
The Multi-User Security of Double Encryption

Viet Tung Hoang1 and Stefano Tessaro2

1 Dept. of Computer Science, Florida State University
2 Dept. of Computer Science, University of California Santa Barbara

Abstract. It is widely known that double encryption does not sub-
stantially increase the security of a block cipher. Indeed, the classical
meet-in-the middle attack recovers the 2k-bit secret key at the cost of
roughly 2k off-line enciphering operations, in addition to very few known
plaintext-ciphertext pairs. Thus, essentially as efficiently as for the un-
derlying cipher with a k-bit key.
This paper revisits double encryption under the lens of multi-user se-
curity. We prove that its security degrades only very mildly with an in-
creasing number of users, as opposed to single encryption, where security
drops linearly. More concretely, we give a tight bound for the multi-user
security of double encryption as a pseudorandom permutation in the
ideal-cipher model, and describe matching attacks.
Our contribution is also conceptual: To prove our result, we enhance and
generalize the generic technique recently proposed by Hoang and Tessaro
for lifting single-user to multi-user security. We believe this technique to
be broadly applicable.

Keywords: symmetric security, provable security, multi-user security,
double encryption

1 Introduction

A classical problem in cryptography is that of stretching the key length of a
block cipher. Namely, from a block cipher E with block length n and key length
k, we want to obtain a new one with key length k′ > k which is more secure
than E. The problem was naturally motivated by legacy designs – in particular,
DES – with inherently too-short keys (e.g., 56 bits), and the desire to stretch
this key length generically without resorting to designing a new cipher.

The common wisdom is that double encryption is not useful for key-stretching
purposes. Here, by double encryption, we mean the construction that, given an
n-bit plaintext M and two k-bit keys K1, K2, outputs EK1

(EK2
(M)). Indeed,

there is a well-known meet-in-the-middle attack recovering the key with only
marginally more than 2k operations given (very few) valid plaintext-ciphertext
pairs. This weakness has led to the widespread deployment (which continues
to date in some niche areas) of Triple-DES [1], as well as a number of works
on analyzing the theory of triple and multiple encryption [7, 13–17, 20], and
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alternative constructions with extra whitening steps (and key material) [15, 16,
18–20].

In this paper, we revisit double encryption in the context of multi-user secu-
rity, where we give tight bounds, and show that it constitutes a sound and simple
method to mitigate multi-user attacks on block ciphers. However, this problem
will also serve as an application for a generic framework to provide good multi-
user security bounds, and which we hope to be of wider applicability.

Double encryption in the single user setting. As in previous works, we
study the security of double encryption in the ideal-cipher model as a (strong)
pseudorandom permutation (PRP). The attacker A is given access to an ideal
cipher E to which it can issue p forward or backward queries for any chosen
key (these are usually referred to as “offline queries”), and up to q queries (in
either direction) to EK1

◦EK2
(for random secret keys K1, K2) or a truly random

permutation on the n-bit strings (this being usually called “online queries”). The
attacker’s goal is to decide which of the two it is accessing. In this model, Aiello
et al. [2] proved that A’s distinguishing advantage satisfies

Adv
prp
DE[E](A) ≤

( p

2k

)2

. (1)

where DE[E] denotes double encryption. Note that for single encryption, the
bound is easily shown to be Adv

prp
E (A) ≤ p

2k . Both advantages become non-

negligible for the same p ≈ 2k, although (1) is smaller when p≪ 2k.

The multi-user setting. In the multi-user (mu) setting, originally proposed
by Bellare, Boldyreva, and Micali [5] for public-key encryption, the attacker can
distribute its online queries adaptively across multiple independent key pairs (in
the real world) or independent permutations (in the ideal world). A few recent
block-cipher analyses [19,24,29] have focused on mu security, and the notion has
established itself as a more realistic security target.

One expects security to degrade as the number of users increases, and this
loss can be linear in the worst case. For example, for single-encryption, we do
have

Adv
±mu-prp
E (A) ≤ u (p + u)

2k
≤ q (p + q)

2k
, (2)

where u is a bound on the number of users A queries, and this bound is tight,
i.e., there is a matching attack [10]. Also, we can only guarantee u ≤ q, as
the attacker can decide to only issue one query per user. However, for double
encryption, we can use a simple hybrid argument to show that

Adv
±mu-prp
DE[E] (A) ≤ u

(

p + 2q

2k

)2

≤ q

(

p + 2q

2k

)2

. (3)

This bound is already better than the one from (2) – for instance, for roughly
p = q = 2k/2, this latter bound is still O(2−k/2), but (2) gives Ω(1). However,
contrary to the single-encryption case, it is not clear that the bound is tight. We
will indeed show a much better bound.
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Our bounds. Our main result shows that the security of double encryption does
not degrade substantially in the multi-user setting, and that the bound from (3)
is overly pessimistic. In particular, we prove that

Adv
±mu-prp
DE[E] (A) ≤ 1

2n
+

5q

2k+n/2
+

6qB2 + 222BQ2

22k

where Q = max{p, q} and B = 5 max{n + k/2, 2q/2n}. This bound is rather
cumbersome, but the key observation is that third-degree monomials in p and q
all appear with denominator 22k+n, whereas any term with denominator 22k is
at most quadratic in p, q – very similar to the single-user case.

Recall that the meet-in-the-middle attack on the single user security of double
encryption succeeds with advantage p2/22k, and Biham’s key-collision attack [10]
achieves advantage q2/22k. Therefore for the setting that n ≥ k (such as DES
or AES), our bound is tight. For the setting n ≪ k (which occurs in Format-
Preserving Encryption [6], and several block-cipher designs), finding matching
attacks is difficult, and we leave it as an open problem. However, as an interme-
diate step, we note that most proofs are in models where the keys are revealed
to the distinguisher at the end of the execution. In this model, we can give
a matching attack (based on the meet-in-the-middle paradigm) that achieves
distinguishing advantage

max{⌊n/8 lg(n)⌋, q/2n} · p2

3 · 22k
.

We discuss attacks below in Section 6.

A disclaimer. We stress that the common wisdom that there is no security
increase is obviously still in place. However, the envisioned application is to
ciphers whose key length is not an issue in the single-user setting, but becomes
too short in a multi-user regime. For instance, a multi-user attack reduces the
security of (single) AES128 to 64 bits. Our result shows that iterating AES128
twice substantially mitigates the impact of a multi-user attack, and that in fact
we obtain almost optimal multi-user security, namely around 115 bits for a total
key length of 256 bits. (Also see Figure 2.)

Techniques. Our result is obtained using new techniques we introduce and
that we believe to be of broad applicability in lifting existing analyses from the
single-user (su) to the mu setting.

Hoang and Tessaro (HT) [19] already proposed a generic approach for this
purpose. It is illustrative to briefly review it, and see why it fails for double
encryption. HT’s idea is to show that the construction (e.g., double encryp-
tion) satisfies, in the su case, a property called point-wise proximity, a stronger
property than indistinguishability, already used in previous works (e.g., in [9]).
Concretely, this means that there exists a function ǫ = ǫ(p, q) of the query pa-
rameters p and q, such that for all transcripts τ containing p offline and q online
queries, we have

pSideal
(τ)− pSreal

(τ) ≤ ǫ(p, q) · pSideal
(τ) , (4)
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where pSideal
(τ) and pSreal

(τ) are the so-called ideal and real interpolation prob-
abilities. Namely, they describe the probability that the real (pSreal

) and the
ideal (pSideal

) worlds behave consistently with the transcript when the queries
the transcript contains are asked in that order.

HT show that then point-wise proximity is achieved in the multi-user exper-
iment, where ǫ(p, q) is replaced by ǫ(p + qt, q), where t is the number of calls
made by the construction to the underlying primitive (in the case of double en-
cryption, t = 2). This implies that the distinguishing advantage is also at most
ǫ(p + qt, q). For this argument to hold, however, ǫ needs to be super-additive,
i.e., ǫ(x, y) + ǫ(x, z) ≤ ǫ(x, x + y), and moreover, ǫ(·, y) and ǫ(x, ·) need to be
non-decreasing functions for al x, y ∈ N. For double encryption, no such ǫ can

be established. For instance, the natural candidate ǫ(p, q) =
(

p
2k

)2
is not super-

additive, as ǫ(x, y) + ǫ(x, z) = 2ǫ(x, y + z).
We take a different approach, by introducing a relaxed notion of almost

proximity, which in particular akin to the H-coefficient method (cf. e.g. [12,
26]), introduced a partition the set of single-user transcripts into good and bad
transcripts, and proximity guarantees are shown only on the former. Our main
technical insight is the introduction of a precise framework to mitigate the effects
of the growth of the probability of a bad transcript when increasing the number
of users. We dispense with a formulation here – the conditions are not concise –
and refer the reader to Section 3. We note that we also provide simplifications of
the framework in Section 4, one of which is in particular sufficient for analyzing
double encryption. We finally apply it in Section 5.

Further related work. Multiple encryption has been studied also in the
standard computational model, with respect to the question of how it amplifies
(weak) PRP security. Luby and Rackoff [21] initially studied double encryption,
and bounds for multiple encryption were later provided by Myers [25] and Tes-
saro [28].

Also, while above we have focused on block cipher analyses, recent works
have studied mu security in different contents, in particular for authentication
encryption [8] and message-authentication codes [3, 4].

2 Preliminaries

Notation. For a finite set S, we let x←$ S denote the uniform sampling from S
and assigning the value to x. Let |x| denote the length of the string x, and
for 1 ≤ i < j ≤ |x|, let x[i, j] denote the substring from the ith bit to the
jth bit (inclusive) of x. If A is an algorithm, we let y ← A(x1, . . . ; r) denote
running A with randomness r on inputs x1, . . . and assigning the output to y.
We let y←$ A(x1, . . .) be the resulting of picking r at random and letting y ←
A(x1, . . . ; r).

Multi-user PRP security of blockciphers. Let Π : K×{0, 1}n → {0, 1}n

be a blockcipher, which is built on another blockcipher E : {0, 1}k ×M →M.
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proc Initialize() RealAΠ[E],Sample

for i = 1, 2, . . . do Ki←$ Sample()

proc Enc(i, x) {return ΠKi [E](x)}

proc Dec(i, y) {return Π−1
Ki

[E](y)}

proc Prim(J, u) {return EJ (u)}

proc PrimInv(J, v) {return E−1
J (v) }

proc Initialize() RandA
Π[E],Sample

for i = 1, 2, . . . do fi←$ Perm({0, 1}n)

proc Enc(i, x) {return fi(x)}

proc Dec(i, y) {return f−1
i (y)}

proc Prim(J, u) {return EJ (u)}

proc PrimInv(J, v) {return E−1
J (v)}

Fig. 1: Games defining the multi-user security of a blockcipher Π : K ×
{0, 1}n → {0, 1}n. This blockcipher is based on another blockcipher E : {0, 1}k ×
{0, 1}n → {0, 1}n. The game is associated with a key-sampling algorithm Sample.
Here Perm({0, 1}n) denotes the set of all permutations on {0, 1}n.

We associate with Π a key-sampling algorithm Sample. Let A be an adversary.
Define

Adv
±mu-prp
Π[E],Sample(A) = Pr[RealAΠ[E],Sample ⇒ 1]− Pr[RandA

Π[E],Sample ⇒ 1]

where games Real and Rand are defined in Fig. 1. If Sample is the uniform
sampling of K then we only write Adv

±mu-prp
Π[E] (A).

In the games above, we first use Sample to sample keys K1, K2, . . . ∈ K for Π, and
independent, random permutations f1, f2, . . . onM. The adversary is given four
oracles Prim,PrimInv, Enc, and Dec. In both games, the oracles Prim and
PrimInv always give access to the primitive E and its inverse respectively. The
Enc and Dec oracles give access to f1(·), f2(·), . . . and their inverses respectively
in game Rand, and access to Π[E](K1, ·), Π[E](K2, ·), . . . and their inverses in
game Real. The adversary finally needs to output a bit to tell which game it is
interacting with.

Single and Double Encryption. Let k, n ∈ N and let E : {0, 1}k×{0, 1}n →
{0, 1}n be a blockcipher. The Single Encryption of E is the blockcipher E itself.
The Double Encryption DE[E] of E is a blockcipher with keyspace ({0, 1}k)2 and
message space {0, 1}n. On key K = (J1, J2) and message x ∈ {0, 1}n, DEK [E](x)
returns EJ2

(EJ1
(x)).

Systems and transcripts. Following up the notation from [19] (which was in
turn inspired by Maurer’s framework [22]), it is convenient to consider interac-
tions of a distinguisher A with an abstract system S which answers A’s queries.
The resulting interaction then generates a transcript τ = ((X1, Y1), . . . , (Xq, Yq))
of query-answer pairs. It is well known that S is entirely described by the prob-
abilities pS(τ) that if we make queries in τ to system S, we will receive the
answers as indicated in τ . We say in particular that S is stateless if pS(τ) is
invariant under permuting the orders of the input-output pairs it contains.
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We will generally describe systems informally, or more formally in terms a set
of oracles they provide, and only use the fact that they define a corresponding
probabilities pS(τ) without explicitly giving these probabilities.

The expectation method. In this paper, we shall use the expectation method
of Hoang and Tessaro [19]. For a pair of systems Sreal and Sideal, this method
aims to bound the gap pSideal

(τ) − pSreal
(τ), for a fixed (su) transcript τ such

that pSideal
(τ) > 0. Under this method, one extends the transcript with a random

variable S. In Sreal, this S is often a part of the key and suppose that it has
marginal distribution µ. In Sideal, we pick S of the same marginal distribution µ,
but independent of τ . Let pSreal

(τ, s) denote the probability that Sreal behaves
according to τ , and S agrees with s. Let pSideal

(τ, s) denote the probability that
Sideal behaves according to τ , and S←$ µ agrees with s. Under the expectation
method, one partitions the range of S into two sets, Γgood and Γbad. For s such
that pSideal

(τ, s) > 0, if s ∈ Γbad then we say that s is bad; otherwise s is good.
We write Pr[S ∈ Γbad] to denote the probability that S←$ µ independent of τ
is bad. Hoang and Tessaro give the following result.

Lemma 1 (The expectation method). [19] Fix a su transcript τ such that
pSideal

(τ) > 0. Assume that there is a partition Γgood and Γbad of the range U of
S, as well as a function g : U → [0,∞) such that Pr[S ∈ Γbad] ≤ δ and for all
s ∈ Γgood,

1− pSreal
(τ, s)

pSideal
(τ, s)

≤ g(s) .

Then
pSideal

(τ)− pSreal
(τ) ≤ (δ + E[g(S)]) · pSideal

(τ) . ⊓⊔

Note that in Lemma 1, the expectation is taken over all possible (good or bad)
values of S.

3 A Generic Method to Bound Multi-user Security

In this section we present a generic method to prove information-theoretic mu
security bounds, based (mostly) on upper bounding single-user quantities. The
framework is very general, and in fact generalizes the approach by Hoang and
Tessaro [19] based on pointwise proximity.

The generic setting. We consider two (stateless) systems Sreal and Sideal,
called the real and ideal systems, respectively. Each of these two systems can be
invoked via two oracles Cons and Prim, allowing for construction and primitive
queries, respectively. First off, Prim gives access to an ideal primitive (for ex-
ample, an ideal cipher, a random function or permutation), whereas Cons’s role
depends on the context, but always answers queries of the form (i, X), where i
is the index of a user and X is the query for that user. More specifically:
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1. In Sreal, the oracle Cons upon a query (i, X) invokes a construction Π which
makes calls to Prim, and additionally depends on some local, initially chosen
randomness (or key) Ki. That is, the output is ΠPrim(Ki, X).

2. In Sideal, the oracle Cons samples independent functions f1, f2, . . . from
some distribution, and answers a query (i, X) as fi(X).

For example, the game from Figure 1 can be described as suitable systems Sreal

and Sideal: We would simply handle inversion queries (to Dec and PrimInv) by
specifying the direction of the query in the input given to Cons and Prim, i.e.,
X = (+, x) or X = (−, y). Also, we can model more complex scenarios, like the
security of authenticated encryption schemes, as long as we can map the security
notion to suitable Sreal and Sideal.

We generally will assume that there exists a metric of data complexity asso-
ciated with queries made to Cons. For instance, if Cons takes variable-length
inputs, σ could be number bits queried to it, whereas if the input length is
fixed, this could just be the number of queries. We assume that there exists a
parameter t indicating that when answering multiple queries with overall data
complexity σ, Π makes at most t · σ queries to Prim.

The distinguishing problem. For any adversary A and a system S, we let
Script(A, S) denote the random variable for the transcript of the interaction of
A and S. Recall that the advantage of the adversary in distinguishing two systems
Sreal and Sideal is at most the statistical distance between the distributions of
the adversary’s transcript in the real and ideal games, which is

Adv
dist
Sreal,Sideal

(A) ≤
∑

τ

max{0, pSideal
(τ)− pSreal

(τ)}, (5)

where the sum is taken over all τ such that Pr[Script(A, Sideal) = τ ] > 0.
Note that there might be some context-dependent constraints on the adver-

sary’s queries. For example, if part of the inputs to Cons include nonces to a
nonce-based authenticated encryption, then one might require that the nonces
will not repeat. This is easy to handle, since it will only restrict the set of valid
transcripts to be considered. We will usually capture the complexity of A in
terms of the number of Prim queries, p, the number of Cons queries q, and the
overall data complexity σ for the queries made to Cons. A security bound ǫ is
then viewed as a function ǫ(p, q, σ). We say that a function ǫ(·, ·, ·) : N3 → [0, 1]
is monotonic if ǫ(·, y, z), ǫ(x, ·, z), and ǫ(x, y, ·) are increasing functions, for any
x, y, z ∈ N. Often security bounds are monotonic functions, since increasing the
adversary’s resources can only help it.

Almost proximity. We now establish a condition on Sreal that we call almost
proximity, which will allow us to establish mu security from a number of func-
tions, δ0, δ1 and δ2, we define next. In particular, some of these functions (δ1

and δ2) are defined with respect to single-user (su) transcript, i.e., transcripts
were all queries to Cons are of the form (i, X) for one single i.

One begins by defining a context-dependent, undesirable property on su tran-
scripts that we call bad, and if a su transcript is not bad then it is good. We
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partition in particular the set of bad transcripts into two sets, S and S ′. In
many cases (such as our Double Encryption application below), one of the two
sets S and S ′ is simply the empty set, but we envision more general application
scenarios.

Further, we will assume that there exists a function Rate such that for any
good su transcript τ ,

pSideal
(τ)− pSreal

(τ) ≤ Rate(τ) · pSideal
(τ) ,

where Rate is in particular an increasing function mapping a transcript to a
number in [0, 1], meaning that for any transcripts τ and τ ′ such that τ ′ contains
all the query-answer pairs of τ (possibly in a different order), we have Rate(τ ′) ≥
Rate(τ).

Then, we also assume that there is a monotonic function δ2 such that for
any adversary B attacking a single user via p Prim queries, q Enc queries with
overall data complexity σ, we have

Pr[Script(B, Sideal) ∈ S] ≤ δ2(p, q, σ) .

Note that the bound above is with respect to the ideal system, Sideal, and thus
often easy to compute.

We also define another, context-dependent, desired property on mu transcripts
that we call nice — we let N be the set of all nice mu transcripts. (We stress
that niceness is with respect to mu transcripts, whereas being good/bad is only
with respect to su ones.) The notion of niceness involves only the Cons query-
answer pairs: for any two transcripts τ and τ ′ that have the same Cons query-
answer pairs (possibly in different orders), if τ ∈ N then so is τ ′. Also, for a mu
transcript τ involving queries to exactly r users, and for each i ∈ {1, . . . , r}, let
Map(i, τ) denote the su transcript obtained by deleting the Cons(j, ·) queries
and answers for any j 6= i. We require the following conditions:

– For any transcript τ ∈ N and all i, Map(i, τ) 6∈ S ′.
– There is a monotonic function δ0 such that for any mu adversary A making

p Prim queries, q Cons queries, and data complexity σ,

Pr[Script(A, Sideal) 6∈ N ] ≤ δ0(p, q, σ) .

– There is a monotonic function δ1 such that for any τ ∈ N of r users that
contains p Prim, q Cons queries of total data complexity at most σ,

r
∑

i=1

Rate(Map(i, τ)) ≤ δ1(p, q, σ) . (6)

We refer to this last property as mu-boundedness.

We refer to the existence of suitable functions δ0, δ1, δ2 for corresponding Rate,
Map, S, S ′ and N as meeting the almost-proximity conditions.
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Mu security via almost proximity. The following result bounds the mu
advantage in distinguishing Sreal and Sideal, granted the almost-proximity con-
ditions defined above are met.

Lemma 2 (Mu-security via almost proximity). Assume that the almost-
proximity conditions above are met, for some δ2, δ0 and δ1. Then for any ad-
versary A that makes at most q Cons queries of total data complexity σ, and p
Prim queries, we have

Adv
dist
Sreal,Sideal

(A) ≤ δ0(p, q, σ) + 2δ1(p + tσ, q, σ) + 2q · δ2(p + tσ, q, σ) .

Discussion. A meaningful question is why we need to separate the set of bad
su transcripts into S and S ′. The reason is that, when we move from su to mu
setting, under our method, the term δ2 will blow up to qδ2, which is similar to the
hybrid argument. To avoid an inferior mu bound, we would like to minimize the
term δ2 as much as possible, by carving out S ′ from the set of bad su transcripts.
Due to the requirement that Map(i, τ) 6∈ S ′ for every nice mu transcript τ and
every i, the set S ′ and the notion of niceness needs to be chosen in tandem to
minimize qδ2 + δ0(p, q, σ). Bounding Pr[Script(A, Sideal) 6∈ N ] requires working
directly in the mu setting, but recall that we are in the ideal game, which is
often simple to deal with.

Proof (of Lemma 2). Since we consider a computationally unbounded adversary,
without loss of generality, assume that the adversary is deterministic. For sim-
plicity, from this point, we will write δ2 and δ1 instead of δ2(p + tσ, q, σ) and
δ1(p + tσ, q, σ). Without loss of generality, assume that δ1 < 1/2; otherwise the
the claimed bound in the statement of this lemma is moot. We also assume that
the adversary’s transcript involves at most r users.

Restricting to nice transcripts. Recall that in the ideal system, the prob-
ability that the adversary A can produce a mu transcript that is not nice is at
most δ0(p, q, σ). From Equation (5), what is left is to show that

∑

τ

pSideal
(τ)− pSreal

(τ) ≤ 2δ1 + 2qδ2, (7)

where the sum in the left hand side is taken over all nice transcripts τ in the sup-
port supp(Script(A, Sideal)) of Script(A, Sideal) such that pSideal

(τ) > pSreal
(τ).

Below, when we talk about a valid transcript τ , this means that τ meets the
constraint above.

Building hybrids. For each i ∈ {0, . . . , r}, consider the hybrid system Si that
provides the interface compatible with the real and ideal systems, but queries
for user uj are answered via the actual construction ΠPrim(Kj , ·) for j > i, and
via an independent, perfect simulation of the Cons(j, ·) oracle of the ideal game



10 Hoang and Tessaro

if j ≤ i. Then S0 = Sreal and Sr = Sideal and thus for any valid transcript τ ,

pSideal
(τ)− pSreal

(τ) =

r
∑

i=1

pSi
(τ)− pSi−1

(τ) . (8)

Let Bi be the following hybrid su adversary. It samples key Kj for ΠPrim for every
i < j ≤ r, and then runs A. Queries for user uj are answered via ΠPrim(Kj , ·)
if j > i, and via the Cons(1, ·) oracle of Bi if j = i, and via an independent,
perfect simulation of the Cons(j, ·) oracle of the ideal game if j < i. In other
words, adversary Bi simulates system Si−1 in its su real game, and simulates
system Si in its su ideal game. It makes at most q Cons queries of total data
complexity σ and at most p + tσ Prim queries.

Reducing to transcript-wise gap. Fix a valid transcript τ . Let T (i, τ) de-
note the set of extended transcripts of Bi in its su ideal game that are enhanced
with the simulated Cons queries and answers as well as the simulated keys Kj ,
such that the corresponding simulated transcript for A is τ . For each τi ∈ T (i, τ),
let Tr(τi) be the transcript of Bi derived from τi. For S ∈ {Sreal, Sideal}, let pS(τi)
denote the probability that, when Bi interacts with S, its enhanced transcript
is τi. Note that compared to Tr(τi), the additional information τi contains is the
keys Kj , and the queries/answers on the simulated oracle Cons(j, ·) of the ideal
game for users j < i. Since this information is independent of Sreal and Sideal,

pSreal
(τi)

pSideal
(τi)

=
pSreal

(Tr(τi))

pSideal
(Tr(τi))

. (9)

Let Si be the set of extended transcripts τi of Bi such that Tr(τi) ∈ S. We claim
that

pSideal
(τ)− pSreal

(τ) ≤ 2
(

r
∑

i=1

∑

τi∈T (i,τ)∩Si

pSideal
(τi)

)

+ 2δ1

∑

τ1∈T (1,τ)

pSreal
(τ1)

= 2
(

r
∑

i=1

∑

τi∈T (i,τ)∩Si

pSideal
(τi)

)

+ 2δ1 · pSreal
(τ)

≤ 2
(

r
∑

i=1

∑

τi∈T (i,τ)∩Si

pSideal
(τi)

)

+ 2δ1 · pSideal
(τ), (10)

where the last inequality is due to the assumption that τ is valid. This claim
will be justified later. By summing both sides of Equation (10) over all valid τ ,
we can bound the left-hand side of Equation (7) by

2
(

r
∑

i=1

Pr[Script(Bi, Sideal) ∈ S]
)

+ 2δ1 ≤ 2q · δ2 + 2δ1

which is the right-hand side of Equation (7). To justify Equation (10), note that

pSideal
(τ)− pSreal

(τ) =

r
∑

i=1

pSi
(τ)− pSi−1

(τ) .
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Moreover, for each i ≤ r,

pSi
(τ) =

∑

τi∈T (i,τ)

pSideal
(τi),

whereas
pSi−1

(τ) ≥
∑

τi∈T (i,τ)

pSreal
(τi),

because (a) the left-hand side is the chance that adversary Bi in its real world
(recall that the real world of Bi is the ideal world of Bi−1) can generate τ , which
is

∑

τ ′ pSreal
(τ ′) over all enhanced transcripts τ ′ that Bi can witness such that the

corresponding transcript for A is τ , and (b) the right-hand side is
∑

τ ′ pSreal
(τ ′)

over some (but probably not all) such τ ′. Hence

pSideal
(τ)− pSreal

(τ) ≤
r

∑

i=1

∑

τi∈T (i,τ)

pSideal
(τi)− pSreal

(τi)

=
(

r
∑

i=1

∑

τi∈T (i,τ)∩Si

pSideal
(τi)−pSreal

(τi)
)

+

r
∑

i=1

∑

τi∈T (i,τ)\Si

pSideal
(τi)− pSreal

(τi)

≤
(

r
∑

i=1

∑

τi∈T (i,τ)∩Si

pSideal
(τi)

)

+
r

∑

i=1

∑

τi∈T (i,τ)\Si

pSideal
(τi)− pSreal

(τi) .

What is left is to prove that

r
∑

i=1

∑

τi∈T (i,τ)\Si

pSideal
(τi)− pSreal

(τi)

≤
(

r
∑

i=1

∑

τi∈T (i,τ)∩Si

pSideal
(τi)

)

+ 2δ1

∑

τ1∈T (1,τ)

pSreal
(τ1) . (11)

Now, recall that for each τi ∈ T (i, τ)\Si, the su transcript Tr(τi) is good. Since
the two systems satisfy the almost proximity condition,

pSideal
(Tr(τi))− pSreal

(Tr(τi)) ≤ Rate(Tr(τi)) · pSideal
(Tr(τi)) .

Recall that from Equation (9), the ratio between pSideal
(Tr(τi)) and pSreal

(Tr(τi))
is exactly that between pSideal

(τi) and pSreal
(τi). Then

pSideal
(τi)− pSreal

(τi) ≤ Rate(Tr(τi)) · pSideal
(τi) . (12)

This in turn implies that

pSideal
(τi) ≤

pSreal
(τi)

1− Rate(Tr(τi))
. (13)

To justify that the denominator of the right-hand side is nonzero so that Equa-
tion (13) above is well-defined, let τ ′ be the mu transcript that has the same
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Cons queries/answers as τ , and the same Prim queries/answers as τi. Since τ
is nice, so is τ ′. Thus, 1 − Rate(Tr(τi)) = 1 − Rate(Map(i, τ ′)) ≥ 1 − δ1 > 0.
From Equation (12), to justify Equation (11), we need to bound each sum

∑

τi∈T (i,τ)\Si

Rate(Tr(τi)) · pSideal
(τi),

for every i ∈ {1, . . . , r}. For ℓ ≤ i, define Rate(i, τℓ) as follows. Let τ ′ be the
su transcript induced by τℓ in which we only keep Cons queries/answers for
user ui, and all Prim queries/answers. Let Rate(i, τℓ) = Rate(τ ′). The special
case Rate(i, τi) coincides with Rate(Tr(τi)). We claim that for each i, the sum
above is at most

∑

τ1∈T (1,τ)

2Rate(i, τ1) ·pSreal
(τ1) +

i
∑

s=1

∑

τs∈T (s,τ)∩Ss

2Rate(i, τs) ·pSideal
(τs) . (14)

Note that for any s ≥ 1 and any τs ∈ T (s, τ), if we let τ ′ be the mu transcript that
has the same Cons queries/answers as τ , and the same Prim queries/answers
as τs, then τ ′ is also nice, because τ is nice. Then

r
∑

i=s

Rate(i, τs) =

r
∑

i=s

Rate(Map(i, τ ′)) ≤ δ1 . (15)

From Equation (15),

r
∑

i=1

∑

τ1∈T (1,τ)

2Rate(i, τ1) · pSreal
(τ1) ≤

∑

τ1∈T (1,τ)

2δ1 · pSreal
(τ1), (16)

and

r
∑

i=1

i
∑

s=1

∑

τs∈T (s,τ)∩Ss

2Rate(i, τs) · pSideal
(τs) (17)

=

r
∑

s=1

∑

τs∈T (s,τ)∩Ss

r
∑

i=s

2Rate(i, τs) · pSideal
(τs)

≤
r

∑

s=1

∑

τs∈T (s,τ)∩Ss

2δ1 · pSideal
(τs) ≤

r
∑

s=1

∑

τs∈T (s,τ)∩Ss

pSideal
(τs) . (18)

Combining Equations (12), (14), (16), and (18) gives us Equation (11).

To justify Equation (14), fix i ∈ {1, . . . , r}. We create a binary tree whose weight
at the root is exactly the sum above for i. In this tree, for any two children of
a node, the left one must be a leaf node. Moreover, we will put weights on the
nodes so that the weight of a parent node is bounded by the sum of the weights
of its children. Hence the weight at the root is bounded by the total weight of
the leaves.
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Starting at the root, from Equation (13), we can bound the weight at the root by
a linear combination of pSreal

(τi), where τi ∈ T (i, τ)\Si. For each such τi, if we
enhance it with the key of user ui and the internal Prim queries/answers due to
the Cons queries of user ui then we will get an extended transcript τi−1 for ad-
versary Bi−1. (Recall that the real world of Bi is the ideal world of Bi−1.) Hence
the linear combination of pSreal

(τi) becomes a linear combination of pSideal
(τi−1),

for τi−1 ∈ T (i − 1, τ). We divide this into two parts, one for τi−1 ∈ Si−1, and
another for τi−1 6∈ Si−1. The first partial sum will be the weight of the left child
of the root, and the second the weight of the right child. So far, we have placed
the weights up to the second level of the tree. We will repeat the process above,
starting at the right child of the root, until we reach the i-th level. At that
point, the weight of the right-most leaf is a linear combination of pSideal

(τ1), for
τ1 ∈ T (1, τ).

Recall that the weight of each node of the binary tree above is a linear combina-
tion. We now specify the coefficients. At the root, each coefficient for pSideal

(τi)
is Rate(i, τi). We will have to bound pSideal

(τi) via pSreal
(τi) by Equation (13),

so the coefficients for the left and right children of the root are at most

Rate(i, τi)

1− Rate(i, τi)
≤ Rate(i, τi−1)

1− Rate(τi−1)
,

where the inequality is due to the fact that Rate is increasing and τi−1 contains
all queries/answers of τi, and thus Rate(i − 1, τi−1) ≥ Rate(i, τi). By repeating
this process, for nodes at the (i + 1− s)-th level, the coefficients are at most

Rate(i, τs)
∏i

ℓ=s+1

(

1− Rate(ℓ, τs)
)

.

Now, for the right most leaf, its weight is currently a linear combination of
pSideal

(τ1), but we want to have its weight as a linear combination of pSreal
(τ1)

instead. To achieve this, we will again use Equation (13) (but i replaced by 1),
and the new coefficients for this leaf are at most

Rate(i, τ1)
∏i

ℓ=1

(

1− Rate(ℓ, τ1)
)

.

Hence the coefficients for a leaf at the (i + 1− s)-th level of the tree are at most

Rate(i, τs)
∏i

ℓ=s

(

1− Rate(ℓ, τs)
)
≤ Rate(i, τs)

1−∑i
ℓ=s Rate(ℓ, τs)

≤ Rate(i, τs)

1− δ1
≤ 2Rate(i, τs),

where the first inequality is due to the fact that (1 − x)(1 − y) ≥ 1 − x − y for
any 0 ≤ x, y < 1, and the second inequality is due to Equation (15). The total
weight of the leaves therefore is at most

∑

τ1∈T (1,τ)

2Rate(i, τ1) · pSreal
(τ1) +

i
∑

s=1

∑

τs∈T (s,τ)∩Ss

2Rate(i, τs) · pSideal
(τs) .

This concludes the proof. ⊓⊔
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4 Simplification of the Framework for Specific Settings

Since the framework in Section 3 aims to provide an umbrella for all settings, it
appears unnecessarily complex in many important settings. To improve the us-
ability of our framework, in this section, we consider some simplified treatments
of our general framework for specific settings. Each such specialized result is
somewhat more limited in scope, but simpler to use.

4.1 A simple specialization of the framework

We now describe a specialization of the framework that is very simple, but
might be powerful enough for typical real-world cryptographic schemes, such as
the authenticated encryption scheme GCM [23]. This simple treatment however
is not enough for Double Encryption, and thus in the next subsection, we will
consider another specialized result of the general framework to handle Double
Encryption.

The setting. Here we still use the generic setting as stated in Section 3, but
make an assumption on the metric σ. For a mu transcript τ and each user ui

of τ , let Map(i, τ) be the induced su transcript for user ui that consists of the
Cons(i, ·) queries/answers and Prim(·) queries/answers of τ . We require that
for any mu transcript τ , if the Cons queries in τ have data complexity σ, and
those in each Map(i, τ) have data complexity σi, then

∑

i

σi ≤ σ .

This requirement obviously holds if we let, for example, σ be the total length of
the Cons queries.

Super-additivity. For a function δ : (N)3 → [0, 1], we say that it is super-
additive if

δ(x, y0, z0) + δ(x, y1, z1) ≤ δ(x, y0 + y1, z0 + z1)

for every x, y0, y1, z0, z1 ∈ N. In many schemes, the desired bounds (such as
δ(p, q, σ) = σ2/2n) are often super-additive.

The technique. One begins by defining an undesirable property on su tran-
scripts that involves only Cons queries/answers. If a su transcript has this prop-
erty then we say that it is bad, otherwise it is good.3 A mu transcript τ is nice if
there is no user ui such that its induced su transcript Map(i, τ) is bad. Let N be
the set of nice mu transcripts. We require that there be a monotonic function δ

3 In Section 3, we partitioned the set of bad su transcripts into S and S ′, and required
that it is unlikely for the adversary to produce a bad transcript in S. Here S is
simply the empty set.
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such that for any adversary A making p Prim queries and q Cons queries of data
complexity σ,

Pr[Script(A, Sideal) 6∈ N ] ≤ δ(p, q, σ), (19)

where for any system S, Script(A, S) denotes the random variable for the tran-
script of the interaction of A and S. Moreover, we require that there be a mono-
tonic function ǫ′ and a super-additive, monotonic function ǫ such that for any
good su transcript τ of p Prim queries and q Cons queries of data complexity σ,

pSideal
(τ)− pSreal

(τ) ≤ (ǫ(p, q, σ) + ǫ′(p, q, σ)) · pSideal
(τ) . (20)

Lemma 3. Assume that the systems Sreal and Sideal meet the conditions in
Equations (19) and (20). Then

Adv
dist
Sreal,Sideal

(A) ≤ δ(p, q, σ) + 2ǫ(p + tσ, q, σ) + 2q · ǫ′(p + tσ, q, σ) .

Proof. For a su transcript τ of p Prim queries and q Cons queries of data
complexity σ, let

Rate(τ) = ǫ(p, q, σ) + ǫ′(p, q, σ) .

This function Rate is increasing, in the sense that if τ ′ contains all the query-
answer pairs of τ , then Rate(τ ′) ≥ Rate(τ). To use Lemma 2, we need to establish
the mu-boundedness of Rate. We claim that for any nice mu transcript τ of r
users, using p Prim queries and q Cons queries of data complexity σ,

r
∑

i=1

Rate(Map(i, τ)) ≤ ǫ(p, q) + qǫ′(p, q) .

To justify this, suppose that τi contains qi Cons queries of data-complexity σi.
Then

r
∑

i=1

Rate(Map(i, τ)) =

r
∑

i=1

ǫ(p, qi, σi) + ǫ′(p, qi, σi)

≤
r

∑

i=1

ǫ(p, qi, σi) + ǫ′(p, q, σ)

≤ ǫ(p, q, σ) + r · ǫ′(p, q, σ) ≤ ǫ(p, q, σ) + q · ǫ′(p, q, σ) .

Finally, applying Lemma 2 for δ0 = δ, δ1 = ǫ + qǫ′, and δ2 = 0, leads to the
claimed advantage. ⊓⊔

4.2 The specialized framework for Double Encryption and beyond

We now specialize the general framework into a more specific result that covers
the case of Single Encryption, Double Encryption, and Key-Alternating Cipher
(KAC) [11]. This result explains why these constructions, despite being some-
what similar in the structure, have different blowups when we move from su
setting to mu one.



16 Hoang and Tessaro

The setting. Let Π[E] : K × {0, 1}n × {0, 1}n be a blockcipher construction
built on top of an ideal blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n such that a
single call to Π/Π−1 makes at most t calls to E/E−1. Let Sreal and Sideal be
two stateless systems implementing games RealΠ[E],Sample and RandΠ[E],Sample

in Fig. 1, respectively. We will measure adversaries’ resources in terms of q (the
number of Enc/Dec queries) and p (the number of Prim/PrimInv queries).
A transcript recording the interaction between an adversary and a system S ∈
{Sideal, Sreal} contains the following:

– Enc/Dec queries: A query to Enc(i, x) returning y is associated with an
entry (enc, +, i, x, y). Likewise, a query to Dec(i, y) returning x is associated
with an entry (enc,−, i, x, y).

– Prim/PrimInv queries: A query to Prim(J, u) returning v is recorded in the
transcript as (prim, +, J, u, v). Likewise, a query to PrimInv(J, v) returning
u is associated with an entry (prim,−, J, u, v).

Super-additivity and beyond. For a function δ : (N)2 → [0, 1], we say that
it is super-additive if δ(x, y) + δ(x, z) ≤ δ(x, y + z), for every x, y, z ∈ N. For
real numbers M > 0 and z ≥ 0, let Cost(M, z) = max{M, z} if z > 1, and
Cost(M, z) = M/ lg(M) if z ≤ 1.

The technique. One begins by defining an undesirable property on su tran-
scripts, which can involve both Enc/Dec and Prim/PrimInv queries/answers.
If a su transcript has this property, we say that it is bad; otherwise it is good. Let
S be the set of all bad su transcripts.4 If a su transcript is not bad, we say that
it is good. We demand that there be a monotonic function ǫ∗ such that for any
su adversary A that makes at most q Enc/Dec queries and p Prim/PrimInv
queries,

Pr[Script(A, Sideal) ∈ S] ≤ ǫ∗(p, q) (21)

where for any system S, Script(A, S) denotes the random variable for the tran-
script of the interaction of A and S.

For any transcript τ in which the adversary attacks just a single user, let Ent(τ)
be the number of entries (prim, ·, ·, u, v) such that τ contains either an entry
(enc, +, 1, ·, x) or an entry (enc,−, 1, x, ·), for some x ∈ {u, v}. Suppose that
there are monotonic functions ǫ′, ǫ′′ and a monotonic, super-additive function ǫ
such that, for any good su transcript of q queries to Enc/Dec, and p queries to
Prim/PrimInv,

pSideal
(τ)− pSreal

(τ) ≤ (ǫ(p, q) + ǫ′(p, q) · Ent(τ) + ǫ′′(p, q)) · pSideal
(τ) . (22)

If Equations (21) and (22) are met, then we say that Π[E] has the (ǫ, ǫ′, ǫ′′, ǫ∗)-
proximity property.

4 In Section 3, we factored the set of bad su transcripts into two disjoint sets S and S ′,
and required that it is unlikely for the adversary to produce a bad transcript in S.
Here S ′ is simply the empty set.
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Note that Ent(τ) ≤ min{p, 2k+2q}, where k is the key length of the primitive E.
Thus (ǫ, ǫ′, ǫ′′, ǫ∗)-proximity immediately implies that for any adversary attack-
ing a single user via q Enc/Dec queries and p Prim/PrimInv queries, its su
advantage is at most ǫ(p, q) + ǫ′(p, q) ·min{p, q · 2k+2}+ ǫ′′(p, q) + ǫ∗(p, q). The
following result bounds the mu security of Π[E].

Lemma 4. Assume that Π[E] has the (ǫ, ǫ′, ǫ′′, ǫ∗)-proximity property. Then for
any adversary A that makes at most q Enc/Dec queries, and p Prim/PrimInv
queries,

Adv
±mu-prp
Π[E],Sample(A) ≤ 2−n + 2ǫ + 2q(ǫ′′ + ǫ∗) + Cost(4n, 8q/2n) · 10(p + qt)ǫ′,

where t is the number of calls to E/E−1 that a single call to Π/Π−1 makes, and
functions ǫ, ǫ′, ǫ′′, ǫ∗ all take arguments p + qt and q. ⊓⊔

Discussion. Recall that our technique dissects a su bound into three compo-
nents: ǫ, ǫ′ · min{p, q · 2k+2}, and (ǫ′′ + ǫ∗). Lemma 4 above then lifts those
to ǫ, Cost(4n, 8q/2n) · (p + qt) · ǫ′, and q · (ǫ′′ + ǫ∗), respectively, for the corre-
sponding mu bound. This trisection captures different possibilities of security
loss when one moves from su to mu security: (i) Key-Alternating Cipher (where
ǫ is the dominant term in both the su and mu bounds) [19], (ii) Single Encryp-
tion (where ǫ′′ + ǫ∗ and q · (ǫ′′ + ǫ∗) are the dominant term in the su and mu
bounds respectively), and (iii) Double Encryption (where ǫ′ · min{p, q · 2k+2}
and Cost(4n, 8q/2n) · (p + qt)ǫ′ are the dominant term in the su and mu bounds
respectively).

Given a su analysis, there might be multiple choices for ǫ and ǫ′′. However, recall
that when we move from su to mu security, the former term remains the same,
whereas the latter blows up with a factor q. Therefore, when we need to pinpoint
ǫ and ǫ′′, we will shift as much weight to ǫ as possible, and the optimal choice
of ǫ will often be clear from the context and the best mu attacks. On the other
hand, due to the q-blowup of ǫ′′, one may need a very fine-grained su analysis
to obtain a good mu bound.

The proof of Lemma 4. We want to show that Lemma 2 implies the claimed
result. In order to do that, we need to define (i) function Rate(τ) for su tran-
scripts τ , and (ii) a niceness property for mu transcripts. The former is obvious:
for a su transcript τ of p Prim/PrimInv queries and q Enc/Dec queries, let

Rate(τ) = ǫ(p, q) + ǫ′(p, q) · Ent(τ) + ǫ′′(p, q) .

This function Rate is increasing, in the sense that if τ ′ contains all the query-
answer pairs of τ then Rate(τ ′) ≥ Rate(τ). Next, let d = 5

4 Cost(4n, 8q/2n). We
say that a mu transcript τ in the support of Script(A, Sideal) is nice if it satisfies
the following constraints:

– There are no d entries in τ of the form (enc, +, ·, ·, y), . . . , (enc, +, ·, ·, y).
– There are no d entries in τ of the form (enc,−, ·, x, ·), . . . , (enc,−, ·, x, ·).
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Clearly, the definition of niceness involves only Enc/Dec query-answer pairs
of τ . Let N be the set of nice mu transcripts. The following bounds the chance
that A’s transcript is not nice; the proof is in the full version of this paper.

Lemma 5. For any adversary A that makes at most q Enc/Dec queries, and
p Prim/PrimInv queries,

Pr[Script(A, Sideal) 6∈ N ] ≤ 1

2n
. ⊓⊔

To use Lemma 2, we need to establish the mu-boundedness of Rate. Specifically,
we claim that, for any nice mu transcript τ of r users, using p Prim/PrimInv
queries and q Enc/Dec queries,

r
∑

i=1

Rate(Map(i, τ)) ≤ ǫ(p, q) + qǫ′′(p, q) + 4dpǫ′(p, q) . (23)

Then using Lemma 2 for δ0 = 2−n and δ1 = ǫ + qǫ′′ + 4dpǫ′ and δ2 = ǫ∗ leads to
our claimed result.

We now justify Equation (23). Suppose that in τ , the adversary uses qi Enc/Dec

queries for the i-th user. Then

r
∑

i=1

Rate(Map(i, τ)) =
r

∑

i=1

(

ǫ(p, qi) + ǫ′′(p, qi) + Ent(Map(i, τ)) · ǫ′(p, qi)
)

≤ ǫ(p, q) + rǫ′′(p, q) +

r
∑

i=1

Ent(Map(i, τ)) · ǫ′(p, q)

≤ ǫ(p, q) + qǫ′′(p, q) +
r

∑

i=1

Ent(Map(i, τ)) · ǫ′(p, q),

where the first inequality is due to the superadditivity of ǫ and the monotone of
ǫ′ and ǫ′′. Thus to justify (23), what’s left is to prove that

r
∑

i=1

Ent(Map(i, τ)) ≤ 4dp .

Since τ is nice, for each entry (prim, ·, ·, u, v), there are at most 4d entries
(enc, ·, ·, ·, x) or (dec, ·, ·, x, ·), for x ∈ {u, v}. Since each Enc/Dec entry be-
longs to exactly one user, for each Prim/PrimInv entry of τ , there are at most
4d indices i such that Ent(Map(i, τ)) counts this entry, and thus summing over
p Prim/PrimInv entries of τ gives us

r
∑

i=1

Ent(Map(i, τ)) ≤ 4dp

as claimed.
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5 Exact Multi-user Security of Double Encryption

5.1 Results and Discussion

Results. In this section, we give an exact mu security bound of Double Encryp-
tion via the specialized framework in Section 4.2; the key-sampling algorithm is
uniform. While it is relatively easy to give an exact su security bound of Double
Encryption [2,14], giving a good (ǫ, ǫ′, ǫ′′, ǫ∗)-proximity bound, as in Lemma 6 be-
low, requires a much more fine-grained analysis. The proof, given in Section 5.2,
is based on the expectation method of Hoang and Tessaro [19].

Lemma 6. Let n ≥ 16 and k ≥ 1 be integers, and let E : {0, 1}k × {0, 1}n →
{0, 1}n be a blockcipher. Then DE[E] satisfies the (ǫ, ǫ′, ǫ′′, ǫ∗)-proximity prop-

erty, with ǫ(p, q) = 2q
2k+n/2 + 3qB2+2Bpq

22k , ǫ′(p, q) = 2p
22k , ǫ′′(p, q) = 5Bp

22k , and

ǫ∗(p, q) = 1
2k+n , where B = 5

4 · Cost(4n + 2k, 8q/2n). ⊓⊔

From Lemma 4 and Lemma 6, we immediately obtain the following result.

Theorem 1 (Mu security of Double Encryption). Let n, k ∈ N be integers,
and let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher. Then for any adversary
making only q Enc/Dec queries and p Prim/PrimInv queries,

Adv
±mu-prp
DE[E] (A) ≤ 1

2n
+

5q

2k+n/2
+

6qB2 + 222BQ2

22k

where B = 5
4 · Cost(4n + 2k, 8q/2n) and Q = max{p, q}. ⊓⊔

Discussion. Admittedly, the bound in Theorem 1 looks complicated. However,

for the “usual” setting n ≥ k ≥ 16 and q ≤ 2k

8 , the bound can be simplified

to Adv
±mu-prp
DE[E] (A) ≤ 1

2n + (n+5)q
21.5k + 1554nQ2

lg(4n)·22k . On the other hand, recall that

the classical su bound of DE[E] by Aiello et al. [2] is Adv
±prp
DE[E](A) ≤ p2

22k . If

we apply the hybrid argument to this, we will get the following inferior bound

Adv
±mu-prp
DE[E] (A) ≤ q(p+2q)2

22k . While this bound is enough to show that Double

Encryption squarely beats Single Encryption in mu security,5 it is much worse
than the bound in Theorem 1, as illustrated in Fig. 2.

5.2 Proof of Lemma 6

It is convenient to assume without loss of generality that the adversary doesn’t
make redundant queries. Our proof borrows the overall approach used by Hoang
and Tessaro [19] for key-alternating ciphers. We begin with some high-level setup.

5 Recall that Adv
±prp
E (A) ≤ p

2k and Adv
±mu-prp
E (A) ≤ p(p+q)

2k for an adversary A making
only q Enc/Dec queries and p Prim/PrimInv queries.
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Fig. 2: Mu and su security of Single and Double Encryption on AES. From left
to right: the mu bound of Single Encryption, the naive mu bound of Double Encryption
via the hybrid argument, the mu bound of Double Encryption via Theorem 1, the su
bound of Single Encryption, and the classical su bound of Double Encryption by Aiello
et al. [2]. We set p = q and n = k = 128. The x-axis gives the log (base 2) of p, and
the y-axis gives the security bounds.

Assumptions on the transcript. We consider an arbitrary fixed transcript τ
which contains q Enc / Dec queries and p Prim/PrimInv queries. Moreover,
for a transcript τ , we also denote (following [14])

Fwd(τ) = max
y∈{0,1}n

∣

∣{(J, x) | (prim, +, J, x, y) ∈ τ}
∣

∣ ,

Bwd(τ) = max
x∈{0,1}n

∣

∣{(J, y) | (prim,−, J, x, y) ∈ τ}
∣

∣ .

Recall that to establish (ǫ, ǫ′, ǫ′′, ǫ∗)-proximity, we have to define bad transcripts.
A transcript is bad if either Fwd(τ) > B or Bwd(τ) > B, where

B :=
5

4
· Cost(4n + 2k, 8p/2n) .

Let S be the set of all bad transcripts. The following bounds the chance that
the adversary produces a bad transcript; the proof is in the full version of this
paper.

Lemma 7. For any adversary A that makes p Prim/PrimInv queries and q
Enc/Dec queries,

Pr[Script(A, Sideal) ∈ S] ≤ 1

2n+k
. ⊓⊔

From now on, we assume that additionally τ /∈ S. We shall use the expectation
method to prove the claimed bound of the gap pSideal

(τ) − pSreal
(τ). We begin

with some combinatorial results on the transcript.

Type-1 chains. Consider a pair of entries (prim, ·, ·, x1, y1), (prim, ·, ·, x2, y2) in
τ such that y1 = x2. We say that it is a positive type-1 chain if there’s an entry
(enc, +, x1, ·) in τ . We say that it is a negative type-1 chain if there’s an entry
(enc,−, ·, y2). The following lemma bounds the number of type-1 chains; the
proof is in Appendix A.
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Lemma 8. The number of type-1 chains is at most 4Bp + 2B2q + 2Bpq. ⊓⊔

Type-2 chains. Consider a pair of entries (prim, ·, ·, x1, y1), (prim, ·, ·, x2, y2).
We say that it is a positive type-2 chain if there’s an entry (enc, +, x1, y2) in
τ . We say that it is a negative type-2 chain if there’s an entry (enc,−, x1, y2)
in τ . The following lemma bounds the number of type-2 chains; the proof is in
Appendix B.

Lemma 9. The number of type-2 chains is at most 2p · Ent(τ). ⊓⊔

Good and bad keys. We shall use the expectation method. Let S be the ran-
dom variable for the key. The key-space K is ({0, 1}k)2 and S is uniformly
distributed over K. For each key vector s = (K1, K2) ∈ K and each i ∈ {1, 2},
let pi[s] be the number of queries (prim, ·, Ki, ·, ·) in τ .

Definition 1 (Good and bad keys). We say that a key s = (K1, K2) is bad
if one the following happens:

(i) K1 = K2 and p1[s] ≥ 1, or

(ii) K1 6= K2, p1[s] ≥ 1 and p2[s] ≥ 2n/4, or

(iii) K1 6= K2, p1[s] ≥ 2n/4 and p2[s] ≥ 1, or

(iv) K1 6= K2 and there’s a (type-1 or 2) chain (prim, ·, K1, ·, ·), (prim, ·, K2, ·, ·).

If a key is not bad then we say that it is good. Let Γbad be the set of bad keys,
and let Γgood = K\Γbad.

We first bound the probability that S is bad. First, the chance that S satisfies
condition (i) above is at most p

22k . Next, we say that a subkey J ∈ {0, 1}k

is heavy if there are at least 2n/4 entries (prim, ·, J, ·, ·) in τ . Since there are
at most 4p/2n heavy subkeys, the chance that S satisfies condition (ii) above

is at most 4p/2n

2k · p
2k = 4p2

22k+n . Likewise, the chance that S satisfies condition

(ii) above is at most 4p2

22k+n . From Lemma 8 and Lemma 9, there are at most
2p · Ent(τ) + 4Bp + 2qB2 + 2Bpq chains, and thus the chance that S satisfies

condition (iii) above is at most 2p·Ent(τ)+4Bp+2qB2+2Bpq
22k . Summing up

Pr[S is bad] ≤ p + 8p2/2n

22k
+

2p · Ent(τ) + 4Bp + 2qB2 + 2Bpq

22k

≤ 2p · Ent(τ) + 5Bp + 2qB2 + 2Bpq

22k
.

Next, recall that in the expectation method, one needs to find a non-negative
function g : K → [0,∞) such that g(s) bounds 1 − pS0

(τ, s)/pS1
(τ, s) for all

s ∈ Γgood. Let U be the subset of Γgood such that for any (K1, K2) ∈ U , we
have K1 = K2. We will define g(s) such that g(s) = 2q/2n/2 for every s ∈ U ,

and g(s) = 4q·p1[s]·p2[s]
22n for every s ∈ K\U . We will show that g(s) bounds
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1− pS0
(τ, s)/pS1

(τ, s) later. Then

E[g(S)] =
1

22k

(

∑

s∈U

g(s) +
∑

s∈K\U

g(s)
)

=
1

22k

(

∑

s∈U

q

2n/2
+

∑

s∈K\U

4qp1[s]p2[s]

22n

)

≤ 1

22k

( q2k

2n/2
+

4qp2

22n

)

≤ q

2k+n/2
+

qB2

22k
.

Then from Lemma 1,

pSideal
(τ)− pSreal

(τ) ≤
(

Pr[S is bad] + E[g(S)]
)

pSideal
(τ)

≤
( 2q

2k+n/2
+

2p · Ent(τ) + 5Bp + 3qB2 + 2Bpq

22k

)

pSideal
(τ).

We now show that g(s) indeed bounds 1−pS0
(τ, s)/pS1

(τ, s) for every s ∈ Γgood.
We consider the following cases, depending on whether s ∈ Γgood\U or s ∈ U .

Case 1: s ∈ Γgood\U . For this case, we have to consider two sub-cases, depending
on whether q ≤ N/4 or not.

Case 1.1: q ≤ N/4. Let s = (K1, K2). Since s ∈ Γgood\U , we must have
K1 6= K2. We now use the following result of Chen and Steinberger [12]. (Their
proof considered key-alternating ciphers, but we note that we are restricting
ourselves to the setting K1 6= K2, and and their proof also applies to the special
case that all sub-keys of the key-alternating cipher are 0n, which is equivalent
to our setting here.)

Lemma 10. [12] Assume that p1[s], p2[s], q < 2n/2. Then

1− pS0
(τ, s)

pS1
(τ, s)

≤ q · p1[s] · p2[s]

(2n − q − p1[s])(2n − q − p2[s])
. ⊓⊔

From Lemma 10, since p1[s], p2[s], q ≤ 2n/4,

1− pS0
(τ, s)

pS1
(τ, s)

≤ 4q · p1[s] · p2[s]

22n
= g(s) .

Case 1.2: N/4 < q ≤ N . Let Z be the random variable for the additional
(N−q) Enc queries that τ lacks. For we write pSreal

(τ, s, z) to be the probability
that Sreal answers queries according to τ , and that S = s and Z = z. In this
case pSideal

(τ, s, z) is the probability that Sideal behaves according to the entries
in (τ, z), and S←$ {0, 1}2k agrees with s. We now show that pSideal

(τ, s, z) ≤
pSreal

(τ, s, z) for all choices of z such that pSideal
(τ, s, z) > 0, and thus

pSideal
(τ, s)− pSreal

(τ, s) ≤
∑

z

pSideal
(τ, s, z)− pSreal

(τ, s, z) ≤ 0 ≤ g(s) .
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Let s = (K1, K2) and a = p1[s] and b = p1[s] + p2[s] < 2n. As s ∈ Γgood\U , the
entries in (τ, z) consist of the following categories:

(1) (enc, ·, 1, x1, y1), . . . , (enc, ·, 1, x2n , y2n),
(2) (prim, ·, K1, x1, u1), . . . , (prim, ·, K1, xa, ua) and (prim, ·, K2, ua+1, ya+1), . . . ,

(prim, ·, K2, ub, yb), and
(3) (prim, ·, J, ·, ·), with J 6∈ {K1, K2}.

Hence pSreal
(τ, s, z) is the probability of the following events:

(i) If we make queries in category (3) above, we get the answers provided by τ .
(ii) S←$ {0, 1}2k agrees with s.
(iii) For any i ∈ {1, . . . , a + b}, querying Prim(K1, xi) in Sreal yields ui, and

querying PrimInv(K2, yi) in Sreal yields ui. Moreover, for any j ∈ {b +
1, . . . , 2n}, in Sreal, the output of Prim(K1, xj) is the same as the output of
PrimInv(K2, yj).

Note that the three events above are independent, and the first two are indepen-
dent of the system. On the other hand, pSideal

(τ, s, z) is likewise the probability
of events (i), (ii), and the following

(iv) For any i ∈ {1, . . . , a}, querying Prim(K1, xi) in Sideal yields ui. For any
i ∈ {a + 1, . . . , b}, querying PrimInv(K2, yi) in Sideal yields ui. Moreover,
for any j ∈ {1, . . . , 2n}, querying Enc(1, xj) yields yj .

Again, note that events (i), (ii), and (iv) are independent. Hence we need only
show that the probability that event (iii) happens is at least the probability that
event (iv) happens. The chance that event (iii) is

1

(2n)! · 2n(2n − 1)(2n − a− b)

whereas the chance that event (iv) happens is

1

(2n)! · 2n(2n − 1) · · · (2n − a) · 2n(2n − 1) · · · (2n − b)
.

Hence the probability that event (iii) happens is indeed at least the probability
that event (iv) happens.

Case 2: s ∈ U . Then p1[s] = 0. Clearly if q ≥ 2n/2−1 then the claim vacuously
holds. Assume that q < 2n/2−1. Let s = (K1, K1). Let the Enc/Dec entries in
τ be (enc, ·, 1, x1, y1), . . . , (enc, ·, 1, xq, yq). Note that τ doesn’t contain any entry
(prim, ·, K1, ·, ·). Then pSideal

(τ, s) is the probability of the following events:

(a) S←$ {0, 1}2k agrees with s.
(b) If we make Prim/PrimInv queries in τ , we get the answers provided by τ .
(c) Sideal behaves according to the Enc/Dec queries in τ .
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Note that the three events above are independent, and the first two are inde-
pendent of the system. On the other hand, pSreal

(τ, s) is at least the probability
of events (a), (b), and the following:

(d) For every i ∈ {1, . . . , q}, if we query Prim(K, xi), we will get an answer
zi 6∈ {x1, y1, . . . , xq, yq}, and the strings z1, . . . , zq are distinct. Moreover, if
we query Prim(K, zi), we will get yi.

Again, events (a), (b), and (d) are independent. Hence we only need to show
that, Pr[Event (d)] ≥ (1 − 2q/2n/2) Pr[Event (c)]. Note that event (c) happens
with probability

1

2n(2n − 1) · · · (2n − q + 1)
,

whereas event (d) happens with probability

(

q−1
∏

i=0

2n − 2q − i

2n − i

) 1

(2n − q) · · · (2n − 2q + 1)
.

Hence

Pr[Event (d)]

Pr[Event (c)]
=

q−1
∏

i=0

2n − 2q − i

2n − q − i
=

q−1
∏

i=0

(

1− q

2n − q − i

)

≥ 1−
q−1
∑

i=0

q

2n − q − i
≥ 1− q2

2n − 2q
≥ 1− 2q

2n/2
,

where the first inequality is due to the fact that (1 − x)(1 − y) ≥ 1 − x − y for
any x, y ≥ 0, and the last inequality is due to the assumption that q < 2n/2−1.
This concludes the proof.

6 Matching Attacks

In this section, we give matching attacks for both Single Encryption and Dou-
ble Encryption, in which the adversary uses Θ(q) Enc/Dec queries and Θ(p)
Prim/PrimInv queries. Our attack on Single Encryption generalizes Biham’s
work [10] for all choices of the parameters p and q. For Double Encryption, recall

that one can launch a su attack with advantage p2

22k , and Biham’s key-collision

attack [10] gives a mu attack with advantage q2

22k . Thus those attacks already
give matching bounds in the usual case n ≥ k (such as DES or AES). Hence for
Double Encryption, the only interesting setting to find matching attacks is where
n ≪ k (such as Format-Preserving Encryption or MISTY-1). We however only
know how to give matching attacks for this setting if the adversary is given all
the keys after it finishes querying, which is the model in our security proof and
many prior works [14, 16]. Our attack yields the bound around p2s/22k, where
s = max{⌊n/8 lg(n)⌋, q/2n}, which is much better than the two known attacks
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above. We leave as an open problem to find matching attacks for n≪ k without
key revelation.

A useful inequality. In the attacks, we often need to make use of the follow-
ing technical result.

Lemma 11. Let r ≥ 1 be an integer and 0 < a ≤ 1/r. Then (1−a)r ≤ 1−ar/2.

Proof. Clearly the claimed inequality holds for r = 1, and thus we need only
consider r ≥ 2. Let f(x) = xr/2+(1−x)r−1. Our goal is to show that f(a) ≤ 0.
The derivative and second derivative of the function f are f ′(x) = r

2−r(1−x)r−1

and f ′′(x) = 1
2 +r(r−1)(1−x)r−2 respectively. Since f ′′(x) > 0 for all x ∈ [0, 1/r],

the function f ′(x) is strictly increasing. We claim that f(a) ≤ max{f(0), f(1/r)}.
Since f(0) = 0 and

f(1/r) =
1

2
+ (1− 1/r)r − 1 ≤ 1

e
− 1

2
< 0,

we have f(a) ≤ 0. To justify the claim above, note that if f ′(1/r) < 0 then
function f is decreasing, and thus f(a) ≤ f(0) = max{f(0), f(1/r)}. If f ′(1/r) ≥
0, since function f ′ is strictly increasing and f ′(0) = −r/2 < 0, there exists
b ∈ [0, 1/r] such that f ′(x) < 0 for every x ∈ [0, b) and f ′(x) ≥ 0 for every
x ∈ [b, 1/r]. Hence function f is decreasing in [0, b) and increasing in [b, 1/r],
and thus f(a) ≤ max{f(0), f(1/r)}. ⊓⊔

6.1 Attacking Single Encryption

Let d = ⌈ k+2
n−1⌉ and assume that d ≤ 2n−1, which holds for all practical values of

n and k. Then

2n(2n − 1) · · · (2n − d + 1) ≥ (2n−1)d ≥ 2k+2 .

For all practical values of n and k, the value d will be very small. For example,
if n = 64 and k = 56 (meaning DES parameters), we have d = 1. Or if n = k =
128 (meaning AES parameters), we have d = 2. Let p, q ∈ N such that pq ≤
2k. Consider the following adversary A. It picks arbitrary distinct x1, . . . , xd ∈
{0, 1}n and queries Enc(i, xℓ) to get answer yi,ℓ, for every i ∈ {1, . . . , q} and
ℓ ∈ {1, . . . , d}. It then picks p arbitrary distinct keys K1, . . . , Kp ∈ {0, 1}k and
queries E(Kj , xℓ) to get answer zj,ℓ, for every j ∈ {1, . . . , p} and ℓ ∈ {1, . . . , d}. If
there are i and j such that yi,ℓ = zj,ℓ for every ℓ ∈ {1, . . . , d} then the adversary
outputs 1, otherwise it outputs 0. In the real game, from Lemma 11, the chance
that the adversary outputs 1 is

1−
(

1− p

2k

)q

≥ pq

2k+1
.
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In the ideal game, the chance that it outputs 1 is

pq

2n(2n − 1) · · · (2n − d + 1)
≤ pq

2k+2
.

Hence Adv
±mu-prp
E (A) ≥ pq

2k+2 , and the adversary uses dq Enc queries and dp
Prim queries.

6.2 Attacking Double Encryption

Here we assume that 16 ≤ n < k, and aim to achieve advantage p2s/22k, where
s = max{⌊n/8 lg(n)⌋, q/2n}. We have the following restrictions on the parame-
ters p and q:

– Since there are attacks with advantage Q2/22k, where Q = max{p, q}, we
need only consider 2n/n ≤ q ≤ 2k.

– Since using p ≈ 2k/
√

s is already enough to get a constant advantage, with-
out loss of generality, we can assume that p ≤ 2k/

√
s.

Moreover, recall that we are in the model where the keys are given to the ad-
versary after it finishes querying.

The attack. For every i ∈ {1, . . . , q}, query (i, 0n) to Enc to receive answer yi.
View each string in {0, 1}n as a bin, and querying Enc(i, 0n) means throwing a
ball to those 2n bins at random. Let y be the bin of the most balls, and let S
be the set of indices i such that the corresponding ball falls into bin y. The
following lemma gives a strong concentration bound on |S| in both the real and
ideal games; see Appendix C for the proof.

Lemma 12. Let n ≥ 16 and q ≥ 2n/n be integers. Consider throwing q balls to
2n bins at random. Let X denote the random variable for the number of balls in
the bin of most balls. Then

Pr
[

X ≥ max{⌊n/8 lg(n)⌋, q/2n}
]

≥ 1− 2−n/3 . ⊓⊔

Next, if |S| < s then the output a random guess to get advantage 0. If |S| ≥ s,
which happens with probability at least 1− 2−n/3 according to Lemma 12, then
adapt the meet-in-the-middle attack as follows. Pick distinct keys J1, . . . , J2p ∈
{0, 1}k, and query Prim(Ji, x) and PrimInv(Ji+p, y) to get answer ui and vi

respectively. When the keys are given, check if there are some i, j ∈ {1, . . . , p}
and ℓ ∈ S such that (Ji, Jj+p) is the key of user ℓ. If such a triple (i, j, ℓ) exists
then output 1 if and only if ui = vj .

Analyses. Suppose that |S| ≥ s. Then the chance that there are i, j ∈ {1, . . . , p}
and ℓ ∈ S such that (Ji, Jj+p) is the key of user ℓ is

1− (1− p2/22k)|S| ≥ 1− (1− p2/22k)s ≥ p2s

22k+1
,
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where the last inequality is due to Lemma 11. If this pair exists then in the ideal
game, the conditional probability that vi = ui is 1/2n, whereas in the real game,
vi = ui with conditional probability 1. Putting this all together, the adversary
wins with advantage at least

(1− 2−n/3)(1− 2−n) · p2s

22k+1
≥ max{⌊n/8 lg(n)⌋, q/2n} · p2

3 · 22k
.

Discussion. What’s the problem if we are not given keys at the end of the query-
ing process? Now we have many pairs (i, j) such that ui = vi. One such pair will
yield the key (Ji, Jj+p) for some user, but we don’t know which user. Moreover,
there are too many pairs (i, j)—one can show that in the ideal world, there are
on average O(p2/2n) such pairs—and most of them are just false positives.
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A Proof of Lemma 8

We claim that the number of positive type-1 chains is at most 2Bp+B2q +Bpq.
By symmetry, the number of negative type-1 chains is also at most 2Bp+B2q +
Bpq. Hence the total number of type-1 chains is at most 4Bp + 2B2q + 2Bpq.

To justify the claim above, consider a positive type-1 chain (prim, ·, ·, x1, y1),
(prim, ·, ·, x2, y2). There are four ways to assign the signs +/− to the entries.
Fix a specific way to assign the signs. We consider the following cases.
Case 1: Both entries have sign −. Then there are at most Bq choices for the
first entry, since τ 6∈ S. Moreover, once the first entry is fixed, there are only
B choices for the second entry. Thus in this case, the total number of positive
type-1 chains is at most B2q.
Case 2: Both entries have sign +. There are at most p choices for the last entry.
Moreover, once the last entry is fixed, there are at most B choices for the first
entry. Thus in this case, the total number of positive type-1 chains is at most
Bp.
Case 2: The first entry has sign − and the second sign +. There are at most
Bq choices for the first entry and p choices for the last one. Thus in this case,
the total number of positive type-1 chains is at most Bpq.
Case 4: The first entries has sign + and the second sign −. Then there are at
most p choices for the first entry. Moreover, once the first entry is fixed, there
are at most B choices for the last entry. Thus in this case, the total number of
positive type-1 chains is at most Bp.

Summing up, the total number of positive type-1 chains is at most 2Bp + B2q +
Bpq.

B Proof of Lemma 9

We claim that the number of negative type-2 chains is at most p · Ent(τ). By
symmetry, the number of positive type-2 chains is also at most p ·Ent(τ). Hence
the total number of type-2 chains is at most 2p · Ent(τ).
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To justify the claim above, consider a negative type-2 chain (prim, ·, ·, x1, y1),
(prim, ·, ·, x2, y2). Then there are at most Ent(τ) choices for the first entry, and
p choices for the last entry. Thus the total number of negative type-2 chains is
at most p · Ent(τ).

C Proof of Lemma 12

Let s = ⌊n/8 lg(n)⌋. Clearly X ≥ q/2n, hence we only need to consider the case
that q/2n ≤ s. Our proof will closely follow the second-moment method in classic
balls-into-bins papers [27]. For any i ∈ {1, . . . , 2n}, the chance that the i-th bin
has at least s balls is
(

q

s

)

1

(2n)s

(

1− 1

2n

)q−s

≥
(q

s

)s 1

(2n)s

(

1− 1

2n

)q

≥
(q/2n

s

)s

·e−q/2n ≥ n−2s·e−q/2n

.

Moreover,

n−2s · e−q/2n ≥ 2−2s lg(n) · 2−1.5q/2n ≥ 2−n/4− 1.5n
8 lg(n) ≥ 2−n/3 .

Let Yi be the Bernoulli random variable such that Yi = 1 if and only if the i-th
bin has at least s balls. Then E[Yi] = Pr[Yi = 1] ≥ 2−n/3. Let Y = Y1 + · · ·+Y2n ,
and thus

E[Y ] = E[Y1] + · · ·+ E[Y2n ] ≥ 22n/3 .

Since

Pr[X ≥ s] = Pr[Y ≥ 1] = 1− Pr[Y = 0] ≥ 1− Pr
[

|Y −E[Y ]| ≥ E[Y ]
]

,

what’s left is to show that Pr
[

|Y − E[Y ]| ≥ E[Y ]
]

≤ 2−n/3. By Chebyshev’s

inequality,

Pr
[

|Y −E[Y ]| ≥ E[Y ]
]

≤ Var[Y ]

(E[Y ])2
≤ Var[Y ]

24n/3
.

It then suffices to show that Var[Y ] ≤ 2n. On the one hand, for any i 6= j, each
Yi and Yj are negatively correlated, as some bin having more balls means that
it is less likely for another bin to be so. Therefore, each covariance Cov(Yi, Yi)
is at most 0. On the other hand, since each Yi is a Bernoulli random variable,
(Yi)

2 = Yi, and thus

Var[Yi] ≤ E[(Yi)
2] = E[Yi] ≤ 1 .

Hence

Var[Y ] =
2n
∑

i=1

Var[Yi] +
∑

i6=j

Cov(Yi, Yj) ≤ 2n .
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