 0n(λ)), and (2) xoring the first r bits s[1 . . . r] of the seed s to the
output. The other additions of the seed s to the inner states are unnecessary,
as they cancel out. (A similar observation was made by Chang et al [19] in the
context of keying sponges to obtain PRFs.)

4.2 Unpredictable Sources

Many UCE applications only require (statistical) unpredictability. In this sec-
tion, we see that for this weaker target a significantly simpler construction can be
used. In particular, we will first build a UCE[n, r,S?up]-secure compression func-
tion from a psPRP[n,S?up]-secure permutation, where n(λ) − r(λ) = ω(log λ)
and ? ∈ {c, s}. Combined with existing domain extension techniques [9], this can
be enhanced to a variable-input-length UCE for the same class of sources.

The chop construction.Let r, n : N→ N be polynomially bounded functions
of the security parameter λ, where r(λ) ≤ n(λ) for all λ ∈ N. We consider the
following construction Chop[n, r] which is (Pn → Rn,r)-compatible. On input
1λ, it expects a permutation π : {0, 1}n → {0, 1}n for n = n(λ), and given
additionally x ∈ {0, 1}n(λ), it returns

Chop[n, r]π(1λ, x) = π(x)[1 . . . r(λ)] , (10)

that is, the first r = r(λ) bits of π(x). It is not hard to see that the construction
is (perfectly) query extractable using the extractor Ext which given oracle access
to O and a set Q of queries of the form (+, x) and (-, y), returns a set consisting of
all x such that (+, x) ∈ Q, and moreover adds x′ to the set obtained by querying
O(i, -, y) for every i ∈ [n] and (-, y) ∈ Q.

CP-sequential indifferentiability.The following theorem establishes CP-
sequential indifferentiability of the Chop construction. We refer the reader to the
full version for the proof but give some intuition about it after the theorem.

Theorem 4 (CP-indifferentiability of Chop). Let r, n : N→ N be such that
r(λ) ≤ n(λ) for all λ ∈ N. Let P = Pn and R = Rn,r be the random permutation
and random function, respectively. Then, there exists a simulator Sim such that
for all distinguishers A making at most q construction and p primitive queries,

Adv
cpi[P→R]
Chop[n,r],Sim,A(λ) ≤ (q + p)2

2n
+
p · q
2n−r

. (11)

Here, Sim makes at most one oracle query upon each invocation, and otherwise
runs in time polynomial in the number of queries answered. �

Public-Seed Pseudorandom Permutations 17

The dependence on r is necessary, as otherwise the construction becomes invert-
ible and cannot be CP-sequentially indifferentiable. Also, note that we cannot
expect full indifferentiability to hold for the Chop construction, and in fact, not
even sequential indifferentiability in the sense of [33]. Indeed, a distinguisher
A can simply first query Prim(-, y), obtaining x, and then query Func(x), that
yields y′. Then, A just checks that the first r bits of y equals y′, and if so outputs
1, and otherwise outputs 0. Note that in the real world, A always outputs 1, by
the definition of Chop. However, in the ideal world, an arbitrary simulator Sim
needs, on input y, to return an x for which the random oracle (to which it access)
returns the first r bits of y. This is however infeasible if n− r = ω(log λ), unless
the simulator can make roughly 2r queries.

The proof in full version shows this problem vanishes for CP-sequential in-
differentiability. Indeed, our simulator will respond to queries Sim(-, y) with a
random (and inconsistent) x. The key point is that due to the random choice,
it is unlikely that the distinguisher has already issued a prior query Func(x).
Moreover, it is also unlikely (in the real world) that the distinguisher, after a
query Func(x), makes an inverse query on π(x). The combination of these two
facts will be enough to imply the statement.

UCE security. We can now combine Theorem 4 with the fact that the Chop
construction is (perfectly) query extractable, and use Theorem 2:

Corollary 1. For all n, r such that n(λ) − r(λ) = ω(log λ), if F is psPRP[n,S?up]-
secure, then Chop[F] is UCE[n, r,S?up]-secure, where ? ∈ {c, s}.

The construction of [9] can be used to obtain variable-input-length UCE: It
first hashes the arbitrary-long input down to an n(λ)-bit long input using an
almost-universal hash function, and then applies Chop[F] to the resulting value.

5 Building psPRPs from UCEs

This section presents our main result on building psPRPs from UCEs, namely
that the five-round Feistel construction, when its round functions are instanti-
ated from a UCE[S?rs]-secure function family (for ? ∈ {c, s}), yields a psPRP[S?rs]-
secure permutation family.

CP-indifferentiability of Feistel. Let n : N → N be a (polynomially
bounded) function. We define the following construction Ψ5, which, for secu-
rity parameter λ, implements an invertible permutation on 2n(λ)-bit strings,
and makes calls to an oracle f : [5] × {0, 1}n(λ) → {0, 1}n(λ). In particular, on

input 1λ and X = X0 ‖X1, where X0, X1 ∈ {0, 1}n(λ), running Ψf5 (1λ, (+, X))
outputs X5 ‖X6, where

Xi+1 ← Xi−1 ⊕ f(i,Xi) for all i = 1, . . . , 5 . (12)

Symmetrically, upon an inverse query, Ψf5 (1λ, (-, Y = X5 ‖X6)) simply com-
putes the values backwards, and outputs X0 ‖X1. Construction Ψ5 is clearly

18 Pratik Soni and Stefano Tessaro

(R5
n,n → P2n)-compatible, where we use the notation Rk

n,n to denote the k-fold
combination of independent random functions which takes queries of the form
(i, x) that are answered by evaluating on x the i-th function.

The following theorem establishes CP-indifferentiability for Ψ5. We discuss
below its consequences, and give a detailed description of our simulation strategy.
The full analysis of the simulation strategy – which employes the randomness-
mapping technique of [29] – is found in the full version.

Theorem 5 (CP-indifferentiability of Feistel). Let R = R5
n,n and P =

P2n. Then, there exists a simulator Sim (described in Fig. 6) such that for all
distinguisher A making at most q(λ) queries,

Adv
cpi[R→P]
Ψ5,Sim,A

(λ) ≤ 360q(λ)6

2n(λ)
. (13)

Here, Sim makes at most 2q(λ)2 queries, and otherwise runs in time polynomial
in the number of queries answered, and n. �

This, together with Theorem 1, gives us immediately the following corollary:
Given a keyed function family F = (F.Kg,F.Eval), where for all λ ∈ N, k ∈
[F.Kg(1λ)], F.Eval(1λ, k, ·) is a function from n(λ)+3 bits to n(λ) bits, interpreted
as a function [5]× {0, 1}n(λ) → {0, 1}n(λ), then define the keyed function family
Ψ5[F] = (Ψ.Kg, Ψ.Eval) obtained by instantiating the round function using F.

Corollary 2. For any polynomially bounded n = ω(log λ), if F ∈ UCE[n +
3,S?rs], then Ψ5[F] ∈ psPRP[2n,S?rs], where ? ∈ {c, s}. �

Remarks.Theorem 5 is interesting in its own right, as part of the line of works
on (full-fledged) indifferentiability of Feistel constructions. Coron et al. [21] show
that six rounds are necessary for achieving indifferentiability, and proofs of indif-
ferentiability have been given for 14, 10, and 8 rounds, respectively [29,21,22,23].
Thus, our result shows that CP-indifferentiability is a strictly weaker goal in
terms of round-complexity of the Feistel construction. (Also for sequential in-
differentiability as in [33], six rounds are necessary.) As we will see in the next
paragraph, our simulation strategy departs substantially from earlier proofs.

Two obvious problems remain open. First off, we know four rounds are neces-
sary (as they are needed for indistinguishability alone [32]), but we were unable
to make any progress on whether CP-sequential indifferentiability (or psPRP
security) is achievable. The second is the case of unpredictable sources. We note
that a heavily unbalanced Feistel construction (where each round function out-
puts one bit) would be query extractable, as the input of the round function
leaves little uncertainty on the inner state, and the extractor can evaluate the
round functions for other rounds to infer the input/output of the construction.
Thus, if we could prove CP-indifferentiabilty, we could combine this with Theo-
rem 2. Unfortunately, such a proof appears beyond our current understanding.

Public-Seed Pseudorandom Permutations 19

PROCEDURE Sim(k,X):
1: if Gk[X] = ⊥ then
2: if k = 2 then
3: Finner(k,X)
4: foreach (X1, X2) ∈ G1 × {X} do
5: if (X1, X2, 1) /∈ CompletedChains then
6: X0 ← Finner(1, X1)⊕X2

7: (X5, X6)← Func(+, X0||X1)
8: C ← (X1, X2, 1)
9: if G5[X5] 6= ⊥ then // Immediate Completion

10: Complete(C, (X5, X6))
11: else // Completion is delayed

12: X3 ← Finner(2, X2)⊕X1

13: Chains[3, X3]← (5, X5), Chains[5, X5]
∪← {(C, (X5, X6))}

14: elseif k = 4 then
15: Finner(k,X)
16: foreach (X4, X5) ∈ {X} ×G5 do
17: if (X4, X5, 4) /∈ CompletedChains then
18: X6 ← Finner(4, X4)⊕X5

19: (X0, X1)← Func(-, X5||X6)
20: C ← (X4, X5, 4)
21: if G1[X1] 6= ⊥ then // Immediate Completion

22: Complete(C, (X0, X1))
23: else // Completion is delayed

24: X3 ← Finner(4, X4)⊕X5

25: Chains[3, X3]← (1, X1), Chains[1, X1]
∪← {(C, (X0, X1))}

26: elseif k ∈ {1, 5} then
27: Finner(k,X)
28: foreach (C, (U, V)) ∈ Chains[k,X] do
29: if C /∈ CompletedChains then // Delayed Completion

30: Complete(C, (U, V))
31: elseif Chains[3, X] 6= ⊥ then
32: Sim(Chains[k,X])
33: return Finner(k,X)

Fig. 6: The code for simulator Sim. Sim has access to the Func oracle and main-
tains data structures Gk, Chains and CompletedChains as global variables.

Simulator description. We explain now our simulation strategy, which is
described formally in Fig. 6. We note that our approach inherits the chain-
completion technique from previous proofs, but it will differ substantially in
how and when chains are completed.

Recall that in the ideal case, in the first stage of the CP-indifferentiability
game, A1 makes queries to Func implementing a random permutation, and then
passes the control of the game to A2 which interacts with Sim. Our Sim main-
tains tables Gk for k ∈ [5] to simulate the round functions. We denote by
Gk[X] = ⊥ that the table entry for X is undefined, and we assume all values

20 Pratik Soni and Stefano Tessaro

PROCEDURE Finner(i,Xi):
34: if Gi[Xi] = ⊥ then
35: Gi[Xi]←$ {0, 1}n
36: return Gi[Xi]

PROCEDURE ForceVal(X,Y, l):
37: Gl[X]← Y

PROCEDURE Complete(C, (U, V)):
38: (X,Y, i)← C
39: if i = 1 then
40: X1 ← X,X2 ← Y , X3 ← Finner(2, X2)⊕X1

41: (X5, X6)← (U, V)
42: X4 ← Finner(5, X5)⊕X6

43: ForceVal(X3, X4 ⊕X2, 3), ForceVal(X4, X5 ⊕X3, 4)
44: elseif i = 4 then
45: X4 ← X,X5 ← Y , X3 ← Finner(4, X4)⊕X5

46: (X0, X1)← (U, V)
47: X2 ← Finner(1, X1)⊕X0

48: ForceVal(X3, X4 ⊕X2, 3), ForceVal(X2, X1 ⊕X3, 2)

49: CompletedChains
∪← {(X1, X2, 1), (X4, X5, 4)}

Fig. 6: (continued) The code for subroutines used by simulator Sim.

are initially undefined. Also, we refer to a tuple (Xk, Xk+1, k) as a partial chain
where Gk[Xk] 6= ⊥ and Gk+1[Xk+1] 6= ⊥ for k ∈ {1, 4}, Xk, Xk+1 ∈ {0, 1}n.

For any query (k,X) by A2, Sim checks if Gk[X] = ⊥. If not then the image
Gk[X] is returned. Otherwise, depending on the value of k, Sim takes specific
steps as shown in Fig. 6. If k ∈ {2, 4} then Sim sets Gk[X] to a uniformly
random n-bit string by calling the procedure Finner. At this point, Sim considers
newly formed tuples (X1, X2) ∈ G1 × {X} (when k = 2) and detects partial
chains C = (X1, X2, 1). The notation X1 ∈ G1 is equivalent to G1[X1] 6= ⊥.
For every partial chain C that Sim detects, it queries Func on (X0, X1) and
receives (X5, X6) where X0 = G1[X1] ⊕ X2 . If (X0, X1) does not appear in
one of the queries/responses by/to A1 then it is unlikely for A2 to guess the
corresponding (X5, X6) pair. Therefore, if G5[X5] 6= ⊥ then Sim assumes that
C is a chain that most likely corresponds to a query by A1. We refer to partial
chains that correspond to the queries by A1 as relevant chains. In this case, Sim
immediately completes C by calling the procedure Complete. C is completed by
forcing the values of G3[X3] and G4[X4] to be consistent with the Func query
where X3 ← G2[X2]⊕X1 and X4 ← G5[X5]⊕X6.

If G5[X5] = ⊥ then either C is not a relevant chain or C is a relevant chain
but A2 has not queried (5, X5) yet. An aggressive strategy would be to com-
plete C, thereby asking Sim to complete every partial chain ever detected. The
resulting simulation strategy will however end up potentially managing an expo-
nential number of partial chains, contradicting our goal of efficient simulation.

Public-Seed Pseudorandom Permutations 21

Hence, Sim delays the completion and only completes C on A2’s query to ei-
ther (3, X3) or (5, X5) where X3 = G2[X2] ⊕ X1. The completion is delayed
by storing information about X3 and X5, that fall on the chain C, in the table
Chains. In particular, Sim stores a pointer to (5, X5) at Chains[3, X3]. The inputs
((X1, X2, 1), (X5, X6)) to the Complete call on C are stored in Chains[5, X5]. As
many chains can share the same X5, we allow Chains[5, X5] to be a set. The
idea of delaying the chain completions is unique to our simulation strategy and
it translates to an efficient Sim which consistently completes chains in the eyes
of A. Sim works symmetrically when k = 4.

For queries of the form (k,X) where k ∈ {1, 5}, Sim always assigns Gk[X]
to a uniform random n-bit string by calling Finner. Moreover as discussed ear-
lier, X could be on previously detected partial chains whose completion was
delayed. Therefore after the assignment, Sim picks up all partial chains C ′ (if
any) stored in Chains[k,X] and completes them. This is where Sim captures
a relevant partial chain which was delayed for completion. Finally for queries
(3, X), Sim checks if this X was on a partial chain that was detected but not
completed. If Chains[3, X] = ⊥ then Sim assigns G3[X] a uniform random n-bit
string otherwise it follows the pointer to Chains[3, X] to complete the chain X
was on. Since Chains[3, X] just stores a tuple (instead of a set) there can be at
most one chain C that Chains[3, X] can point to at any time. In the execution,
Chains[3, X] can get overwritten which may lead to inconsistencies in chain com-
pletions. However, we show that there are no overwrites in either tables Gk or
the data-structure Chains, except with negligible probability. This allows Sim to
Complete chains consistently in the eyes of A. Furthermore, to avoid completing
the same chains again, Sim maintains a set of all CompletedChains and com-
pletes any chain if it is not in CompletedChains. A pictorial description of Sim
is found in Fig. 7.

6 Ideal-model psPRP Constructions

We discuss two natural approaches to instantiate psPRPs. One is by taking any
block cipher, and using its key as a (now public) seed. The second is by using a
key-less permutation (e.g., the one within SHA-3), and adding the seed through
the Even-Mansour [25] construction. While the purpose of our psPRP framework
is to remove ideal-model assumptions, the only obvious way to validate (heuris-
tically) these methods is via ideal-model proofs, and this is what we do here.
Also, note that such ideal-model proofs are useful since, as in the case of UCE,
psPRP security can become a powerful intermediate notion within ideal-model
proofs for multi-stage security games [36].

PsPRPs from block ciphers.Given a family of block ciphers Eλ : {0, 1}s(λ)×
{0, 1}λ → {0, 1}λ, we consider the construction F = (F.Kg,F.Eval), where F.Kg(1λ)
outputs a random k←$ {0, 1}s(λ), whereas

F.Eval(1λ, (k, +, x)) = E(k, x) , F.Eval(1λ, (k, -, y)) = E−1(k, y) . (14)

22 Pratik Soni and Stefano Tessaro

X1G1

X2G2

X3G3

X4G4

X5G5

X0

X6

forceVal

forceVal

set uniform

set uniform

X2 detect

X4 detect

Fig. 7: The 5-round Feistel where Sim sets G1[X1] and G5[X5] uniformly at ran-
dom (green). Sim detects chains at either (X1, X2) or (X4, X5) (blue) and adapts
at (X3, X4) and (X2, X3) respectively (red).

The following theorem establishes its security in the ideal cipher model, that
is, we assume (without overloading notation) that all parties (i.e., the source,
the distinguisher, and the reset adversary in the proof) are given access to a
randomly chosen block cipher E, which is also used within F. We refer the reader
to the full version for the proof which closely follows the proof from [8] that a
random oracle is UCE-secure.

Theorem 6 (Ideal Cipher as a psPRP). Let P be the random permutation
with input length n(λ) = λ. For every source-distinguisher pair S,D, where the
source S, in its first stage, outputs n which is at most N(λ) and makes q Prim
queries to its oracle, there exists R (described in the proof) such that

Adv
psPRP[n]
F,S,D (λ) ≤ Adv

reset[P]
S,R (λ) +

2qN(λ)

2s(λ)
+

2N(λ)2

2s(λ)
. (15)

In particular, if D is polynomial time, then so is R. �

Even-Mansour. We find it practically valuable to assess whether simple con-
structions can work. To this end, here, we show that the Even-Mansour con-
struction [25] yields a psPRP[Scup]-secure permutation family in the random
permutation model. In particular, we assume we are given a family of permuta-
tions Π = {πλ}λ∈N, where πλ : {0, 1}λ → {0, 1}λ, and consider the construction
EM = (EM.Kg,EM.Eval) as defined in Section 4.1. Similar to the above, the fol-
lowing theorem implicitly assumes all parties are given oracle access to a random
permutation which is used to sample the permutation inside EM.

Below, we give a few remarks on why the above approach to show psPRP[Scrs]
security does not extend to the case of Even-Mansour.

Public-Seed Pseudorandom Permutations 23

Theorem 7 (Even-Mansour as a psPRP). Let P be the random permuta-
tion with input length n(λ) = λ. For every source-distinguisher pair S,D, where
the source S, in its first stage, outputs n which is at most N(λ) and where S
and D jointly make at most q queries to their oracles, there exists P (described
in the proof) such that

Adv
psPRP[n]
EM,S,D (λ) ≤ Adv

pred[P]
S,P (λ) +

3q2

2λ
+

2N(λ)q2

2λ
. (16)

In particular, if D runs in polynomial time, then so does P . �

The proof of Theorem 7 can be found in the full version. It resembles the
original indistinguishability proof from [25], which bounds the advantage via
the probability of an intersection query, that is, a direct query (by the source
or by the distinguisher) to the random permutation that overlaps with one of
the queries to the random permutation made internally by oracle O invoked by
the source. Bounding the probability that S makes an intersection query pro-
ceeds as in [25] (exploiting lack of knowledge of the seed), whereas bounding the
probability that D makes such a query requires a reduction to unpredictability.

Why not reset-secure sources?We would like to extend Theorem 7 to Scrs,
as this would provide validation for the assumption from Section 4.1. While we
conjecture this to be true, the statement seems to evade a simple proof. The
proof approach behind Theorem 6 fails in particular, as it heavily exploits the
property that for each distinct seed, the construction F queries a disjoint portion
of the domain of the ideal cipher, which is not true for EM.

7 Efficient Garbling from psPRPs

As an application of the psPRP framework, we study the security of the effi-
cient garbling schemes of Bellare, Hoang, Keelveedhi, and Rogaway [10], and in
particular, their simplest scheme (called Ga). It follows Yao’s general garbling
paradigm [40], but proposes a particular gadget to garble individual gates that
only relies on evaluating the underlying block cipher on a fixed key. In terms of
efficiency, this has been shown to be advantageous, as it avoids higher re-keying
costs. However, its security has only been proved in the ideal-cipher model, and
recent work by Gueron et al. [28] has debated this. Here, we show that a minor
variant of Ga (which still largely benefits from the lack of re-keying) is secure as-
suming the underlying block cipher is psPRP[Ssup]-secure. While this assumption
is undoubtedly strong, it makes it clear what is expected from the permutation.
In particular, the main concern of [28] is the existence of fixed-key distinguishers
(as in [30]), but these do not seem to affect psPRP-security, while they may
invalidate the permutation being ideal.

Simple circuit description. For representing circuits we adopt the SCD no-
tation of [11]. A circuit is a 6-tuple f = (n,m, q,W1,W2, G) where n ≥ 2 is the
number of inputs, m ≥ 1 is the number of outputs, q ≥ 1 is the number of gates,
and n+q is the number of wires. We let Inputs = [1, . . . , n], Wires = [1, . . . , n+q],

24 Pratik Soni and Stefano Tessaro

OutputWires = [n + q −m + 1, . . . , n + q] and Gates = [n + 1, . . . , n + q]. Then
W1 : Gates → Wires \ OutputWires is a function to identify each gate’s first in-
coming wire and W2 : Gates→Wires\OutputWires to identify each gate’s second
incoming wire. Finally G : Gates×{0, 1}2 → {0, 1} is a function that determines
the functionality of each gate i.e. Gg is a table storing the output of gate g with
input i and j at Gg[i, j]. We require that W1(g) < W2(g) < g for all gates g.

Following [10], our definitions will be parameterized by the side information
about the circuit obtained from its garbled counterpart. We consider the topology
side information φtopo which maps f to its topology φtopo(f) = (n,m, q,W1,W2).
Another example is φxor, which maps f to a circuit φxor(f) = (n,m, q,W1,W2, G

′)
which obscures the functionality of non-xor gates. As shown in [11] and [10], an
important property is that φtopo and φxor are efficiently invertible, i.e., there
exists an efficient algorithm which given φ(f) and y, outputs (f ′, x′) such that
φ(f) = φ(f ′) and y = ev(f ′, x′).

Garbling schemes and their security. To describe a garbling scheme we
use the notation from [11]. A garbling scheme is a tuple of algorithms G =
(Gb,En,De,Ev, ev). The algorithm Gb is probabilistic and others are determin-
isitic. Gb takes as inputs a circuit f = (n,m, q,W1,W2, G) represented in the
SCD notation and a security parameter 1λ and returns a tuple of strings (F, e, d)
where F is the garbled circuit, e is the input encoding information and d is
the output decoding information. En(e, ·) : {0, 1}n → {0, 1}∗ transforms the
n-bit input x to the garbled input X. Ev(F, ·) : {0, 1}∗ → {0, 1}∗ runs the gar-
bled circuit F on garbled input X and returns the garbled output Y . De(d, ·) :
{0, 1}∗ → {0, 1}m ∪ {⊥} decodes the garbled output Y to return y ∈ {0, 1}m.
The algorithm ev is the canonical circuit-evaluation function where ev(f, x) is
the m-bit output one gets by feeding x to f . Finally, we require that G is cor-
rect, that is, if f ∈ {0, 1}∗, λ ∈ N, x ∈ {0, 1}n and (F, e, d) ∈ [Gb(1λ, f)], then
De(d,Ev(F,En(e, x))) = ev(f, x). We require that all algorithms run in time
polynomial in the security parameter λ.

In this work, we are only concerned with indistinguishability-based privacy,
as defined in Game PrvIndAG,φ in Fig. 8. Since both φtopo and φxor are efficiently
invertible, [11] show that it is sufficient to focus on this target, since simulation-
based security is implied. We say that G is prvind-secure over side information
function φ if for all PPT adversaries A,

Adv
prvind[φ]
G,A (λ) = 2 Pr

[
PrvIndAG,φ(λ)

]
− 1 (17)

is negligible (in λ). Also, it is not hard to see (by a simple hybrid argument)
that it is sufficient to prove this for adversaries which make one single query to
their oracle.

Garbling scheme Ga[P]. Our garbling scheme resembles heavily that of [10].
The only modification is that we assume it uses a function family P meant to be
psPRP[Ssup]-secure (which could be instantiated from a block cipher, by letting
the key take the role of the seed.). During the garbling procedure, a fresh seed
for P is chosen and made part of the garbled circuit. Clearly, re-keying costs

Public-Seed Pseudorandom Permutations 25

MAIN PrvIndAG,φ(1λ)

b←$ {0, 1}
b′ ←$AGarble(1λ)
return (b′ = b)

PROCEDURE Garble(f0, f1, x0, x1)
if φ(f0) 6= φ(f1) then return ⊥
if {x0, x1} * {0, 1}f0.n then return ⊥
if ev(f0, x0) 6= ev(f1, x1) then return ⊥
(F, e, d)←$Gb(1λ, fb), X ← En(e, xb)
return (F,X, d)

Fig. 8: PrvIndAG,φ Game for G with adversary A.

PROCEDURE En(e, x)

(X0
1 , X

1
1 , . . . , X

0
n, X

1
n)← e

x1, . . . , xn ← x
X ← (Xx1

1 , . . . , Xxn
n)

return X

PROCEDURE Ev(F,X)
(n,m, q,W1,W2, T, s)← F
(X1, . . . , Xn)← X

foreach g ∈ [n+ 1, . . . , n+ q] do
w1 ←W1(g), w2 ←W2(g)
α← lsb(Xw1), β ← lsb(Xw2)
K ← Xw1 ⊕Xw2 ⊕ g
Xg ← T [g, α, β]⊕P.Eval(s,K)⊕K

return (Xn+q−m+1, . . . , Xn+q)

PROCEDURE De(d, Y)
(d1, . . . , dm)← d
(Y1, . . . , Ym)← Y
foreach i ∈ [1, . . . ,m] do

yi ← lsb(Yi)⊕ di
return y ← y1, . . . , ym

PROCEDURE Gb(1λ, f)

s←$P.Kg(1λ)
(n,m, q,A′, B′, G)← f

foreach i ∈ [1, . . . , n+ q] do
t←$ {0, 1}
X0
i ←$ {0, 1}k−1t

X1
i ←$ {0, 1}k−1t

foreach g ∈ [n+ 1, . . . , n+ q] do
w1 ←W1(g), w2 ←W2(g)
foreach (i, j) ∈ {0, 1}2 do
A← Xi

w1
, α← lsb(A)

B ← Xi
w2
, β ← lsb(B)

K ← Xi
w1
⊕Xj

w2
⊕ g

T [g, α, β]← P.Eval(s,K)⊕K ⊕XGg [i,j]
g

F ← (n,m, q,W1,W2, T, s)
e← (X0

1 , X
1
1 , . . . , X

0
n, X

1
n)

d← (lsb(X0
n+1−m+1), . . . , lsb(X0

n+q))
return (F, e, d)

Fig. 9: Scheme Ga[P].

are still largely avoided (especially for large circuits), even though re-keying is
necessary when garbling multiple circuits.

Concretely, the garbling scheme Ga[P] (Fig. 9) is a tuple of algorithms Ga[P] =
(Gb,En,De,Ev, ev) where P ∈ psPRP[k(λ),Ssup] for some polynomial k(λ). Al-
gorithm Gb transforms the input circuit f to a tuple of strings (F, e, d) where
the seed s for the permutation P sampled independently for each input f is now
part of F . Though the Ga scheme of [10] comes in several variants, where each
variant is defined by the dual-key cipher used, we focus on a specific dual-key
cipher (namely A1 in [10]) that leads to the most efficient implementation of
Ga.

26 Pratik Soni and Stefano Tessaro

In the following theorem we prove the prvind-security of Ga[P] and later dis-
cuss about the more efficient schemes GaX and GaXR from [10].

Theorem 8 (Garbling from psPRPs). Let P ∈ psPRP[k(λ),Ssup] then Ga[P]
is prvind-secure over φtopo. �

Proof. Let us assume that Ga[P] is not prvind-secure then there exists a PPT
adversary A that issues circuits with at most q(λ) gates and achieves a non-
negligible advantage ε(λ) in the PrvIndAGa[P],φ(λ) 9 game. Using A we construct a
pair (S,D) (Fig. 10) breaking the psPRP security of P, where S is a statistically
unpredictable source. Without loss of generality, we can assume that A queries
its oracle exactly once.

Let c be the challenge bit in the psPR game for P, and let Perm be the
oracle called by S. We allow S to sample the challenge bit b for the PrvIndAGa[P],φ
game. Further, for syntactic reasons we decompose A into (A0, A1) where A0 on
input 1λ outputs (f0, x0, f1, x1) (inputs for Garble) and forwards a state st to
A1. The result of Garble i.e. (F,X, d) is forwarded to A1 to guess the challenge
bit b in the PrvIndAGa[P],φ game. The source S nearly acts as Gb on input fb.
To satisfy unpredictability, the leakage L must give no information about the
queries made by S. Therefore, S refrains from compiling the rows in the garbled
table T which can be opened by A. S outputs this partially garbled circuit F - as
leakage in addition to (b, d, st). Moreover, since (S,D) must perfectly simulate
the PrvIndAGa[P],φ game for A, leakage also contains the vector X+ which is the set
of all visible tokens (one for each wire). Given s and L, D completes the garbled
circuit and invokes A1 with appropriate inputs. D then outputs b′ ⊕ b where b′

was the guess of A in the PrvIndAGa[P],φ game.

It is easy to see that when c = 1, (S,D) simulate the game PrvIndAGa[P],φ for
A. Furthermore, when c = 0 the leakage L can be transformed to be independent
of the bit b by modifying Perm to act like a random function. This allows rows in

the garbled table to be independent of the tokens X
Gg [i,j]
g which might depend

on bit b. Therefore, in this modified game A can do no better than guessing. For
a detailed analysis, we direct the reader to the full version.

To prove that S is statistically unpredictable we need to show that any
(possibly unbounded) predictor P making at most p(λ) number of queries to the
oracle Perm is unlikely to predict a query made by S given L = (F -, X+, b, d, st).
The idea is to swiftly transition to a game where L is independent of the queries
made by S to Perm. This then reduces P to merely guess the queries. To achieve
this, we take a similar path as the psPRP game of P (c = 0). We transition to a
game G1 where F - is independent of bit b. However, unlike the psPRP case, P
and S share the same oracle Perm (to which P can also make inverse queries),
and therefore it is non-trivial to argue about the independence of L and queries
of S as we desire. Therefore, we make a final transition to a game G2 where
Perm returns random strings for queries by S and refrains from storing any
information about the queries made by S. The resulting leakage can be viewed

9 We drop the subscript topo from φ for ease of notation.

Public-Seed Pseudorandom Permutations 27

SOURCE SPerm(1λ):
b←$ {0, 1}
(f0, x0, f1, x1, st)← A0(1λ)
(n,m, q,W1,W2)← φ(fb)
G← fb.G
foreach i ∈ [1, . . . , n+ q] do

vi ← ev(fb, xb, i); ti ←$ {0, 1}
Xvi
i ←$ {0, 1}k−1ti

Xvi
i ←$ {0, 1}k−1ti

foreach g ∈ [n+ 1, . . . , n+ q] do
foreach (i, j) ∈ {0, 1}2 do
w1 ←W1(g), w2 ←W2(g)
A← Xi

w1
, α← lsb(A)

B ← Xj
w2

, β ← lsb(B)
K ← A⊕B ⊕ g
if i 6= vw1 ∨ j 6= vw2 then

T [g, α, β]← Perm(K)⊕K ⊕XGg [i,j]
g

F - ← (n,m, q,W1,W2, T)
X+ ← (Xv1

1 , . . . , X
vn+q

n+q)
return (F -, X+, d, b, st)

DISTINGUISHER D(1λ, s, L):

(F -, X+, d, b, st)← L
(n,m, q,W1,W2, T)← F -

X1, . . . , Xn+q ← X+

for g ∈ [n+ 1, . . . , n+ q] do
w1 ←W1(g), w2 ←W2(g)
α← lsb(Xw1), β ← lsb(Xw2)
K ← Xw1 ⊕Xw2 ⊕ g
T [g, α, β]← P.Eval(s,K)⊕K⊕Xg

F ← (n,m, q,W1,W2, T, s)
X ← (X1, . . . , Xn)
b′ ← A1(1λ, st, F,X, d)
return (b′ ⊕ b)

Fig. 10: (S,D) in the psPR game of P where A0’s inputs are honest.

as being constructed by S without making any queries to Perm. Then we exploit
the fact X+ information theoretically hides X- and hence queries by S are hidden
from any P making only polynomially many queries to Perm. Again we direct
the reader to the full version for a rigorous argument. (We also note that this
argument is implicitly contained in the original security proof in the ideal-cipher
model.) ut

Related schemes. Along with Ga, [10] propose another scheme GaX which
achieves faster garbling and evaluation times using the free-xor technique [31].
We consider a variant GaX[P] of GaX where (like Ga[P]) the permutation is
replaced by a psPRP[Ssup]-secure permutation P and the seed for P is sampled
freshly for every new instantiation of Gb. The security proof of GaX[P] almost
readily follows from the security proof of GaX from [10] with slight modifications
as done in the proof of Ga[P].

The third scheme proposed by [10], called GaXR, further improves over GaX
in the size of the garbled table due to the use of row reduction technique at the
cost of slower garbling and evaluation times. This means that for every gate,
GaXR serves only three rows in the garbled table. Here, we note that adapting
GaXR to be proved secure under a suitable psPRP assumption does not appear
to have a simple and clear solution, and we leave this as an open problem.

Acknowledgments We wish to thank John Retterer-Moore for his involvement
in an earlier stage of this project. This research was partially supported by NSF

28 Pratik Soni and Stefano Tessaro

grants CNS-1423566, CNS-1528178, CNS-1553758 (CAREER), and IIS-152804,
and by a Hellman Fellowship.

References

1. Elena Andreeva, Andrey Bogdanov, Yevgeniy Dodis, Bart Mennink, and John P.
Steinberger. On the indifferentiability of key-alternating ciphers. In Ran Canetti
and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages
531–550. Springer, Heidelberg, August 2013.

2. Elena Andreeva, Andrey Bogdanov, and Bart Mennink. Towards understanding
the known-key security of block ciphers. In Shiho Moriai, editor, FSE 2013, volume
8424 of LNCS, pages 348–366. Springer, Heidelberg, March 2014.

3. Elena Andreeva, Joan Daemen, Bart Mennink, and Gilles Van Assche. Security of
keyed sponge constructions using a modular proof approach. In Gregor Leander,
editor, FSE 2015, volume 9054 of LNCS, pages 364–384. Springer, Heidelberg,
March 2015.

4. Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves. NORX8 and
NORX16: Authenticated encryption for low-end systems. Cryptology ePrint
Archive, Report 2015/1154, 2015. http://eprint.iacr.org/2015/1154.

5. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In
Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 1–18. Springer,
Heidelberg, August 2001.

6. Mihir Bellare, Daniel J. Bernstein, and Stefano Tessaro. Hash-function based
PRFs: AMAC and its multi-user security. In Marc Fischlin and Jean-Sébastien
Coron, editors, EUROCRYPT 2016, Part I, volume 9665 of LNCS, pages 566–595.
Springer, Heidelberg, May 2016.

7. Mihir Bellare and Viet Tung Hoang. Resisting randomness subversion: Fast de-
terministic and hedged public-key encryption in the standard model. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of
LNCS, pages 627–656. Springer, Heidelberg, April 2015.

8. Mihir Bellare, Viet Tung Hoang, and Sriram Keelveedhi. Instantiating random
oracles via UCEs. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part II, volume 8043 of LNCS, pages 398–415. Springer, Heidelberg, August 2013.

9. Mihir Bellare, Viet Tung Hoang, and Sriram Keelveedhi. Cryptography from com-
pression functions: The UCE bridge to the ROM. In Juan A. Garay and Rosario
Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 169–187.
Springer, Heidelberg, August 2014.

10. Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. Efficient
garbling from a fixed-key blockcipher. In 2013 IEEE Symposium on Security and
Privacy, pages 478–492. IEEE Computer Society Press, May 2013.

11. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled
circuits. In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS 12,
pages 784–796. ACM Press, October 2012.

12. Mihir Bellare and Phillip Rogaway. The security of triple encryption and a
framework for code-based game-playing proofs. In Serge Vaudenay, editor, EU-
ROCRYPT 2006, volume 4004 of LNCS, pages 409–426. Springer, Heidelberg,
May / June 2006.

http://eprint.iacr.org/2015/1154

Public-Seed Pseudorandom Permutations 29

13. Mihir Bellare and Igors Stepanovs. Point-function obfuscation: A framework and
generic constructions. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A,
Part II, volume 9563 of LNCS, pages 565–594. Springer, Heidelberg, January 2016.

14. Mihir Bellare, Igors Stepanovs, and Stefano Tessaro. Contention in cryptoland:
Obfuscation, leakage and UCE. In Eyal Kushilevitz and Tal Malkin, editors,
TCC 2016-A, Part II, volume 9563 of LNCS, pages 542–564. Springer, Heidel-
berg, January 2016.

15. Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. On the
indifferentiability of the sponge construction. In Nigel P. Smart, editor, EURO-
CRYPT 2008, volume 4965 of LNCS, pages 181–197. Springer, Heidelberg, April
2008.

16. Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Sponge-
based pseudo-random number generators. In Stefan Mangard and François-Xavier
Standaert, editors, CHES 2010, volume 6225 of LNCS, pages 33–47. Springer,
Heidelberg, August 2010.

17. Christina Brzuska, Pooya Farshim, and Arno Mittelbach. Indistinguishability ob-
fuscation and UCEs: The case of computationally unpredictable sources. In Juan A.
Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS,
pages 188–205. Springer, Heidelberg, August 2014.

18. Christina Brzuska and Arno Mittelbach. Using indistinguishability obfuscation
via UCEs. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part II,
volume 8874 of LNCS, pages 122–141. Springer, Heidelberg, December 2014.

19. Donghoon Chang, Morris Dworkin, Seokhie Hong, John Kelsey, and Mridul Nandi.
A keyed sponge construction with pseudorandomness in the standard model. In
Proceedings of the Third SHA-3 Candidate Conference, 2012.

20. Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya.
Merkle-Damg̊ard revisited: How to construct a hash function. In Victor Shoup,
editor, CRYPTO 2005, volume 3621 of LNCS, pages 430–448. Springer, Heidelberg,
August 2005.

21. Jean-Sébastien Coron, Thomas Holenstein, Robin Künzler, Jacques Patarin, Yan-
nick Seurin, and Stefano Tessaro. How to build an ideal cipher: The indifferen-
tiability of the Feistel construction. Journal of Cryptology, 29(1):61–114, January
2016.

22. Dana Dachman-Soled, Jonathan Katz, and Aishwarya Thiruvengadam. 10-round
feistel is indifferentiable from an ideal cipher. In Marc Fischlin and Jean-Sébastien
Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 649–678.
Springer, Heidelberg, May 2016.

23. Yuanxi Dai and John P. Steinberger. Indifferentiability of 8-round feistel networks.
In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part I, volume
9814 of LNCS, pages 95–120. Springer, Heidelberg, August 2016.

24. Yevgeniy Dodis, Chaya Ganesh, Alexander Golovnev, Ari Juels, and Thomas Ris-
tenpart. A formal treatment of backdoored pseudorandom generators. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of
LNCS, pages 101–126. Springer, Heidelberg, April 2015.

25. Shimon Even and Yishay Mansour. A construction of a cipher from a single pseu-
dorandom permutation. Journal of Cryptology, 10(3):151–162, 1997.

26. Peter Gazi, Krzysztof Pietrzak, and Stefano Tessaro. The exact PRF security
of truncation: Tight bounds for keyed sponges and truncated CBC. In Rosario
Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I, volume
9215 of LNCS, pages 368–387. Springer, Heidelberg, August 2015.

30 Pratik Soni and Stefano Tessaro

27. Peter Gazi and Stefano Tessaro. Secret-key cryptography from ideal primitives:
A systematic overview. In 2015 IEEE Information Theory Workshop, ITW 2015,
Jerusalem, Israel, April 26 - May 1, 2015, pages 1–5. IEEE, 2015.

28. Shay Gueron, Yehuda Lindell, Ariel Nof, and Benny Pinkas. Fast garbling of
circuits under standard assumptions. In Indrajit Ray, Ninghui Li, and Christopher
Kruegel:, editors, ACM CCS 15, pages 567–578. ACM Press, October 2015.

29. Thomas Holenstein, Robin Künzler, and Stefano Tessaro. The equivalence of the
random oracle model and the ideal cipher model, revisited. In Lance Fortnow and
Salil P. Vadhan, editors, 43rd ACM STOC, pages 89–98. ACM Press, June 2011.

30. Lars R. Knudsen and Vincent Rijmen. Known-key distinguishers for some block
ciphers. In Kaoru Kurosawa, editor, ASIACRYPT 2007, volume 4833 of LNCS,
pages 315–324. Springer, Heidelberg, December 2007.

31. Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR
gates and applications. In Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg,
Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP
2008, Part II, volume 5126 of LNCS, pages 486–498. Springer, Heidelberg, July
2008.

32. Michael Luby and Charles Rackoff. How to construct pseudorandom permutations
from pseudorandom functions. SIAM Journal on Computing, 17(2), 1988.

33. Avradip Mandal, Jacques Patarin, and Yannick Seurin. On the public indifferentia-
bility and correlation intractability of the 6-round Feistel construction. In Ronald
Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 285–302. Springer, Hei-
delberg, March 2012.

34. Takahiro Matsuda and Goichiro Hanaoka. Chosen ciphertext security via UCE. In
Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 56–76. Springer,
Heidelberg, March 2014.

35. Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, im-
possibility results on reductions, and applications to the random oracle methodol-
ogy. In Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages 21–39. Springer,
Heidelberg, February 2004.

36. Arno Mittelbach. Salvaging indifferentiability in a multi-stage setting. In Phong Q.
Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS,
pages 603–621. Springer, Heidelberg, May 2014.

37. Nicky Mouha, Bart Mennink, Anthony Van Herrewege, Dai Watanabe, Bart Pre-
neel, and Ingrid Verbauwhede. Chaskey: An efficient MAC algorithm for 32-bit
microcontrollers. In Antoine Joux and Amr M. Youssef, editors, SAC 2014, volume
8781 of LNCS, pages 306–323. Springer, Heidelberg, August 2014.

38. Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton. Careful with com-
position: Limitations of the indifferentiability framework. In Kenneth G. Paterson,
editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 487–506. Springer, Hei-
delberg, May 2011.

39. Phillip Rogaway and John P. Steinberger. Security/efficiency tradeoffs for
permutation-based hashing. In Nigel P. Smart, editor, EUROCRYPT 2008, volume
4965 of LNCS, pages 220–236. Springer, Heidelberg, April 2008.

40. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In 27th FOCS, pages 162–167. IEEE Computer Society Press, October 1986.

41. Mark Zhandry. The magic of ELFs. In Matthew Robshaw and Jonathan Katz,
editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 479–508. Springer,
Heidelberg, August 2016.

	Public-Seed Pseudorandom Permutations

