
Breaking the Sub-Exponential Barrier in
Obfustopia

Sanjam Garg1, Omkant Pandey2, Akshayaram Srinivasan1, and Mark
Zhandry3

1 University of California, Berkeley
{sanjamg,akshayaram}@berkeley.edu

2 Stony Brook University
omkant@gmail.com

3 Princeton University
mzhandry@princeton.edu

Abstract. Indistinguishability obfuscation (iO) has emerged as a sur-
prisingly powerful notion. Almost all known cryptographic primitives can
be constructed from general purpose iO and other minimalistic assump-
tions such as one-way functions. A major challenge in this direction of
research is to develop novel techniques for using iO since iO by itself
offers virtually no protection for secret information in the underlying
programs. When dealing with complex situations, often these techniques
have to consider an exponential number of hybrids (usually one per in-
put) in the security proof. This results in a sub-exponential loss in the
security reduction. Unfortunately, this scenario is becoming more and
more common and appears to be a fundamental barrier to many current
techniques.
A parallel research challenge is building obfuscation from simpler as-
sumptions. Unfortunately, it appears that such a construction would
likely incur an exponential loss in the security reduction. Thus, achiev-
ing any application of iO from simpler assumptions would also require a
sub-exponential loss, even if the iO-to-application security proof incurred
a polynomial loss. Functional encryption (FE) is known to be equivalent
to iO up to a sub-exponential loss in the FE-to-iO security reduction;
yet, unlike iO, FE can be achieved from simpler assumptions (namely,
specific multilinear map assumptions) with only a polynomial loss.
In the interest of basing applications on weaker assumptions, we therefore
argue for using FE as the starting point, rather than iO, and restricting
to reductions with only a polynomial loss. By significantly expanding on
ideas developed by Garg, Pandey, and Srinivasan (CRYPTO 2016), we
achieve the following early results in this line of study:

– We construct universal samplers based only on polynomially-secure
public-key FE . As an application of this result, we construct a non-
interactive multiparty key exchange (NIKE) protocol for an unbounded
number of users without a trusted setup. Prior to this work, such
constructions were only known from indistinguishability obfuscation.

– We also construct trapdoor one-way permutations (OWP) based on
polynomially-secure public-key FE . This improves upon the recent

result of Bitansky, Paneth, and Wichs (TCC 2016) which requires
iO of sub-exponential strength. We proceed in two steps, first giving
a construction requiring iO of polynomial strength, and then special-
izing the FE-to-iO conversion to our specific application.

Many of the techniques that have been developed for using iO, including
many of those based on the “punctured programming” approach, become
inapplicable when we insist on polynomial reductions to FE . As such,
our results above require many new ideas that will likely be useful for
future works on basing security on FE .

1 Introduction

Indistinguishability obfuscation (iO) [5, 16] has emerged as a powerful
cryptographic primitive in the past few years. It has proven sufficient to
construct a plethora of cryptographic primitives, many of them for the
first time, [30, 12, 10, 4, 8]. Recently, iO also proved instrumental in
proving the hardness of complexity class PPAD [7].

A major challenge in this direction of research stems from the fact that
iO by itself is “too weak” to work with. The standard security of iO may
not even hide any secrets present in the underlying programs. Therefore,
the crucial part of most iO-based constructions lies in developing novel
techniques for using iO to obfuscate “programs with secrets.”

Despite its enormous power, we only know of a limited set of tech-
niques for working with iO. In complex situations, these techniques often
run into what we call the sub-exponential barrier. More specifically, the
security proof of many iO-based constructions end up considering an ex-
ponential number of hybrid experiments in order to make just one change
in the underlying obfuscation. The goal is usually to eliminate all “trou-
blesome” inputs, one at a time, that may be affected by the change. There
are often exponentially many such inputs, resulting in a sub-exponential
loss in the security reduction.

To make matters worse, a sub-exponential loss seems inherent to
achieving iO from “simple” assumptions, such as those based on multilin-
ear maps4. Indeed, all known security proofs for iO relative to “simple”
assumptions5 iterate over all (exponentially-many) inputs anyway, and
there are reasons to believe that this loss may be necessary [18] 6. Indeed,

4Here, we do not define “simple.” However, one can consider various notions of
“simplicity” or “niceness” for assumptions, such as falsifiable assumptions [28] or com-
plexity assumptions [22].

5Here, we exclude über assumptions such as semantically secure graded encod-
ings [29], which encompass exponentially many distinct complexity assumptions.

6We stress that this argument has not yet been formalized.

2

any reduction from iO to a simple assumption would need to work for
equivalent programs, but should fail for inequivalent programs (since in-
equivalent programs can be distinguished). Thus, such a reduction would
seemingly need to decide if two programs compute equivalent functions;
assuming P 6= NP, this in general cannot be done in polynomial time.
This exponential loss would then carry over to any application of iO, even
if the iO-to-application security reduction only incurred a polynomial loss.
On the other hand, this exponential loss does not seem inherent to the
vast majority of iO applications. This leaves us in an undesirable situation
where the only way we know to instantiate an application from “simple”
assumptions requires sub-exponential hardness assumptions, even though
sub-exponential hardness is not inherent to the application.

One application for which an exponential loss does not appear inherent
is Functional encryption (FE), and indeed starting from the work of Garg
et al. [17], it has been shown in [27, 26] how to build FE from progressively
simpler assumptions on multilinear maps with only a polynomial loss.
Therefore, to bypass the difficulties above, we ask the following:

Can applications of iO be based instead on
FE with a polynomial security reduction?

There are two results that give us hope in this endeavor. First, it is
known that FE is actually equivalent to iO, except that the FE-to-iO re-
duction [3, 9] incurs an exponential loss. This hints at the possibility that,
perhaps, specializing the FEto-iO-to-application reduction to particular
applications can aleviate the need for sub-exponential hardness.

Second and very recently, Garg, Pandey, and Srinivasan [19] took
upon the issue of sub-exponential loss in iO-based constructions in the
context of PPAD hardness. They developed techniques to eliminate the
sub-exponential loss in the work of Bitansky, Paneth, and Rosen [7] and
reduced the hardness of PPAD to the hardness of standard, polynomially-
secure iO (and injective one-way functions). More importantly for us,
they also presented a new reduction which bases the hardness of PPAD
on standard polynomially-secure functional encryption, thus giving essen-
tially the first non-trivial instance of using FE to build applications with
only a polynomial loss.

This work. Our goal is to develop techniques to break the sub-exponential
barrier in cryptographic constructions based on iO and FE . Towards this
goal, we build upon and significantly extend the techniques in [19]. Our
techniques are applicable, roughly, to any iO setting where the computa-
tion is changed on just a polynomial number of points; on all other points,

3

the exact same circuit is used to compute the outputs. Notice that for
such settings there exists an efficient procedure for checking functional
equivalence. This enables us to argue indistinguishability based only on
polynomial hardness assumptions. As it turns out, for many applications
of iO, the hybrid arguments involve circuits with the above specified
structure. In this work, we focus on two such applications: trapdoor per-
mutations and universal samplers.

We start with the construction of trapdoor permutations of Bitanksy,
Paneth, and Wichs [8] based on sub-exponentially secure iO. We im-
prove their work by constructing trapdoor permutations based only on
polynomially-secure iO (and one-way permutations). We further extend
our results and obtain a construction based on standard, polynomial
hard, functional encryption (instead of iO). Together with the result
of [17, 27, 26], this gives us trapdoor permutations based on simple
polynomial-hard assumptions on multilinear maps.

We then consider universal samplers, a notion put forward by Hofheinz,
Jager, Khurana, Sahai, Waters, and Zhandry [23]. It allows for a sin-
gle trusted setup which can be used to sample common parameters for
any protocol. Hofheinz et al. construct universal samplers from iO. They
also show how to use them to construct multi-party non-interactive key-
exchange (NIKE) and broadcast encryption.

We consider the task of constructing universal samplers from the
weaker notion of only polynomially-secure functional encryption. As noted
earlier, we cannot use the generic reduction of [3, 9] between FE and iO
since it incurs sub-exponential loss. Intuitively, a fresh approach that is
not powerful enough to imply iO is essential to obtaining a polynomial-
time reduction for this task.

We present a new construction of universal samplers directly from
FE . We also consider the task of constructing multiparty NIKE for an
unbounded number of users based on FE . As detailed later, this turns out
to be non-trivial even given the work of Hofheinz et al. This is because
the definitions presented in [23] are not completely suitable to deal with
an unbounded number of users. To support unbounded number of users,
we devise a new security notion for universal samplers called interactive
simulation. We present a construction of universal samplers based on FE
that achieves this notion and gives us multiparty NIKE for unbounded
number of users.

Remark 1. Our construction of TDP from FE is weaker in comparison to
our construction from iO (and the construction of Bitansky et al. in [8]).
In particular, given the random coins used to sample the function and

4

the trapdoor, the output of the sampler is no longer pseudorandom. This
property is important for some applications of TDPs like the construction
of OT.

An overview of our approach. In the following sections, we present a
detailed overview of our approach of constructing Universal Samplers
and NIKE for unbounded number of parties. Our techniques used for
constructing trapdoor permutations are closely related to the techniques
developed in proving PPAD-hardness of Garg et al. [19]. However, con-
structing trapdoor permutations poses additional challenges, namely the
design of an efficient sampling algorithm that samples a domain element.
Solving this problem requires development of new techniques and we elab-
orate them in the full version [20].

1.1 Universal Samplers and Multiparty Non-interactive Key
Exchange from FE

Multiparty Non-Interactive Key Exchange (multiparty NIKE) was one of
the early applications of multilinear maps and iO. In multiparty NIKE,
n parties simultaneously post a single message to a public bulletin board.
Then they each read off the contents of the board, and are then able
to derive a shared key K which is hidden to any adversary that does
not engage in the protocol, but is able to see the contents of the public
bulletin board.

Boneh and Silverberg [11] show that multilinear maps imply multi-
party NIKE. However, (1) their protocol requires an a priori bound on
the number of users n, and (2) due to limitations with current multilinear
map candidates [15, 13], the protocol requires a trusted setup. The party
that runs the trusted setup can also learn the shared key k, even if that
party does not engage in the protocol.

Boneh and Zhandry [12] show how to use iO to remove the trusted
setup. Later, Ananth et al. [1] shows how to remove the bound on the
number of users by using the very strong differing inputs obfuscation.
Khurana, Rao, and Sahai [25] further modify the Boneh-Zhandry proto-
col to get unbounded users with just iO. In [12] and [25], iO is invoked on
programs for which are guaranteed to be equivalent; however it is com-
putationally infeasible to actually verify this equivalence. Thus, following
the arguments of [18], it would appear that any reduction to a few sim-
ple assumptions, no matter how specialized to the particular programs
being obfuscated, would need to incur an exponential loss. Hence, these

5

approaches do not seem suitable to achieving secure multiparty NIKE
from polynomially secure FE .

Universal Samplers. Instead, we follow an alternate approach given by
Hofheinz et al. [23] using universal samplers. A universal sampler is an al-
gorithm that takes as input the description of a sampling procedure (say,
the sampling procedure for the common parameters of some protocol)
and outputs a sample from that procedure (a set of parameters for that
protocol). The algorithm is deterministic, so that anyone running the pro-
tocol on a given sampling procedure gets the same sampled parameters.
Yet the generated parameters should be “as good as” a freshly generated
set of parameters. Therefore, the only set of common parameters needed
for all protocols is just a single universal sampler. When a group of users
wish to engage in a protocol involving a trusted setup, they can each feed
the setup procedure of that protocol into the universal sampler, and use
the output as the common parameters.

Unfortunately, defining a satisfactory notion of “as good as” above is
non-trivial. Hofheinz et al. give two definitions: a static definition which
only remains secure for a bounded number of generated parameters, as
well as an adaptive definition that is inherently tied to the random oracle
model, but allows for an unbounded number of generated parameters.
They show how to use the stronger definitions to realize primitives such
as adaptively secure multiparty non-interactive key exchange (NIKE) and
broadcast encryption.

In this work, we focus on the standard model, and here we review the
static standard-model security definition for universal samplers. Fix some
bound k on the number of generated parameters. Intuitively, the k-time
static security definition says that up to k freshly generated parameters
s1, . . . , sk for sampling algorithms C1, . . . , Ck can be embedded into the
universal sampler without detection. Thus, if the sampler is used on any
of the sampling algorithms Ci, the generated output will be the fresh
sample si. Formally, there is a simulator Sim that takes as input up to k
sampler/sample pairs (Ci, si), and outputs a simulated universal sampler
Sampler, such that Sampler(Ci) = si. As long as the si are fresh samples
from Ci, the simulated universal sampler will be indistinguishable from a
honestly generated sampler.

Fortunately for us, the iO-based construction of [23] only invokes iO
on programs for which it is trivial to verify equivalence. Thus, there seems
hope that universal samplers can be based on simple assumptions without
an exponential loss. In particular, there is hope to base universal samplers
on the polynomial hardness of functional encryption.

6

Application to Multiparty NIKE. From the static definition above, it is
straightforward to obtain a statically secure multiparty NIKE protocol
analogous to the adaptive protocol of Hofheinz et al. [23]. Each party
simply publishes a public key pki for a public key encryption scheme,
and keeps the corresponding secret key ski hidden. Then to generate the
shared group key, all parties run Sampler on the sampler Cpk1,...,pkn . Here,
Cpk1,...,pkn is the randomized procedure that generates a random string K,
and encrypts K under each of the public keys pk1, . . . , pkn, resulting in
n ciphertexts c1, . . . , cn which it outputs. Then party i decrypts ci using
ski. The result is that all parties in the protocol learn K.

Meanwhile, an eavesdropper who does not know any of the secret
keys will only have the public keys, the sampler, and thus the ciphertexts
ci outputted by the sampler. The proof that the eavesdropper will not
learn K is as follows. First, we consider a hybrid experiment where K is
generated uniformly at random, and the universal sampler is simulated
on sampler Cpk1,...,pkn , and sample s = (c1, . . . , cn), where ci are fresh
encryptions of K under each of the public keys pki. 1-time static security
of the universal sampler implies that this hybrid is indistinguishable to
the adversary from the real world. Next, we change each of the ci to
encrypt 0. Here, indistinguishability follows from the security of the public
key encryption scheme. In this final hybrid, the view of the adversary is
independent of the shared secret key K, and security follows.

Unbounded multiparty NIKE. One limitation of the protocol above is
that the number of users must be a priori bounded. There are several
reasons for this, the most notable being that in order to simulate, the
universal sampler must be as large as the sample s = (c1, . . . , cn), which
grows with n. Thus, once the universal sampler is published, the number
of users is capped. Unfortunately, the only prior protocols for achieving
an unbounded number of users, [1] and [25], seems inherently tied to the
Boneh-Zhandry approach, and it is not clear that their techniques can be
adapted to universal samplers.

In order to get around this issue, we change the sampling procedure
Cpk1,...,pkn fed into the universal sampler. Instead, we feed in circuits of
the form Dpk,pk′ , which generate a new secret and public key (sk′′, pk′′),
encrypt sk′′ under both pk and pk′, and output both encryptions as well
as the new public key pk′′. A group of users with public keys pk1, . . . , pkn
then generates the shared key in an iterative fashion as follows. Run the
universal sampler on Dpk1,pk2 , obtaining a new public key pk′3, as well
as encryptions of the corresponding secret key sk′3 under both pk1, pk2.

7

Notice that users 1 and 2 can both recover sk′3 using their secret keys.
Then run the universal sampler on Dpk3,pk

′
3
, obtaining a new public key

pk′4 and encryptions of the corresponding secret key sk′4. Notice that user
3 can recover sk′4 by decrypting the appropriate ciphertext using sk3, and
users 1 and 2 can recover sk′4 by decrypting the other ciphertext using sk′3.
Continue in this way until public key pk′n+1 is generated, and all users
1 through n recover the corresponding secret key sk′n+1. Set sk′n+1 to be
the shared secret key.

For security, since an eavesdropper does not know any of the secret
keys and the ciphertexts are “as good as” fresh ciphertexts, he should not
be able to decrypt any of the ciphertexts in the procedure above. How-
ever, turning this intuition into a security proof using the static notion
of security is problematic. The straightforward approach requires con-
structing a simulated Sampler where the outputs on each of the circuits
Dpki,pk

′
i

are fresh samples. Then, each of the ciphertexts in the samples are
replaced with encryptions of 0 (instead of the correct secret decryption
key). However, as there are n such circuits, a standard incompressibility
argument shows that Sampler must grow linearly in n. Thus again, once
the universal sampler is published, the number of users is capped.

Simulating at fewer points. To get around this issue, we devise a sequence
of hybrids where in each hybrid, we only need replace log n outputs of
the sampler with fresh samples. The core idea is the following. Say that
a circuit Dpki,pk

′
i

has been “treated” if the public key pk′i+1 outputted by
the universal sampler is freshly sampled and the corresponding cipher-
texts are changed to encrypt 0 (instead of the secret key sk′i+1) . We
observe that to switch circuit Dpki,pk

′
i

from untreated to treated, circuit
Dpki−1,pk

′
i−1

needs to currently be treated so that the view of the adver-

sary is independent of the secret key sk′i. However the status of all the
other circuits is irrelevant. Moreover, once we have treated Dpki,pk

′
i
, we

can potentially “untreat” Dpki−1,pk
′
i−1

and reset its ciphertexts to the cor-
rect values, assuming Dpki−2,pk

′
i−2

is currently treated. Our goal is to start
from no treated circuits, and arrive at a hybrid where Dpkn,pk

′
n

is treated,
which implies that the view of the adversary is independent of the shared
secret skn+1.

This gives rise to an interesting algorithmic problem. The goal is to
get a pebble at position n, where the only valid moves are (1) placing or
removing a pebble at position 1, or (2) placing or removing a pebble at
position i provided there is currently a pebble at position i−1. We desire
to get a pebble at position n while minimizing the number of pebbles used

8

at any time. The trivial solution is to place a pebble at 1, then 2, and so
on, requiring n pebbles. We show a pebbling scheme that gets a pebble
to position n using only ≈ log n pebbles by removing certain pebbles as
we go. Interestingly, the pebbling scheme is exactly same as the one used
in [6] in the context of reversible computation. The pebbling scheme is
also efficient: the number of moves is polynomial in n.

Using our pebbling algorithm, we derive a sequence of hybrids corre-
sponding to each move in the algorithm. Thus we show that the number
of circuits that need simulating can be taken to be ≈ log n.

A new universal sampler definition. Unfortunately, we run into a problem
when trying to base security on the basic static sampler definition of
Hofheinz et al. [23]. The issue stems from the fact that the simulator
in the static definition requires knowing all of the circuits Dpki,pk

′
i

up

front. However, in our pebbling approach, some of the pk′i (and thus the
Dpki,pk

′
i
) are determined by the sampler Sampler - namely, all the pk′i for

which Dpki−1,pk
′
i−1

is “untreated.” Thus we encounter a circularity where
we need to know Sampler to compute the circuit Dpki,pk

′
i
, but we need

Dpki,pk
′
i

in order to simulate the Sampler.
To get around this issue, we devise a new security notion for univer-

sal samplers that allows for interactive simulation. That is, before the
simulator outputs Sampler, we are allowed to query it on various inputs,
learning what the output of the sampler will be on that input (called as
the read query). Moreover, we are allowed to feed circuit/sample pairs
(C, s) (called as write query) interactively, potentially after seeing some
of the sample outputs, and the simulator will guarantee that the sim-
ulated Sampler will output s on C. For security, we require that for a
statically chosen query index i∗ and a circuit C∗ the simulator’s outputs
in the following two cases are computationally indistinguishable:

1. i∗th query is a read query on C∗.
2. i∗th query is a write query on (C∗, s∗) where s∗ is fresh sample from
C∗.

This new definition allows us to avoid the circularity above and com-
plete the security proof for our NIKE protocol.

Construction. Before we describe our construction of universal samplers
from FE , we first describe a construction from iO that satisfies the above
definition of interactive simulation.

The universal sampler is an obfuscation of a circuit that has a punc-
turable PRF key K hardwired in its description and on input C outputs

9

C(; PRFK(C)) i.e it uses the PRF key to generate the random coins. This
is precisely the same construction as given by Hofheinz et al. [23] for the
static security case. To prove that this construction satisfies the stronger
definition of interactive simulation we construct a simulator that works as
follows. It first samples a fresh PRF key K ′ and answers the read queries
using it. At the end of the simulation, it outputs an obfuscation of a
circuit that has the PRF key K ′ as well as (Ci, si) for every write query
made by the adversary hardwired in its description. When run on input
C where C is one of the write queries, it outputs the corresponding s. On
other inputs, it outputs C(; PRFK′(C)).

The security is shown via a hybrid argument. The initial hybrid corre-
sponds to the output of the simulator when the challenge query (made at
index i∗) is a write query on (Ci∗ , si∗) where si∗ is a fresh random sample
from Ci∗ . We first change the obfuscated circuit to have the PRF key K ′

punctured at Ci∗ . This is possible since the circuit does not use K ′ to
compute the output on Ci∗ . Relying on the security of puncturable PRF,
we change si∗ from Ci∗(; r) where r is random string to Ci∗(; PRFK′(Ci∗)).
We then unpuncture the key K ′ and finally remove Ci∗ , si∗ from the hard-
wired list.

We adapt the above construction from iO to the FE setting using
techniques from [9, 19]. Recall that the “obfuscated” universal sampler
consists of ` + 1 (` is the maximum size of the input circuit) function
keys (where each function key computes a bit extension function) along
with an initial ciphertext cφ that encrypts the empty string φ and a prefix
constrained PRF key K 7. These bit extension functions form a natural
binary tree structure and “parsing” an input circuit C corresponds to
traveling along the path from the root to the leaf labeled C. Each node x
along the path from the root to C contains the key K prefix constrained
at x. The prefix constrained PRF key appearing at the leaf C is precisely
equal to the PRF value at C and we use this to generate a “pseudorandom”
sample from C.

We are now ready to describe the construction of our simulator. As in
the iO case, the simulator samples a random prefix constrained PRF key
K ′ and uses it to answer the read queries made by the adversary. Recall
that for every write query (Ci, si) the adversary makes, the simulator must
ensure that the sampler on Ci outputs si. The simulator accomplishes this
by “tunneling” the underlying binary tree along path Ci. To give a bit

7[19] used the term prefix-punctured PRF to denote the same primitive. We use
the term prefix constrained PRF as we feel that this name is more appropriate. This
was also suggested by an anonymous Eurocrypt reviewer.

10

more details, the simulator “forces” the function keys at every level i to
output a precomputed value say Vi (instead of the bit-extension) if the
input to the function matches with a prefix of Ci. At the leaf level, if the
input matches Ci then the function outputs si. Illustration of “tunneling”
is given in Figure 1. We now explain how this “tunneling” is done.

cφ

V1

c00 V2

V3

si

c011

c1

FE.Dec(FSK1, ·)

FE.Dec(FSK2, ·)

FE.Dec(FSK4, ·)

FE.Dec(FSK3, ·)

Fig. 1: Illustration of “tunneling” on Ci = 010 and κ = 3.

At a high level, the “tunneling” is achieved by triggering a hidden “trap-
door” thread in the function keys using techniques illustrated in [2, 19].
This technique proceeds by first encrypting a set of precomputed val-
ues under a symmetric key sk and hardwires them in the description of
bit-extension function in each level. The symmetric key sk is encrypted
in the initial ciphertext cφ along with the empty string and the prefix
constrained PRF key. The trapdoor thread (that is triggered only along
the write query paths) uses this secret key sk to decrypt the hardcoded
ciphertext and outputs the appropriate pre-computed value.

To complete the security proof, we want to show that we can indis-
tinguishably “tunnel” the binary tree along a new path C∗i and output
s∗i which is a fresh random sample from C∗i at the leaf. Recall that in the
construction of Garg et al. in [19] a single secret key sk is used to for com-
puting the encryptions of pre-computed values along multiple paths. But

11

having a single secret key does not allow us to “tunnel” along a new path
C∗i as this secret key already appears in the initial ciphertext cφ. Hence,
we cannot rely on the semantic security of symmetric key encryption to
augument the pre-computed values to include values along the new path
C∗i . In order to get around this issue, we use multiple secret keys: one for
each write query 8 which enables us to “tunnel” along a new path C∗i .

2 Preliminaries

κ denotes the security parameter. A function µ(·) : N → R+ is said to
be negligible if for all polynomials poly(·), µ(k) < 1

poly(k) for large enough
k. We will use PPT to denote Probabilistic Polynomial Time algorithm.
We denote [k] to be the set {1, · · · , k}. We will use negl(·) to denote
an unspecified negligible function and poly(·) to denote an unspecified
polynomial. We denote the identity polynomial by I(·) i.e. I(x) = x.
All adversarial functions are modeled as polynomial sized circuits. We
assume that all cryptographic algorithms take the security parameter in
unary as input and would not explicitly mention it in all cases. We assume
without loss of generality that the length of the random tape used by all
cryptographic algorithms is κ.

A binary string x ∈ {0, 1}k is represented as x1 · · ·xk. x1 is the most
significant (or the highest order bit) and xk is the least significant (or the
lowest order bit). The i-bit prefix x1 · · ·xi of the binary string x is denoted
by x[i]. We denote |x| to be the length of the binary string x ∈ {0, 1}∗.
We use x‖y to denote concatenation of binary strings x and y. We say
that a binary string y is a prefix of x if and only if there exists a string
z ∈ {0, 1}∗ such that x = y‖z.

We assume the reader’s familiarity with standard cryptographic prim-
itives like injective pseudorandom generator, puncturable pseudorandom
functions, indistinguishability obfuscation, functional encryption, sym-
metric and public key encryption. Below, we give the definition of Prefix
Constrained Pseudorandom Function [19].

Prefix Constrained Pseudorandom Function. A PCPRF is a tuple of algo-
rithms (KeyGenPCPRF ,PrefixCons) with the following syntax. KeyGenPCPRF
takes the security parameter (encoded in unary) and descriptions of two

8In the security definition, the number of write queries that an adversary could
make is apriori bounded. On the otherhand, the adversary could make an unbounded
number of read queries. Thus, we can fix the number of secret keys to be sampled at
the time of setup.

12

polynomials pin and pout as input and outputs a PCPRF key S ∈ {0, 1}κ.
PrefixCons is a deterministic algorithm and has two modes of operation:

1. Normal Mode: In the normal mode, PrefixCons takes a PCPRF key

S and a string y ∈ ∪pin(κ)k=0 {0, 1}
k and outputs a prefix constrained key

Sy ∈ {0, 1}κ if |y| < pin(κ); else outputs Sy ∈ {0, 1}pout(κ). We assume
that Sy contains implicit information about |y|.

2. Repeated Constraining Mode: In the repeated constraining mode,

PrefixCons takes a prefix constrained key Sy and a string z ∈ ∪pin(κ)k=0 {0, 1}
k

as input and works as follows. If |y|+ |z| > pin(κ), it outputs ⊥; else if
|y|+ |z| < pin(κ), it outputs the prefix constrained key Sy‖z ∈ {0, 1}κ;

else it outputs Sy‖z ∈ {0, 1}pout(κ).

Henceforth, unless it is not directly evident from the context, we will not
explicitly mention if PrefixCons is in the normal mode or in the repeated
constraining mode. We note that there is no explicit evaluation procedure
for PCPRF and the output of PCPRF on an input x ∈ {0, 1}pin(κ) is given
by PrefixCons(S, x) ∈ {0, 1}pout(κ).

We now give the formal definition of PCPRF.

Definition 1. A prefix constrained pseudorandom function PCPRF is
a tuple of PPT algorithms (KeyGenPCPRF ,PrefixCons) satisfying the fol-
lowing properties:

– Functionality is preserved under repeated constraining: For
all κ, polynomials pin(·), pout(·) and for all x ∈ ∪k∈[pin(κ)]{0, 1}k,
y, z ∈ {0, 1}∗ s.t. x = y‖z,

Pr[PrefixCons(PrefixCons(S, y), z) = PrefixCons(S, x)] = 1

where S ← KeyGenPCPRF (1κ, pin(·), pout(·)).
– Pseudorandomness at constrained prefix: For all κ, polynomi-

als pin(·), pout(·), for all x ∈ ∪k∈[pin(κ)]{0, 1}k, and for all poly sized
adversaries A

|Pr[A(PrefixCons(S, x),Keys) = 1]− Pr[A(U`,Keys) = 1]| ≤ negl(κ)

where S ← KeyGenPCPRF (1κ, pin(·), pout(·)), ` = |PrefixCons(S, x)|
and Keys = {PrefixCons(S, x[i−1]‖(1− xi))}i∈[|x|].

The above properties are satisfied by the construction of the pseudoran-
dom function in [21].

Notation. For a key Si (indexed by i), we will use Si,y to denote PrefixCons(Si, y).

13

– KeyGen(1κ):
1. Sample {Si}i∈[κ] ← KeyGenPRF (1κ). For all i ∈ [κ], Si is a seed for a PRF

mapping i bits to κ bits. That is, PRFSi : {0, 1}i → {0, 1}κ.
2. The public key is given by iO(FS1,··· ,Sκ) where FS1,··· ,Sκ is described in

Figure 3 and the secret key is given by S1, · · · , Sκ.
– TDPPK : Run the obfuscated circuit iO(FS1,··· ,Sκ) on the given input

(x, σ1, · · · , σκ).
– TDP−1

SK : The Inverter IS1,··· ,Sκ is described in Figure 3.
– SampGen(SK): The sampler is given by iO(XS1,··· ,Sκ) where XS1,··· ,Sκ is

described in Figure 3.
– Samp: Run the circuit iO(XS1,··· ,Sκ) on the given randomness r.

Fig. 2: Construction of Trapdoor Permutation

3 TDP from IO in poly loss

We consider trapdoor permutation with pseudorandom sampling which
is a weakened notion than the traditional uniform sampling. We refer the
reader to [8] for a formal definition.

3.1 Construction of Trapdoor Permutations

In this section, we give a construction of trapdoor permutations and prove
the one-wayness assuming the existence polynomially hard iO, punc-
turable pseudorandom function PRF and injective PRG (used only in
the proof).

Theorem 1. Assuming the existence of one-way permutations and in-
distinguishablity obfuscation against polytime adversaries there exists a
trapdoor permutation with pseudorandom sampling.

Our Construction. Our construction uses the following primitives:

1. An indistinguishability Obfuscator iO.
2. A puncturable pseudorandom function PRF = (KeyGenPRF ,PRF,Punc).
3. A length doubling pseudorandom generator PRG : {0, 1}κ/2 → {0, 1}κ.
4. Additionally, in the proof of security, we use a length doubling injec-

tive pseudorandom generator InjPRG : [2κ/4]→ [2κ/2].

The formal description of our construction appears in Figure 2.
Due to lack of space we give the proof of security in the full version

of our paper [20].

14

FS1,··· ,Sκ

Input: (i, σ1, · · · , σκ)
Constants: S1, · · · , Sκ

1. For all j ∈ [κ], check if σj = PRFSj (i[j]).
2. If any of the above checks fail, output ⊥.
3. Else, for all j ∈ [κ] compute σ′j = PRFSj ((i+ 1)[j]) where i + 1 is computed

modulo 2κ.
4. Output (i+ 1, σ′1, · · · , σ′κ).

Padding: The circuit would be padded to size p(κ) where p(·) is a polynomial
that would be specified later.

XS1,··· ,Sκ

Input: r ∈ {0, 1}κ/2
Constants: S1, · · · , Sκ

1. Compute i = PRG(r).
2. For every j ∈ [κ], compute σj = PRFSj (i[j]).
3. Output (i, σ1, σ2, · · · , σκ).

Padding: The circuit would be padded to size q(κ) where q(·) is a polynomial
that would be specified later.

IS1,··· ,Sκ

Input: (i, σ1, · · · , σκ)
Constants: S1, · · · , Sκ

1. Check whether for all j ∈ [κ], σj = PRFSj (i[j]).
2. If any of the checks fail, output ⊥.
3. Else, for all j ∈ [κ] compute σ′j = PRFSj ((i− 1)[j]) where i − 1 is computed

modulo 2κ.
4. Output (i− 1, σ′1, σ

′
2, · · · , σ′κ).

Fig. 3: Public Key, Sampler and the Inverter for the Trapdoor permuta-
tions

4 Trapdoor Permutation from FE

We start by defining a weaker (with respect to pseudorandom sampling)
notion of trapdoor permutation.

15

1. (PK,SK)← KeyGen(1κ).
2. Samp← SampGen(SK)

3. if(b = 0), x
$← DPK .

4. else, x← Samp.
5. Output A(PK,Samp, x)

Fig. 4: ExpA,b,wPRS

Definition 2. An efficiently computable family of functions:

T DP = {TDPPK : DPK → DPK and PK ∈ {0, 1}poly(κ)}

over the domain DPK with associated (probabilistic) (KeyGen,SampGen)
algorithms is a weakly samplable trapdoor permutation if it satisfies:

– Trapdoor Invertibility: For any (PK,SK)← KeyGen(1κ), TDPPK
is a permutation over DPK . For any y ∈ DPK , TDP−1SK(y) is effi-
ciently computable given the trapdoor SK.

– Weak Pseudorandom Sampling: For any (PK,SK)← KeyGen(1κ)
and Samp ← SampGen(SK), Samp(·) samples pseudo random points
in the domain DPK . Formally, for any polysized distinguisher A,∣∣Pr

[
ExpA,0,wPRS = 1

]
− Pr

[
ExpA,1,wPRS = 1

]∣∣ ≤ negl(κ)

where ExpA,b,wPRS is described in Figure 4.
– One-wayness: For all poly sized adversaries A,

Pr

A(PK,Samp, TDPPK(x)) = x

∣∣∣∣∣(PK,SK)← KeyGen(1κ)
Samp← SampGen(SK)
x← Samp

 ≤ negl(κ)

Remark 2. The requirement of pseudorandom sampling considered in Bi-
tanksy et al.’s work [8] is stronger than the one considered here in sense
that they require the pseudorandomness property to hold even when given
the random coins used by KeyGen and the SampGen algorithms. We do not
achieve the stronger notion in this work. In particular, given the random
coins used in SampGen the sampler’s output is no longer pseudorandom.
Therefore, our trapdoor permutations can be only used in applications
where an honest party runs the KeyGen and SampGen algorithm. It can-
not be used for example to achieve receiver privacy in EGL Oblivious
Transfer protocol [14].

16

In this section, we construct trapdoor permutation satisfying the Def-
inition 2 from polynomially hard public key functional encryption, pre-
fix puncturable pseudorandom function, left half injective pseudorandom
generator, strong randomness extractor and public key encryption with
random public keys.

Theorem 2. Assuming the existence of one-way permutations, single-
key, selective secure, public key functional encryption and public key en-
cryption with (pseudo) random public keys, there exists a weakly samplable
trapdoor permutation.

We now recall the special key structure [19] which forms a crucial part
of our construction of trapdoor permutation.

Notation. We treat 1i + 1 as 0i and φ + 1 as φ. Let LeftInjPRG be a
left half injective pseudorandom generator. Let τ be the size of pub-
lic key output by PK.KeyGen(1κ). Below, for every i ∈ [κ+ τ], Si ←
KeyGenPCPRF (1κ.Ci(·), I(·)) where Ci(κ) = i and I(κ) = κ. Recall Si,x
denotes a prefix constrained PRF key Si constrained at a prefix x.

Special Key Structure.

Ux =
⋃

i∈[τ+κ]

Uix Uix =

{
{Si,x[i]} if |x| > i

{Si,x} otherwise

Vx =
⋃

i∈[τ+κ]

Vix Vix =

{Si,x[i] , Si,x[i]+1} if |x| > i and x = x[i]‖1|x|−i

{Si,x, Si,(x+1)‖0i−|x|} if |x| ≤ i
∅ if |x| > i and x 6= x[i]‖1|x|−i

Wx =
⋃

i∈[τ+κ]

Wi
x Wi

x =

{
{LeftInjPRG0(Si,x[i])} if |x| ≥ i
∅ otherwise

For the empty string x = φ, these sets can be initialized as follows.

Uφ =
⋃

i∈[τ+κ]

Uiφ Uiφ = {Si}

Vφ =
⋃

i∈[τ+κ]

Viφ Viφ = {Si}

Wφ =
⋃

i∈[τ+κ]

Wi
φ Wi

φ = ∅

17

Jumping ahead, the set of keys in Ux would be used by the sampler
to generate the set of associated signatures on the sampled point. The
set Wx (called as the vestigial set in [19]) is used to check the validity of
input i.e checking whether the input belongs to the domain. The set Vx is
used to generate the associated signatures on the “next” point as defined
by the permutation.

Our Construction. The construction of weakly samplable trapdoor per-
mutation uses the following primitives:

1. A single-key, selective secure public key functional encryption scheme
FE .

2. A prefix constrained pseudorandom function PCPRF .
3. An injective length doubling pseudorandom generator InjPRG : {0, 1}κ/8 →
{0, 1}κ/4

4. A length doubling Left half injective pseudorandom generator LeftInjPRG :
{0, 1}κ → {0, 1}2κ

In the construction, we denote SK.Encsk1,··· ,skn(m) to be SK.Encskn(SK.Encskn−1

(· · · SK.Encsk1(m))). The formal description our construction appears in
Figure 5.

Setting rand(·) We set rand(κ) to be the maximum number of random bits
needed to generate τ + κ encryptions under γ1, · · · , γκ as well as τ + κ+1
encryptions under the public keys pk.

Due to shortage of space, we defer the proof of Theorem 2 to the full
version of the paper [20].

5 Universal Samplers

Intuitively, a universal sampler, defined by Hofheinz et al. [23] is a box
that takes as input the description of a sampling procedure, and outputs a
fresh-looking sample according to the sampling procedure. The difficulty
is that we want the box to be public code, and that every user, when
they run the sampler on a particular procedure, gets the same result.
Moreover, we want the sample to appear as if it were a fresh random
sample.

5.1 Definition

A Universal Sampler consists of an algorithm Setup that takes as input
a security parameter κ (encoded in unary) and a size bound `(·), random

18

- KeyGen(1κ):
1. For each i ∈ [τ + κ], sample Si ← KeyGenPCPRF (1κ, Ci(·), I(·)) where

Ci(κ) = i and I(κ) = κ. Sample K̃ ← KeyGenPCPRF (1κ, quad(·), rand(·))
where quad(κ) = 2(κ + τ) + 1. For every i ∈ [τ + κ], initialize Viφ := Si,
Vφ =

⋃
i∈[τ+κ] Viφ and Wφ = ∅.

2. Let Extw : {0, 1}τ+κ → {0, 1}κ/8 be a (κ/4, negl(κ)) strong randomness

extractor with seed length q(κ). Sample a seed w
$← {0, 1}q(κ) for the

extractor Ext.
3. Sample (PK1

i ,MSK1
i)← FE.Setup(1κ) for all i ∈ [τ + κ+ 1].

4. Sample sk1 ← SK.KeyGen(1κ) where |sk1| = p(κ) and let Π1 ←
SK.Encsk1(π1) and Λ1 ← SK.Encsk1(λ1) where π1 = 0`1(κ) and λ1 =

0`
′
1(κ). Here, `1(·) and `′1(·) are appropriate length functions specified later.

5. Sample v
$← {0, 1}κ/4.

6. For each i ∈ [τ + κ], generate FSK1
i ← FE.KeyGen(MSK1

i , F
1
i,PK1

i+1,Π1
)

and FSK1
τ+κ+1 ← FE.KeyGen(MSK1

τ+κ+1, G
1
v,Λ1,w), where F 1

i,PK1
i+1,Π1

and

G1
v,Λ1,w are circuits described in Figure 6.

7. Let c1φ = FE.EncPK1(φ,Vφ,Wφ, K̃φ, 0
p(κ), 0).

8. The Public Key PK is given by ({FSK1
i }i∈[τ+κ+1], c

1
φ) and the secret key

SK is given by (S1, · · · , Sτ+κ).
- TDPPK : The evaluation algorithm takes as input (x, σ1, . . . , στ+κ) and out-

puts (x + 1, σ′1, . . . , σ
′
τ+κ) if the associated signatures σ1, . . . , στ+κ are valid.

It proceeds as follows:
1. For i ∈ [τ + κ], compute c1x[i−1]‖0, c

1
x[i−1]‖1 := FE.Dec(FSK1

i , c
1
x[i−1]

).

2. Obtain dx = ((ψ1, . . . , ψτ+κ), (βj , . . . , βτ+κ)) as output of
FE.Dec(FSK1

τ+κ+1, c
1
x). Here, j = f(x). Recall from Section ?? that

f(x) is the smallest k such that x = x[k]‖1τ+κ−k.
3. Output ⊥ if LeftInjPRG0(σi) 6= ψi for any i ∈ [τ + κ].
4. For each i ∈ [j − 1], set σ′i = σi.
5. For each i ∈ {j, . . . , τ + κ}, set γi = LeftInjPRG1(σi) and σ′i

as SK.Decγj ,...,γτ+κ(βi), iteratively decrypting βi encrypted under
γj , . . . , γτ+κ.

6. Output (x+ 1, σ′1, · · · , σ′τ+κ).

Fig. 5: Construction of TDP from FE

tape size r(·) and an output size t(·). It outputs a program Sampler.
Sampler takes as input a circuit of size at most `(κ), uses r(κ) bits of
randomness and outputs an t(κ)-bit string.

Intuitively, Sampler(C) will be a pseudorandom sample from C: Sampler(C) =
C(s) for some s pseudorandomly chosen based on C. We will actually not

19

– TDP−1
SK : The inversion algorithm on input (x, σ1, · · · , στ+κ) checks for all

i ∈ [τ + κ] if σi = Si,x[i] and if so it outputs (x− 1, σ′1, · · · , σ′τ+κ) where x− 1

is computed modulo 2τ+κ and for all i ∈ [τ + κ] σ′i = Si,(x−1)[i]
.

– SampGen(SK) :
1. Choose K ← KeyGenPCPRF (1κ, 2υ(·) + 1, rand(·)) and K ←

KeyGenPCPRF (1κ, υ(·), I(·)) where υ(κ) = τ . Initialize Uiφ := Si and
Uφ =

⋃
i∈[τ+κ] Uiφ.

2. For every i ∈ [τ + 1], choose (PK2
i ,MSK2

i)← FE.Setup(1κ).
3. Sample sk2 ← SK.KeyGen(1κ) where |sk2| = p(κ) and set Π2 ←

SK.Encsk2(π2) and Λ2 ← SK.Encsk2(λ2) where π2 = 0`2(κ) and λ2 =

0`
′
2(κ). Here `2(·) and `′2(·) are appropriate length functions specified later.

4. For each i ∈ [τ], generate FSK2
i ← FE.KeyGen(MSK2

i , F
2
i,PK2

i+1,Π2
) and

FSK2
τ+1 ← FE.KeyGen(MSK2

τ+1, G
2
Λ2

) where F 2
i,PK2

i+1,Π2
, G2

Λ2
are de-

scribed in Figure 7.
5. Let c2φ ← FE.EncPK2

1
(φ,Uφ,K,K, 0

p(κ), 0).

6. The sampler circuit has {FSK2
i }i∈[τ+1] and c2φ hardwired in its description

and works as described below.
- Samp: The sampler takes pk where (pk, sk)← PK.KeyGen(1κ). It proceeds as

follows:
1. For i ∈ [τ], compute c2pk[i−1]‖0, c

2
pk[i−1]‖1 := FE.Dec(FSK2

i , c
2
pk[i−1]

).

2. Obtain (pk, hpk) = (pk, (pk, ρ, ρ1, · · · , ρτ+κ)) as output of
FE.Dec(FSK2

τ+1, c
2
pk).

3. Compute Kpk := PK.Decsk(ρ) and σi := PK.Decsk(ρi) for all i ∈ [τ + κ]
4. Output (pk‖Kpk, σ1, · · · , στ+κ).

Fig. 5: Construction of TDP from FE

formalize a standalone correctness requirement, but instead correctness
will follow from our security notion.

For security, we ask that the sample output by Sampler(C) actually
looks like a fresh random sample from C. Unfortunately, formalizing this
requirement is tricky. Hofheinz et al. [23] defined two notions: the first is a
“static” and “bounded” security notion, while the second stronger notion
is “adaptive” and “unbounded.” The latter definition requires random
oracles, so it is unfortunately uninstantiable in the standard model. We
will provide a third definition which strikes some middle ground between
the two, and is still instantiable in the standard model.

Definition 3. A Universal Sampler given by Setup is n-time statically
secure with interactive simulation if there exists an efficient randomized
simulator Sim such that the following hold.

20

F 1
i,PK1

i+1,Π1

Hardcoded Values: i,PK1
i+1, Π1.

Input: (x ∈ {0, 1}i−1, Vx,Wx, K̃x, sk, mode)

1. If (mode = 0)

(a) Output FE.EncPK1
i+1

(x‖0,Vx‖0,Wx‖0, K̃x‖0, sk,mode; K̃′x‖0) and

FE.EncPK1
i+1

(x‖1,Vx‖1,Wx‖1, K̃x‖1, sk,mode; K̃′x‖1), where for b ∈ {0, 1},
K̃x‖b = PrefixCons(K̃x, b‖0) and K̃′x‖b = PrefixCons(K̃x, b‖1) and
(Vx‖0,Wx‖0), (Vx‖1,Wx‖1) are computed using the efficient procedure
from the Computability Lemma (Lemma ??).

2. Else, compute π1 ← SK.Decsk1(Π1) and parse π1 as a set of tuples of the form
(z, c1z). Recover (x||0, c1x‖0) and (x‖1, c1x‖1) from π1. Output c1x‖0 and c1x‖1.

G1
v,Λ1,w

Hardcoded Values: v, Λ1, w
Input: x ∈ {0, 1}τ+κ,Vx,Wx, K̃x, sk1,mode

1. If (InjPRG(Extw(x)) = v) then output ⊥.
2. If mode = 0, (Below j = f(x). Recall from Section ?? that f(x) is the smallest

j such that x = x[j]‖1τ+κ−j .)
(a) For each i ∈ [τ + κ], set ψi = LeftInjPRG0(Si,x[i]) (obtained from Wi

x for

i ≤ j and from Vix for i > j).
(b) For each i ∈ {j, . . . , τ + κ} set γi = LeftInjPRG1(Si,x[i]) and βi =

SK.Encγj ,··· ,γτ+κ(Si,x[i]+1), encrypting Si,x[i]+1 under γj , . . . γτ+κ using

PrefixCons(K̃x, 0) as the random tape. In the above, Si,x[i] and Si,x[i]+1

are obtained from V ix for all i ∈ [j, τ + κ].
(c) Output ((ψ1, . . . , ψτ+κ), (βj , . . . , βτ+κ))

3. Else, recover (x, dx) from SK.Decsk1(Λ1) and output dx.

Fig. 6: Circuits for simulating Public Key.

– Sim takes as input κ (encoded in unary) and three polynomials `(·), r(·), t(·)
(for ease of notation, we denote ` = `(κ), r = r(κ) and t = t(κ)), and
ultimately will output a simulated sampler Sampler. However, before
doing so, Sim provides the following interface for additional input:
• Read queries: here the user submits an input circuit C of size at

most `, that uses r bits of randomness and has output length t. Sim
will respond with a sample s that will ultimately be the output of

21

F 2
i,PK2

i+1,Π2

Hardcoded Values: i,PK2
i+1, Π2.

Input: (x ∈ {0, 1}i−1, Ux, Kx, Kx, sk2, mode)

1. If (mode = 0),
(a) Output FE.EncPK2

i+1
(x‖0,Ux‖0,Kx‖0,Kx‖0, sk,mode;K′x‖0) and

FE.EncPK2
i+1

(x‖1,Ux‖1,Kx‖1,Kx‖1, sk,mode;K′x‖1), where for b ∈ {0, 1},
Kx‖b = PrefixCons(Kx, b‖0) and K′x‖b = PrefixCons(Kx, b‖1) and
Ux‖0 and Ux‖1 are computed as described in Computability Lemma
(Lemma ??).

2. Else recover (x||0, c2x‖0) and (x‖1, c2x‖1) from SK.Decsk2(Π2) and output c2x‖0
and c2x‖1.

G2
Λ2

Hardcoded Values: Λ2

Input: pk ∈ {0, 1}κ,Upk,Kpk,Kpk, sk2,mode

1. If mode = 0,
(a) For all i ∈ [τ + κ], compute σi := Si,(pk‖Kpk)[i] from Upk.

(b) Compute ρ ← PK.Encpk(Kpk) and ρi ← PK.Encpk(σi) for all i ∈ [τ + κ]
using PrefixCons(Kpk, 0) as the random tape.

(c) Output (pk, (pk, ρ, ρ1, · · · , ρτ+κ)).
2. Else, recover (pk, hpk) from SK.Decsk2(Λ2) and output hpk.

Fig. 7: Circuits for simulating Sampler

the simulated sampler on C. Sim supports an unbounded number
of Read queries.

• Set queries: here the user submits in input circuit C of size at
most `, that uses r bits of randomness with output length t, as
well as a sample s of length t. Sim will record (C, s), and set the
output of the simulated sampler on C to be s. Sim supports up to n
Set queries. We require that there is no overlap between circuits C
in Read and Set queries, and that all Set queries are for distinct
circuits.

• Finish query: here, the user submits nothing, and Sim closes its
interfaces, terminates, and outputs a sampler Sampler.

22

Sim must be capable of taking the queries above in any order.
– Correctness. Sampler is consistent with any queries made. That is, if

a Read query was made on C and the response was s, then Sampler(C) =
s. Similarly, if a Set query was made on (C, s), then Sampler(C) = s.

– Indistinguishability from honest generation. Roughly, this re-
quirement says that in the absence of any Write queries, and honest
and simulated sampler are indistinguishable. More precisely, the ad-
vantage of any polynomial-time algorithm A is negligible in the fol-
lowing experiment:
• The challenger flips a random bit b. If b = 0, the challenger

runs Sampler ← Setup(1κ, `, r, t). If b = 1, the challenger initi-
ates Sim(1κ, `, r, t).

• A is allowed to make Read queries on arbitrary circuits C of size
at most `, using r bits of randomness and output length t. If b = 0,
the challenger runs s← Sampler(C) and responds with s. If b = 1,
the challenger forwards C to Sim as a Read query, and when Sim
responds with s, the challenger forwards s to A.

• Finally, A sends a Finish query. If b = 0, the challenger then
sends Sampler to A. If b = 1, the challenger sends a Finish query
to Sim, gets Sampler from Sim, and forwards Sampler to A.

• A then tries to guess b. The advantage of A is the advantage A
has in guessing b.

– Pseudorandomness of samples. Roughly, this requirement says
that, in the simulated sampler, if an additional Set query is performed
on (C, s) where s is a fresh sample from C, then the simulated sam-
pler is indistinguishable from the case where the Set query was not
performed. More precisely, the advantage of any polynomial-time al-
gorithm B is negligible in the following experiment:
• The challenger flips a random bit b. It then initiates Sim(1κ, `, r, t).
• B first makes a Challenge query on circuit C∗ of size at most
`, using r bits of randomness and output length t, as well as an
integer i∗.

• B is allowed to make arbitrary Read and Set queries, as long as
the number of Set queries is at most n − 1, and the queries are
all on distinct circuits that are different from C∗. The Read and
Set queries can occur in any order; the only restriction is that the
Challenge query comes before all Read and Set queries.

• After i∗−1 Read and Set queries, the challenger does the follow-
ing:
∗ If b = 0, the challenger makes a Read query to Sim, and

forwards the response s∗ to B.

23

∗ If b = 1, the challenger computes a fresh random sample s∗ ←
C∗(r), and makes a Set query to Sim on (C∗, s∗). Then it gives
s∗ to B.

Thus the i∗th query made to Sim is on circuit C∗, and the only
difference between b = 0 and b = 1 is whether the output of the
simulated sampler will be a pseudorandom sample or a fresh ran-
dom sample from C∗.

• B is allowed to continue making arbitrary Read and Set queries,
as long as the number of Set queries is at most n − 1 and the
queries are all on distinct circuits that are different from C∗.
• Finally B makes a Finish query, at which point the challenger

makes a Finish query to Sim. It obtained a simulated sampler
Sampler, which it then gives to B.
• B then tries to guess b. The advantage of B is the advantage B

has in guessing b.

5.2 Construction from FE

In this section, we will construct Universal Samplers that satisfies Def-
inition 3 from polynomially hard, compact Functional Encryption and
Prefix Constrained Pseudorandom Function (which is implied by Func-
tional Encryption).

Theorem 3. Assuming the existence of selective secure, single key, com-
pact public key functional encryption there exists an Universal Sampler
scheme satisfying Definition 3.

Our Construction. The formal description our construction appears in
Figure 8.

Due to lack of space, we give the proof of security in the full version
of the paper [20].

6 Multiparty Non-interactive Key Exchange

In this section, we build multiparty non-interactive key exchange for an
unbounded number of users. Moreover, in constrast to the original mul-
tilinear map protocols [15], our protocol has no trusted setup.

6.1 Definition

A multiparty key exchange protocol consists of:

24

Setup

- Input: 1κ and three polynomials `(·), r(·), t(·).
- Sampled Ingredients:

1. Sample S ← KeyGenPCPRF (1κ, `(·), r(·)) and K ←
KeyGenPCPRF (1κ, rand(·), I(·)) where rand(κ) = 2`(κ) and I(κ) = κ. For
ease of notation, we denote ` = `(κ) and r = r(κ).

2. For every i ∈ [`+ 1], sample (PKi,MSKi)← FE.Setup(1κ) .
3. For every j ∈ [n], sample skj ← SK.KeyGen(1κ). Let |skj | = p(κ). For

i ∈ [`+ 1] and j ∈ [n], let Πj
i ← SK.Encskj (π

j
i) where πji = 0len(κ) . Here

len(·) is an appropriate length function that would be specified later. For
all i ∈ [`+ 1], let Πi = {Πj

i }j∈[n].
- Functional encryption ciphertext and keys to simulate obfuscation
of Setup:
1. For each i ∈ [`], generate FSKi ← FE.KeyGen(MSKi, Fi,PKi+1,Πi) and

FSK`+1 ← FE.KeyGen(MSK`+1, GΠ`+1), where Fi,PKi+1,Πi and GΠ`+1 are
circuits described in Figure 9.

2. For every j ∈ [n], Zj = (j,⊥). Let Z := {Zj}j∈[n].
3. Let cφ = FE.EncPK1(φ, S,K,Z, 0).
4. Output (cφ, {FSKi}i∈[`+1]) as the sampler.

Evaluating the Sampler

- Input: Circuit C of size ` (padded with dummy symbols if its size is less than
`) using r bits of randomness and output length t and the sampler given by
(cφ, {FSKi}i∈[`+1]).

- Evaluation:
1. For i ∈ [`], compute cC[i−1]‖0, cC[i−1]‖1 := FE.Dec(FSKi, cC[i−1]

).

2. Compute dC as output of FE.Dec(FSK`+1, cC).
3. Output dC .

Fig. 8: Setup and Evaluating the Sampler

– Publish(κ) takes as input the security parameter and outputs a user
secret sv and public value pv. pv is posted to the bulletin board.

– KeyGen({pvj}j∈S , svi, i) takes as input the public values of a set S of
users, plus one of the user’s secrets svi. It outputs a group key k ∈ K.

For correctness, we require that all users generate the same key:

KeyGen({pvj}j∈S , svi, i) = KeyGen({pvj}j∈S , svi′ , i
′)

for all (svj , pvj) ← Publish(κ) and i, i′ ∈ S. For security, we have the
following:

25

Fi,PKi+1,Πi

Hardcoded Values: i, PKi+1, Πi.
Input: C ∈ {0, 1}i−1, SC , KC , Z, mode

1. If (mode = 0),
(a) Output FE.EncPKi+1(C‖0, SC‖0,KC‖0, Z,mode;K′C‖0) and

FE.EncPKi+1(C‖1, SC‖1,KC‖1, Z,mode;K′C‖1), where for b ∈ {0, 1},
KC‖b = PrefixCons(KC , b‖0) and K′C‖b = PrefixCons(KC , b‖1) and
SC‖b := PrefixCons(SC , b).

2. Else,
(a) Let j∗ be the minimum value of j ∈ [n] such that Zj+1 = (j + 1,⊥).

(b) Let πj
∗

i ← SK.Decskj∗ (Πj∗

i) where πj
∗

i is a collection of elements of

the form (C′, ·, ·) for C′ ∈ {0, 1}i−1. Recover (C, (C‖b, cC‖b), (C‖(1 −
b), cC‖(1−b))) (if there are more than one value of (C, ·, ·), select the lexi-

cographically first such value) from πj
∗

i and output (cC‖0, cC‖1).

GΠ`+1

Hardcoded Values: Π`+1

Input: C ∈ {0, 1}`, SC ,KC , sk,mode

1. If mode = 0, output C(SC).
2. Else, let j∗ be the minimum value of j ∈ [n] such that Zj+1 = (j + 1,⊥).

Recover (C, dC) from SK.Decskj∗ (Πj∗

i) and output dC .

Fig. 9: Circuits for simulating Public Key.

Definition 4. A non-interactive multiparty key exchange protocol is stat-
ically secure if the following distributions are indistinguishable for any
polynomial-sized set S:

{pvj}j∈S , k where (svj , pvj)← Publish(κ)∀j ∈ S, k ← KeyGen({pvj}j∈S , s1, 1) and

{pvj}j∈S , k where (svj , pvj)← Publish(κ)∀j ∈ G, k ← K

Notice that our syntax does not allow a trusted setup, as the origi-
nal constructions based on multilinear maps [11, 15, 13] require. Boneh
and Zhandry [12] give the first multiparty key exchange protocol without
trusted setup, based on obfuscation. A construction of obfuscation from
a finite set of assumptions with polynomial security appears implausible

26

due to an argument of [18]. Notice as well that our syntax does not allow
the key generation to depend on the number of users who wish to share a
group key. To date, prior key exchange protocols satisfying this property
relied on strong knowledge variants of obfuscation [1]. Recently Khurana,
Rao and Sahai in [25] constructed a key exchange protocol supporting un-
bounded number of users based on indistinguishability obfuscation and
a tool called as somewhere statistically binding hash functions [24]. Here,
we get an unbounded protocol based on functiona encryption only, and
without using complexity leveraging.

6.2 Construction

Our construction will use the universal samplers built in Section 5, as
well as any public key encryption scheme.

– Publish(κ). Run (sk, pk)← PK.KeyGen(κ). Also run the universal sam-
pler setup algorithm Sampler← Setup(κ, `, t) where output size ` and
circuit size bound t will be decided later. Output pv = (pk,Sampler)
as the public value and keep sv = sk as the secret value.

– KeyGen({(pkj ,Samplerj)}j∈S , ski, i). Interpret S as the set [1, n] for
n = |S|, choosing some canonical ordering for the users in S (say, the
lexicographic order of their public values). Define Sampler = Sampler1.
Define Cpk,pk′ for two public keys pk, pk′ to be the circuit that sam-
ples a random (sk′′, pk′′) ← PK.KeyGen(κ), then encrypts sk′′ under
both pk and pk′, obtaining encryptions c and c′ respectively, and then
outputs (pk′′, c, c′).
Let Dpk,pk′ be a similar circuit that samples a uniformly random string
sk′′ in the key space of PKE , encrypts sk′′ to get c, c′ as before, and
outputs (0, c, c′) where 0 is a string of zeros with the same length as a
public key for PKE . Let ` the the length of (pk′′, c, c′) and let t be the
size of Cpk,pk′ (which we will assume is at least as large as Dpk,pk′).
Next, define pk′2 = pk1, and recursively define (pk′j+1, cj , c

′
j) = Sampler(Cpkj ,pk

′
j
)

for j = 2, . . . , n−1. Define sk′j+1 to be the secret key corresponding to
pk′j+1, which is also the secret key encrypted in cj , c

′
j . Finally, define

(0, cn, c
′
n) = Sampler(Dpkn,pk

′
n
), and define sk′n+1 to be the secret key

encrypted in cn, c
′
n.

First, it is straightforward that given {pkj}j∈[n] and Sampler, it is
possible to compute pk′j , cj , c

′
j for all k ∈ [2, n]. Thus anyone, including

an eavesdropper, can compute these values.
Next, we claim that if additionally given secret keys skj or sk′j , it
is possible to compute sk′j+1. Indeed, sk′j+1 can be computed by de-
crypting cj (using skj) or decrypting c′j (using sk′j). By iterating, it is

27

possible to compute sk′k for every k > j. This implies that all users in
[n] can compute skn+1.

Security. We now argue that any eavesdropper cannot learn any infor-
mation about sk. Our theorem is the following:

Theorem 4. If PKE is a secure public key encryption scheme and Setup
is a m-time statically secure universal sampler with interactive simula-
tion, the the construction above is a statically secure NIKE for up to
2m users. In particular, by setting m = κ, the scheme is secure for an
unbounded number of users.

Due to lack of space, we give the proof of Theorem 4 in the full version
of the paper [20].

Acknowledgments. Research supported in part from DARPA/ARL SAFE-
WARE Award W911NF15C0210, DARPA/ARO Award W911NF15C0226,
AFOSR Award FA9550-15-1-0274, NSF CRII Award 1464397, AFOSR
YIP Award and research grants by the Okawa Foundation and Visa Inc.
The views expressed are those of the author and do not reflect the official
policy or position of the funding agencies.

References

1. Prabhanjan Ananth, Dan Boneh, Sanjam Garg, Amit Sahai, and Mark Zhandry.
Differing-inputs obfuscation and applications. Cryptology ePrint Archive, Report
2013/689, 2013. http://eprint.iacr.org/2013/689.

2. Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From
selective to adaptive security in functional encryption. In Advances in Cryptology
- CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 16-20, 2015, Proceedings, Part II, pages 657–677, 2015.

3. Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from com-
pact functional encryption. In CRYPTO, pages 308–326, 2015.

4. Prabhanjan Vijendra Ananth and Amit Sahai. Functional encryption for turing
machines. In Theory of Cryptography - 13th International Conference, TCC 2016-
A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part I, pages 125–153, 2016.

5. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. J.
ACM, 59(2):6, 2012.

6. Charles H. Bennett. Time/space trade-offs for reversible computation. SIAM J.
Comput., 18(4):766–776, 1989.

7. Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hardness of
finding a nash equilibrium. In FOCS, 2015.

8. Nir Bitansky, Omer Paneth, and Daniel Wichs. Perfect structure on the edge of
chaos. TCC, 2016.

28

9. Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from
functional encryption. In FOCS, 2015.

10. Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai, Mark Zhandry, and Joe
Zimmerman. Semantically secure order-revealing encryption: Multi-input func-
tional encryption without obfuscation. In Elisabeth Oswald and Marc Fischlin,
editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 563–594, Sofia,
Bulgaria, April 26–30, 2015. Springer, Heidelberg, Germany.

11. Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryptography.
Cryptology ePrint Archive, Report 2002/080, 2002. http://eprint.iacr.org/

2002/080.

12. Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing,
and more from indistinguishability obfuscation. In Juan A. Garay and Rosario
Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 480–499,
Santa Barbara, CA, USA, August 17–21, 2014. Springer, Heidelberg, Germany.

13. Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical mul-
tilinear maps over the integers. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part I, volume 8042 of LNCS, pages 476–493, Santa Barbara,
CA, USA, August 18–22, 2013. Springer, Heidelberg, Germany.

14. Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for
signing contracts. Commun. ACM, 28(6):637–647, 1985.

15. Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from
ideal lattices. In Thomas Johansson and Phong Q. Nguyen, editors, EURO-
CRYPT 2013, volume 7881 of LNCS, pages 1–17, Athens, Greece, May 26–30,
2013. Springer, Heidelberg, Germany.

16. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for
all circuits. In 54th FOCS, pages 40–49, Berkeley, CA, USA, October 26–29, 2013.
IEEE Computer Society Press.

17. Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Fully secure func-
tional encryption from multilinear maps. In TCC, 2016.

18. Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption
and its applications. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum,
editors, 45th ACM STOC, pages 467–476, Palo Alto, CA, USA, June 1–4, 2013.
ACM Press.

19. Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. Revisiting the cryp-
tographic hardness of finding a nash equilibrium. In Advances in Cryptology -
CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa Bar-
bara, CA, USA, August 14-18, 2016, Proceedings, Part II, pages 579–604, 2016.

20. Sanjam Garg, Omkant Pandey, Akshayaram Srinivasan, and Mark Zhandry. Break-
ing the sub-exponential barrier in obfustopia. IACR Cryptology ePrint Archive,
2016:102, 2016.

21. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. J. ACM, 33(4):792–807, 1986.

22. Shafi Goldwasser and Yael Tauman Kalai. Cryptographic assumptions: A position
paper. Cryptology ePrint Archive, Report 2015/907, 2015. http://eprint.iacr.
org/2015/907.

23. Dennis Hofheinz, Tibor Jager, Dakshita Khurana, Amit Sahai, Brent Waters, and
Mark Zhandry. How to generate and use universal samplers. ASIACRYPT 2016,
2016. http://eprint.iacr.org/2014/507.

29

24. Pavel Hubacek and Daniel Wichs. On the communication complexity of secure
function evaluation with long output. In Tim Roughgarden, editor, ITCS 2015,
pages 163–172, Rehovot, Israel, January 11–13, 2015. ACM.

25. Dakshita Khurana, Vanishree Rao, and Amit Sahai. Multi-party key exchange
for unbounded parties from indistinguishability obfuscation. In Tetsu Iwata and
Jung Hee Cheon, editors, ASIACRYPT 2015, Part I, volume 9452 of LNCS, pages
52–75, Auckland, New Zealand, November 30 – December 3, 2015. Springer, Hei-
delberg, Germany.

26. Huijia Lin. Indistinguishability obfuscation from DDH on 5-linear maps and
locality-5 prgs. IACR Cryptology ePrint Archive, 2016:1096, 2016.

27. Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from ddh-
like assumptions on constant-degree graded encodings. In IEEE 57th Annual Sym-
posium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016,
Hyatt Regency, New Brunswick, New Jersey, USA, pages 11–20, 2016.

28. Moni Naor. On cryptographic assumptions and challenges (invited talk). In Dan
Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 96–109, Santa Bar-
bara, CA, USA, August 17–21, 2003. Springer, Heidelberg, Germany.

29. Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation
from semantically-secure multilinear encodings. In Juan A. Garay and Rosario
Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 500–517,
Santa Barbara, CA, USA, August 17–21, 2014. Springer, Heidelberg, Germany.

30. Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deni-
able encryption, and more. In Symposium on Theory of Computing, STOC 2014,
New York, NY, USA, May 31 - June 03, 2014, pages 475–484, 2014.

30

