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Abstract. Nakamoto’s famous blockchain protocol enables achieving
consensus in a so-called permissionless setting—anyone can join (or leave)
the protocol execution, and the protocol instructions do not depend on
the identities of the players. His ingenious protocol prevents “sybil at-
tacks” (where an adversary spawns any number of new players) by rely-
ing on computational puzzles (a.k.a. “moderately hard functions”) intro-
duced by Dwork and Naor (Crypto’92).

The analysis of the blockchain consensus protocol (a.k.a. Nakamoto con-
sensus) has been a notoriously difficult task. Prior works that analyze it
either make the simplifying assumption that network channels are fully
synchronous (i.e. messages are instantly delivered without delays) (Garay
et al., Eurocrypt’15) or only consider specific attacks (Nakamoto’08;
Sampolinsky and Zohar, FinancialCrypt’15); additionally, as far as we
know, none of them deal with players joining or leaving the protocol.

In this work we prove that the blockchain consensus mechanism satis-
fies a strong forms of consistency and liveness in an asynchronous net-
work with adversarial delays that are a-priori bounded, within a formal
model allowing for adaptive corruption and spawning of new players,
assuming that the computational puzzle is modeled as a random ora-
cle. (We complement this result by showing a simple attack against the
blockchain protocol in a fully asynchronous setting, showing that the
“puzzle-hardness” needs to be appropriately set as a function of the
maximum network delay; this attack applies even for static corruption.)

As an independent contribution, we define an abstract blockchain pro-
tocol and identify appropriate security properties of such protocols; we
prove that Nakamoto’s blockchain protocol satisfies them and that these
properties are sufficient for typical applications; we hope that this ab-
straction may simplify further applications of blockchains.
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1 Introduction

Distributed systems have been historically analyzed in a closed setting in which
both the number of participants in the system, as well as their identities, are
common knowledge. A departure from this model started with the design of
peer-to-peer systems, e.g. with systems such as Napster and Gnutella for file
sharing. The success of those systems led to academically designed systems such
as Freenet [CSWH00], CAN [RFH+00], Chord [SMK+01], and Pastry [DR01]
which offered redundant file storage, distributed hashing, selection of nearby
servers, and hierarchical naming.

A novel aspect of these peer systems is that they are permissionless—anyone
can join (or leave) the protocol execution (without getting permission from a
centralized or distributed authority), and the protocol instructions do not depend
on the identities of the players. As participants may continuously join and leave
the system, successful permissionless systems require a fault-tolerant design.
Unfortunately, the mentioned systems, while “robust” with respect to measures
such as connectivity [DLN02], were not designed to tolerate against adversarial
behavior. For example, there were no guarantee that one participant’s experience
with the system was consistent with another’s: Two participants requesting the
same file may end up receiving different versions and never know that they did.
At first, one may think that using standard consensus/Byzantine agreement
methods (e.g., [CL99,MA05,Lam10,Lam11]) could help overcome this issue. The
problem is that such protocols require that a large fraction of the participating
players are honest, but in the permissionless setting an attacker can trivially
mount a “sybil attack”—it simply spawns players (that it controls) and can thus
ensure that it controls a majority of all players. Indeed, Barak et al. [BCL+05]
prove that this is a fundamental problem with the permissionless model.

Nakamoto’s Blockchain In 2008, Nakamoto [Nak08] proposed his celebrated
“blockchain protocol” which overcomes the above-mentioned problems by re-
lying on the idea of computational puzzles—a.k.a. moderately hard functions or
proofs of work—put forth by Dwork and Naor [DN92]. Rather than attempting
to provide robustness whenever the majority of the participants are honest (since
participants can be easily spawned in the permissionless setting), it attempts to
provide robustness as long as a majority of the computing power is held by
honest participants. It explicitly claims consistency properties that are strong
enough to support a financial transaction system; indeed, the first application
of a blockchain is the Bitcoin digital currency which needs strong properties to
prevent fraud and double-spending attacks. A number of follow-up digital cur-
rencies [Lit], micro-payment schemes [PS15,PD15], time-stamping [BTP], nam-
ing [Nam], fair secure computation [BK14] and secure messaging and PKI appli-
cations [FVY14] are based on the blockchain idea. Additionally, financial firms
have announced intentions of using the blockchain to lower transaction costs,
remove geopolitical barriers to transferring assets, and reconcile differences be-
tween systems.



The core blockchain protocol (a.k.a. “Nakamoto consensus”, or the “Bare-
bones blockchain protocol”), roughly speaking, is a method for maintaining a
public, immutable and ordered ledger of records (for instance, in the bitcoin ap-
plication, these records are simply transactions); that is, records can be added
to the end of the ledger at any time (but only to the end of it); additionally, we
are guaranteed that records previously added cannot be removed or reordered
and that all honest users have a consistent view of the ledger. While standard
consensus/Byzantine agreement mechanisms could be used to achieve such an
immutable ordered sequence of records, the amazing aspect of Nakamoto’s con-
sensus mechanism is that it functions in a fully permissionless setting.

Roughly speaking, in his protocol each participant maintains its own local
“chain” of “blocks” of records/messages—called the blockchain. Each block con-
sist of a triple (h−1, η,m) where h−1 is a pointer to the previous block in chain,
m is the record component of the block, and η is a “proof-of-work”—a solution
to a computational puzzle that is derived from the pair (h−1,m). The proof of
work can be thought of as a “key-less digital signature” on the whole blockchain
up until this point.

Concretely, Nakamoto’s protocol is parametrized by a parameter p—which
we refer to as the mining hardness parameter, and a proof-of-work is deemed
valid if η is a string such that H(h−1, η,m) < Dp, where H is a hash function
(modeled as a random oracle) and Dp is set so that the probability that an
input satisfies the relation is less than p. In practice, the hardness parameter p is
adaptively modified through some external process to incorporate an estimate of
the number of participants in the system and the network delays; we shall return
to the choice of p later. At any point of the protocol execution, each participant
attempts to increase the length of its own chain by “mining” for a new block:
upon receiving some record m, it picks a random η and checks whether η is a
valid proof of work w.r.t. m and h−1, where h−1 is a pointer to the last block of
its current chain; if so, it extends is own local chain and broadcast it to the all
the other participants (the broadcast takes places through some gossip protocol,
which we do not discuss here). Whenever a participant receives a chain that is
longer than its own local chain, it replaces its own chain with the longer one.

The fundamental question with such an approach is whether honest partic-
ipants eventually end up with the same longest chain of blocks, and thus, the
same ordered list of records, or whether the system devolves into a state where
participants have inconsistent local chains.

1.1 Does Nakamoto’s Protocol Achieve Consistency?

Requiring that all participants agree on the whole chain is a too strong consis-
tency requirement if the protocol is executed on a network with message delays
(as Nakamoto’s protocol is intended to be)—for instance, some players may
have received the last block whereas other have not. Rather, as discussed by
Nakamoto [Nak08], the appropriate notion of consistency for the blockchain—
which we refer to as T -consistency—should require that honest players agree
on the current chain, except for potentially a small number, T , of unconfirmed



blocks at the end of the chain. If we can show this property holds except with
exponentially small probability in T , honest parties are guaranteed that for a
sufficiently large choice of T (except with tiny probability), confirmed blocks
will never be lost from the chain (which is the property needed for all the above-
mentioned applications; for instance, in bitcoin, it ensures that players cannot
double-spend money).

Nakamoto provides an initial analysis of consistency assuming that the ad-
versary only mounts a particular attack strategy (namely, an attacker tries to
generate a chain faster than the honest players); for instance, his analysis does
not consider more sophisticated attack strategies where the adversary may at-
tempt to “split the players” and have them work on different chains.

A beautiful recent work by Garay, Kiayas and Leonardos [GKL15] provides a
more formal model for studying Nakamoto’s blockchain protocol; their analysis,
however, only considers a synchronous network with a rushing adversary—that
is, messages sent in a particular round arrive in the next round without any de-
lays, but the adversary sees all messages sent by honest parties before having to
send its own message. In this model, they demonstrate that the blockchain proto-
col satisfies consistency (under appropriate assumptions on the mining hardness
and the relative computational power held by the attacker), in a setting with a
fixed number of players (but the protocol is not aware of the exact number of
players).

Assuming a synchronous network, however, is a very strong, possibly unreal-
istic assumption; indeed, Nakamoto’s protocol is explicitly designed to work in
a network with message delays, and indeed is executed on such a network (i.e.,
the Internet).

The Power of Network Delays Consequently, we are interested in analyzing to
what extent the blockchain protocol satisfies consistency in the more realistic
setting of an asynchronous network in which an adversary controls the schedul-
ing/delivery of messages between honest parties. As we observe (and formally
prove in Theorem 10), in a fully asynchronous setting, where an adversary can
arbitrarily delay messages, consistency cannot be satisfied: an adversary control-
ling a small percentage of the computational power can simply delay messages
from honest parties for sufficiently long to ensure that the adversary can find
its own chain (containing any set of records it desires) which is longer than the
chain held by all honest players, and consequently it can make the honest play-
ers switch to the adversarial chain at any point. In fact, our attack works even
in the setting of partial synchrony (see e.g. [DLS88]) where there is an a-priori
bound ∆ on the network latency (that is, the adversary may arbitrary delay
messages as long as it delivers them within time ∆), as long as the mining hard-
ness parameter p exceeds4 1

ρn∆ , where ρ is the fraction of the computational
power held by the adversary and n is the number of players. Indeed, Decker
and Wattenhofer [DW13] already experimentally observed that increasing the
networks delays in Nakamoto’s protocol leads to increased forks, and they noted

4 Recall that a larger hardness parameter means that it is easier to find a block.



(through heuristic calculations) that an attacker could use these delays to violate
consistency with an attack that requires less than 50% of the mining power.

Motivated by the work by Decker and Wattenhofer, an elegant work by
Sompolinsky and Zohar [SZ15] provides some initial analysis of the blockchain
protocol even in a network with (bounded) delays. They show how to extend
Nakamoto’s analysis to deal with (bounded) delays, but again (just like Nakamoto)
they only consider particular attack strategies—e.g., they do not consider “block-
withholding or pre-mining attacks” where the attacker withholds blocks for later
use [mtg10,ES14]; furthermore, their analysis only shows that consistency holds
in the limit (when T goes to infinity), and consequently their bounds (even for
the restricted attacker setting) are not useful for applications.

This leaves open the question of analyzing Nakamoto’s blockchain protocol—
or in fact any consensus protocol in the permissionless setting—with respect to
arbitrary attack strategies in networks with ∆-bounded delays.

Does Nakamoto’s blockchain protocol satisfy consistency when executed
in asynchronous networks with ∆-bounded delays?

As mentioned above, Garay et al. provide a positive answer for the special case
when ∆ = 1 (i.e., messages are delivered in the next time step5), and Sam-
polinsky and Zohar show that certain (natural, but restricted) strategies cannot
be employed to break consistency of Nakamoto’s protocol (in the limit) in ∆-
bounded delay networks.

Let us highlight why dealing with network delays in the “proof-of-work” set-
ting (where we assume that a majority of the computing power is honest) is
significantly more challenging than in the standard permissioned setting. In the
standard model, any synchronous protocol can be turned into a protocol that
is secure also in ∆-delay networks by simply requiring that all honest players
always wait (without doing anything) for ∆ time steps before responding to any
message, effectively emulating synchronous rounds. This approach completely
fails in the proof-of-work setting—the adversary can now increase its computa-
tional resources by a factor ∆ (since it can try to solve puzzles when the honest
players are waiting).

1.2 Main Results

In this paper, we resolve the above-mentioned problem and demonstrate that
(assuming puzzles are modeled as random oracles) Nakamoto’s protocol satisfies
consistency (under appropriate assumptions on the mining hardness and the rel-
ative computational power held by the attacker) also in networks with message
delays. We emphasize that our analysis is not just a combination of the tech-
niques/ideas from [GKL15] and [SZ15]—in fact, the bulk of our proof consists of

5 Alternatively, one way to interpret the result of Garay et al., is that it shows con-
sistency of Nakamoto’s protocol also with ∆ delays, but with a particular delay
structure where time is divided into intervals of length ∆, and any message sent
within an interval is delayed to the end of it.



dealing with the attack strategies which are omitted from the analysis in [SZ15],
and dealing with them requires us to consider an altogether different proof tech-
nique. Additionally, our analysis considers adaptive corruption and spawning of
new players (i.e., new players joining); as far as we know, it is the first analysis
to formally deal with spawning of new players (which is a cruical desidrata of
the blockchain protocol).

A Consistency Theorem with Delays We provide a rough overview of our model
and consistency theorem. Consider Nakamoto’s protocol with mining-hardness
p (that is, a single random oracle query is successful “in mining” with proba-
bility p), and consider an execution with n players, each of them with identical
computing power—we assume the protocol proceeds in rounds (timesteps), and
in each round each player gets a single random oracle query and the adversary
controlling a ρ fraction of the players gets ρn random oracles queries (as in
[GKL15], the honest players need to make their queries in parallel, but we allow
the adversary to makes the queries sequentially). Let α = 1−(1−p)(1−ρ)n be the
probability that some honest player succeeds in solving a puzzle in one round,
and let β = ρnp be the expected number of blocks that an attacker can mine in
a round. When p� 1/n (which is the case considered in practice), we have that
α ≈ p(1− ρ)n and thus α

β ≈
1−ρ
ρ .

Theorem 1. Assume there exists some δ > 0 such that

α(1− (2∆+ 2)α) ≥ (1 + δ)β.

Then, except with exponentially small probability (in T ), Nakamoto’s protocol
satisfies T -consistency in the random oracle model, assuming the network’s la-
tency is bounded by ∆.

As a consequence we have that as long as ρ < 1
2 (i.e., the adversary controls

less than half of the computational power), for every ∆ there exists some (suffi-
ciently small) p, such that Nakamoto’s protocol satisfies consistency. (Note that
as mentioned above, if p > 1

ρn∆ , Nakamoto’s protocol fails to satisfy consistency.)

1.3 What is a Blockchain?

As an independent contribution, we formally define an abstract notion of a
blockchain (as opposed to the blockchain protocol proposed by Nakamoto) and
put forward desired security properties of such a blockchain. We believe that hav-
ing such a notion will a) simplify applications of blockchains (as we can ignore the
implementation details of the blockchain protocol) and b) enable formally study-
ing to what extent the protocol can be improved. (As we explain below, both of
these points have been illustrated in subsequent works [PS16a,PS16b].) We men-
tion that while abstract models for higher-level applications of the blockchain
(e.g., a “smart contract” abstraction) were provided in the UC framework—
see [KMS+15,BK14]—it is not clear to what extent those abstractions can be



satisfied by Nakamoto’s protocol; rather, we are here interested in having a sim-
ple notion of the blockchain itself that we can prove is satisfied by Nakamoto’s
protocol and yet is useful for applications.

Roughly speaking, a blockchain is an interactive protocol where each par-
ticipant has a local variable state which contains a list of messages ~m, called
the “chain”. Players receive inputs, called records/batches/messages, that they
attempt to include in the chain of themselves and of others. We require the
following properties from a secure blockchain:

– consistency : with overwhelming probability (in T ), at any point, the chains
of two honest players can differ only in the last T blocks;

– future self-consistence: with overwhelming probability (in T ), at any two
points r, s the chains of any honest player at r and s differ only within the
last T blocks;

– g-chain-growth: with overwhelming probability (in T ), at any point in the
execution, the chain of honest players grows by at least T messages in the
last T

g rounds; g is called the chain-growth of the protocol.

– the µ-chain quality with overwhelming probability (in T ), for any T con-
secutive messages in any chain held by some honest player, the fraction of
messages that were “contributed by honest players” is at least µ.

The consistency property is just the plain one considered by Nakamoto [Nak08]
(and formalized by Garay et al. [GKL15]). As we note, however, this consistency
property is typically not sufficient for applications. In particular, it does not
rule out a protocol that oscillates between two different chains ~m1, ~m2; on even
rounds all players have ~m1 as their chain, and on odd rounds ~m2. Clearly such
a protocol does not suffice for typical applications (e.g., bitcoin, or achieving
a public ledger). Thus, to prevent it, we introduce the future self-consistency
property.

The lower bound on chain-growth was explicitly considered by Sampolin-
sky and Zohar [SZ15] (but they only consider growth in expectation); Garay et
al. [GKL15] implicitly show a lower bound on chain growth within one of their
proofs, and [KP15] explicitly introduce it as a desideratum. In this paper, we ad-
ditionally introduce an upper-bound on chain growth as a desirable property; as
shown in subsequent work [PS16a,PS16b], this property is useful in applications.

Finally, the chain quality property was first discussed on the Bitcoin forum
[mtg10] and made explicit in the selfish mining attacks by Eyal and Sirer [ES14]
with respect to the bitcoin application of the blockchain.6 The property was first
formalized, and given the name “chain quality” by Garay et al. who also show
new applications of it (as we discuss shortly).

We show the usefulness of these properties by demonstrating that any blockchain
protocol satisfying them can be used to achieve a public ledger (i.e., consensus)
satisfying a) persistence (namely, if a message gets added to the public ledger,

6 In the bitcoin application of the blockchain, each player receives a reward whenever
if mines a block; the chain quality thus dictates a bound on how much more reward
an adversary can get by deviating from the protocol.



it never gets removed) and b) liveness (that is, if all honest players want to
add a some message to the ledger, the message should eventually appear on it).
We mention that Garay et al. already noted that, intuitively, the chain quality
property implies liveness (since, by chain quality the adversary cannot monop-
olize the chain), and consistency implies persistence. However, although they
show how to use Nakamoto’s protocol to obtain a public ledger (in the syn-
chronous model), they use those two properties and additional properties of the
concrete protocol to establish it. Kiayias and Panagiotakos [KP15] demonstrate
that additionally requiring chain growth suffices to prove liveness in a black-box
way, but proving persistence still requires an analysis of the concrete protocol.
We highlight that it is our notion of future-self consistency that allows us to
obtain also persistence in a black-box way. Subsequent works by Pass and Shi
[PS16a,PS16b] give further evidence to the usefulness of our abstract notion of
a blockchain (and its security properties).

Main theorem Our main result demonstrates that Nakamoto’s protocol achieves
consistency as well as all of our other desiderata. Let γ = α

1+∆α ; think of γ as a
“discounted” version of α due to delays on the network. Intuitively, by delaying
messages the adversary gets additional computation time.

Theorem 2. Assume there exists some δ > 0 such that

α(1− 2(∆+ 1)α) ≥ (1 + δ)β.

Let g = γ
1+δ and µ = 1−(1+δ)βγ . Then Nakamoto’s protocol satisfies consistency,

future self consistency, µ-chain quality and g-chain growth.

Note that when p � 1/n∆ (which is the case considered in practice), we have
that γ ≈ α ≈ (1 − ρ)np and thus γ

β ≈
1−ρ
ρ . As a consequence, we have the

following corollary:

Corollary 3 Assume ρ < 1
2 . Then for every n,∆, there exists some sufficiently

small p0 = Θ( 1
∆n ) such that Nakamoto’s protocol with mining parameter p ≤ p0

satisfies consistency, future self consistency, 1− ρ
1−ρ -chain quality and pn

2 -growth.

Thus, as long as ρ < 1
2 , Nakamoto’s protocol guarantees that messages con-

tributed by honest players will eventually end up on the chain, and as long as
ρ < 1

3 , we have that half of the messages on the chain will be contributed by
honest players. We mention that our chain quality bound matches that estab-
lished by Garay et al. assuming no delays (i.e., ∆ = 1), and is tight due to the
selfish mining (a.k.a. “mining-cartel”) attacks of [mtg10,ES14]).

A natural question left open by our main theorem is whether there exist
protocols satisfying our abstract notion of a blockchain that improve upon the
parameters achieved by Nakamoto’s protocol (i.e., is Nakamoto’s protocol “opti-
mal”?). A subsequent result by Pass and Shi [PS16a] shows how we can “amplify”
the chain quality in Nakamoto’s protocol to achieve a “close-to-optimal” chain



quality of 1−(1−δ)ρ, where δ is an arbitrary small constant.7 We highlight that
the results in [PS16a] relies on the analysis from this paper in a blackbox way.

1.4 Is Nakamoto’s Protocol Really Permissionless?

Our theorem only shows that for every n,∆, there exists some mining-hardness
parameter p that makes the protocol secure, so it might seem like the protocol
needs to know n and therefore cannot be “permissionless”; see Section 1.5 for an
experimental evaluation of how the level of security depends on the choice of p.
As we pointed out above, this is not an anomaly of our analysis; when p > 1

nρ∆
the protocol is insecure. The point, however, is that the protocol only needs to
know a very rough upper-bound on the number of players n (but the worse the
upper-bound gets, the worse the efficiency of the protocol becomes.)

We additionally remark that our theorem regarding the lower bound on the
chain growth actually does not make any assumption about p; this means that
the honest players can use an initial set-up phase to estimate the chain growth
and from this deduce a weak upper-bound on the number of players n, and then
use this new upperbound to run the protocol. Indeed, as we hinted to before,
the bitcoin protocol recalibrates the mining hardness parameter p every 2016
blocks (roughly 2 weeks) based on the time it took to find 2016 blocks. We leave
a formal analysis of this update procedure for future work.

1.5 An Experimental Interpretation

In this section, we provide an experimental interpretation of our theorems by
using estimates of parameters in a real world setting. Using estimates of hard-
ware hashing rates (1012 h/s), we consider n = 105 participants and ∆ = 1013,
which corresponds to roughly 10s delay for the network at the given hashing
rates. These numbers roughly coincide with estimates of the number of hash op-
erations per second occurring in the Bitcoin network (7× 1017) at the beginning
of 2016 [Blo16]. The 10s estimation, under network assumptions, roughly aligns
with the empirical measurements made by Decker and Wattenhofer [DW13] and
their bitcoinstats.com website.8

The hardness parameter p in Nakamoto’s protocol reflects the expected time
between the discovery of blocks among all participants. Here, we explore how
consistency is related to this parameter p = 1

n∆·c by changing c. One can inter-
pret c as the scale-free expected block-time in terms of the number of network
delays.

7 An “optimal” chain quality of 1− ρ means a ρ fraction attacker gets a ρ fraction of
the blocks.

8 However, in both cases, they measure connectivity by number of nodes instead of by
computational resources; thus their “95th percentile” estimations are biased larger
because they include many hobby nodes which are connected by slow network con-
nections and do not contribute any noticeable computation to the system.
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Figure 1: For n = 105 and ∆ = 1013 (i.e., 10s delays at 1TH/s for commercially avail-
able mining hardware—these parameters roughly coincide with estimates of hashrate as of
February 2016), we set hardness parameter p = 1

c·n∆ where c varies along the x-axis. We
can interpret c as the expected blocktime in terms of the network delay ∆. The blue graph
depicts a numerically-computed maximum value of ρ for which α(1 − (2∆ + 2)α) > β, i.e.
parameters under which our theorem shows consistency of the Nakamoto protocol. The gray
plot shows our consistency theorem if Nakamoto adopted a deterministic tie-breaking rule.
The red plot shows when our best attack succeeds in violating consistency. When c = 60,
the hardness roughly corresponds to an expected 10-minute blocktime, and our theorem
shows that Nakamoto tolerates a ρ < 49.57% attack, deterministic tie-breaking tolerates
ρ < 49.78% attack, and our best attack succeeds when ρ > 49.79%.
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Fig. 1. For n = 105 and ∆ = 1013 (i.e., 10s delays at 1TH/s for commercially available
mining hardware—these parameters roughly coincide with estimates of hashrate at
the start of 2016), we set hardness parameter p = 1

c·n∆ where c varies along the
x-axis. We can interpret c as the expected blocktime in terms of the network delay
∆. The blue graph depicts a numerically-computed maximum value of ρ for which
α(1 − (2∆ + 2)α) > β, i.e. parameters under which Theorem 6 shows consistency of
the Nakamoto protocol. The red plot shows when our best attack succeeds in violating
consistency. When c = 60, the hardness roughly corresponds to an expected 10-minute
blocktime, and our theorem shows that Nakamoto tolerates a ρ < 49.57% attack, and
our best attack succeeds when ρ > 49.79%.

For these choices, Fig. 1 depicts when our consistency theorem holds in
Nakamoto’s protocol by graphing c against the fraction (ρ) of computation con-
trolled by the adversary. The blue graph depicts a numerically-computed max-
imum value of ρ for which α(1 − (2∆ + 2)α) > β, i.e. parameters under which
our theorem 6 shows consistency of the Nakamoto protocol. The red plot shows
when our best attack succeeds in violating consistency.

Nakamoto’s protocol attempts to maintain a 10-minute blocktime by varying
hardness p. For a delay ∆ ∼ 10s, this corresponds to a setting of c = 60. In this
range, the Nakamoto protocol, as well as our attack give essentially the same
result: Nakamoto tolerates an adversary with ρ < 49.57% and our best attack
succeeds when ρ > 49.79%. If we make a very conservative estimate of network
delays being 1m, then c = 10, and Nakamoto remains consistent with respect to
a 47.2% coalition.

Finally, our analysis is not tight when c is small because our attack only
analyzes the probability that the adversary is able to completely control the
chain. When c is small, there is also a large probability that honest players do
not converge on a chain even without any adversarial messages.



1.6 Proof Highlights

Although our high-level approach follows similar intuitions as the analyses from
Garay et al. [GKL15] and Sompolinsky and Zohar [SZ15], our actual proof uses a
quite different strategy. The bulk of our proof consists of dealing with the attack
strategies which are omitted from the analysis in [SZ15], and dealing with them
requires us to consider an altogether different proof technique: instead of directly
analyzing the whole blockchain process, we consider a sequence of simplified pro-
cesses which are “dominated” by the original one but are simpler to analyze. For
instance, we aim to show that in the optimal attack, the adversary should always
delay messages for as long as possible (so that messages are always delivered af-
ter ∆ steps). An obstacle in performing such a stochastic domination analysis
is that once we start delaying messages, honest parties start to “mine” different
blocks and the executions of our two processes diverge and become hard to com-
pare: Ideally, to perform the domination argument we would like to consider a
fixed execution (where the randomness of all parties are fixed) and to show by
induction that delaying messages less than ∆ never helps the attacker in that
particular execution. The problem is that such a domination claim is not true: in
some lucky scenarios (where the randomness is fixed), delaying messages in fact
improves the situation for the honest parties (they now start mining blocks that
magically lead to more successes). Of course, the probability of this happening
should be small, but formally showing this would require us to somehow couple
the experiments with and without maximum delays which is non-trivial (due to
dependencies created by the random oracle).

The Ftree model. To overcome this issue, we rely on “simulation techniques”
from the cryptographic literature on secure computation [GMW87,Can00]: we
first consider an idealized scenario where the players do not mine blocks but
instead have access to an idealized “mining” functionality, which we call Ftree.
This functionality determines whether honest parties succeed in mining (at ran-
dom) and the success probability is independent of the current chain an honest
party is trying to extend. In this model, we can now perform a domination argu-
ment for every fixed randomness for the experiment. One of our main technical
lemmas, which turns out to be quite subtle to prove, shows that any attack that
succeeds in the “real-life” protocol in the random oracle model can be turned
into (i.e., simulated by) an attack in the idealized Ftree model. The key technical
issue here is to deal with the dependencies created by the random oracle. (As
an independent contribution, we believe that our Ftree simulation lemma can be
helpful in formalizing some steps left informal in e.g., [GKL15,KP15,SZ15].)

The chain growth lowerbound. Armed with the above-mentioned techniques, the
next crucial step is demonstrating a lowerbound on the chain growth. Roughly
speaking, we prove by induction that (in the Ftree model) the chain grows at least
as fast in the real execution of the protocol, as in a “hybrid” experiment where a)
all messages are maximally delayed, b) honest parties “freeze” and stop mining
for ∆ steps whenever some honest player mines a block and c) all messages sent



by the adversary are removed. The advantage of this hybrid experiment is that
the chain growth process can now be described as a simple Markov chain—there
are no longer any “adversarial transitions” and due to the “freezing”, honest
players never have any chain conflict. This process can next be analyzed using
standard Chernoff bounds. We emphasize that for the induction proof to work,
we crucially rely on the fact that our analysis is in the Ftree-model.

No “long” block withholding. We next use the chain growth lowerbound to
demonstrate a central property of the blockchain protocol, which we refer to
as the “no long block withholding” property: an adversary cannot withhold a
block that it has mined for too long. Unless the adversary broadcasts the block
to the honest players within some short amount of time, the block becomes “ir-
relevant” and will never be accepted by the honest players. Roughly speaking,
we prove this by showing that, assuming that the adversary controls less than
half of the computational power in the network, the chain of honest players will
grow at a faster rate than any private chain the adversary can create, and thus
unless it releases any block it finds quickly, the honest players’ chain will be too
long for the block to ever be relevant.

Proving consistency. Finally, proving consistency is the most challenging part
of our proof. We start by first considering an execution without adversarial mes-
sages, and with deterministic delays, and identify a “pattern” which ensures that
the chain of honest players converges: roughly, the pattern—which we refer to
as a “convergence opportunity”—is that 1) there is a period of “silence” for ∆
rounds where no honest player mines a block, 2) this is followed by a round
where a single honest player mines a block, 3) which is followed by another ∆
rounds of silence. (This notion of a convergence opportunity is closely related
to a notion considered in [SZ15], and can be thought of a generalization of the
notion of a “uniquely successful round” considered in the synchronous setting in
??.) Whenever such a pattern occurs, all honest players converge on the chain
(thus we call it a convergence opportunity): after the first period of silence, they
all agree on the length of the chain (but may still have different chains), and
thus the lone miner who finds a new block extends this longest chain by 1, and
finally after the second period of silence this chain has propagated to all honest
players (and since it is longer than all their current chains, they will switch to
it). We are now interested in understanding how many times this patterns occurs
within some specific period of time t. The crucial point here is that the process
we now analyze is memoryless, and thus can be described by a (somewhat sim-
ple) Markov chain. On the negative side, the Markov chain that arises from this
problem is too complicated to be analyzed with standard concentration bounds
for Markov chains (see e.g., [CLLM12]); we instead, provide a direct analysis
of a simplified experiment (which, roughly speaking, instead analyzes the times
between successful mining of honest players.) and we then use this to provide a
lower bound on the number of convergence opportunities.

Finally, once we have established a strong concentration bound on the number
of convergence opportunities, we argue that the only way that an attacker can



ruin such a pattern is by itself mining a block that is accepted by the honest
players during it. We here rely on the block-withholding lemma to argue that
any block that the attacker can use to ruin a convergence opportunity must
have been mined by the adversary not long before the beginning of the period
of time we are analyzing; we then show that the number of adversarial block
mined during this (slightly extended) period of time is smaller than the number
of convergence opportunities, and thus conclude that at least one convergence
opportunity will remain even in the presence of the adversary, and thus honest
parties still converge on their chain.

1.7 Related Work

The problem of reaching agreement in the presence of faulty participants, de-
scribed first by Pease, Shostak, and Lamport [PSL80], and also known as dis-
tributed consensus has been very well studied over the past 40 years. The ba-
sic problem considers a set of n parties connected by reliable and authenti-
cated pairwise network channels who wish to agree on a common output in
the presence of an adversary who controls a fraction of the participants. Many
aspects of the problem have been studied, with relaxations concerning the frac-
tion of corrupted parties, the channels available to the participants, whether
the protocols are deterministic or randomized and whether the participants are
computationally bounded. Some protocols only consider fail-stop adversaries,
while others consider a Byzantine setting in which some of the participants are
malicious adversaries who attempt to disrupt the agreement. In the Byzantine
agreement (BA) version of the problem, Castro and Liskov [CL99] implemented
a replication library that was practical enough to use for a file system; sub-
sequently, other works have considered fast or simpler versions of the Paxos
protocol [MA05,Lam10,Lam11]. All of these works assume common knowledge
of the number of participants n, as well as identities for the participants.

Okun [Oku05a,Oku05b,OB08] considers BA in an “anonymous [synchronous]
model without port awareness” in which processors do not have identifiers and
cannot correlate messages to their sources; Okun shows both an impossibility
result for deterministic protocols, and a feasibility result for probabilistic ones.
Aspnes et al. [AJK05] shows how to use a proof-of-work in a pre-processing step
for this model to assign interim identities to parties so that the number of identi-
ties assigned is proportional to computational power. After the pre-processing, a
standard authenticated BA protocol is used. Neither results, however, are in the
peer-to-peer setting in which new users can join and leave during the execution.

Miller and LaViola [ML14] show that a variant of Nakamoto’s protocol can
be used to solve the single-shot Byzantine agreement problem in the presence of
a minority of faults in an asynchronous setting. The single-shot setting is sub-
stantially easier, since the adversary is limited, and for example, cannot mount
block-withholding attacks. Garay, Kiayias, and Leonardas [GKL15] provide a
better analysis of Nakamoto’s protocol, and also propose two protocols based
on Nakamoto’s protocol that satisfy all the properties of BA in the multiple-
instance setting. They only consider synchronous networks (and no spawning



of new honest players). As mentioned above, in synchronous networks, simpler
solutions are possible.

2 Blockchain Protocols and Executions

In this section, we present an abstract model for blockchain protocols which aims
to cover many variants of blockchain protocols.

2.1 Blockchain Protocols

A blockchain protocol is a pair of algorithms (Π, C) where Π is a stateful al-
gorithm that receives a security parameter κ as inputs and maintains a local
state state. The algorithm C(κ, state) outputs an ordered sequence of “records”,
or “batches”, ~m (e.g., in the bitcoin protocol, each such record is an ordered
sequence of transactions). We call C(κ, state) the “record chain” of a player with
security parameter κ and local variable state; to simplify notation, whenever κ
is clear from context we often write C(state) to denote C(κ, state).

Algorithm Π is parameterized by a validity predicate V (denoted by ΠV )
that encapsulates the semantic properties (e.g., “no double spending”) that a
blockchain application aims to achieve. V (~m) returns 1 if and only if the chain
~m is valid for some notion of validity.

A Blockchain Execution Following the framework for Universal Composability
[Can00], we consider the execution of a blockchain protocol (ΠV , C) that is
directed by an environment Z(1κ) (where κ is a security parameter), which
activates a number of parties 1, 2, . . . , n as either “honest” or corrupted parties.
Honest parties execute Π on input 1κ with an empy local state state; corrupt
parties are controlled by an attacker A which reads all their inputs/message and
sets their outputs/messages to be sent.

– The execution proceeds in rounds that model time steps. In round r, each
honest player i receives a message (a “record”) m from Z (that it attempts
to “add” to its chain) and potentially receives incoming network messages
(delivered by A). It may then perform any computation, broadcast a message
to all other players (which will be delivered by the adversary; see below) and
update its local state statei.

– A is responsible for delivering all messages sent by parties (honest or cor-
rupted) to all other parties. A cannot modify the content of messages broad-
cast by honest players, but it may delay or reorder the delivery of a message
as long as it eventually delivers all messages. (Later, we shall consider re-
strictions on the delivery time.) The identity of the sender is not known to
the recipient.9

9 We could also consider a seemingly weaker model where messages sent by corrupted
parties need not be delivered to all honest players. We can easily convert the weaker
model to the stronger model by having honest parties “gossip” all messages they
receive.



– At any point, Z can communicate with adversary A or access C(statei) (i.e.,
the current record chain of the player) where statei is the local state of player
i.

– At any point, Z can corrupt an honest party j which means that A gets
access to its local state and subsequently, A controls party j. (In particular,
this means we consider a model with “erasures”; random coin tosses that
are no longer stored in the local state of j are not visible to A.)10

– At any point, Z can uncorrupt a corrupted player j, which means that A no
longer controls j and instead player j starts executing Π(1κ) with a fresh
state statej . (This is also how we model Z spawning a “new” honest player.)
A gets informed of all such uncorrupt messages and is required to deliver all
messages previously sent by (currently alive) honest players.11

Let EXEC(ΠV ,C)(A,Z, κ) be a random variable denoting the joint view of all
parties (i.e., all their inputs, random coins and messages received, including
those from the random oracle) in the above execution; note that this joint view
fully determines the execution.

Admissible Environments We consider executions with restricted adversaries and
environments; these restrictions will be specified by a predicate Γ (·, ·, ·).

Definition 1 (Admissible Environments). We say that the tuple of param-
eters (n(·), ρ,∆(·), A, Z) is Γ -admissible w.r.t. (ΠV , C) if A and Z are non-
uniform probabilistic polynomial-time algorithms, Γ (n(·), ρ,∆) = 1 and for ev-

ery κ ∈ N , every view view in the support of EXEC(ΠV ,C)(A,Z, κ), the following
holds:

1. Z activates n = n(κ) parties in view;

2. A delays messages by at most ∆ = ∆(κ) rounds (and in the case of newly
spawned players, instantly delivers messages that were sent more than ∆
rounds ago);

3. at any round r in view, A controls at most ρ · n(κ) parties; and

4. in every round r in view, Z only sends local inputs m to an honest player
i, if V (C(statei)||m) = 1, where statei is player i’s local state at round r in
view.

Whenever the protocol (ΠV , C) is clear from context, we simply call (n, ρ,∆,A,Z)
Γ -admissible.

10 Our proof actually extends also to the model “without erasures”.
11 This models the fact that a player is not considered “honest” before it has joined the

network and gotten “initialized”. In the real-life execution of bitcoin, new players
joining send out a message to the network, request to be initialized and download
the longest chain known to the network. We only consider them honest once this
process is over.



2.2 A remark about the communication model

Our model assumed that any player can send a message to all other players in
the network, and that those messages arrive within ∆ rounds, no matter how
long they are. This is clearly not a realistic model. In real-life, players communi-
cate their messages through a gossip network, and thus we need to assume that
this network is sufficiently connected and has sufficiently many honest players
to ensure ∆ delivery time. This model remains infeasible if messages can be ar-
bitrary long. However, in the applications we consider—assuming that records
m provided by the environment are of length O(κ) (i.e., there is a “block-size
limit”12)—honest players only communicate messages that differ in the last O(κ)
bits from messages that they have previously received. For such cases it seems
reasonable to assume that a sufficiently connected routing network has the de-
sired property of ensuring delivery of all messages within ∆ rounds.

2.3 Blockchain protocols in the ROM

To study Nakamoto’s blockchain protocol, we need to extend the model with a
random oracle. In an execution with security parameter κ, we assume all par-
ties have access to a random function H : {0, 1}∗ → {0, 1}κ which they can
access through two oracles: H(x) simply outputs H(x) and H.ver(x, y) output 1
iff H(x) = y and 0 otherwise. In any round r, the players (as well as A) may
make any number of queries to H.ver. On the other hand, in each round r, hon-
est players can make only a single query to H, and an adversary A controlling q
parties, can make q sequential queries to H. (This modeling is meant to capture
the assumption that we only charge for the effort of finding a solution to a proof
of work [DN92], but checking the validity of a solution is cheap. We discuss this
further after introducing Nakamoto’s protocol.) We emphasize that the environ-
ment Z does not get direct access to the random oracle (but can instruct A to
make queries).

2.4 Nakamoto’s Protocol

We turn to describing Nakamoto’s protocol [Nak08], which we refer to as (Πp
Nak, C

p
Nak).

The local state state maintained byΠp
Nak is a sequence of (mined) blocks ~b, where

each mined block is a tuple (h−1, η,m, h) that consists of a hash h−1 (a pointer
to the previous record), a nonce η, a record m, and a hash h (a pointer to the cur-
rent record13) and is initialized to a special “genesis” block: (0, 0,⊥),H(0, 0,⊥).
Let C(state) be the sequence of records ~m contained in the sequence of blocks

12 In Bitcoin’s instantiation of the blockchain protocol, there is currently a severe re-
striction on the block-size. There is currently an active debate whether to raise the
block-size limit or to leave it small.

13 In reality (as well as in the description in the introduction), h is not included in the
block (as it can be easily determined from the remaining elements); we include it to
ensure that we can verify validity of a block using only H.ver.



state. The protocol is parameterized by a hardness function p(·) which defines
a constant Dp = p(κ) · 2κ such that for all (h, b), Prη[H(h, η, b) < Dp] = p(κ).
Whenever p is clear for context, we simply denote the protocol (ΠNak, CNak)
(without the p superscript); additionally, whenever κ is clear from context, we
let p = p(κ).

We say a block b = (h−1, η,m, h) is valid with respect to (a predecessor block)
b−1 = (h′−1, η

′,m′, h′) if three conditions hold:

1. h−1 = h′,
2. h = H(h−1, η,m),
3. and h < Dp.

A sequence of blocks state = (b0, . . . , b`) is valid if a) b0 = (0, 0,⊥,H(0, 0,⊥))
is the genesis block, b) for all i ∈ [`], bi is valid with respect to bi−1, and c)
V (C(state)) = 1.

Each round of ΠV
Nak proceeds as follows:

– Read all incoming messages (delivered by A). If any incoming message state′

is a valid sequence of blocks that is longer than its local state state, replace
state by state′. (Note that checking the validity of state′ can be done using
only H.ver queries)

– Read local message m (from Z). If m is such that V (C(state)||m) 6= 1, proceed
to the next round. Otherwise, pick a random nonce η ∈ {0, 1}κ and issue
query h = H(h−1, η,m) where h−1 is the 4’th element in the last block in
state. If h < Dp, then Π adds the newly mined block (h−1, η, b, h) to state
and broadcasts the updated state.

Depending on the definition of V , one can instantiate either Bitcoin, e.g., by
having V enforce that m can be parsed into a sequence of well-formed transac-
tions each of which is authorized and spends money from a source account to
a destination account at most once without deficit, etc., as well as other cryp-
tocurrencies with different semantics such as Namecoin. We may also consider a
simpler predicate VL that simply accepts all messages; that is VL(~m) = 1; such
a predicate is useful, for instance, to use a blockchain to provide a public ledger.

A Remark on our use of the Random Oracle Recall that in our model, we restrict
players to a single evaluation query H per round, but allow them any number of
verification queries H.ver in the same round. We do this to model the fact that
checking the validity of mined blocks is “cheap” whereas the mining process is
expensive. (To enable this, we have included a pointer h to the current record in
every mined block in the description of Nakamoto; thus a player need not spend
an H query to compute the pointer to the previous record.)

In practice, the cost of evaluating a hash function (which is used to instan-
tiate the random oracle) is the same as verifying its outputs, but our modeling
attempts to capture the phenomena that a miner typically use various heuristics
(such as black lists of IP addresses that have sent invalid blocks) and different
hardware to check the validity of a mined block versus to mine a new block.



3 Formal Definitions of the Desiderata

In this section, we provide formal definitions of the desiderata mentioned in the
introduction. We start with some notation and preliminaries.

Notation For someA,Z, consider some view in the support of EXEC(ΠV ,C)(A,Z, κ).
We use the notation |view| to denote the number of rounds in the execution, viewr

to denote the prefix of view up until round r, statei(view) denotes the local state
of player i in view, Ci(view) = C(statei(view)) and Cri (view) = Ci(viewr).

(Strongly) Negligible Functions A function ε(·) is said to be negligible if for every
polynomial p(·), there exists some κ0 such that ε(κ) ≤ 1

p(κ) for all κ ≥ κ0. Our

bounds will actually also apply to an exponentially-strong interpretation of what
it means for a function to be negligible. A function ε(·) is said to be (strongly)
negligible if there exists constants c0 > 0, c1 such that for all κ, ε(κ) ≤ e−c0κ+c1 .
In the rest of the paper, we simply use the term “negligible”, but all uses of it
can be replaced by strongly negligible. We often use the shorthand neg(κ) to
denote a function that is negligible as a function of κ.

3.1 Chain Growth

Our first desiderata is that the chain grows proportionally with the number
of rounds of the protocol. This intuitive property was explicitly considered by
Sompolinsky and Zohar [SZ15] but only in expectation; it was also implicitly
considered in Garay et al. within one of their proofs (but was not highlighted as
a desideratum), and it was explicitly highlighted as a desideratum by Kiayias and
Panagiotakos [KP15]. We here generalize these definitions to abstract blockchain
protocols, and add a useful length-consistency property.14 (Looking forward, in
Section 3.4, we also consider an upper-bound on chain growth.) Let,

min-chain-increaser,t(view) = min
i,j
|Cr+tj (view)| − |Cri (view)|

where we quantify over players i, j such that i is honest at viewr and j is honest
at viewr+t.

Let growtht(view, ∆, T ) = 1 iff the following two properties hold:

– (consistent length) for all rounds r, r′ such that r ≤ |view|−∆ and r+∆ ≤
r′ ≤ |view|, for every two players i, j such that in view, i is honest at r and
j is honest at r′, we have that

|Cr′j (view)| ≥ |Cri (view)|
14 The length-consistency requirement is actually not needed for any of our applica-

tions, but having it enables achieving sharper bounds, and this property is trivially
satisfied by Nakamoto’s protocol.



– (chain growth) for every round r ≤ |view| − t, we have

min-chain-increaser,t(view) ≥ T.

In other words, growtht is a predicate which tests that a) honest parties have
chains of roughly the same length, and b) during any t rounds in the execution,
all honest parties’ chains increase by at least T .

Definition 2. A blockchain protocol (Π, C) has chain growth rate g(·, ·, ·, ·) in
Γ -environments if for all Γ -admissible (n(·), ρ,∆(·), A, Z), there exists some con-
stant c and negligible functions ε1, ε2 such that for every κ ∈ N, T ≥ c log(κ),
and t ≥ T

g(n(κ),ρ,∆(κ)) , the following holds:

Pr
[
view← EXEC(ΠV ,C)(A,Z, κ) : growtht(view, ∆(κ), T ) = 1

]
≥ 1−ε1(κ)−ε2(T )

If ε1 = 0, we say that (Π, C) has error-less chain growth rate g in Γ -environments.

3.2 Chain Quality

Our second desideratum is that the number of records contributed by the ad-
versary is proportional to its relative power. This property was first discussed
on the Bitcoin forum [mtg10] and made explicit in the selfish mining attacks
by Eyal and Sirer [ES14] w.r.t. the bitcoin application of the blockchain.15 The
property was first formalized, and given the name “chain quality” by Garay et
al. [GKL15]. We generalize their definition to abstract blockchain protocols. Do-
ing so is somewhat non-trivial in that it is not directly clear what it means for a
record to be adversarial (Garay et al. only provide a definition of an adversarial
block for the particular protocol of Nakamoto, and their definition only applies
in the random oracle model).

We say that a record m is non-adversarial (or honest) w.r.t. view and prefix

~m if there exists a player j and some round r′ such that in viewr
′
, j is honest,

the environment provided m as input to j, and ~m is a prefix of Ci(viewr
′
). (That

is, there exists some honest player that received m as an input when their chain
contained ~m).

Let qualityT (view, µ) = 1 iff for every round r and every player i such that i
is honest in viewr, among any consecutive sequence of T records M in Cri (view),
the fraction of records m that are honest w.r.t. viewr and ~m, where ~m is the
prefix of Cri (view) preceeding M , is at least µ.

Definition 3. A blockchain protocol (Π, C) has chain quality µ(·, ·, ·, ·) in Γ
environments, if for all Γ -admissible (n(·), ρ,∆(·), A, Z), there exists some con-
stant c and negligible functions ε1, ε2 such that for every κ ∈ N, T > c log(κ) the

15 In the bitcoin application of the blockchain, each player receives a reward whenever
if mines a block; the chain quality thus dictates a bound on how much more reward
an adversary can get by deviating from the protocol.



following holds:

Pr
[
view← EXEC(ΠV ,C)(A,Z, κ) : qualityT (view, µ(κ, n(κ), ρ,∆(κ))) = 1

]
≥ 1− ε1(κ)− ε2(T )

If ε1 = 0, we say that (Π, C) has errorless chain quality µ in Γ -environments.

3.3 Consistency

The common-prefix property by Garay et al. [GKL15], which was already con-
sidered and studied by Nakamoto [Nak08], requires that in any round r, the
record chains of any two honest players i, j agree on all, but potentially the last
T , records. We note that this property (even in combination with the other two
desiderata) provides quite weak guarantees: even if any two honest parties per-
fectly agree on the chains, the chain could be completely different on, say, even
rounds and odd rounds. We here consider a stronger notion of consistency which
additionally stipulates players should be consistent with their “future selves”.16

Let consistentT (view) = 1 iff for all rounds r ≤ r′, and all players i, j (poten-

tially the same) such that i is honest at viewr and j is honest at viewr
′
, we have

that the prefixes of Cri (view) and Cr′j (view) consisting of the first ` = |Cri (view)|−T
records are identical.17

Definition 4. A blockchain protocol (Π, C) satisfies consistency in Γ environ-
ments, if for all Γ -admissible (n(·), ρ,∆(·), A, Z), there exists some constant c
and negligible functions ε1, ε2 such that for every κ ∈ N, T > c log(κ) the follow-
ing holds:

Pr
[
view← EXEC(ΠV ,C)(A,Z, κ) : consistentT (view) = 1

]
≥ 1− ε1(κ)− ε2(T )

If ε1 = 0, we say that (Π, C) has errorless consistency in Γ -environments.

Note that a direct consequence of consistency is that the chain length of any two
honest players can differ by at most T (except with negligible probability in T ).

3.4 Chain Growth Upperbound

Our final desiderata is the existence of an upperbound on the chain growth. While
we do not present any applications of this property in the current paper, it is an
intuitively useful property—for instance, combined with the chain growth lower

16 This stronger notion of consistency combines what we called “plain” consistency and
“future-self” consistency in the introduction.

17 Pedantically, the “first ` records of Cr
′
j (view) is not defined if Cr

′
j (view) < `; to

formalize it, we may represent the chains as infinite sequences of records, where all
records after the end of the chain is a special “nil” symbol. In particular, this ensures
that consistentT (view) = 0 if Cr

′
j (view) < `.



bound, it implies we can use a blockchain as a “partially-synchronized clock”.
(Additionally, subsequent work by Pass and Shi [PS16a,PS16b] demonstrate the
usefulness of this property.)

Let,

max-chain-increaser,t(view) = max
i,j
|Cr+tj (view)| − |Cri (view)|

where we quantify over players i, j such that i is honest at viewr and j is honest
at viewr+t. Let upper-growtht(view, ∆, T ) = 1 iff for every round r ≤ |view| − t,
we have

max-chain-increaser,t(view) ≤ T.

Definition 5. A blockchain protocol (Π, C) has upper-bound on chain growth
rate g′(·, ·, ·, ·) in Γ -environments if for all Γ -admissible (n(·), ρ,∆(·), A, Z),
there exists some constant c and negligible functions ε1, ε2 such that for every
κ ∈ N, T ≥ c log(κ), and t = T

g′(n(κ),ρ,∆(κ)) , the following holds:

Pr
[
view← EXEC(ΠV ,C)(A,Z, κ) : upper-growtht(view, ∆(κ), T ) = 1

]
≥ 1− ε1(κ)− ε2(T )

If ε1 = 0, we say that (Π, C) has error-less upper-bound on chain growth rate g′

in Γ -environments.

4 Main Theorem Statements

Our main results will be most convenient to parameterize in the following two
quantities (which are defined for some fixed mining hardness function p(·); recall
that Nakamoto’s protocol is parametrized by p):

– let α(κ, n, ρ,∆) = 1 − (1 − p(κ))(1−ρ)n. That is, α is the probability that
some honest player succeeds in mining a block in a round;

– let β(κ, n, ρ,∆) = ρnp(κ). That is, β is the expected number of blocks that
an attacker can mine in a round.

Whenever κ, n, ρ,∆ are clear from the context, we simply write α, β. In essence,
the quantities capture the per-round expected increase in chain length by the
honest parties and the adversary; the reason the quantities are defined differ-
ently is that we assume that the adversary can sequentialize its queries in a
round, whereas honest players make a single parallel query (they each act in-
dependently), and thus even if they manage to mine several blocks, the longest
chain held by honest players can increase by at most 1. Note, however, that when
p is small (in comparison to 1/n), which is case for the Bitcoin protocol, α is
well-approximated by (1− ρ)np and thus α

β ≈
1−ρ
ρ , so this difference is minor.

We also consider the following quantity:

– let γ(κ, n, ρ,∆) = α
1+∆α (When clear from context, we simply write γ.)



Roughly speaking, γ should be thought of a discounted version of α due to the
fact that messages sent by honest parties can be delayed by ∆ rounds and this
may lead to honest players redoing work; γ corresponds to their effective mining
power. Note that if p is sufficiently small then γ ≈ α and thus γ

β ≈
1−ρ
ρ .

We are now ready to state our main theorems. The proof of these theorems
are all given in the Appendix (see §1.6 for a high-level overview of key ideas).
We will consider two environments:

– In the least restrictive environment, Γ0, we make no restrictions on the
parameters (more than them being “valid”). Namely, let Γ0(n(·), ρ,∆(·)) = 1
iff n(·), ∆(·) are functions N → N+ and 0 ≤ ρ ≤ 1.

– In the more restrictive environment, we additionally assume that the adver-
sary controls a sufficiently small fraction of the computational power. Let
Γ pλ (n(·), ρ,∆(·)) = 1 iff Γ0(n(·), ρ,∆(·))) = 1 and for all κ, n = n(κ), ∆ =
∆(k),

α(1− 2(∆+ 1)α) ≥ λβ
The following three theorems formalize Theorem 2 from the introduction

(which in turn implies Theorem 1). We first prove a lower bound on the chain
growth.

Theorem 4 (Chain growth). For any δ > 0, any p(·), (Πp
Nak, C

p
nak) has chain

growth rate
gpδ (κ, n, ρ,∆) = (1− δ)γ

in Γ0 environments.

We next prove a lower bound on the chain quality.

Theorem 5 (Chain quality). For all δ > 0, any p(·), (Πp
Nak, C

p
nak) has chain

quality

µpδ(κ, n, ρ,∆) = 1− (1 + δ)
β

γ

in Γ0 environments.

We finally show consistency.

Theorem 6 (Consistency). For any λ > 1, any p(·), (Πp
nak, C

p
nak) satisfies

consistency in Γ pλ environments.

Chain growth upperbound We additionally present an upperbound on the chain
growth. (As mentioned before, this property is not needed for any of the ap-
plications that we present in the current paper, nor for the statement of the
main result in the introduction, but may be useful in other contexts such as
[PS16a,PS16b].)

Theorem 7 (Upper-bound on Chain growth). For any δ > 0, any p(·),
(Πp

Nak, C
p
nak) has the upper-bound on chain growth rate

ĝpδ (κ, n, ρ,∆) = (1 + δ)np

in Γ pλ environments.



5 Application: Public Ledger

In this section, we demonstrate how to use any blockchain satisfying the growth,
quality, and consistency properties defined in §3 to construct a secure public
ledger system. Garay et al. [GKL15] show a similar theorem, in the synchronous
setting, for the specific blockchain of Nakamoto.

Informally, a public ledger serves as an immutable “bulletin board” to which
anyone can post a message, and everyone can read all messages posted. As
descibed by Garay et al. [GKL15], such a bulletin board ought to satisfy two
properties, liveness and persistence:18

– Liveness: The liveness property stipulates that from any given round r, if a
sufficiently long period of time t elapses—we refer to this time as the wait-
time of the ledger—every honest player will output a message m as part
of their (local) ledger, where m was provided as an input to some honest
player between rounds r and r + t. (In particular, this implies the liveness
condition of [GKL15] which requires that if the same message was provided
to all honest players between rounds r and r+t, this messages will be output
in the ledger.)

– Persistence: The persistence property stipulates that if some honest player
i outputs a message m at position i in its local ledger, then 1) m is the only
message that can ever be output at position i of any other honest player’s
ledger and 2) every honest player will eventually output m at position i.

Let us turn to a formal definition.

5.1 Definition of a Public Ledger

Just like the blockchain protocol, a public ledger is pair of algorithms (Π,L)
where Π is a stateful algorithm that maintains a local state state. The algo-
rithm L(κ, state) outputs ordered sequence of messages ~m. We call L(κ, state)
the (local) ledger of a player with security parameter κ and local variable state.
We define the execution of a public ledger protocol in exactly the same way as
the execution of a blockchain protocol (see Section 2.1), and define the random

variable EXEC(Π,L)(A,Z, κ) in exactly the same way. Let Li(view) denote the
ledger of player i in the view view and let Lri (view) = Li(viewr).

Liveness Let live(view, t) = 1 iff for any t consecutive rounds r, . . . , r+ t in view
there exists some round r′ ∈ [r, r + t] and players i such that in view, 1) i is
honest at r′, 2) i received a message m as input at round r′, and 3) for every
player j that is honest at r + t in view, m ∈ Lr+tj (view).

18 The notion of Garay et al. [GKL15] is actually somewhat different and weaker: for
instance, 1) they only require these properties to hold for records that are sufficiently
“deep” in the ledger (we feel it is more natural/simpler to require it for all records
in the ledger), and 2) they only require the liveness property to hold if all players
received the same message.



Definition 6 (Liveness). We say that public ledger (Π,L) is live with wait-
time w(·, ·, ·, ·) in Γ environments if for all Γ -admissible (n(·), ρ,∆(·), A, Z),
there exists a negligible function ε in the security parameter κ ∈ N, such that

Pr
[
view← EXEC(Π,L)(A,Z, κ) : live(view, w(κ, n(κ), ρ,∆(κ)) = 1

]
≥ 1− ε(κ)

Persistence Let persist∆(view) = 1 iff for every round r ≤ |view|−∆, every player
i that is honest at viewr and every position pos ≤ |Lri (view)|, if Lri (view) contains
the message m at position pos, then for every round r′ such that r+∆ ≤ r′ and
every honest player j (possibly the same as i) we have that m is also at position
pos in Lr′j (view).

Definition 7 (Persistence). We say that (Π,L) is persistent in Γ environ-
ments if for all Γ -admissible (n(·), ρ,∆(·), A, Z), there exists a negligible function
ε such that for every security parameter κ ∈ N,

Pr
[
view← EXEC(Π,L)(A,Z, κ) : persist∆(κ)(view) = 1

]
≥ 1− ε(κ)

5.2 Constructing a Public Ledger from a Blockchain

We turn to constructing a public ledger from any blockchain protocol. Let TRUE
be the predicate that always outputs 1 (on any input).

Definition 8. Given a blockchain protocol (Π, C), we call (Π ′,L) the public
ledger T (κ)-induced by (Π, C), where Π ′ = ΠTRUE and L(κ, state) computes
C(κ, state), truncates the last T (κ) records of it, and outputs the results.

Theorem 8. Let T (·) be a strictly positive, super-constant, polynomial, (Π, C)
a blockchain protocol satisfying chain growth g, chain quality µ and chain con-
sistency in Γ -environments, where µ and g are strictly positive. Then, for every
δ > 0, the public ledger (Π ′,L) T (·)-induced by (Π, C) is persistent and live with

wait-time w(κ, n, ρ,∆) = (1 + δ) T (κ)
g(κ,n,ρ,∆) in Γ -environments.19

Proof. Consider Γ -admissible n(·), ρ,∆(·), A, Z, some δ > 0, some κ, and some

view view← EXEC(Π,L)(A,Z, κ). Let n = n(κ), ∆ = ∆(κ), g = g(κ, n, ρ,∆) and
µ = µ(κ, n, ρ,∆), T = T (κ). We now separately show liveness and persistence.

19 We are grateful to Elaine Shi for pointing out that a variant of our proof for the
liveness property works with a sharper wait-time bound. Our original theorem and
proof (which set parameters in a non-optimal way) only claimed w(κ, n, ρ,∆) =

(1+δ)T (κ)
µ(κ,n,ρ,∆)·g(κ,n,ρ,∆)

. The reason we do not need a dependency on µ is that by our
definition of chain quality, it suffices for the fraction of non-adversarial blocks to be
positive (as opposed to greater than 1

T
) to conclude the existence of at least one

non-adversarial block.



Liveness Let T ′ = (1+δ)T and let t = T ′

g . Pick δ′ such that 0 < δ′ < δ. Condition

on the events that growtht(view, ∆(κ), T ′) = 1, consistentδ
′T−1(view) = 1, and

qualityT
′−T (view) = 1; by our assumptions and the union bound, these events

occur with probability 1−neg(T ); since T is polynomial in κ, these events occur
except with probability neg(κ). Let j, j′ be players such that in view, j′ is honest
at r and j is honest at r + t such that r + t ≤ |view|.

By the conditioning, we have that:

– By chain growth, |Cr+tj (view)| − |Crj′(view)| ≥ T + δT ; thus |Cr+tj (view)| ≥
T + δT

– By “truncation”, at least δT records that were not part of the chain of j′ at
r are thus output as part of j’s ledger.

– By consistency, before round r, no honest player has ever had a chain whose
length exceeds |Crj′(view)|+ δ′T − 1.

– Thus, we have a segment of length at least (δ− δ′)T of records in Cr+tj (view)
which is output as part of j’s ledger such that each record appears at a
position which exceeds |Crj′(view)|+ δ′T . By (strictly positive) chain quality,
at least (δ − δ′)Tµ > 0 records at a position exceeding |Crj′(view)| + δ′T
are “non-adversarial”; since no honest player ever had a chain of length
|Crj′(view)| + δ′T before round r, these non-adversarial records must have
been provided by the environment at or after round r.

Persistence Let t = T
g . Condition on the events that growtht(view, ∆(κ), T ) = 1

and consistentT (view) = 1; by our assumptions and the union bound, these events
occur with probability 1−neg(T ); since T is polynomial in κ, these events occur
except with probability neg(κ).

Consider players i, j such that in view, i is honest at round r, and j is honest
at round r′ such that r′ ≥ r +∆. By the conditioning, we have that:

– Because consistentT (view) = 1, prefixes of Cri (view) and Cr′j (view) consisting
of the first |Cri (view)| − T records are identical.

– By the consistent-length property of the chain-growth property, it also fol-
lows that |Cr′j (view)| ≥ |Cri (view)|.

By the above two statements, and the fact that L simply truncates the last T
records of the chain, it follows that Lri (view) is a prefix of Lr′j (view). Therefore,

if Lri (view) contains a message m at position p, then so does Lr′j (view). Because
this holds for all such r, r′ > r +∆, i, j, it follows that persist∆(κ)(view) = 1.

Corollary 9 For any λ > 1, any δ > 0, any p(·), and any strictly positive,
super-constant, polynomial T (·), the public ledger (ΠNak,LNak) that is T (·)-induced
by the blockchain protocol (Πp

Nak, C
p
Nak) is persistent and live with wait-time

w(n, κ, ρ,∆) = (1 + δ)
T (κ)

γ

in Γ pλ environments.



Proof. From Thm. 4, Thm 5 and Thm. 6, for every δ′, δ′′, (Πp
Nak, C

p
Nak) has growth

(1 − δ′)γ, chain quality 1 − (1 + δ′′)βγ , and satisfies consistency. By Claim ??

(item 1), the chain quality is thus strictly positive. From Thm. 8, for every δ′′,
(ΠNak,LNak) thus has rate

w(n, κ, ρ,∆) = (1 + δ′′′)
T (κ)

(1− δ′)γ < (1 + δ)
T (κ)

γ

where the last inequality follows by picking sufficiently small δ′, δ′′′.

6 An Attack on Nakamoto with Long Delays

In this section, we formally demonstrate that Nakamoto’s protocol satisfies nei-
ther consistency nor positive chain quality in a fully asynchronous network with-
out an upperbound ∆ on the network delay, even if the adversary controls just a
tiny fraction of computational power. More specifically, we show that for every
hardness parameter p, Πp

Nak, C
p
Nak, satisfies neither consistency nor chain quality

when ∆ = 1+δ
ρnp for some δ > 0. This demonstrates why our consistency theorem

needs to rely on the assumption that p ≤ Θ(1)
∆n , and why the chain quality is

1− β
γ as opposed to just 1− β

α (recall that γ = α
1+∆α is a discounted version of

α that takes delays into account.) In particular, we present a “51%” attack a la
Nakamoto in which the attacker at some point in the future replaces the whole
chain with a chain of its choice, even if it only controls a small fraction of the
computational power.

Intuitively, in every segment of ∆ rounds, if we delay all messages between
honest players until the end of the segment, honest players are effectively “mining
on their own” and thus are unlikely to extend their chain by more than 1. The
adversary, on the other hand, coordinates its mining and thus in expectation
extends its chain by ∆ · ρnp; if we set ∆ > ρnp the adversary can mine its own
longer chain (without sending it to the honest player).

Theorem 10 (Inconsistency of Nakamoto with Unbounded Delays).

Let Γ̂ pρ′,δ(κ, n, ρ,∆) = 1 iff 1) n = 2
ρ2 · κ, 2) ρ = ρ′ and 3) ∆ = 1+δ

ρnp . For every

0 < δ < 1
2 , 0 < ρ′ < 1, and every inverse polynomial p(·), (Πp

Nak, C
p
Nak) does

not satisfy neither consistency nor chain quality q in Γ̂ pρ′,δ-valid environments,
where q > 0.

Proof. Consider an environment Z that invokes n = 2
ρ2 · κ players, a fraction ρ

of them being adversarial, and sends messages m1,m2 . . . to the honest players;
for simplicity, assume mi = 0 for all i. The environment runs for κ∆+ 1 steps.

The attacker A proceeds as follows:

– A divides the rounds into κ segments of ∆ rounds and delays all messages
sent by honest players within such a segment to the end of it (note that this
means no messages are delayed more than ∆);



– A ignores the content of the messages sent by honest players and tries to
independently build its own chain Ĉ with messages m′1,m

′
2, . . . such that

mi 6= m′i for κ∆ rounds (for simplicity, assume m′i = 1 for all i);
– In the next to last round r = κ∆, it sends Ĉ to any (strict) subset of the

honest players (and delivers it instantly).

Note that in any view view ∈ EXEC(ΠV ,C)(A,Z, κ) where 1) |Ĉ| > κ and 2)
Ĉ is longer than the longest chain known to the honest players, we have that
consistentκ(view) = 0 and qualityκ(view, 1) = 0. We show that the probability
that both events happen is constant, which proves the theorem.

The following two claims bound the probability that either event does not
happen; by a union bound we can then conclude that the probability that both
happen is constant.

Claim. Let Ĉ(view) denote the length of the adversary’s chain in the next to
last round (i.e., round κ∆) of view. Then,

Pr[view← EXEC(ΠV ,C)(A,Z, κ) : |Ĉ(view)| < (1 +
δ

2
)κ] ≤ e−Ω(κ).

Proof. In the κ∆ rounds, the adversary has ρnp · κ∆ chances to mine a block;

each chance succeeds with probability p; since ∆ = (1+δ)
ρnp , the expected number

of mined blocks is thus (1 + δ)κ. The desired bound thus follows directly from
the Chernoff bound.

Claim. Let `(view) denote the length of the longest chain known to the honest
players in the last round of view. Then,

Pr[view← EXEC(ΠV ,C)(A,Z, κ) : `(view) ≥ κ] ≤ 3

4
.

Proof. In every fixed segment of ∆ rounds, the number of blocks mined by a
single honest player is distributed as a binomial distribution with parameters
∆ (trials) and p (success probability). Let X be such a random variable. The
probability that some fixed single honest player mines more than 1 block in any
fixed segment is

Pr[X > 1] = 1− Pr[X ≤ 1] = 1− Pr[X = 0]− Pr[X = 1]

= 1− (1− p)∆ −∆p(1− p)∆−1

= 1− (1− p)∆−1(1 + (∆− 1)p)

≤ 1− (1− (∆− 1)p)(1 + (∆− 1)p)

= (∆− 1)2p2 ≤ (1 + δ)

ρ2n2
≤ (1 + δ)

2nκ

By a union bound over the number of players n and the number of segments
κ, we have that except with probability 1+δ

2 ≤ 3
4 , no honest player mines more

than one block in any segment, and whenever that happens, the length of the
longest chain grows by at most 1 for each segement and thus becomes of length
at most κ after κ segments.



Remark 11 We note that our proof applies even in the setting of static corrup-
tions, and already to a weaker notion of consistency which ignores “future-self
consistency”. In addition, the attacker never looks at the messages sent by honest
players.

Remark 12 We additionally point out that at the cost of complicating the proof
(and increasing the number of players), we can obtain an even stronger attack—
which works also when ∆ > 1

c·np where 1
c > 1

ρ − 1
1−ρ (as opposed to just 1

ρ

as in our previous proof)—as follows: instead or partitioning the rounds into
segments, simply always delay messages between honest players by ∆. Intuitively
(but significantly over-simplifying), when we delay the messages between honest
parties by ∆, the expected time they need to wait until finding and propagating
a block is roughly 1

(1−ρ)np + ∆, whereas the adversary only needs to wait 1
ρnp

in expectation; thus, the attacker succeeds whenever it mines faster (i.e., when
1
ρ <

1
1−ρ +∆np), and since ∆np = 1

c , the attack succeeds when 1
c >

1
ρ − 1

1−ρ .

We turn to describe how to formalize this attack (following the proof of 6).
We, in fact, show an attack that works as long as β > γ (i.e., the adversary
mining rate is higher than the “discounted” honest player mining rate), and
then use this to deduce that the attack applies when 1

c >
1
ρ − 1

1−ρ .
It follows using exactly the same proof as the lowerbound on chain growth in

the “hybrid” model (see Claim ??) that we can get (1+δ)γ as an upperbound on
the chain growth of the honest players in a modified game where all honest players
“freeze” for ∆ rounds whenever some honest player mines a block (just as in the
“hybrid” model in Claim ??). Since successes in each round are independent, it
follows that conditioned on no single player ever mining two blocks within ∆
rounds, the chain growth of honest players is upperbounded by (1 + δ)γ, whereas
the chain growth of the adversary is lowerbounded by (1− δ)β. Thus when β >
(1+ δ′)γ, if we run the experiment for t steps (and condition on no single player
ever mining two blocks within ∆ rounds), we get an attack except with probability
e−Ω(γt). Since γ is monotonically increasing in α and α ≤ (1− ρ)np, it follows
that the above also holds when20

β = ρnp >
(1− ρ)np

1 +∆(1− ρ)np

and thus when

∆np >
1

ρ
− 1

1− ρ
So if we set ∆ = 1

cnp , we get an attack (conditioned on no single player ever

mining two blocks within ∆ rounds) when 1
c >

1
ρ − 1

1−ρ .
Finally, as in the proof of Claim 6 we have that at any given round r, for

any fixed player j, the probability of j mining more that 1 block within the next
∆ rounds is upperbounded by (∆ − 1)2p2 ≤ 1

c2n2 . Thus, if we set n > 2t, it
follows that no player every mines more than 1 block within ∆ rounds, except
with probability 1/2 (by the union bound).
20 For readability, we ignore the (1 + δ′) term.
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