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Abstract. Micropayments (payments worth a few pennies) have numerous poten-
tial applications. A challenge in achieving them is that payment networks charge
fees that are high compared to “micro” sums of money.
Wheeler (1996) and Rivest (1997) proposed probabilistic payments as a technique
to achieve micropayments: a merchant receives a macro-value payment with
a given probability so that, in expectation, he receives a micro-value payment.
Despite much research and trial deployment, micropayment schemes have not
seen adoption, partly because a trusted party is required to process payments and
resolve disputes.
The widespread adoption of decentralized currencies such as Bitcoin (2009) sug-
gests that decentralized micropayment schemes are easier to deploy. Pass and
Shelat (2015) proposed several micropayment schemes for Bitcoin, but their sch-
emes provide no more privacy guarantees than Bitcoin itself, whose transactions
are recorded in plaintext in a public ledger.
We formulate and construct decentralized anonymous micropayment (DAM) sch-
emes, which enable parties with access to a ledger to conduct offline probabilistic
payments with one another, directly and privately. Our techniques extend those of
Zerocash (2014) with a new privacy-preserving probabilistic payment protocol.
One of the key ingredients of our construction is fractional message transfer
(FMT), a primitive that enables probabilistic message transmission between two
parties, and for which we give an efficient instantiation.
Double spending in our setting cannot be prevented. Our second contribution is an
economic analysis that bounds the additional utility gain of any cheating strategy,
and applies to virtually any probabilistic payment scheme with offline validation.
In our construction, this bound allows us to deter double spending by way of
advance deposits that are revoked when cheating is detected.

1 Introduction
We formulate and construct decentralized anonymous micropayments, by way of proba-
bilistic payments.

Micropayments. A micropayment is a payment of a small amount, e.g., a fraction of
a penny [Whe96, Riv97]. Micropayments have many potential applications, including
advertisement-free content delivery, spam protection, rewarding nodes of P2P networks,
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and others. Achieving micropayments involves at least two main challenges. First, pay-
ment processing fees dwarf “micro” payment values. Second, micropayment applications
often require fast merchant responses, which, in many settings, are achieved via offline
payments, which are vulnerable to double spending.

Probabilistic payments. A technique to reduce processing fees is to amortize them
over multiple payments by way of probabilistic payments [Whe96, Riv97].3 These are
protocols that enable a customer to pay V units of currency to a merchant with probability
p: with probability 1 − p the merchant receives a nullpayment that is not processed,
and with probability p the merchant receives a macropayment that is processed. In
expectation, the merchant receives pV units per micropayment, but the overhead and
processing fees of these “lottery tickets” is p times smaller as only the infrequently
generated macropayments are actually handled by the payment network. Constructing
probabilistic payments is an area of ongoing interest in cryptography.

Centralized vs. decentralized systems. Despite extensive research and trial deploy-
ments [Whe96, Riv97, LO98, MR02, Riv04, Mic14], micropayment schemes have not
seen widespread usage. This is perhaps due to them being centralized systems: a trusted
third party is tasked with processing payments and punishing cheaters. Appointing such
a party raises deployment costs, requires establishing complex business relationships be-
tween all involved (the trusted party, merchants, and customers), and makes participation
conditional on certain requirements being met [vOR+03].

Recent work in digital currencies has focused on decentralized systems, as the
cost of entry and deployment appears to be lower. The most notable such currency is
Bitcoin [Nak09], a widely adopted peer-to-peer payment system. Unlike traditional
banking and e-cash schemes [Cha82, CHL05, ST99] where transactions are processed
by a trusted party, Bitcoin utilizes a distributed public ledger known as the blockchain to
store all transactions; these transactions are verified by network nodes in a peer-to-peer
fashion.

Decentralized systems are thus potentially attractive for micropayments, because the
overhead involving trusted parties is no longer a factor. However, Bitcoin processing
fees are still relatively high (as of May 2016 the fee for a 1kB-transaction is ≈ $0.20),
with present fees believed to be well below the cost of performing a transaction on the
Bitcoin network [MB15]. Thus, fee amortization is still necessary. Caldwell [Cal12] first
sketched probabilistic payments for Bitcoin. Recently, Pass and Shelat [PS15, PS16]
also proposed three probabilistic payment schemes for Bitcoin, where, informally, the
customer first puts V bitcoins in escrow, and then the customer and merchant engage in a
coin-flipping protocol that allows the merchant to retrieve the escrow with probability p.
Their three schemes differ in how payments are processed and how disputes are resolved.

Our privacy goal and limitations of prior work. We study the question of how
to construct decentralized anonymous micropayments via the technique of (offline)
probabilistic payments. The aforementioned prior work [PS15, PS16] provides no more
privacy than the underlying Bitcoin protocol. And Bitcoin itself provides little to no
privacy because every transaction is publicly broadcast and contains a payment’s origin,
destination, and amount; a user’s payment history is thus readily available to any passive

3 Another technique is micropayment channels, which we discuss in Section 1.2.
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observer who can can link pseudonyms together or to real world identities.4 This lack of
privacy is particularly dangerous for micropayment applications because they typically
involve high-volume pattern-rich payments (e.g., per-click payments while surfing the
web), and sometimes necessitate user anonymity (e.g., bandwidth payments for Tor
relays [BP15]).

Privacy is not merely an issue of individual users: if each coin’s history is public,
a customer may not be able to spend a coin at its ‘declared’ value due to its past.
For example, a merchant may not accept coins whose past owners include certain
political organizations. Privacy thus ensures a fundamental property of the currency:
fungibility, which means that any two sets of coins with the same ‘declared’ total value
are interchangeable, regardless of their provenance.

Prior work on privacy-preserving analogues of Bitcoin [MGGR13, DFKP13, BCG+14]
does not achieve probabilistic payments, and merely “plugging” these schemes into
[PS15, PS16]’s approach results in subtle problems. Consider the following natural
modification to Pass and Shelat’s coin-flipping protocol: instead of a Bitcoin transaction,
the sender probabilistically transmits to the merchant a Zerocash transaction [BCG+14].
Despite the strong anonymity guarantees provided by Zerocash, merchants still learn
information about their customers’ spending habits, because each Zerocash transaction
includes a unique serial number corresponding to the spent “coin”. Since the customer
sends to the merchant information about the escrow, this serial number is revealed in
each micropayment. Since the same escrow is used across multiple probabilistic pay-
ments (to amortize fees), privacy of the customer is compromised because the merchant
learns (1) which (macro or null) payments to him were made with the same escrow;
and (2) which macropayments to other merchants were made with an escrow used
for payments to him. This breach of privacy worsens if merchants share information
with one another. In sum, while the above natural approach achieves “macropayment
unlinkability”, micropayments are still linkable, and thus customers have little privacy.

Double spending in offline probabilistic payments. Micropayment applications of-
ten require fast responses. In many settings, these in turn require offline validation: a
merchant responds to a payment after only a local “offline” check, because he cannot
wait for the payment network to validate the payment (this validation instead completes
after the merchant’s response). For example, validation takes a few minutes in Bitcoin,
while responding to unconfirmed zero-conf transactions takes only a few seconds.
We thus focus on offline probabilistic payments.

However, such payments are vulnerable to double spending, as we now explain.
First, double spending cannot be prevented for offline payments, because, to prevent it, a
merchant would have to refrain from responding to any payment before all payments
up to, and including, this payment have been validated. One fallback is to detect and
punish all double-spending customers. However, for offline probabilistic payments, not
all double spending can even be detected.

Indeed, there are two types of double spending when using the same lottery ticket in
two probabilistic payments: (1) both payments result in macropayments; or (2) the first

4 This is not merely a theoretical concern: extracting information from Bitcoin transactions is the
subject of applied research [RH11, BBSU12, RS13, MPJ+13] and commercial ventures [Ell13,
Blo14, Cha15].
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payment results in a macropayment (thereby ‘consuming’ the ticket) while the second
payment results in a nullpayment. While detecting the first type is easy, detecting the
second type requires the payment network to ‘know’ the temporal order of all payments,
because whether the nullpayment or the macropayment occurred first determines whether
the two payments correspond to honest behavior (nullpayment first) or not (macropay-
ment first). But knowing the global order of all payments (with high precision) is a strong
synchronization property that is unrealistic in many decentralized settings, including that
of Bitcoin, because information does not instantly reach everyone in the network.

Given that not all double spending can be detected, the “detect-and-punish” approach
is effective only if the disadvantages of being punished (upon detection) outweigh the
advantages of double spending. This may be plausible in the centralized setting, where
customers have registered with a trusted party that can permanently ban and legally
prosecute them. In the decentralized setting, however, banning has few consequences, if
any: anyone can abandon old identities and use fresh new identities in their place.

Ruffing, Kate, and Schröder [RKS15] introduce “accountable assertions”, which
enable timelocked deposits in Bitcoin that are revoked upon evidence of double spending.
Pass and Shelat [PS16] also suggest a Bitcoin-specific penalty mechanism to deter
rational customers and merchants from cheating.5 Unfortunately, both of these works
do not provide an economic analysis to indicate how large a penalty should be to deter
double spending. Such an analysis is crucial: how could detect-and-punish be a deterrent
if double spending were to yield unbounded additional utility?

1.1 Our contributions

We overcome the aforementioned limitations via a combination of cryptographic and
economic techniques. We adopt a “detect-and-punish” approach in which cryptography
is used to retroactively detect and economically punish double spending and, separately,
an economic analysis clarifies how much to punish so as to deter double spending in the
first place. More precisely, we present the following three contributions.

1.1.1 Economic analysis of double spending for offline probabilistic payments

We characterize the additional utility that can be gained by double spending via offline
probabilistic payments. We suppose that: (i) every probabilistic payment is backed
by an advance deposit;6 (ii) all macropayment double spends can be detected; and
(iii) if a merchant detects a double spend then he reports it, and doing so results in the
revocation of the cheating customer’s deposit. (Our cryptographic constructions will
provide suitable mechanisms for these tasks.) We then ask: how large must the deposit
be in order to deter double spending?

We provide a simple yet powerful analysis that answers this question under reason-
able network behavior. Namely, let T denote the time it takes to catch a macropayment
double spend (e.g., in Bitcoin one could take T to be the network’s broadcast time).
Within any period of time T , let A denote the maximum cumulative value of probabilistic

5 We also note that two of the three schemes in [PS15] do not support offline payments, and
the remaining one only provides “fast online payments” where an online (publicly verifiable)
trusted party assists the ledger by processing macropayments faster.

6 One deposit may back multiple payments; in particular, an honest customer may use a single
deposit to back all of his payments.
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payments and W the maximum cumulative value of macropayments; our analysis will
show that imposing bounds on these quantities is necessary. To simplify discussions, we
make the assumption that only macropayment (and not nullpayment) double spends are
detectable; our analysis extends to the case where nullpayment double spends may also
be detected eventually (see Remark 1).

Below we informally state our theorem, for simplicity in the special case where the
macropayment value V and the payment probability p are fixed across all probabilistic
payments, and all merchants share the same detection time T . The formal statement
that we prove is in fact more general, because it applies even when these quantities are
chosen dynamically and arbitrarily across different payments.

Theorem 1 (informal statement of Thm. 4).
(a) If the deposit is at least W , then there is no worst-case utility gain in double

spending.
(b) If the deposit is at least (1− p)V +A, then there is no average-case utility gain in

double spending.
(c) Both bounds above are tight.

Our theorem has a simple interpretation: the required deposit amount equals the
maximum financial activity that can happen within any time period of T . Namely, if
macropayments have maximum total worth W within time T , the deposit must be at
least W (w.r.t. worst-case utility); and if probabilistic payments have maximum total
worth A within time T , the deposit must be at least ≈ A (w.r.t. average-case utility).
Note that it is unsurprising that the two statements in the theorem depend on the two
different quantities W and A, because they target different notions of utility; also note
that, while one can take pW ≤ A without loss of generality, a bound on W does not
always imply a bound on A (there could still be arbitrarily many probabilistic payments,
though with extremely small probability).

But which of the two bounds should one use in practice? Naturally, the worst-case
bound is safer than the average-case bound; however, an appropriate setting of W will
be Ω(1/p) larger than A, which implies a substantial increase in the required deposit.
The choice between the two depends on whether one cares about malicious customers
that are lucky with even very small probability (as opposed to focusing on their average
gains possibly across many deposits).

As already mentioned, bounding the value of probabilistic payments (via A) or
macropayments (via W ) within time T is necessary because our bounds are tight (i.e.,
there exist double-spending strategies that achieve them). In the “real world” these
bounds may be imposed by the environment (e.g., limited network throughput), or the
merchants (e.g., they accept up to a given number of payments within time T ).

In terms of analysis, our proof shows that any additional utility gained via double
spending must come from macropayment double spending. This may be surprising
because, superficially, one may think that nullpayment double spending also contributes
to additional utility; e.g., one may think that a malicious customer gains pV for every
nullpayment double spend. This proposition is alarming: in the worst case there could be
infinitely-many nullpayment double spends (which imply infinite additional utility); and
in the average case there could be clever strategies that leverage double spends across
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multiple merchants to lower the probability of detection. We prove that this is not the
case: we use a simulation argument to show that the naive strategy of double spending
as much as possible is the best strategy (i.e., maximizes additional utility), both in the
worst case and in the average case. In particular, we learn that the best strategy always
leads to detection (after a time period of T ) and that additional utility is finite even in the
worst case (if W is finite). Details of our analysis are in Section 3.

We believe our theorem to be of independent interest because it applies to virtually
any (centralized or decentralized) setting that enforces a deposit mechanism for offline
payments. One such setting could be probabilistic smart contracts (an application
suggested by [PS15, PS16]). A thorough understanding of the economic benefits of
double spending is necessary to ensure that such smart contracts, as well as other
applications, function as intended.

Example. As a demonstration, we invoke our theorem on parameters that could fit the
application of advertisement-free content delivery, to see what conclusions our economic
analysis gives us. Suppose that we consider a Bitcoin-like setting, where (i) transaction
fees are typically a few cents; and (ii) we could take the detection time T to be, e.g., 20
minutes, which is typically two blocks (ideal block generation follows an exponential
distribution with a mean of 10 minutes). Suppose further that we fix the deposit to be
D := $200 and the expected value of the probabilistic payment to be $0.1 (similar size
as a transaction fee); concentration bounds then suggest that, subject to the condition
pV = $0.1, good choices are V := $10 and p := 1%. Note that these settings imply
that we can take W up to D = $200 and A up to D − (1 − p)V = $190.1. Then our
theorem implies that: (1) Even the luckiest double spending user has no extra utility gain
if the cumulative value of macropayments every 20 minutes is less than $200 (that is, the
number of macropayments every 20 minutes is less than 20), regardless of how much
nullpayment double spending occurred. (2) A double spending user has no extra utility
gain on average if the cumulative value of probabilistic payments every 20 minutes is
less than $190.1 (that is, the number of probabilistic payments every 20 minutes is less
than 1901).

1.1.2 Decentralized anonymous micropayments

We formulate the notion of a decentralized anonymous micropayment (DAM) scheme.
This notion formalizes the functionality and security properties of an offline probabilistic
payment scheme that enables parties with access to a ledger to conduct transactions with
one another, directly and privately. To realize the requirements of our economic analysis,
a DAM scheme enables parties to set up deposits, which are revoked when macropay-
ments reveal that double spending has occurred. Crucially, the security guarantees of
a DAM scheme guarantee anonymity not only across macropayments but also across
nullpayments, so that even the “offline stream of payments” remains unlinkable.

We construct a DAM scheme and prove its security under specific cryptographic
assumptions. Our two main building blocks are decentralized anonymous payment (DAP)
schemes [BCG+14] and fractional message transfer schemes (see below).

Theorem 2 (informal). Given a decentralized anonymous payment scheme and a frac-
tional message transfer scheme (and other standard cryptographic primitives) there
exists a DAM scheme.
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Formally capturing the notion of a DAM scheme and proving security of our con-
struction was quite challenging due to the combination of rich functionality and strong
anonymity guarantees. Parties can mint standard coins, deposits, or lottery tickets; they
can withdraw deposits; they can pay each other with deterministic payments, switch
coin types; they can also pay each other with probabilistic payments; they can revoke
deposits of cheating parties — all of this while essentially revealing no information
about origins, destinations, and amounts of money transfers. In particular, two features
of our construction required particular attention: (1) revocation of an unknown cheating
party’s deposit when two macropayments with the same ticket are detected; and (2) mon-
itoring of payment value rates (as required by our economic analysis) despite deposits
being anonymous. Deterministic payments in our construction are non-interactive, while
probabilistic payments consist of a 3-message protocol between a sender and a receiver;
it is an interesting open question whether these can be made non-interactive as well.

We express the security of a DAM scheme via the ideal-world/real-world paradigm,
specifying a suitable ideal functionality, and we prove our construction’s security via
a simulator against non-adaptive corruptions of parties. We consider security in the
standalone setting, and leave security under composition to future work (that perhaps
can build upon the work of [KMS+16]).

1.1.3 Fractional message transfer

A key ingredient in our construction of DAM schemes is fractional message transfer
(FMT): a primitive that enables probabilistic message transmission between two parties,
called the ‘sender’ and the ‘receiver’. Informally, FMT works as follows: (i) the receiver
samples a one-time key pair based on a transfer probability p; (ii) the sender uses the
receiver’s public key to encrypt a message m into a ciphertext c; (iii) the receiver uses
the secret key to decrypt c, thereby learning m, but only with the pre-defined probability
p (and otherwise learns no information about m).

We thus (1) formulate the notion of an FMT scheme, which formally captures the
functionality and security of probabilistic message transmission, and (2) present an
efficient construction that works for probabilities that are inverses of positive integers.

Theorem 3 (informal). In the random oracle model and assuming the hardness of DDH
in prime-order groups, there exists an FMT scheme that works for transfer probabilities
p = 1/n with n ∈ N. Moreover, the number of group elements and scalars in the public
key and ciphertext is constant (independent of n); see Table 1.

Our definition of FMT is closely related to non-interactive fractional oblivious
transfer (NFOT), which was studied in the context of ‘translucent cryptography’ as an
alternative to key escrow [BM89, BR99]. Namely, prior definitions target one-way secu-
rity, which protects random messages. While one-way security suffices to encapsulate
random secret keys (the setting of translucent cryptography), it does not suffice for proba-
bilistically transmitting non-random messages (as needed in our construction). Therefore,
our definition of an FMT scheme targets a fractional variant of semantic security, which
we express via two properties: fractional hiding and fractional binding. Furthermore,
since in our system any party can act as both sender and receiver, we require the FMT
scheme to be composable. Our construction achieves this via simulation-extractability.
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Our construction of FMT is loosely related to the constructions in [BM89, BR99],
which (like our construction) build on the Elgamal encryption scheme [Elg85]. In fact,
such constructions, if analyzed under the hardness of DDH rather than CDH, are likely
to yield FMT according to our stronger definition. We did not carry out such an analysis,
but instead chose to construct a scheme that is more efficient than prior work for the case
of p = 1/n (these probabilities suffice for our application); we assume hardness of DDH
and work in the random oracle model in order to take advantage of certain Σ-protocols.
See Table 1 for a comparison of our construction with prior work.

scheme security assumption transfer
probability

size of public key size of ciphertext # exponentiations
group elts. scalars group elts. scalars to encrypt to decrypt

[BM89] one-way CDH 1/2 2 — 2 — 2 1

[BR99, § 5.1] one-way CDH 1/n n — 2 — 2 1

[BR99, § 5.1] one-way CDH (n− 1)/n n — 2 — 2 1

[BR99, § 5.2] one-way CDH a/n * 2 log2 n — 2 log2 n — 4 log2 n 2 log2 n

[BR99, § 5.3] one-way CDH a/n a+ n — 2 — 2 1

our FMT semantic DDH + RO 1/n 2 3 2 2 4 4

∗ n is restricted to be a power of 2.
Table 1: Comparison of prior NFOT schemes vs. our FMT scheme. All constructions assume a
common random string.

1.2 Prior work on micropayment channels

Micropayment channels were introduced by Hearn and Spilman [HS12, Bit13], and
further studied by Poon and Dryja [PD16] and Decker and Wattenhofer [DW15]. Roughly,
a micropayment channel enables a sender and a receiver to set up a contract by way of
an online (slow) transaction that escrows funds, after which the sender and receiver can
update the contract, and thus the relative split of the escrowed funds, without recording
the new contract on the blockchain. Thus payments can be made instantaneously. These
can be dynamically combined to obtain multi-hop “payment channel networks” that
go through several intermediaries, by using hashed timelock contracts; this technique
amortizes the cost of setting up a new channel for new receivers. From the perspective
of our work, micropayment channels have several limitations in terms of economics,
functionality, and privacy.

Economic limitations of payment channels. First, payment channels in general re-
quire a channel to be established in advance with a party: payments are only instantaneous
with advanced preparation. To alleviate this constraint, payment channel networks allow
transactions with arbitrary new parties provided there exists a path of existing channels
between the payer and payee.

Such networks have limitations. First, considerable capital is escrowed in the many
pairwise channels forming the network. The capital requirements may exceed those
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required for deposits in probabilistic micropayments. Both settings require escrowed
funds proportional to a user’s economic activity (either for the double spend deposit
or the “last mile” channel between the user and the payment network), but payment
channel networks escrow similar amounts in each edge of the network. Second, a variety
of pressures, including minimizing the capital escrowed, may centralize such networks
into a hub-and-spoke model.

Privacy limitations of payment channels. Payment channels reveal to the world
that a given pair of parties have a channel between them, the opening value of that
channel, and the final closing value. More importantly, especially for applications like
advertisement-free content delivery, payment channels provide no privacy between the
parties on the channel: if Alice pays say Wikipedia every time she views a page, then
each of those views is linked to the channel she established just as effectively as if she
had a tracking cookie in her browser.

Attempts to add privacy, either from intermediate nodes in the network [HAB+16]
or from recipients and intermediaries [GM16], to payment channels hit some seemingly
fundamental limitations of the payment channel setting. First, the anonymity set when
paying a given receiver is composed only of those users who have opened channels
with the receiver. This is likely far smaller than the global anonymity set provided
by probabilistic payments. Moreover, the receiving party can arbitrarily reduce the
anonymity set further by closing channels. This leaves open a range of attacks that are
not present in a system with a global anonymity set.

Finally it is unclear if non-hub-and-spoke private payment networks are scalable or
can provide privacy for payment values from intermediary nodes in the network. When a
payment is made via two intermediaries (i.e. A→ I1 → I2 → B), some combination
of I1 and I2 must know the balance of their pairwise channel at any given time or they
could not close the channel. Thus the value of any payment relayed through multiple
parties cannot be completely private. Moreover, discovering a multi-hop route between
two parties in a diverse and large network without leaking any identifying information
seems costly at scale. While [GM16] extend their point-to-point channel protocol to a
hub-and-spoke model that alleviates both these concerns, such a network is inherently
centralized.

2 Techniques
We discuss the intuition and techniques behind our results, first for our cryptographic
construction (Section 2.1) and then for our economic analysis of double spending
(Section 2.2).

2.1 Constructing decentralized anonymous payments

We discuss our design of a decentralized anonymous micropayment (DAM) scheme via
a sequence of candidate constructions, each fixing problems of the previous one; the last
one is a sketch of our construction.

2.1.1 Attempt 1: non-anonymous probabilistic payments + DAP

We begin with a natural candidate construction for a DAM scheme. The idea is to combine
two primitives, one providing probabilistic payments and the other anonymity. For
example, consider: (1) the scheme MICROPAY1 of [PS15], which provides probabilistic
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payments for Bitcoin; and (2) a decentralized anonymous payment (DAP) scheme
[BCG+14], which provides privacy-preserving payments for Bitcoin-like currencies.

To make MICROPAY1 privacy-preserving, we could try to replace its Bitcoin pay-
ments with DAP payments, which hide the payment’s origin, destination, and amount.
Thus, when a probabilistic payment goes through, and the corresponding DAP (macro-
)payment is broadcast, others cannot learn this information about the payment. However,
this idea does not provide the strong anonymity guarantees that we seek, as we now
explain.
Problem: not fully anonymous. Despite the anonymity guarantees provided by the
DAP scheme, merchants still learn information about their customers’ spending habits.
Each DAP payment includes a unique serial number corresponding to the underlying
“coin” that was spent by that payment; this is used to prevent double spending of
DAP coins. In the above proposal, the customer sends the merchant this serial number
regardless of whether the payment becomes a nullpayment or a macropayment. Since the
same underlying DAP payment and serial number are used across multiple probabilistic
payments (to amortize fees), this compromises customer anonymity because a merchant
learns (1) which (macro or null) payments to him were made with the same escrow;
and (2) which macropayments to other merchants were made with an escrow used for
payments to him. This compromise in anonymity gets even worse if merchants share
such information with one another.

Moreover, recall (from Section 1.1) that it is not possible to prevent double spending
in the setting of offline probabilistic payments. Pass and Shelat note this in the full
version of their paper [PS16], and propose adding a ‘penalty escrow’ to the scheme
MICROPAY1; the escrow is burned upon evidence of double spending. But observe that
anonymity for penalty escrows poses a similar challenge: to prove that a penalty escrow
is unspent, a merchant reveals its serial number, once again enabling merchants to link
probabilistic payments by learning about their escrows.

Overall, while the above ideas do achieve unlinkability of macropayments, customers
have little meaningful privacy until nullpayments and escrows are also unlinkable.

2.1.2 Attempt 2: commit to DAP payment + probabilistic opening + private
deposit coins

One way to address the anonymity problems of the previous attempt is to ensure that the
merchant learns the serial number only when the payment turns into a macropayment
(and, conversely, learns nothing otherwise). Then, to enable the aforementioned penalty
escrow mechanism, a customer creates a special ‘deposit’ coin.

Then, the modified protocol works as follows: (1) the customer sends to the merchant
a commitment to a DAP payment and to a 2-out-of-n share of the deposit serial number;
(2) the customer and merchant engage in a protocol that opens the commitment with
probability p (opening thus corresponds to a macropayment, and not opening corresponds
to a nullpayment); (3) when publishing a macropayment to the ledger, the merchant also
publishes the secret share.

The probabilistic opening hides the serial number of the coin in the DAP payment
until a macropayment occurs, and the secret share hides the deposit serial number until a
macropayment double spend occurs. To punish a double spending customer, the merchant
obtains (from the network or from the ledger) two secret shares of the deposit serial
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number from two macropayments and reconstructs the serial number. He then publishes
this to the ledger, thereby blacklisting the deposit.

One issue that must be addressed is ensuring that the secret shared deposit serial
number corresponds to a valid deposit. To do this, first notice that there are two kinds
of blacklisted deposits: those whose serial number appears on the ledger (in previous
‘punish’ transactions), and those that have been revoked in the current epoch. The serial
numbers of the latter kind are broadcast across the network, but have not yet appeared
on the ledger.

To prevent users from using blacklisted deposits of the first kind, a customer must
prove to the merchant that his deposit’s serial number does not appear on the ledger
(this can be done efficiently [MRK03]). To prevent use of deposits of the second kind,
customers must also send to the merchant a tag derived from the deposit’s serial number.
Since anyone with access to this serial number can compute this tag, merchants can
deduce if a deposit has been revoked by checking if this tag has been computed with
a blacklisted deposit’s serial number. The customer accompanies the tag with a zero-
knowledge proof that the deposit used for this tag is consistent with the share inside the
commitment.

The aforementioned proposal, however, is still vulnerable to attacks.

Problem: front-running deposit revocation. While deposits are intended to deter
double spending, customers may try to withdraw a deposit before it is blacklisted, thereby
rendering punishment ineffective.

Problem: merchant aborts. At the end of the commitment opening protocol, the
merchant can refuse to inform the customer of whether or not the commitment was
opened. This poses a problem for the customer because if the commitment was in fact
opened, the merchant has learned the serial number and a share of the deposit, enabling
him to: (i) track the customer and learn when they spend the coin with another merchant,
and (ii) revoke the customer’s deposit after the (honest) customer next spends the coin,
with another merchant or the same one.

2.1.3 Outline of our construction

The deposit mechanism described so far is insufficient to deter double spending. The
problem is that there is no restriction on how and when coins used for probabilistic
payments and for deposits can be transferred; in particular, a cheating customer can
double spend these back to himself while at the same time engaging in a probabilistic
payment with a merchant. We address this problem by (i) partitioning coins into
different types depending on their different uses, and (ii) restricting transfers between
coins depending on their types. We now outline how we carry out this plan.

First, we extend the notion of a DAP scheme to allow users to associate public and
private information strings when minting a coin. Users can now store a coin’s type in its
public information string, and we allow three types of coins: in addition to the “standard”
coin type, we introduce deposits and tickets. A ticket is bound to a deposit by storing
the deposit inside the ticket’s private information string. We thus have the following
semantics:
– Coins are used for deterministic DAP payments (whose processing fees are not

amortized).
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– Deposits are used to back tickets and are revoked when two macropayments using the
same ticket are detected.

– Tickets are used for probabilistic payments; every ticket is bound to a single deposit at
minting time, and can be spent provided that the associated deposit is valid (i.e., has
not be transferred to a coin, or revoked).

We also restrict the set of possible transactions depending on the types of coins involved,
as follows.
– Transactions with coins: Coins can be used to create other coins, deposits, or tickets. In

particular, coin-to-coin transactions preserve the deterministic payment functionality
of the underlying DAP scheme.

– Transactions with deposits: Deposit-to-coin transactions let customers withdraw
deposits, though not immediately, since these transactions become active only after an
activation delay ∆w that is a parameter of the system.

– Transactions with tickets: Ticket-to-coin transactions enable probabilistic payments;
they are associated with a secret share of the ticket’s deposit and with a deposit-derived
tag that allows merchants to detect the validity of the ticket’s deposit. Ticket-to-ticket
transactions omit the secret share and tag and (like deposit-to-coin transactions)
become active only after an activation delay ∆r that is a parameter of the system.

Restrictions on inter-type transactions are achieved via a pour predicate that checks
that input and output coin types satisfy the above restrictions. Having made these
modifications, we can now resolve the issues of the previous proposal.

Preventing deposit theft. Deposit-to-coin transactions now have a delayed activation,
so customers can no longer withdraw deposits before they are blacklisted, as merchants
have enough time to post deposit revocations to the ledger.

Recovering from merchant aborts. Since we cannot know what is the utility gain of
a merchant for learning about the spending patterns of a customer, we cannot effectively
deter merchant aborts by economic means. Instead, at the end of our commitment
opening protocol, we require the merchant to prove to the customer whether or not
he could open the commitment. If the merchant fails to do so, we allow customers to
“refresh” their tickets by creating a ticket-to-ticket payment to themselves. Since the new
ticket has a different serial number that merchants have not yet seen, they cannot track
the new ticket’s transaction history. Finally, since ticket-to-ticket transactions become
active only after a delay, the new tickets cannot be spent immediately, thus allowing
merchants to post macropayments over the old ticket.

The above sketch omits many technical details, including how a DAM scheme interacts
with the economic analysis. See the full version.

2.2 Intuition for our economic analysis of double spending

Our economic analysis characterizes the additional utility that customers can gain by
double spending in offline probabilistic payments. We discuss the intuition for the
analysis via an example; details of the analysis are in Section 3 (the formal statement is
Theorem 4). Recall that we assume that: (i) every probabilistic payment is backed by an
advance deposit, and (ii) macropayment double spends are detected within time T , and
result in deposit revocation.
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At a high level, the deposit must be at least as large as the additional utility that a
malicious customer gains by double spending until that deposit is revoked; additional
utility occurs when the customer double spends, and accumulates until cheating is
detected and every merchant has blacklisted the customer. If we can bound the value
of payments in this period of time, then we can derive a corresponding bound on the
additional utility gained, and thus bound the deposit.

A naive analysis, however, yields an impractically large bound, because the natural
definition of “additional utility” is too coarse. We illustrate this issue via an example:
a malicious customer C̃ selects two merchants M1,M2, and uses the same “lottery
ticket” to conduct parallel probabilistic payments p̃ay1, p̃ay2 to M1,M2 respectively. The
merchants cannot immediately detect that C̃ is cheating because C̃ is indistinguishable
from an honest user so far. If both p̃ay1 and p̃ay2 become macropayments, which happens
with probability p2, then the merchants (eventually) catch C̃ cheating, and revoke C̃’s
deposit of value D. Consider the following two analyses.

(i) A naive analysis. The malicious customer C̃ earns an additional utility of pV
compared to an honest customer, and is caught and punished by D with probability p2.
Hence, to deter C̃ from cheating, the deposit amount should be such that p2D > pV ,
which is equivalent to D > V/p.

(ii) A better analysis. The average-case utility E[U(C)] of an honest customer C for
any probabilistic payment is zero: C gains pV with probability 1− p, and pV − V with
probability p. Instead, the utility U(C̃) of the malicious customer C̃ has four cases, as
given in Table 2; also, C̃ is caught and punished by D with probability p2. Thus, the
deposit amount should be such that p2D > E[U(C̃)] = 2pV − (1− (1− p)2)V , which
is equivalent to D > V .

aaaaa
p̃ay1 p̃ay2 null macro

null 2pV 2pV − V

macro 2pV − V 2pV − V

Table 2: Utility U(C̃) of the malicious customer C̃.

aaaaa
pay1 pay2 null macro

null 2pV 2pV − V

macro 2pV − V 2pV − 2V

Table 3: Utility U(C) of the honest customer C.

How do the two analyses differ? The first analysis states that the deposit amount D
must be greater than V/p while the second states that it must be greater than V , which is
a much smaller lower bound. This is because the first analysis adopted an intuitive, but
coarse, definition of additional utility, which did not consider the fact that a malicious
customer does not gain additional utility unless two macropayments with the same ticket
occur. Indeed, the utility U(C) of an honest user C that uses two different tickets to make
two parallel probabilistic payments pay1, pay2 is in Table 3. By comparing U(C̃) and
U(C), one can see that the utility function differs only when two macropayments occur,
where, if there is no deposit/punishment, C̃ gains extra utility of V by paying only one
macropayment instead of paying two as C does. In sum, any additional utility gained via
double spending must come from macropayment double spends.
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Towards a general analysis. The above discussion suggests that the additional utility
of C̃, which we denote by U ′(C̃), should be defined as follows:

U ′(C̃) :=
{
V if p̃ay1, p̃ay2 are macropayments
0 otherwise .

More generally, the additional utility of any malicious customer C̃ is the extra gain
compared to an honest customer achieving the same outcome. This can be computed
by considering an honest customer C that simulates the behavior of C̃ while only using
unspent tickets; the extra gain arises from the fact that C has “paid” for these other
unspent tickets while C̃ has not. By understanding the maximum of this refined notion
of additional utility we can derive the minimum amount of deposit needed such that, for
any double spending attack, there is a non-double-spending strategy that achieves better
utility, in the worst-case and in the average-case respectively. See Section 3 for a formal
argument of this intuition, as well as a discussion of the implications of our economic
analysis.

3 Economic analysis of double spending for offline probabilistic
payments

We provide the economic analysis that characterizes the additional utility that can be
gained by double spending via offline probabilistic payments. This section is organized as
follows. First, we informally describe dynamics that model offline probabilistic payments
(Section 3.1). Then, we define a formal game that captures these dynamics and analyze
this game (Section 3.2). Finally, we discuss the interpretation and consequences of our
economic analysis (Section 3.3).

3.1 Informal description of payment dynamics

We informally describe the dynamics of arbitrary probabilistic payments from customers
to merchants. A concrete example is the setting of advertisement-free Internet: a customer
is a user surfing the Internet; a merchant is a web server; every HTTP request by a user
to a web server is accompanied by a probabilistic payment from that user to the web
server (to buy an ad-free HTTP response).

Abstraction of probabilistic payments. A probabilistic payment is an interactive
protocol between a customer and a merchant. The customer’s input is a ticket t =
(t, p, V,d) where t ∈ {0, 1}∗ is the unique ticket identifier, p ∈ [0, 1] is the payment
probability, V ∈ R≥0 is the macropayment value, and d = (d, D) is the deposit,
which consists of a unique deposit identifier d ∈ {0, 1}∗ and a deposit value D ∈ R≥0.
Informally, the customer first convinces the merchant that the deposit is not “invalid”,
and then the customer pays V to the merchant with probability p. The two outcomes are
called a nullpayment and a macropayment, and involve different protocol outputs.

Detectable double spends. At any moment in time, a deposit is in one of two states:
valid or invalid. Each deposit is initially valid. When two macropayments occur on the
same ticket t, the associated deposit d becomes invalid, once and for all. We call this
event a macropayment double spend, and we assume that, in this case, the underlying
probabilistic payment protocol enables merchants to eventually learn that d (more
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precisely, its identifier) has become invalid;7 we denote by TM the time for merchant M
to learn this from the moment the macropayment double spend occurred. The fact that
maxM TM > 0 is the fundamental reason that allows a malicious customer to gain any
additional utility.

Finally, we make the simplifying assumption that, while macropayment double
spends are detectable, nullpayment double spends are undetectable. Our analysis does
extend to the case where (not necessarily all) nullpayment double spends are also
detectable; see Remark 1.

Honesty of merchants. We assume that merchants behave honestly. Thus, every mer-
chant (a) rejects aborted payments (e.g., due to invalid deposits); (b) honors successful
payments (e.g., replies with an ad-free HTTP response) regardless of whether the pay-
ment resulted in a nullpayment or macropayment; (c) reports detected double spends;
more generally, (d) follows the probabilistic payment protocol (e.g., uses fresh random-
ness in each instance of the protocol, broadcasts any messages to all other merchants as
instructed, and so on).

In principle, merchants may deviate from the aforementioned honest behavior in
a variety of ways. For instance, a merchant may “honor” an aborted payment (e.g.,
regardless of the validity of the customer’s deposit); or the merchant may not honor a
successful payment (e.g., does not reply to the HTTP request); or the merchant may
abort and prevent the customer from learning the payment’s outcome; or the merchant
may not report a detected double spend.

However, we assume that all merchants behave honestly because the only incentive
for a merchant to deviate comes from colluding with malicious customers, and we cannot
prevent such collusions. Indeed, if a merchant does not collude with any malicious
customer, then for the merchant it is individually rational to behave honestly, because:
(i) some malicious merchant behavior (e.g., “honoring” an aborted payment, or using cor-
related randomness across payments) does not increase the merchant’s utility; (ii) other
malicious merchant behavior (e.g., not honoring a successful payment) decreases the
customer’s utility, but taking into account this possibility does not affect a customer’s
maximum additional utility (the quantity we study) and ruling it out significantly simpli-
fies the analysis. However, a malicious customer could convince a merchant to not report
a double spend by offering side payments as compensation; if the merchant has already
replied to the customer’s payment then this collusion may indeed be economically at-
tractive, but we cannot systematically prevent such side payments in all applications. (In
the setting of micropayments, V is small so a merchant may prefer to see the malicious
customer punished, after losing V , rather than receiving compensation.)

Honest vs. malicious customers. Our goal is to characterize the additional utility
obtained by any malicious customer, when compared to what is possible by honest
customers. We now discuss both kinds of customers.

Honest customers. For an honest customer, a ticket t is in one of three states: it is
spent if a probabilistic payment on it has resulted in a macropayment; otherwise, it is

7 Exactly how merchants learn d’s identifier depends on the details of a construction, and is
orthogonal to our economic analysis; ditto for exactly how the monetary funds escrowed in d
are revoked after d becomes invalid.
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occupied if it is being used in a probabilistic payment; otherwise, it is unspent (i.e., it
never resulted in a macropayment, nor is it being used in a probabilistic payment).

At any moment in time, an honest customer may select any number of merchants,
and initiate any number of probabilistic payments in parallel to every one of them.
Each probabilistic payment uses a distinct unspent ticket, which immediately becomes
occupied, and at the end of the payment protocol becomes either unspent or spent. The
selected tickets may or may not have different deposits that back them; deposits are never
invalidated for honest customers. In sum, an honest customer maintains the invariant that
an occupied ticket does not participate in more than one payment at a time, and a spent
ticket does not participate in future payments.

Malicious customers. A malicious customer may deviate from the aforementioned
honest behavior in a variety of ways, as we now describe. Like an honest customer, a
malicious customer owns an arbitrary number of tickets and deposits; unlike an honest
customer, a malicious customer may use an occupied ticket in multiple payments, or may
use a spent ticket in future payments (hence, a ticket of a malicious customer could be in
both spent and occupied states at the same time). We give some examples of malicious
behavior.

– One-ticket-one-merchant attack. A malicious customer C̃ has a ticket t and selects
a merchant M; then C̃ initiates multiple probabilistic payments to M in parallel, and
continues using the same ticket t even after it is spent. The merchant M cannot detect
that C̃ is cheating until M receives two macropayments relative to the same ticket t.

– One-ticket-multiple-merchant attack. A malicious customer C̃ has a ticket t and
selects two merchants M1,M2; then C̃ conducts a sequence of probabilistic payments
to M1, using t until it is spent to M1. In parallel, C̃ adopts the same strategy with
M2, until t is spent to M2. Observe that C̃ acts like an honest customer to M1 and
M2 individually; hence, the two merchants cannot detect that C̃ is cheating until they
communicate.

– Multiple-ticket-multiple-merchant attack. More generally, a malicious customer
C̃ has multiple tickets t1, t2, . . . and selects multiple merchants M1,M2, . . . ; then C̃
conducts a sequence of probabilistic payments to M1, using t1 until it is spent to M1.
Then C̃ switches to t2 and continues making probabilistic payments to M1 until t2 is
spent. The customer C̃ continues in this way until all the tickets are spent to M1. In
parallel, C̃ adopts the same strategy with every other merchant. Observe again that
C̃ acts like an honest customer to each merchant individually; hence, the merchants
cannot detect that C̃ is cheating until they communicate.

Recall that, no matter what a malicious customer does, whenever two macropayments
relative to the same ticket t occur, the deposit of t becomes invalid, and eventually (after
at most time maxM TM) all merchants learn about this.
Towards a formal game. The above discussion leads us to the following informal
description of arbitrary dynamics of probabilistic payments from a potentially-malicious
customer to honest merchants; this description is only an intermediate step that we
provide for intuition, because we formally define an abstract game in Section 3.2 below.

For each time t, let I(t) denote the set of deposit identifiers of invalid deposits at time
t. This set is not maintained by anyone: by definition it contains the correct identifiers at
any time. It is public and, hence, known to the customer.
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Suppose that a customer initiates a probabilistic payment with merchant M at time t,
using a ticket t = (t, V, p, (d, D)). If d ∈ I(t− TM) (the deposit identifier belongs to
an invalid deposit) then the payment aborts. Otherwise, (i) with probability 1− p, both
parties receive the output null; (ii) with probability p, both parties receive the output
macro.

Crucially, the decision of whether a payment aborts depends only on the global
information from TM units of time “into the past”, because, in the worst case, there is a
delay of TM for merchant M to learn that a deposit has been invalidated. Of course, the
merchant M may happen to learn this information faster than that; though modeling this
fact does not ultimately change the maximum additional utility, so we ignore this for
simplicity. This means that all merchants “behave the same” and thus we replace them
with a single abstract player, ‘Nature’, in the next section.

Note that a construction of a probabilistic payment should also involve a check of
whether the deposit value D is “large enough” to back the payment (as informed by our
economic analysis). We ignore this check (and how it can be performed) because it is
irrelevant to the economic analysis.

3.2 The game and its analysis

We define a single-player game against Nature that captures the dynamics described in
Section 3.1, namely, the dynamics of a customer C̃ conducting arbitrary probabilistic
payments with all merchants. We prove tight bounds on C̃’s additional utility, in the
worst case and in the average case. Note that, due to the additive nature of utility, we
only need to analyze C̃’s additional utility per deposit; hence, we restrict C̃ to backing
all his probabilistic payments with a single deposit.

As mentioned in Section 1.1.1, our analysis involves two parameters A and W ,
which denote the (per-deposit) maximum value of probabilistic payments and of macro-
payments, within any “detection time period”. More precisely, let TM denote the time
for a merchant M to detect a detectable double spend, and let aM(t) be the (cumulative)
value of probabilistic payments accepted by M within the time period [t, t+ TM]; simi-
larly, let wM(t) be the (cumulative) value of macropayments accepted by M within the
time period [t, t+ TM]. The parameters A and W are defined as maxt

∑
M aM(t) and

maxt
∑

MwM(t) respectively. We defer to Section 3.3 a discussion of the interpretation
of these parameters, and for now we focus on analyzing the additional utility in terms of
these.

We argue that it suffices to study C̃’s additional utility across merchants within a
certain time period, and to consider only probabilistic payments that use spent tickets.

– Starting point. It suffices to analyze C̃’s additional utility from the first time when
two macropayments occur relative to the same ticket; denote by p̃ay the payment
among these that terminates later (if they terminate simultaneously then break ties
arbitrarily). Indeed, recall that C̃’s additional utility is the extra gain compared to any
honest customer achieving the same outcome. So consider the honest customer C that
uses unspent tickets for every probabilistic payment that terminates before p̃ay does:
the utilities up to then for C̃ and C are the same. Thus, we only need to consider C̃’s
additional utility from when p̃ay terminates.

– Ending point. It suffices to analyze C̃’s additional utility from when p̃ay terminates
until when every merchant M has detected C̃’s cheating. Indeed, p̃ay is a detectable
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double spend, so within time TM merchant M detects C̃’s cheating (i.e., has learned
that C̃’s deposit is invalid) and will not accept C̃’s probabilistic payment anymore.
Moreover, C̃’s deposit is eventually revoked.

– Which payments. It suffices to consider every probabilistic payment that terminates
within the aforementioned time period and uses a ticket that is spent before the
termination of that payment (if multiple payments terminate simultaneously then
pick an arbitrary termination order for them). Throughout this section we say that
these probabilistic payments use spent tickets, and say that the other probabilistic
payments use unspent tickets. Indeed, consider again the honest customer C that uses
unspent tickets for every probabilistic payment: the utilities for C̃ and C are the same
on probabilistic payments that use unspent tickets.

In conclusion, we only need to worry about C̃’s additional utility from when p̃ay termi-
nates until when every merchant has detected C̃’s cheating, and it suffices to consider
only probabilistic payments that use spent tickets.

Suppose that during this time period C̃ has finished C + 1 probabilistic payments,
including p̃ay, using spent tickets: p̃ay is fixed to be a macropayment, while the remaining
C payments are probabilistic (i.e., turn into nullpayments or macropayments with the
appropriate probability). Perhaps C̃ only made C+1 payments, or perhaps the merchants
accepted only the first C + 1 and rejected the rest due to invalid or insufficient deposit.
(We assume C < ∞ for ease of exposition, but we could replace C with∞ and our
analysis would still hold.) Either way, note that C̃ may select the payment probability
and macropayment value of a probabilistic payment based on the outcomes of prior
probabilistic payments. Below we define a game that captures these payments.

Definition 1. Consider the following single-player game against Nature.

– The set of randomness choices is [0, 1]C ; Nature samples λ uniformly at random from
[0, 1]

C . We denote by λ<i the first (i− 1) coordinates of λ (and define λ<0 and λ<1

to be the empty string).
– The player strategies Σ consist of tuples σ = (pi, Vi)

C
i=0 consisting of computable

functions that, based on Nature’s randomness choice, output parameters for all the
probabilistic payments. More precisely, for each i, pi(λ<i) ∈ [0, 1] is the payment
probability of the i-th probabilistic payment, and Vi(λ<i) ∈ R≥0 is its macropayment
value.

The game proceeds as follows. The player selects a strategy σ ∈ Σ; afterwards, Nature
samples λ, whose coordinates are revealed to the player round by round. More precisely,
the game is played in rounds, as follows: in round i, the player learns λ<i, and conducts
a probabilistic payment (using a spent ticket) with payment probability pi(λ<i) and
macropayment value Vi(λ<i). The outcome of the i-th round is given by the indicator
I [λi ≤ pi(λ<i)], stating whether the payment resulting in a macropayment (the indicator
equals 1) or nullpayment (the indicator equals 0).

Observe that all strategies in the above game are double-spending strategies: as
discussed, it suffices to consider only probabilistic payments that use spent tickets. We
now turn to define additional utility. Comparing an honest customer with a malicious one,
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we observe that any additional utility comes only from macropayments that involve spent
tickets. More precisely, the first such macropayment (which is p̃ay) contributes additional
utility V0 and, after that, if the i-th probabilistic payment results in a macropayment then
additional utility increases by Vi(λ<i). As for nullpayments, neither an honest nor a
malicious customer loses tickets, hence additional utility does not increase. Therefore,
we define additional utility as follows.

Definition 2. The additional utility of a strategy σ ∈ Σ on randomness λ ∈ [0, 1]
C is

U ′λ(σ) := V0 +

C∑
i=1

I [λi ≤ pi(λ<i)]Vi(λ<i) .

(Additional utility is a random variable, as it depends on Nature’s randomness λ, which
is a random variable.)

We analyze the maximum additional utility achievable by any strategy, in the worst
case and in the average case, for the game from Definition 1; these maximum val-
ues bound from below the required deposit value D (for the goal of deterring double
spending). Below we define two subsets of strategies in which the bounds A or W are
respected. (Note that if C < ∞, then (min{pi}Ci=0) ·W ≤ A so that if A is bounded
then so is W .)

Definition 3. We define the following two sets of strategies, which respectively capture
the condition that the total worth of probabilistic payments is at most A and the total
worth of macropayments is most W :

Σpp
A :=

{
σ ∈ Σ : ∀λ, p0V0 +

C∑
i=1

pi(λ<i)Vi(λ<i) ≤ A
}
,

Σmp
W :=

{
σ ∈ Σ : ∀λ, V0 +

C∑
i=1

I [λi ≤ pi(λ<i)]Vi(λ<i) ≤W
}
.

We now state and prove our worst-case and average-case bounds on additional
utility. (Recall that, by Yao’s minimax principle, it suffices to consider only deterministic
strategies [Yao77], and thus we ignore randomized ones.)

Theorem 4 (formal statement of Thm. 1). For the game described above, the follow-
ing holds.

(a) WORST CASE: for every randomness choice λ ∈ [0, 1]
C and strategy σ ∈ Σmp

W , it
holds that U ′λ(σ) ≤W .

(b) AVERAGE CASE: for every strategy σ ∈ Σpp
A , it holds that Eλ

[
U ′λ(σ)

]
≤ (1 −

p0)V0 +A.
(c) Both bounds are tight.

Proof. We prove the three statements in order.
Part (a). By definition of Σpp

A (see Definition 3), for every randomness choice λ ∈
[0, 1]

C and strategy σ ∈ Σmp
W , it holds that V0 +

∑C
i=1 I [λi ≤ pi(λ<i)]Vi(λ<i) ≤W ;
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but the quantity on the left-hand side of the inequality is U ′λ(σ) (see Definition 2), and
the claimed statement follows.
Part (b). Recall that Nature samples λ uniformly at random from [0, 1]

C , so the
coordinates of λ are independent from one another. Therefore, for every strategy σ ∈
Σpp

A ,

Eλ

[
U ′λ(σ)

]
= V0 + Eλ

[
C∑
i=1

I [λi ≤ pi(λ<i)]Vi(λ<i)

]

= V0 + Eλ1
· · ·EλC

[
C∑
i=1

I [λi ≤ pi(λ<i)]Vi(λ<i)

]
(by independence)

= V0 +

C∑
i=1

Eλ<i
[pi(λ<i)Vi(λ<i)]

≤ (1− p0)V0 +A. (by definition of Σpp
A )

as claimed.
Part (c). Consider the following two strategies consisting of a single probabilistic
payment after p̃ay (of value V0):

– Choose σ such that C := 1, p1 := 1, and V1 := W − V0. Note that σ ∈ Σmp
W and,

for every randomness choice λ ∈ [0, 1]
C , it holds that U ′λ(σ) = W .

– Choose σ such that C := 1, p1 := 1, and V1 := A− p0V0. Note that σ ∈ Σpp
A and

Eλ

[
U ′λ(σ)

]
= (1− p0)V0 +A.

In sum, the first strategy shows that our worst-case bound is tight, while the second
strategy shows that our average-case bound is tight.

Remark 1 (detectable nullpayment double spends). So far our analysis assumes that
macropayment double spends are detectable, but nullpayment double spends are not.
What if some nullpayment double spends are detectable? For example, merchants could
maintain a partial order of all payments via a synchronous clock that ticks every second,
even if the broadcast time is 10 seconds; this partial order would give chronological
information on some nullpayment vs. macropayment pairs. But does such a stronger
detection guarantee improve the economic bounds?

Our analysis does extend to this setting, and the answer is yes, but not by much. First,
if some nullpayment double spends are also detectable, the additional utility of a mali-
cious customer can only go down, so the upper bounds of our theorem continue to hold.
However, the upper bounds are not tight; nevertheless, below we sketch modifications to
our analysis that do recover a tight result.
– Starting point: the first time a detectable double spend occurs, i.e., a macropayment

or detectable nullpayment occurs after another macropayment on the same ticket.
– Ending point: every merchant has detected that double spend.
– Additional utility: if the starting point is a macropayment double spend, the additional

utility is the same, but if the starting point is a detectable nullpayment double spend,
the additional utility goes down by V0.
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The rest of the analysis follows, for parameters A and W that are now defined for
this new time interval. The only difference is in the initial cost of detection, due to
different detection guarantees. Afterwards, only macropayment double spends provide
additional utility, which are detectable in both settings. Overall, even if we had the
stronger guarantee of detecting all nullpayment double spends, it would only save V0 in
the average-case bound.

3.3 Interpreting the payment value rates

Our analysis in Section 3.2 can be viewed as a reduction from the required deposit amount
to certain per-deposit payment value rates: A (for the average case analysis), which
is the maximum cumulative value of probabilistic payments across merchants within
any detection time period; or W (for the worst case analysis), which is the maximum
cumulative value of macropayments across merchants within the same period. Our
analysis is tight, so leaving these parameters unbounded enables a malicious customer to
gain unbounded additional utility (and rules out the possibility of deterring malicious
behavior via economic means such as advance deposits). The purpose of this section is
to discuss the meaning of bounding payment value rates, and what are the implications
of such bounds. Throughout, recall that our analysis is per deposit, so we fix a single
deposit d that backs all the probabilistic payments discussed below.
Interpretation of the parameters. We first discuss the detection time (used to define
the rate), and then discuss how W and A may arise as a sum, across all merchants, of
corresponding payment value rates.

– Detection time. We denote by TM the time for a merchant M to detect a detectable
double spend. For example, TM can be the network’s broadcast time, that is, the time
for a message sent by a merchant to reach all other merchants (this is true, e.g., if the
network contains enough honest nodes to provide reliable and timely broadcast, or if
merchants have the same view of the ledger). In a Bitcoin-like system the broadcast
time is much smaller than the validation time (the time for a broadcast transaction to
appear in the ledger): a few seconds as opposed to a few minutes.

– Merchants (per deposit). We denote by N the number of merchants that accept
probabilistic payments (backed by the deposit d). For example, N could be the
number of all merchants. (Though this need not be the case, see below.)

– Payment value rates (per deposit). For every merchant M, aM := maxt aM(t) is the
maximum (cumulative) value of probabilistic payments (backed by the deposit d)
accepted by M within any time period of TM; similarly, wM := maxtwM(t) is the
maximum (cumulative) value of macropayments accepted by M within any time
period of TM. Then one sets A equal to

∑
M aM, and W equal to

∑
MwM (or consider

these as upper bounds to A and W ).

Necessity of bounds. We now explain why simultaneous bounds on the aforementioned
parameters are necessary. First, if there is no bound on the number N of merchants
that accept probabilistic payments backed by d, a malicious customer can use d to gain
unbounded additional utility via a one-ticket-multiple-merchant attack (see Section 3.1),
even in the average case. Second, even ifN is bounded (and greater than 1) but maxM TM
is unbounded (e.g., a large-scale eclipse attack is underway [HKZG15]), a malicious
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customer can gain unbounded additional utility via a multiple-ticket-multiple-merchant
attack (see Section 3.1), even in the average case. Third, even if N and maxM TM are
bounded but some aM is unbounded, our analysis implies that a malicious customer can
again gain unbounded additional utility in the average case; similarly, if some wM is
unbounded, our analysis implies that a malicious customer can again gain unbounded
additional utility in the worst case. In sum, if either maxM TM or N are unbounded, then
A =

∑
M aM and W =

∑
MwM are also unbounded; but even if maxM TM and N are

bounded, either A or W could still be unbounded, and so we must explicitly bound A or
W (depending if we target average or worst case, or both).

Finally, observe that the above discussion assumes that there is no a-priori bound
on how many tickets a single deposit can back; see Remark 2 below for a discussion
of what happens if a deposit is restricted to only back macropayments up to a certain
maximum total value.

Respecting the bounds. Whose responsibility is it to ensure that the bounds A or W
are respected? One answer to this question could be that there are exogenous reasons
(e.g., spending patterns, network behavior, and so on) that justify this statement. Another
answer to this question is to say that every merchant M is responsible “for his own
share”: he needs to monitor that aM and wM are locally respected for him (and if they
are about to be exceeded, he defers further payments to the next period of time TM).
This second answer raises an interesting technical problem: how does M know which
payments are backed by the same deposit? If a payment’s deposit is not private (as in
[PS16]) this is not a problem. But if a payment’s deposit is private, this could be tricky.
In our DAM scheme construction, when engaging in a probabilistic payment, a merchant
does not learn any information about the deposit that backs it, beyond the bit of whether
the deposit is valid or not. Nevertheless, we still enable a merchant to get around this
problem, by leveraging the notion of a rate limit tag within a probabilistic payment.

Implications: good news and bad news. The good news about our economic analysis
is that it gives a tight characterization of the additional utility that can be gained via
double spending. The bad news is that bounding A or W may impact usability. (Perhaps
this is not surprising because offline probabilistic payments are a “tough” setting since
double spending cannot be fully prevented.) Namely, if all aM (resp., wM) are large, then
A (resp., W ) is even larger; but this impacts usability because the required deposit is
large. Conversely, if many aM (resp., wM) are small then A (resp., W ), and thus the
required deposit, is not as large; but the amount of value transacted with many merchants
is limited, and this impacts usability because a user may not be able to transact large
amounts with his “favorite” merchants.

Mitigations. A way to mitigate the above problem is to associate to each deposit a
subset R of allowed “receiver merchants” so that the sum is taken only over this subset:
A =

∑
M∈R aM and W =

∑
M∈RwM. Then, any particular user would only have to

cover his spending habits with one (or more) deposits that cover one (or more) not-too-
large subsets of merchants. The subset R can even be private and chosen by the user; in
fact, we take this approach both when defining and constructing a DAM scheme.

Another way to mitigate the above problem is for merchants to group together into
micropayment agencies. Such an agency acts as a proxy to the subset of merchants
it serves, and its only task is to “monitor” the cumulative values of aM and wM for
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merchants in the agency. This approach does not affect any privacy guarantees from
the perspective of the customer (since every probabilistic payment is anonymous from
the perspective of a single merchant or any coalition of merchants). In the extreme,
one could even think of a single micropayment agency, and the only obstacle would be
coordinating and keeping track of A and W across the network.

Remark 2 (bounded macropayments per deposit). So far we have assumed that there is
no a-priori bound on how many tickets a single deposit can back. Suppose instead that a
deposit d can only back tickets with total macropayment value up to Vtot. To analyze
this other setting, we can reuse ideas from our economic analysis: again, one can define
additional utility by comparing the utilities of a malicious merchant and a corresponding
honest merchant. We omit the analysis and simply state that the additional utility is
bounded by (2N − 1)Vtot, where N is the number of merchants that accept probabilistic
payments backed by d (note that in this case maxM TM,A,W could all be unbounded).
Moreover, the bound is tight; intuitively, the maximum additional utility is achieved via a
multiple-ticket-multiple-merchant attack until two macropayments with the same ticket
occur for each of the N merchants.

4 Efficient fractional message transfer
A key ingredient in our construction of a DAM scheme is fractional message transfer
(FMT): a primitive that enables probabilistic message transmission between two parties,
called the ‘sender’ and the ‘receiver’. Informally, the receiver samples a one-time key
pair based on a transfer probability p; then, the sender uses the receiver’s public key
to encrypt a message m into a ciphertext c; finally, the receiver uses the secret key to
decrypt c, thereby learning m, but only with the pre-defined probability p (and learns
no information about m with probability 1 − p). Our definition and construction of
FMT are closely related to non-interactive fractional oblivious transfer (NFOT), which
was studied in the context of ‘translucent cryptography’ as an alternative to key escrow
[BM89, BR99]; see Section 1.1.3 for a discussion.

In this work we formulate the notion of an FMT scheme, which formally captures
the functionality and security of probabilistic message transmission; we rely on this
tool (and others) in our construction of a DAM scheme. Moreover, we give an efficient
construction of an FMT scheme that works for transfer probabilities p = 1/n with
n ∈ N; this construction is in the random oracle model and assumes the hardness of the
DDH problem in prime-order groups. Finally, since probabilistic message transmission
is of independent interest, we also define the notion of an FMT protocol via an ideal
functionality, and show that the security definition of FMT schemes does imply security
relative to that ideal functionality. (Our DAM scheme relies on an FMT scheme, rather
than an FMT protocol, because we interleave the FMT scheme with other building
blocks.)

We defer the definitions, constructions, and proofs about FMT to the full version. In
the rest of this section, we informally describe the syntax, correctness, and security of
FMT schemes, and then sketch our FMT construction.

Syntax. An FMT scheme is a quintuple of algorithms (FMT.Setup,FMT.Keygen,
FMT.Encrypt,FMT.Decrypt) with the following syntax.
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– Parameter setup (executed by a trusted party): FMT.Setup(1λ)→ ppFMT. On input
a security parameter λ, FMT.Setup outputs the public parameters ppFMT for the
scheme.

– Key generation (executed by the receiver): FMT.Keygen(ppFMT, p)→ (pkFMT, skFMT).
On input public parameters ppFMT and a transfer probability p, FMT.Keygen outputs
a one-time key pair (pkFMT, skFMT).

– Message encryption (executed by the sender): FMT.Encrypt(ppFMT, pkFMT,m)→ c.
On input public parameters ppFMT, a public key pkFMT and a messagem, FMT.Encrypt
outputs a ciphertext c.

– Message decryption (executed by the receiver): FMT.Decrypt(ppFMT, skFMT, c)→
m′. On input public parameters ppFMT, a secret key skFMT and a ciphertext c,
FMT.Decrypt outputs a message m′ that equals m or ∅. (The special symbol ∅
denotes that decryption resulted in no message.)

An FMT scheme satisfies the correctness and security properties defined below.

Correctness. An FMT scheme is correct if for every security parameter λ, public
parameters ppFMT ∈ FMT.Setup(1λ), transfer probability p ∈ P ⊆ [0, 1], key pair
(pkFMT, skFMT) ∈ FMT.Keygen(ppFMT, p), and message m ∈M,

FMT.Decrypt(ppFMT, skFMT,FMT.Encrypt(ppFMT, pkFMT,m)) =

{
m w.p. p

∅ w.p. 1− p

where the probability is taken over the randomness of FMT.Encrypt (and FMT.Decrypt
is deterministic).

Security. An FMT scheme is secure if it has the properties of fractional hiding and
fractional binding. Informally, fractional hiding says that an honest encryptor transferring
a message m can be sure that the decryptor, who knows the secret key, learns m with
probability exactly p (and ∅ with probability 1−p), even if the public key was generated
maliciously. Fractional binding says that, for every p′ 6= p, a malicious encryptor cannot
produce a valid ciphertext that decrypts with probability p′ to a valid message (i.e., not
∅).

An efficient FMT scheme. Our construction of an FMT scheme targets the case where
p equals 1/n for some positive integer n; this case suffices within our construction
of a DAP scheme. As in prior work [BM89, BR99], our starting point is the Elgamal
encryption scheme [Elg85], whose semantic security relies on the hardness of DDH in
prime-order groups. We now give an informal sketch of our construction.

– FMT.Setup(1λ): sample a group G of prime order q (depending on λ), along with
two generators g, g0 ∈ G.

– FMT.Keygen(ppFMT, p): the public key contains a Pedersen commitment [Ped91] to
a random s in {1, . . . , n} and the secret key contains the commitment’s randomness;
that is, the commitment is h = g−s0 gα for random α ∈ Zq .

– FMT.Encrypt(ppFMT, pkFMT,m): sample random r ∈ Zq and random t ∈ {1, . . . , n},
and use h as an Elgamal public key to encrypt the messagem′ := m ·grt0 ; the resulting
ciphertext is c = (t, c1, c2) = (t, gr,m′hr).
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– FMT.Decrypt(ppFMT, skFMT, c): use the secret key α to decrypt the ciphertext by
setting m′′ := c2/c

α
1 = mg

r(t−s)
0 .

The above sketch omits several important details. In particular, our construction also
includes NIZKs (obtained via the Fiat–Shamir transform applied to simple Σ-protocols)
to prove correctness of key generation and encryption. Informally, our FMT’s correctness
and security follow from the fact that m′′ = m only when t = s, which occurs with
probability p = 1/n. The full construction and proof of security (based on hardness of
DDH) are the full version.

5 Informal construction description
Recall that a DAM scheme is a tuple of algorithms:

DAM =

Setup
CreateAddr
ReceiveL

MintCoinL

MintDepositL

MintTicketL

PourCoinToCoinL

PourCoinToDepositL

PourCoinToTicketL

PourTicketL

WithdrawDepositL

RefreshTicketL
Punish
VerifyTransactionL

 .

We sketch the construction of these in Section 5.1 and Section 5.2, and then separately
discuss security intuition in Section 5.3 and ‘pour regulation’ in Section 5.4.

5.1 Informal algorithm descriptions

Setup. The algorithm DAM.Setup samples public parameters for the various building
blocks that we use, which includes DAP schemes and FMT schemes, as well as one-time
signature schemes and NIZKs

Creating addresses. The algorithm DAM.CreateAddr samples a new address key
pair by running DAP.CreateAddr with the address information set to the probabilistic
payment specification and outputting its result; in other words, DAM addresses are simply
addresses of the underlying DAP scheme. Receivers must bind their intended payment
rates, probability, and value to the address by passing it as input to DAM.CreateAddr
(other users can set it to ⊥ if they do not intend to receive probabilistic payments).

Receiving coins. The algorithm DAM.Receive, given an address key pair, retrieves all
the unspent coins sent to this address by simply running DAP.Receive. Indeed, DAM
pour-coin, pour-ticket, withdraw, and refresh transactions can be viewed as DAP pour
transactions, and so DAP.Receive may retrieve from these any relevant coins.

Minting notes. Each of the minting algorithms DAM.MintCoin, DAM.MintDeposit,
and DAM.MintTicket first sets the public information string pub to the type of the note
being minted (respectively, cn, dp, or tk), and sets the secret information string sec
accordingly: for coins, sec equals ⊥; for deposits, sec is a commitment to the deposit’s
receiver address set R; for tickets, sec equals the (already-minted) deposit that backs it.
Then, the algorithm mints the note by running DAP.Mint.

Pouring coins. Each of the algorithms DAM.PourCoinToCoin, DAM.PourCoinToDeposit,
DAM.PourCoinToTicket first sets the public and secret information strings similarly to
above, and then runs DAP.Pour to generate the new notes. A DAM scheme also includes
a protocol for pouring tickets into coins, which we discuss separately in Section 5.2
because it is the most complex part of the construction.
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Withdrawing deposits. The algorithm DAM.WithdrawDeposit, given a deposit d
(and its address secret key) and address public key apk, pours the deposit into a new
coin c with address apk by running DAP.Pour. The output consists of the new coin c, as
well as a withdraw transaction txwd that is just a DAP pour transaction having activation
delay ∆w. Since pour transactions reveal the serial numbers of input notes, it is easy to
blacklist the withdrawn deposit (see Section 5.2).

5.2 A 3-message protocol for probabilistic payments

We outline the construction of DAM.PourTicket, a 3-message protocol that realizes
an offline probabilistic payment between a sender (customer) and receiver (merchant).
For simplicity, we only discuss enforcement of the worst-case payment rate bounds;
enforcement of the average-case bound is achieved via essentially the same ideas. Recall
that the worst-case bound limits the number of macropayments that occur in a particular
time window tw.

1st message (sender← receiver). The first message of the protocol is from the receiver
to the sender and consists of the receiver’s session identifier sid, session public key spk,
the list of deposits D that have been blacklisted in this epoch, and the desired public
value vpub. These are constructed as follows. Suppose that the receiver has an address
key pair (apkc, askc) and wishes to receive payments at this address with payment
probability pr and macropayment value Vr; moreover, suppose that the receiver’s per-
deposit maximum cumulative average-case payment value rate is ar. Then the receiver
constructs his session identifier as sid := (apkc, twr). To construct the session public
key, the receiver samples a new key pair (pkSIG, skSIG) for the one-time signature scheme,
and a new key pair (pkFMT, skFMT) for the fractional message transfer scheme and sets
spk := (pkFMT, pkSIG). Finally, the deposit blacklist D consists of the identifiers of
deposits seen in punish transactions within the current epoch.

2nd message (sender→ receiver). The sender now pours his ticket t into a new
coin c using DAP.Pour, and then uses fractional message transfer to probabilistically
transmit the new coin c to the receiver, while also proving, in zero knowledge, that he
did so correctly. We now expand on this description, which hides subtle aspects of our
construction.

After pouring his ticket t into a new coin c (which results in a DAP pour transaction
txp), the sender uses the deposit d backing t to generate two crucial quantities: the
worst-case rate limit tag wrlt and the double spend tag dst. The rate limit tag allows the
receiver to enforce the payment value rate bounds required by the economic analysis.
The double spend tag allows the receiver to extract deposit revocation information if and
only if t is spent in two macropayments.

A natural strategy would be for the sender to send to the receiver, in the clear, the
rate limit tag wrlt, and a FMT ciphertext cFMT containing txp and dst, along with a non-
interactive zero knowledge proof that both were generated correctly. However, doing
so does not preserve privacy. Indeed, to ensure that the sender cannot double spend the
ticket to herself and escape punishment, the ledger needs to check that the double spend
tag was generated correctly. This can be done by verifying the NIZK proof, but to do
this would require including the FMT ciphertext, blacklist detection tag, and rate limit
tag as part of the NP instance being verified. This is problematic, since publishing these
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leaks information about the transfer probability pr and the deposit, both of which are
private information.

To fix this problem, the sender hides wrlt and cFMT inside two commitments ω0 and
ω1, and then computes a proof of correctness relative to these commitments. More pre-
cisely, the first commitment ω0 hides m0 := (sid, spk, vpub, cFMT), where sid, spk, and
vpub are the receiver’s session identifier, session public key, and public value respectively,
and cFMT is a FMT ciphertext. The FMT ciphertext cFMT, as before, contains wrlt, txp
and dst, but now also contains randomness r1 that opens the second commitment ω1,
which in turn hides m1 := (txp, dst,wrlt). Thus opening the FMT ciphertext allows the
receiver to open ω1 and obtain the correct txp, dst,wrlt. Next, the sender generates a
non-interactive zero knowledge proof of knowledge πpt asserting that he performed all
these steps correctly. The NIZK also asserts (a) that the deposit d’s receiver address set
R contains the receiver’s address public key apk, (b) that d’s identifier has not appeared
in punish transactions in the current epoch, and (c) that d’s serial number has not ap-
peared on the ledger prior to the current epoch (that is, d was not revoked or withdrawn
in prior epochs).

Finally, he sends (ω0,m0, ω1, πpt) and randomness r0 for opening ω0 to the receiver.
Since the proof is now computed relative to ω0 and ω1, and not cFMT and wrlt, it can
safely be published to the ledger.

3rd message (sender← receiver). The receiver uses r0 andm0 to open ω0 and checks
that the committed sid, spk and vpub are indeed the correct ones (which were sent in the
first message). Next, he checks the correctness of πpt, and finally, using the rate limit tag,
he checks that the payment value rate ar has not been exceeded. If these checks pass, he
tries to open the FMT ciphertext cFMT inside ω0. If he is able to successfully open it, he
can open ω1 to obtain txp and dst. If the ticket t has already been spent (i.e., the deposit
d has been blacklisted), the receiver recovers the deposit and creates a punish transaction
txpun. If not, he posts txp to obtain his payment. Finally, he sends to the sender the
secret key skFMT used for decryption, and m′, which is the outcome of decryption, to
communicate whether the outcome was ‘macropayment’ or ‘nullpayment’.

Outcome verification. Upon receiving the FMT secret key, the sender checks that the
FMT ciphertext cFMT decrypts to claimed message m′ under the key skFMT; this reveals
whether the claimed outcome was the correct one. If the receiver sends an incorrect secret
key, or does not send anything at all, the sender refreshes his ticket, thereby generating a
new ticket t′ and a refresh transaction txref .

5.3 Security considerations

We give an intuitive justification of why the probabilistic payment protocol is secure.

Sender security. The fractional hiding property of the FMT scheme ensures that the
receiver can only open cFMT with probability pr. Since the commitment ω1 is hiding and
the proof πpt is zero knowledge, the rest of the sender’s message is indistinguishable
from random. Finally, the security of the “outcome verification” step is guaranteed by
the fractional hiding property of the FMT scheme; if the receiver could generate two
different secret keys that can decrypt the same FMT ciphertext to different messages,
then he could bias the probability of opening the ciphertext in his favor, thus breaking
fractional hiding.
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The above ensures “intra-protocol” sender security. Post-protocol security requires
that the receiver cannot compromise the honest sender’s anonymity or cause monetary
loss by aborting. This is achieved by allowing the sender to refresh tickets by pouring
them into new ones. This breaks the link between the ticket that the receiver has seen
and the ticket that the sender can now spend, enabling the sender to freely spend his new
ticket.
Receiver security. Opening ω0 allows the receiver to check that the sender generated
the rate limit tags relative to the true session identifier and public key. The fractional
binding property of the FMT scheme ensures that the sender cannot alter the probability
of opening cFMT. The NIZK proof ensures the correctness of each step.

The above ensures “intra-protocol” receiver security. Achieving post-protocol se-
curity is trickier, since we need to ensure that the sender can only create double spend
tags that are consistent across independent pour-ticket transactions. In our construction,
the sender can attempt to bypass this requirement by manipulating the three inputs that
create a double spend tag: the randomness x used for generating the tag, and the deposit
d that is hidden in the tag, and the ticket t that d backs.

Preventing reuse of randomness. To prevent recovery of the deposit serial number
from multiple double spend tags, the sender could attempt to reuse randomness across
each tag. This would prevent recovery, since each receiver would possess the same
tag. To prevent this, our construction of a double spend tag dst uses a special one-time
signature public key pkSIG as randomness. Later, upon receiving the tag, the receiver
signs the tag (among other things) with the secret key skSIG corresponding to pkSIG.
To create two different pour-ticket transactions with the same double spend tag (one
to an honest receiver and one back to himself), the sender would thus have to forge a
signature, which is computationally infeasible by the security of the signature scheme.
Ensuring d backs t. The NIZK proof created by the sender ensures that the deposit d
hidden in the double spend tag is the one backing t.
‘Identical’ tickets backed by different deposits. In principle, one could construct two
tickets t, t′ that have the same serial number (and are thus indistinguishable from the
point of view of double spending), but are backed by different deposits. Since t and
t′ would share serial numbers, only one of the two could be successfully spent. This
could lead to the following attack: the sender generates two such tickets, and pays
himself with one, and pays a receiver with the other. When a macropayment occurs,
he front runs the receiver to get his self-payment onto the ledger first. The receiver is
then robbed of his payment, but also cannot punish the sender, since the double spend
tags hide different deposits, making revocation impossible.
However, our construction prevents such an attack by ensuring that the serial number
of a note is derived (in part) from its secret information string sec. This property is
guaranteed by the DAP scheme.

5.4 Regulating type transitions when pouring

The definition of a DAM scheme restricts fund transfers between different note types:
coins can be poured into coins, deposits, or tickets; a deposit can be poured into a coin; a
ticket can be poured into a coin or ticket. Moreover, some type transitions are handled
differently from others: for example, pouring from a set of coins yields a pour-coin
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transaction that is immediately valid, while pouring from a ticket to a ticket yields a
refresh transaction that only becomes valid after a waiting period (the activation delay).
We realize most of these fund transfers via DAP pours, but we must also somehow meet
the aforementioned restrictions.

The first obstacle is that a note’s type is not necessarily known, because we store
the type of note in its public information string pub, which is not revealed by a DAP
pour transaction. But remember that a DAP scheme allows us to choose, at parameter
setup time, a pour predicate that regulates all pour transactions. We thus engineer a pour
predicate Π∗p , tailored for our application, that (i) allows only the aforementioned type
transitions, and (ii) ensures that the information string info in a DAP pour transaction
correctly exposes the type of the note from which we are pouring.
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