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Abstract. In this paper, we show that the zero-knowledge construction for Hamiltonian Cycle
remains secure against quantum adversaries in the relativistic setting. Our main technical contribution
is a tool for studying the action of consecutive measurements on a quantum state which in turn gives
upper bounds on the value of some entangled games. This allows us to prove the security of our
protocol against quantum adversaries. We also prove security bounds for the (single-round) relativistic
string commitment and bit commitment in parallel against quantum adversaries. As an additional
consequence of our result, we answer an open question from [Unr12] and show tight bounds on the
quantum knowledge error of some Σ-protocols.
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1 Introduction

1.1 Context

The goal of relativistic cryptography is to exploit the no superluminal signaling (NSS) principle in order to
perform various cryptographic tasks. NSS states that no information carrier can travel faster than the speed
of light. Note that this principle is closely related to the non-signaling principle that says that a local action
performed in a laboratory cannot have an immediate influence outside of the lab. NSS is more precise since
it gives an upper bound on the speed at which such an influence can propagate. Apart from this physical
principle, we want to ensure information-theoretic security meaning that the schemes proposed cannot be
attacked by any classical (or quantum) computers, even with unlimited computing power.

The idea of using the NSS principle for cryptographic protocols originated in a pioneering work by Kent
in 1999 [Ken99] as a way to physically enforce a no-communication constraint between the different agents
of one party (the idea of splitting up a party into several agents dates back to [BOGKW88], but without any
explicit implementation proposal). The original goal of Kent was to bypass the no-go theorems for quantum
bit-commitment [May97,LC97]. More recently, quantum relativistic bit commitment protocols were developed
where the parties exchange quantum systems, with the hope that combining the NSS principle together
with quantum theory would lead to more secure (but less practical) protocols [Ken11,Ken12,KTHW13].
In particular, the protocol [Ken12] was implemented in [LKB+13]. We note that the scope of relativistic
cryptography is not limited to bit commitment. For instance, there was recently some interest (sparked again
by Kent) for position-verification protocols [KMS11,LL11,Unr14] but contrary to the case of bit commitment,
it was shown that secure position-verification is impossible both in the classical and the quantum settings
[CGMO09,BCF+14].

The original idea of [BOGKW88] was recently revisited by Crépeau et al. in [CSST11] (see also [Sim07]).
Based on this work, Lunghi et al. devised a bit commitment protocol involving only four agents, two for Alice
and two for Bob [LKB+15]. Their protocol is secure against quantum adversaries and a multi-round variant,
with longer duration time, was shown to be secure against classical adversaries [LKB+15,CCL15,FF15].
While those protocols only seemed of theoretical interest at first, recent implementations have convincingly
demonstrated that the required timing and location constraints can be efficiently enforced. In [VMH+16],
the authors performed a 24-hour-long bit commitment with the pairs of agents standing 8km apart.

The security analysis against quantum adversaries of [LKB+15] and against classical adversaries of
[CCL15] relies on the study of variants of CHSH games where the inputs and outputs belong to the field FQ

for some large prime power Q, instead of {0, 1} for the usual CHSH game. In many cases, the (quantum)



security of a relativistic protocol can be derived from the value of an (entangled) 2-player game. Because
the relativistic constraint essentially boils down to 2 non-communicating provers, a relativistic protocol can
also be seen as a 2-prover interactive protocol.

—

The above results are promising for relativistic cryptography but very limited in scope. Indeed, bit
commitment schemes are used as parts of larger cryptosystems. The only study of the composability of the
FQ bit commitment scheme was done in [FF15] but mainly with itself, in order to increase the commit time.
There has not been any proposition to use this scheme for a more general purpose.

One natural application of bit commitment are zero-knowledge protocols. With such a protocol, a prover
wishes to convince a verifier that a given statement is true without revealing any extra information. A zero-
knowledge protocol is already a more advanced cryptographic primitive and has more direct applications
such as identification schemes [GMR89] for instance. Here, we will consider the zero-knowledge construction
for Hamiltonian Cycle , which is an NP complete problem. The prover will convince the verifier that a
given graph G = (V,E) has a Hamiltonian cycle, i.e. a cycle going through each vertex exactly once, without
revealing any information, in particular no information about this cycle. Since Hamiltonian Cycle is NP
complete, a zero-knowledge protocol for this problem can be used to obtain a zero-knowledge protocol for
arbitrary NP problems.

There is a known zero-knowledge protocol for Hamiltonian Cycle using bit commitment first pre-
sented by Blum [Blu86] which we recall now.

Zero-knowledge protocol for Hamiltonian Cycle using bit commitment

1. The prover picks a random permutation Π : V → V . He commits to each of the bits of the
adjacency matrix MΠ(G) of Π(G).

2. The verifier sends a random bit (called the challenge) chall ∈ {0, 1} to the prover.
3. – If chall = 0, the prover decommits to all the elements of MΠ(G), and reveals Π.

– If chall = 1, he reveals only the bits (of value 1) of the adjacency matrix that correspond to
a Hamiltonian cycle C′ of Π(G).

4. The verifier checks that these decommitments are valid and correspond, for chall = 0 to MΠ(G)

and, for chall = 1, to a Hamiltonian cycle.

It is natural to combine this zero-knowledge protocol with the FQ relativistic bit commitment protocol
mentioned above. The (single-round) FQ relativistic bit commitment protocol is secure against quantum
adversaries but it doesn’t directly imply that the zero-knowledge protocol remains secure. Indeed, the security
definition considered for the bit commitment is fairly weak and composes poorly with other protocols.
The soundness of the protocol against entangled provers will be reduced to a 2-player entangled game.
Proving zero-knowledge against a quantum verifier can sometimes be complicated because of the presence of
a quantum auxiliary input. In this case, however, due to properties of the relativistic FQ bit commitment,
we will not need any rewinding from our simulator and the simulation will actually be rather simple.

—

The goal of this paper is to show that it is indeed possible to plug in the FQ relativistic bit commit-
ment protocol into Blum’s zero-knowledge protocol for Hamiltonian Cycle . This widens the possible
applications for relativistic cryptography and will encourage further implementations.

The main contribution of this paper is a technical analysis involving successive measurements on a
quantum system. Indeed, to prove that the above scheme is secure against quantum adversaries, we use the
fact that an adversary who can answer both challenges at the same time can guess the value of a string on
which he has no information, due to non-signaling. This naturally involves consecutive measurements on a
quantum system, and leads us to analyze how the first measurement disturbs the system before the second
measurement.



1.2 Relativistic zero-knowledge protocol for Hamiltonian Cycle

Here, we show how the final protocol will look like and where exactly we rely on the physical NSS principle.
The final protocol is the following:

Relativistic zero knowledge protocol for Hamiltonian Cycle

Input — The provers and the verifiers are given a graph G = (V,E).
Auxiliary Input — The provers P1 and P2 know a Hamiltonian cycle C of G.
Preprocessing — P1 and P2 agree beforehand on a random permutation Π : V → V and on an

n× n matrix A ∈MFQ
n where each element of A is chosen uniformly at random in FQ.

Protocol —

1. Commitment to each bit of MΠ(G) : V1 sends a matrix B ∈ MFQ
n where each element of B is

chosen uniformly at random in FQ. P1 outputs the matrix Y ∈MFQ
n such that ∀i, j ∈ [n], Yi,j =

Ai,j + (Bi,j ∗ (MΠ(G))i,j).
2. The verifier sends a random bit (called the challenge) chall ∈ {0, 1} to the prover.
3. – If chall = 0, P2 decommits to all the elements of MΠ(G), i.e. he sends all the elements of A

to V2 and reveals Π.
– If chall = 1, P2 reveals only the bits (of value 1) of the adjacency matrix that correspond to

a Hamiltonian cycle C′ of Π(G), i.e. for all edges (u, v) of C′, he sends Au,v as well as C′.
4. The verifier checks that those decommitments are valid and correspond to what the provers have

declared. He also checks that the timing constraint of the bit commitment is satisfied. This means
that
– if chall = 0, the prover’s opening A must satisfy ∀i, j ∈ [n], Yi,j = Ai,j + (Bi,j ∗ (MΠ(G))i,j).
– if chall = 1, the prover’s opening A must satisfy ∀(u, v) ∈ C′, Yu,v = Au,v +Bu,v.

The above protocol is obtained by plugging in the FQ relativistic bit commitment protocol into Blum’s
zero-knowledge protocol for Hamiltonian Cycle . We discuss more the setting in Sections 4 and 5. We just
want here to briefly present in which way we use the no superluminal signaling condition in this protocol.

In order for the protocol to be secure, we require the following:

1. Both the prover and the verifier are split into 2 agents, respectively P1, P2 and V1, V2.
2. V1 and V2 are far apart (we discuss this later).
3. The opening phase (steps 2 and 3) must be performed as soon as the commit phase (step 1) is completed.

Constraints (2) and (3) are here to enforce that during step 3 of the protocol, the message P2 sends to V2 does
not depend on the matrix B sent by V1. Because information travels at most at light speed, by synchronizing
the steps well enough, the verifiers can enforce this condition. For instance, it is sufficient to check that V2
receives the message from P2 before the information on B sent by V1 had time to reach V2. If this is the
case, then it guarantees that P2’s answer to the challenge cannot depend on the value of the matrix B, since
otherwise it would violate the NSS. An important consequence is that we do not require the verifiers to know
anything about the spatial locations of the provers: it is sufficient for the verifiers to know their own relative
position.

As said before, there were already several experiments made that showed how to achieve the above
constraints. The most notable one [VMH+16] succeeded in performing the above bit commitment protocol
by having V1 and V2 being 8km apart, which shows it can be achievable in real life conditions.

In summary, the main contribution of the paper is to prove the security of the above protocol for Hamil-
tonian Cycle against quantum adversaries. The main challenge is to prove the soundness property, i.e. se-
curity against a cheating prover on an input which does not contain a Hamiltonian cycle. Here, we have two
dishonest provers P1 and P2 that want to pass the protocol even though the input graph does not contain a
Hamiltonian cycle. A cheating prover that would be able to answer simultaneously to both challenges could
break the underlying string commitment scheme, which is a consequence of the special soundness property
of the scheme.

To prove the security of the above protocol against quantum adversaries, we will, from a cheating strategy,
construct a strategy that will successfully answer both challenges by consecutively applying the cheating
strategy for each challenge, which is expressed by our consecutive measurement theorem (see Theorem 1



below). We can also view this cheating scenario as a 2-player entangled game and we will show how in
general our theorem regarding quantum consecutive measurements can be translated into a bound on the
entangled value of 2-player games.

1.3 Consecutive measurements

Our main technical contribution is expressed by the following theorem

Theorem 1. Consider n projectors P1, . . . , Pn such that for each i, we can write Pi :=
∑S
s=1 P

s
i where the

{P si }s are orthogonal projectors for each i, i.e. for each i and s, s′, we have P si P
s′

i = δs,s′P
s
i . Let σ be any

quantum state, let V := 1
n

∑n
i=1 tr(Piσ), and let

E := 1
n(n−1)

∑
i,j 6=i

∑S
s,s′=1 tr(P

s′

j P
s
i σP

s
i P

s′

j ). Then it holds that E ≥ 1
64S

(
V − 1

n

)3
.

Such a statement can be fairly easily transposed to the context of games: see Proposition 1 below. This
theorem can be seen as a generalization of the gentle measurement lemma [Win99], which is similar to the
above with n = 2 and S = 1. The case of n = 2 can be seen as a worst-case consecutive measurement
theorem: how much can the first measurement disturb the measured state before the second measurement?
However, for larger values of n, this shows that when we pick 2 measurements out of n, the disturbance is
much smaller, as shown by the dependence of the lower bound in n. Our theorem also improves on known
results since it deals with larger values of S.

Interestingly, this kind of statement has already appeared previously in a paper by Unruh [Unr12], who
studied quantum sigma protocols and in particular quantum proofs of knowledge. He showed the following

Theorem 2 ([Unr12]). Consider n projectors P1, . . . , Pn and an arbitrary quantum state σ. Let V :=
1
n

∑n
i=1 tr(Piσ), and let E := 1

n(n−1)
∑
i,j 6=i tr(PjPiσPiPj). If V ≥ 1√

n
then E ≥ V (V 2 − 1

n ).

Let us now compare our main theorem to Unruh’s one, for the case of S = 1 where they are comparable.
If V � 1√

n
then both bounds give essentially the same bound E ≥ Ω(V 3) which will translate into the

relation ω∗(Gcoup) ≥ Ω(ω∗(G)3) for the entangled values of a game G and its coupled version Gcoup (see
below). However, Theorem 2 is only valid when V ≥ 1√

n
while Theorem 1 works for any V ≥ 1

n . Moreover,

Theorem 1 is tight in its extremal point in the sense that there exist a quantum state and n projectors such
that V = 1

n and E = 0, as can be seen by considering for example σ = |φ〉〈φ| with |φ〉 := 1√
n

∑
i |i〉 and

Pi = |i〉〈i|.

—

A natural application of our consecutive measurement theorem is to bound the value of some entangled
games. The phrasing in terms of nonlocal games is sometimes more comfortable to use. In this paper, our
security proofs will usually reduce to bounding the entangled value of such game, that is the maximum
winning probability for a pair of players allowed to share arbitrary entangled states as a resource. For any
game G on the uniform distribution (meaning that the inputs of the game are drawn independently from the
uniform distribution), we define the game Gcoup (consisting of a certain couple of instances of G) as follows:

– In G, Alice and Bob respectively receive x and y taken from the uniform distribution on the sets IA and
IB , respectively, and output a and b such that V (a, b|x, y) = 1 for some valuation function V specified
by G.

– In Gcoup, Alice receives a random x as in G and Bob receives a pair of distinct random inputs (y, y′). Alice
outputs a and Bob outputs a pair (b, b′). They win the game if V (a, b|x, y) = 1 and V (a, b′|x, y′) = 1,
that is, if they win both instances of the game G, but for the same input/output pair of Alice.

In many cases, upper bounding the value of Gcoup will follow directly from a non-signaling argument of
the form: “If the players are able to win Gcoup with probability p then Bob can learn some (or all) bits of
x with probability p and no-signaling implies that p ≤ 1/|IA|”. What is left to do is to relate the entangled
values of both games, ω∗(G) and ω∗(Gcoup). To do this, we construct the following strategy for Gcoup: Alice
follows the same strategy as for G; on inputs (y, y′), Bob performs the same strategy (measurement) as for
G on input y to get output b and then on input y′ to get b′. Note here that the non trivial part is that



Bob’s second measurement is applied on the post-measurement state resulting from his first measurement.
Because we are in the quantum setting, this first measurement will generally perturb the state shared by
Alice and Bob, which makes it non trivial to relate the success probability of this strategy for Gcoup with
the entangled value ω∗(G) of the original game G.

A similar construction of squared games was introduced in [DS14,DSV15] to study projective classical
and entangled games. There, the input x is not revealed to the players but they receive respectively y and
y′ and output b and b′. They win if there exists a such that V (a, b|x, y) = V (a, b′|x, y′) = 1. It would be
interesting to see the similarities and differences between those two approaches.

We show the following.

Proposition 1. For any game G on the uniform distribution which is S-projective, we have ω∗(Gcoup) ≥
1

S·64 · (ω
∗(G)− 1

n )3 where n is dimension of Bob’s input.

A game G is said to be S-projective if for all x, y, a, there are at most S possible outputs for Bob that
allow them to win the game, i.e. maxx,y,a |{b : V (a, b|x, y) = 1}| ≤ S.

In order to prove this statement, we need to analyze the strategy that we presented above. As already
mentioned, the main difficulty is that the first measurement from Bob will modify the common shared
state and therefore we cannot directly bound the probabilities related to the second measurement. One way
of analyzing these consecutive measurements would be to use a kind of gentle measurement lemma but
unfortunately, this would only work when the winning probability ω∗(G) is close to 1, which isn’t the case
for the games we consider.

Fortunately, Theorem 1 is tailored for this kind of applications and can be used directly to prove the
above proposition. We can notice the exact transposition of the parameters of Theorem 1 to Proposition 1.

1.4 Applications of the bound

1. First, we prove that the extensions of the FQ bit commitment to string commitment and its parallel
repetition remain secure against quantum adversaries with using the sum-binding definition. This is a
direct consequence on upper bounds on the entangled value of CHSH variants, like the CHSHQ(P ) game
introduced in [CCL15].

2. We show that the presented relativistic zero-knowledge protocol for Hamiltonian Cycle is secure
against quantum adversaries. This also implies a 2-prover 1-round zero-knowledge protocol for Hamil-
tonian Cycle also secure against quantum adversaries.

3. Finally, as a direct corollary of our consecutive measurement claim, we answer an open question from
Unruh regarding quantum proofs of knowledge [Unr12]. We show tight bounds on the quantum knowledge
error of a Σ-protocol with strict and special soundness as function of the challenge size, matching the
classical bound. We will not discuss in detail this result as it just requires to plug our bound in the proof
of [Unr12] and is a bit beyond the scope of this paper. However, this shows that our results are useful
beyond just the study of relativistic protocols or entangled games.

The last point shows that our bound could find even more applications when considering security against
quantum adversaries. Indeed, when studying cryptographic protocols, for instance Σ-protocols, a notion that
often appears is special soundness which roughly states that an attacker shouldn’t be able to simultaneously
answer successfully to 2 verifier’s challenges. The relativistic zero-knowledge protocol we study is one example
of this and Unruh’s quantum proofs of knowledge setting is another one but there are more where our theorem
could be useful.

Organisation of the paper

In Section 2, we prove our main consecutive measurement theorem. In Section 3, we show how to use this
bound for proving upper bounds on the entangled value of nonlocal games. In Section 4, we present in
more detail the relativistic model and the FQ relativistic bit commitment protocol. Finally, in Section 5,
we describe the protocol obtained by plugging this bit commitment into Blum’s zero-knowledge protocol for
Hamiltonian Cycle and we prove that it remains secure, even against quantum adversaries.



2 Consecutive measurement theorems

We first present some useful lemmata in the preliminaries. Then, we dive in directly in the proof of our
consecutive measurements theorems.

2.1 Preliminaries

Lemma 1. Let |φ〉 a quantum pure state, P ≤ I a projector acting on |φ〉 and |ψ〉 := P (|φ〉)
||P (|φ〉)|| . We have

|〈φ|ψ〉|2 = ||P (|φ〉)||2 = tr(P |φ〉〈φ|).

Proof. We write |φ〉 = P (|φ〉)+(I−P )(|φ〉) = ||P (|φ〉)|| |ψ〉+(I−P )(|φ〉). By noticing that 〈ψ|I− P |φ〉 = 0,
we get |〈φ|ψ〉|2 = ||P (|φ〉)||2 = tr(P |φ〉〈φ|).

Lemma 2. Let |φ〉 a quantum pure state, P ≤ I a projector acting on |φ〉 and |ψ〉 such that P |ψ〉 = |ψ〉.
We have |〈φ|ψ〉|2 ≤ tr(P |φ〉〈φ|).

Proof. We decompose |φ〉 in order to make |ψ〉 appear. We write |φ〉 = α|ψ〉 + β|ψ⊥〉 with |α|2 + |β|2 = 1
and 〈ψ|ψ⊥〉 = 0. This gives us P |φ〉 = α|ψ〉+ βP |ψ⊥〉. Notice that we also have 〈ψ|P |ψ⊥〉 = 0. From there,
we conclude

tr(P |φ〉〈φ|) = ||P |φ〉||2 = |α|2 + |β|2||P |ψ⊥〉||2 ≥ |α|2 = |〈φ|ψ〉|2.

2.2 Single outcome case : S = 1

We first prove the theorem for the case where S = 1.

Theorem 3. Consider n projectors P1, . . . , Pn and a quantum mixed state σ in some Hilbert space B. Let
V := 1

n

∑n
i=1 tr(Piσ), and let

E :=
1

n(n− 1)

∑
i,j 6=i

tr(PjPiσPiPj).

Then it holds that E ≥ 1
64

(
V − 1

n

)3
.

Proof. We fix a quantum mixed state σ in some Hilbert space B and n projectors P1, . . . , Pn acting on B.
We first move to the realm of pure states which will be easier to analyze by adding an extra Hilbert space
E . We consider a purification |φ〉 of σ in some space BE = B ⊗ E . We define

|φi〉 :=
(Pi ⊗ 1E)|φ〉
||(Pi ⊗ 1E)|φ〉||

.

The state |φi〉 corresponds to the normalized projection of |φ〉 using Pi. We first express E and V as inner
products of the quantum pure states we defined:

Lemma 3. E ≥ 1
n(n−1)

∑
i,j 6=i |〈φ|φi〉|2|〈φi|φj〉|2 and V = 1

n

∑n
i=1 |〈φ|φi〉|2.

Proof. We write

E =
1

n(n− 1)

∑
i,j 6=i

tr(PjPiσPiPj)

=
1

n(n− 1)

∑
i,j 6=i

tr ((Pj ⊗ 1E)(Pi ⊗ 1E)|φ〉〈φ|(Pi ⊗ 1E)(Pj ⊗ 1E))

Here, by using Lemma 1, notice that

(Pi ⊗ 1E)|φ〉〈φ|(Pi ⊗ 1E) = ||(Pi ⊗ 1E)|φ〉||2|φi〉〈φi| = |〈φ|φi〉|2|φi〉〈φi|.



From there, we can continue have

E =
1

n(n− 1)

∑
i,j 6=i

|〈φ|φi〉|2tr ((Pj ⊗ 1E)|φi〉〈φi|)

≥ 1

n(n− 1)

∑
i,j 6=i

|〈φ|φi〉|2|〈φi|φj〉|2

where the last inequality comes from Lemma 2. Notice also that we immediately have V = 1
n

∑n
i=1 tr(Piσ) =∑

i |〈φ|φi〉|2.

Our goal is to relate E and V . We will deal with the terms |〈φi|φj〉|2 using the following proposition on
almost orthogonal states.

Proposition 2. Consider n quantum pure states |φ1〉, . . . , |φn〉. Let

S := max
|Ω〉

n∑
i=1

|〈Ω|φi〉|2 and C :=

n∑
i,j 6=i

|〈φi|φj〉|2.

We have S ≤ 1 +
√

(n−1)C
n ≤ 1 +

√
C.

Proof. Let M =
∑n
i=1 |φi〉〈φi|. M is a positive semi-definite matrix of dimension at most n. Let λ1 ≥ λ2 ≥

· · · ≥ λn the n eigenvalues of M in decreasing order. We have
∑
i λi = tr(M) =

∑
j tr(|φj〉〈φj |) = n.

Moreover, notice that S = max|Ω〉
∑
i |〈Ω|φi〉|2 = λ1.

We write M2 =
∑
i,j〈φi|φj〉|φi〉〈φj | and tr(M2) =

∑
i,j |〈φi|φj〉|2 = n+C. Moreover, we have tr(M2) =∑

i λ
2
i . This gives us

n+ C = tr(M2) =

n∑
i=1

λ2i = λ21 +

n∑
i=2

λ2i ≥ λ21 + (n− 1)

(
n− λ1
n− 1

)2

= λ21 +
(n− λ1)2

n− 1
= S2 +

(n− S)2

n− 1

where the inequality comes from the convexity of the square function. From there, we have

(n− 1)S2 + (n− S)2 − n(n− 1) ≤ (n− 1)C

Using (n− 1)S2 + (n− S)2 − n(n− 1) = n(S − 1)2, we conclude that n(S − 1)2 ≤ (n− 1)C or equivalently

S ≤ 1 +
√

(n−1)C
n .

In particular, the above proposition implies that

V ≤ 1

n
+
n− 1

n

√
1

n(n− 1)

∑
i,j 6=i

|〈φi|φj〉|2.

The term in the squared root is very similar to E. Unfortunately, the expression for E contains an extra
factor |〈φ|φi〉|2 in the sum under the square-root. If the quantity |〈φ|φi〉|2 was independent of i, it would be
equal to V and we would be able to conclude. However, this is not always the case and this adds a difficulty
in the proof. In order to overcome it, we will use Proposition 2 only with the states for which |〈φ|φi〉|2 is not
too small. We will choose a threshold κ (that will be fixed later) and consider only the indices i for which
|〈φ|φi〉|2 ≥ V/κ. This is the goal of the next proposition.

Proposition 3. ∀κ > 1, V ≤
(

1 + 1
κ−1

)(
1
n +

√
κE
V

)
.



Proof. For all i, let pi := |〈φ|φi〉|2. We have by definition V =
∑
i pi. We fix κ > 1 and define the set

Z := {i ∈ [n] : pi ≥ V
κ }. We have

1

n

∑
i/∈Z

pi ≤
1

n

∑
i/∈Z

V

κ
≤ V

κ
,

which implies

1

n

∑
i∈Z

pi ≥ (1− 1

κ
)V. (1)

We write

E ≥ 1

n(n− 1)

∑
i,j 6=i

pi|〈φi|φj〉|2 ≥
1

n(n− 1)

∑
i,j∈Z
i 6=j

pi|〈φi|φj〉|2 (2)

≥ V

κ
· 1

n(n− 1)

∑
i,j∈Z
i 6=j

|〈φi|φj〉|2. (3)

Now, starting from Equation 1, we have

V ≤ 1

1− 1
κ

1

n

∑
i∈Z

pi =
1

1− 1
κ

1

n

∑
i∈Z
|〈φ|φi〉|2 ≤

(
1 +

1

κ− 1

)
max
|Ω〉

1

n

∑
i∈Z
|〈Ω|φi〉|2

≤
(

1 +
1

κ− 1

) 1

n
+

√√√√√ 1

n(n− 1)

∑
i,j∈Z
i 6=j

|〈φi|φj〉|2

 (4)

≤
(

1 +
1

κ− 1

)( 1

n
+

√
κE

V

)
(5)

where we used Lemma 2 in Equation 4 and Equation 2 for the last inequality. This proves the proposition.

We can now use Proposition 3 to prove our theorem. We distinguish two cases:

1. If ( V
n2E )1/3 > 2. We take κ = ( V

n2E )1/3 > 2 which implies κ(n
2E
V )1/3 = 1 and (κn

2E
V )

1
2 = 1

κ . We get

V ≤ 1

n

(
1 +

1

κ− 1

)(
1 +

[
κ
n2E

V

]1/2)
=

1

n

(
1 +

1

κ− 1

)(
1 +

1

κ

)
≤ 1

n
(1 +

4

κ
) =

1

n
+ 4

(
E

nV

)1/3

.

This gives E ≥ nV
64 (V − 1

n )3 which implies E ≥ 1
64 (V − 1

n )3. To see this last implication, consider the
following two cases: if V ≥ 1

n then the equality comes immediately from the previous inequality. If V ≤ 1
n ,

we immediately have E ≥ 0 ≥ 1
64 (V − 1

n )3.

2. If ( V
n2E )1/3 ≤ 2. This implies

(
V
E

)1/2 ≤ n · 23/2. We take κ = 2 and obtain

V ≤
(

1 +
1

κ− 1

)( 1

n
+

√
κE

V

)
= 2(

1

n
+

√
2E

V
)

≤ 2(22/3
√
E

V
+

√
2E

V
) ≤ 6

√
E

V

which implies E ≥ V 3

36 ≥
1
64 (V − 1

n )3.



2.3 General case

We can now show our theorem for any S. The general case will be a direct corollary of the following.

Proposition 4. Let a projector P :=
∑m
i=1 Pi where {Pi}i∈[m] are orthogonal projectors. For any pure state

|ψ〉, we have
m∑
i=1

Pi|ψ〉〈ψ|Pi ≥
1

m
P |ψ〉〈ψ|P.

We note that this result can be obtained as an application of the pinching inequality [Hay02,SBT16], but
we provide a proof here for completeness.

Proof. We define the following unnormalized states |ψP 〉 = P (|ψ〉) and |ψPi 〉 = Pi(|ψ〉). Because P =
∑
i Pi,

we have |ψP 〉 =
∑
i |ψPi 〉. This gives

m∑
i=1

Pi|ψ〉〈ψ|Pi =

m∑
i=1

|ψPi 〉〈ψPi |

P |ψ〉〈ψ|P † = |ψP 〉〈ψP |

Consider now any state |φ〉 =
∑
i αi|ψPi 〉+ |ξ〉 where |ξ〉 is orthogonal to all the |ψPi 〉. We have

〈φ|
m∑
i=1

Pi|ψ〉〈ψ|Pi|φ〉 =
∑
i

|〈ψPi |φ〉|2 = |αi|2
∣∣〈ψPi |ψPi 〉∣∣2

and

〈φ|P |ψ〉〈ψ|P |φ〉 = |〈ψP |φ〉|2 =

∣∣∣∣∣∑
i

αi〈ψPi |ψPi 〉

∣∣∣∣∣
2

From there, we can conclude. We have:

〈φ|
m∑
i=1

Pi|ψ〉〈ψ|Pi|φ〉 =
∑
i

|αi|2|〈ψPi |ψPi 〉|2

≥ 1

m

∣∣∣∣∣∑
i

|αi||〈ψPi |ψPi 〉|

∣∣∣∣∣
2

(from Cauchy-Schwarz)

≥ 1

m
〈φ|P |ψ〉〈ψ|P |φ〉

Since this holds for any state |φ〉, we can conclude that

m∑
i=1

Pi|ψ〉〈ψ|Pi ≥
1

m
P |ψ〉〈ψ|P †.

From there, and using the previous theorem, we can show our main technical result.

Theorem 1. Consider n projectors P1, . . . , Pn such that for each i, we can write Pi :=
∑S
s=1 P

s
i where the

{P si }s are orthogonal projectors for each i, i.e. for each i and s, s′, we have P si P
s′

i = δs,s′P
s
i . Let σ be any

quantum state, let V := 1
n

∑n
i=1 tr(Piσ), and let

E := 1
n(n−1)

∑
i,j 6=i

∑S
s,s′=1 tr(P

s′

j P
s
i σP

s
i P

s′

j ). Then it holds that E ≥ 1
64S

(
V − 1

n

)3
.



Proof. We fix n projectors P1, . . . , Pn such that for each i, we can write Pi :=
∑S
s=1 P

s
i where the {P si }s are

orthogonal projectors for each i. We fix a quantum state σ. We have

E =
1

n(n− 1)

∑
i,j 6=i

S∑
s,s′=1

tr(P s
′

j P
s
i σ(P s

′

i )(P sj ))

=
1

n(n− 1)

∑
i,j 6=i

S∑
s=1

tr(PjP
s
i σ(P s

′

i )Pj)

≥ 1

Sn(n− 1)

∑
i,j 6=i

tr(PjPiσ(Pi)Pj) (from Proposition 4)

≥ 1

64S

(
V − 1

n

)3
(from Theorem 3)

3 Entangled games

The goal of this section is to use the consecutive measurement theorems of the previous section to establish
upper bounds on the value of entangled games. For a game G on the uniform distribution, we will define a
game Gcoup which corresponds to a couple of instances of G where Alice plays twice with the same input and
Bob receives two distinct inputs and they need to win both instances in order to win the game Gcoup. In the
cases we consider, upper bounding Gcoup will be easily done from non-signaling. Our learning lemmata will
allow us to relate the winning probabilities of G and Gcoup. These two steps together will give us bounds on
the value of G.

3.1 First definitions

Definition 1. A game G = (IA, IB , OA, OB , V, p) is defined by

– 2 input sets IA, IB which are respectively Alice’s and Bob’s input sets.
– 2 output sets sets OA, OB which are respectively Alice’s and Bob’s output sets.
– A valuation function V : IA× IB ×OA×OB → {0, 1} which indicates whether the game is won for some

fixed input and outputs. The game is won if the value of V is 1.
– A probability function p : IA × IB → [0, 1] which corresponds to the input distribution. We have∑

(x,y)∈IA×IB pxy = 1.

Definition 2. A game G = (IA, IB , OA, OB , V, p) is said to be on the uniform distribution if ∀(x, y) ∈
IA × IB , pxy = 1

|IA||IB | .

Definition 3. A game G = (IA, IB , OA, OB , V, p) is projective if

∀(x, y) ∈ IA × IB st. pxy 6= 0, ∀a ∈ OA, ∃! b ∈ OB , st. V (x, y, a, b) = 1.

A game G is S-projective if

∀(x, y) ∈ IA × IB st. pxy 6= 0,∀a ∈ OA, |{b ∈ OB : V (x, y, a, b) = 1}| ≤ S.

In particular, a projective game is 1-projective.

In the case where Alice and Bob are classical and want to win a game G, it is known that their optimal
strategy to win is to perform a deterministic strategy. Notice that a projective game is asymmetric in Alice
and Bob.

Definition 4. For a game G = (IA, IB , OA, OB , V, p), we denote by ω∗(G) its entangled value, i.e. the
maximum winning probability for the game when Alice and Bob are quantum and share an entangled state.



In order to study this maximal winning probability, it is enough to consider the case where Alice and
Bob perform projective measurements.

In order to prove upper bounds on ω∗(G) for a game G on the uniform distribution, we introduce the
notion of coupled game Gcoup.

Definition 5. For any game G = (IA, IB , OA, OB , V, p) on the uniform distribution we define Gcoup as
follows:

– Alice receives a random x ∈R IA. Bob receives a random pair of different inputs (y, y′) from IB.
– Alice outputs a ∈ OA. Bob outputs b, b′ ∈ OB.
– They win the game if V (x, y, a, b) = V (x, y′, a, b′) = 1.

3.2 Relating G and Gcoup

In this section, we use our results from the previous section to relate the values of G and Gcoup.

Proposition 1. For any game G on the uniform distribution which is S-projective, we have ω∗(Gcoup) ≥
1

S·64 (ω∗(G)− 1
n )3 where n = |IB |.

Proof. Consider an optimal strategy for Alice and Bob for the game G. In particular, for each y, let Qy =
{Qyb} the projective measurement that corresponds to his strategy for input y. Fix an input/output pair
(x, a) for Alice and let σxa be the state held by Bob, conditioned on this pair. For each y, let Wy = {b :
V (a, b|x, y) = 1} be the set of winning outputs for Bob. Since G is S-projective, we have |Wy| ≤ S. We define
QyW =

∑
b∈Wy

Qyb .

We denote by V xa the probability that Alice and Bob win the game for a fixed x, a. Notice that ω∗(G) =
Exa[V xa]. We have

V xa =
1

n

∑
y

tr(QyWσ
xa(QyW )),

since y is uniformly distributed over the set IB of size n.
We now consider the following quantum strategy for Gcoup: Alice and Bob share the same initial state as

in the optimal strategy for G; Alice performs the same measurement strategy as for G; on inputs y, y, Bob
applies the first measurement Qy and obtains outcome b, then applies the measurement P y

′
on his resulting

state and gets outcome b′. Bob outputs (b, b′). Let Exa be the probability that Alice and Bob win Gcoup
using this strategy for a fixed x, a. Notice that ω∗(Gcoup) ≥ Exa[Exa] since the value Exa[Exa] is achievable.
We have

Exa =
1

n(n− 1)

∑
y,y′ 6=y

∑
b:V (ab|xy)=1
b′:V (ab′|xy′)=1

tr(Qy
′

b′Q
y
bσ

xaQybQ
y′

b′ )

≥ Pos( 1

64S
(V xa − 1

n
)3) from Theorem 1

where Pos(x) := max(x, 0) is the positive part of x. By taking the expectation on each side, we obtain

ω∗(Gcoup) = Exa[Exa] ≥ Exa[Pos(
1

64S
(V xa − 1

n
)3)] ≥ Pos( 1

64S
(ω∗(G)− 1

n
)3)

≥ 1

64S
(ω∗(G)− 1

n
)3

where we used the convexity of the function x 7→ Pos(x3).

3.3 Retrieving the value of certain entangled games

We now use the technique developed above in order to obtain upper bounds on games based on the FQ

variant of CHSH.



CHSHQ(P) — We consider the nonlocal game called CHSHQ(P ) with P ≤ Q. Here, Alice and Bob
receive inputs x and y, where x is a uniformly random element in FQ and y is an element of FQ taken
uniformly at random from {0, . . . , P − 1}. They output values a, b ∈ FQ and win if a+ b = x ∗ y, where the
addition and multiplication are with respect to FQ. Notice that CHSHQ(P ) is a projective game on the
uniform distribution.

Let’s analyze CHSHQ(P )coup. Fix an input/output pair (x, a) and a pair (y, y′) of inputs for Bob with
y 6= y′. Let b, b′ Bob’s output. If Alice and Bob win the game then we have a+ b = x ∗ y and a+ b′ = x ∗ y′
which implies that (b− b′) ∗ (y − y′)−1 = x. This means that Bob can use any strategy for CHSHQ(P )coup
as a strategy to guess x with the same winning probability. Because of non-signaling, this happens with
probability at most 1

Q . We therefore have ω∗(CHSHQ(P )coup) ≤ 1
Q . Using Proposition 1 (we have S = 1 in

this setting), we obtain ω∗(CHSHQ(P )) ≤ 1
P + 4

Q1/3 .

CHSHQ(2)
⊗n

— This is the parallel repetition of CHSHQ where Alice and Bob receive n uniform strings
x1, · · · , xn and y1, · · · , yn ∈ {0, 1} and output strings a1, · · · , an and b1, · · · , bn, respectively. They win the
CHSHQ(2)⊗n game if they win all n instances of the CHSHQ games, i.e. if ai+bi = xi∗yi for all i ∈ {1, · · · , n}.
Consider now the coupled version of this game. For any two inputs y = y1, . . . , yn, y

′ = y′1, . . . , y
′
n given to

Bob, if Alice and Bob win the game then similarly as in CHSH, Bob can recover Alice’s input bits xi for each
i where yi 6= y′i. From non signaling, this happens with probability at most Q−|y−y

′|H , where |y− y′|H is the
Hamming distance between strings y and y′, counting in how many indices both strings differ. Therefore, we

have ω∗(CHSHQ(2)⊗ncoup) = Ey,y′ 6=y[Q−|y−y
′|H ] = 1

2n

(
(1 + 1

Q )n − 1
)

. If Q > n, we have

ω∗(CHSHQ(2)⊗ncoup) ≤
2n

Q2n
which gives ω(CHSHQ(2)⊗n) ≤ 1

2n
+ 4(

2n

Q2n
)1/3.

In particular, if we take Q = 64·22n
2nε3 , we obtain ω(CHSHQ(2)⊗n) ≤ 1

2n (1 + ε).

4 Relativistic bit and string commitment

In this section, we will review the relativistic FQ bit commitment scheme and its natural extension to
string commitment. We will show how the sum-binding property (with worst parameters) is preserved when
considering string commitment or the parallel repetition of bit commitment. This is showed by Propositions
5 and 6.

4.1 Bit commitment

Bit commitment is a cryptographic primitive between two distrustful parties Alice and Bob which consists
of 2 phases: a Commit phase and a Reveal phase. Alice has a bit d at the beginning of the protocol. In
the commit phase, Alice will commit to this value d by performing some communication protocol such that
at end of the commit phase, Bob has no information about d (hiding property). In the second phase, the
reveal phase, Alice and Bob also perform some communication which results in Alice revealing d. A desired
property here is that Alice is unable to reveal a bit different from the one chosen during the commit phase
(binding property).

In some sense, a bit commitment protocol simulates a digital safe. In the commit phase, Alice writes her
input d on a piece of paper, puts that paper into the safe and sends the safe to Bob. If Bob doesn’t hold the
key of the safe then he cannot open it and therefore has no information about d. In the reveal phase, Alice
would send to Bob the key to open the safe. But she cannot change the value of the bit in the safe because
Bob has control of the safe. This primitive has been widely studied. However, bit commitment can only be
performed with computational security in the most usual models.

We now define more formally a bit commitment scheme.

Definition 6. A quantum commitment scheme is an interactive protocol between Alice and Bob with two
phases, a Commit phase and a Reveal phase.

– Commit phase. Alice chooses a uniformly random input d that she wants to commit to. To do so, Alice
and Bob perform a communication protocol that corresponds to this commit phase.



– Reveal phase. Alice interacts with Bob in order to reveal d. To do so, they perform a second communi-
cation protocol where at the end, Bob should know the value revealed by Alice. Bob, depending on this
revealed value and the interaction with Alice, outputs either “Accept” or “Reject”.

A commitment scheme Π = (COMM,OPEN) is the description of the protocol followed by the honest
parties during both the commit and the open phases. All protocols that we will consider will be perfectly
hiding and we will only be interested in the binding property. Therefore, we only consider the case of
a cheating Alice, which will be described through her cheating strategy Str∗ = (Comm∗,Open∗) in both
phases of the protocol. The binding property we consider is the standard sum-property, that was also used
in previous work regarding relativistic bit commitment [LKB+15,FF15,CCL15].

Definition 7 (Sum-binding). We say that a bit commitment protocol Π is ε-sum-binding if

∀ Comm∗,

1∑
d=0

max
Open∗

(Pr[Alice successfully reveals d | (Comm∗,Open∗)]) ≤ 1 + ε.

In the case of string commitment, meaning Alice wants to commit/reveal to a string of dimension P (i.e.
dlog(P )ebits), we can extend the sum-binding property as follows.

Definition 8 (String sum-binding). We say that a P -string commitment protocol Π is ε-sum-binding if

∀ Comm∗,

P−1∑
d=0

max
Open∗

(Pr[Alice successfully reveals d | (Comm∗,Open∗)]) ≤ 1 + ε.

The sum-binding property for bit commitment is a relatively weak one. Indeed, it is very hard to use this
definition when combining it with other primitives. For example, when committing to n bits in parallel, it
is not always the case that this overall commitment, seen as a 2n-string commitment, satisfies a good string
sum-binding property. On the other hand, the string sum-binding for strings seems more exploitable.

4.2 Relativistic bit commitment

A relativistic bit commitment scheme is a commitment scheme where we use physical property that no
information carrier can travel faster than the speed of light. In order to take advantage of this principle, we
split Alice (resp. Bob) into 2 agents A1 and A2 (respectively B1 and B2). For each i ∈ {1, 2}, Ai interacts
only with Bi. If we put the two pairs (A1,B1) and (A2,B2) far apart, and use some timing constraints, we
can enforce some non-signaling type scenarios. Here, we will only use the property that the two honest Bob’s
know their respective location. In particular, there is no trust needed regarding the location of the cheating
parties.

The security definitions for relativistic bit commitment are the ones we presented above: definitions 7
and 8. We will now describe the FQ relativistic bit commitment scheme. This scheme will consist of 4 phases,
the preparation phase, the commit phase, the sustain phase and the reveal phase. The preparation phase is
some preprocessing phase that can be done anytime before the protocol. The sustain phase can be seen as a
part of the reveal phase, and corresponds to the time where the committed bit is safe. We assume here that
the two Alices learn at the beginning of the sustain phase the bit d they should try to reveal (which doesn’t
necessarily correspond to the bit, if any, they committed to).

The single-round FQ protocol. — The single-round version corresponds CHSHQ to the protocol in-
troduced by Crépeau et al. [CSST11] (see also [Sim07]). Both players, Alice and Bob, have agents A1,A2

and B1,B2 present at two spatial locations, 1 and 2, separated by a distance D. We consider the case where
Alice makes the commitment. The protocol (followed by honest players) consists of 4 phases: preparation,
commit, sustain and reveal. The sustain phase in the single-round protocol is trivial and simply consists in
waiting for a time less than D/c, which is the time needed for light to travel between the two locations. The
bit commitment protocol goes as follows.

1. Preparation phase: A1,A2 (resp. B1,B2) share a random number a ∈ FQ (resp. x ∈ FQ).
2. Commit phase: B1 sends b to A1, who immediately returns y = a+d∗x where d ∈ {0, 1} is the committed

bit.



3. Sustain phase: A1 and A2 wait for some time τ < D/c, where c is the speed of light. Crucially, for any
time less than D/c, the NSS principle guarantees that A2 has no information about the value of b.

4. Reveal phase: A2 reveals the values of d and a to B2 who checks that y = a+ d ∗ tx.

This relativistic bit commitment protocol is known to be O( 1√
Q

)-sum-binding [LKB+15]. It can be easily

extended to a P -string commitment where d is an element of FP instead of an element of {0, 1}. The above
construction is well defined as long as Q ≥ P (all the operations are still the modular operations in FQ).

Proposition 5. The above relativistic P -string commitment protocol is ε-sum-binding with ε = 4P
Q1/3 .

Proof. Consider a P -string commitment Π and a cheating strategy Str∗ = (Comm∗, Open∗). In this strategy,
A1 and A2 share an entangled state |ψ〉. After receiving b, A1 performs a measurement on her part of the
state to produce an output y which she sends to B1. For a random d that A2 wants to reveal, she performs
a measurement on her part of the state to produce an output a. We have

1

P

P−1∑
d=0

(Pr[Alice successfully reveals d | (Comm∗,Open∗)]) = Pr[a+ y = b ∗ d].

One can directly use the above strategy to construct a strategy for a CHSHQ(P ) game (defined in Section
3), with respective inputs b ∈ FQ, d ∈ FP and with respective outputs y and a. We have immediately

Pr[a+ y = b ∗ d] ≤ ω∗(CHSHQ(P )) ≤ 1

P
+

4

Q1/3
,

where the bound on the entangled is the one from Section 3. This gives us

P−1∑
d=0

max
Open∗

(Pr[Alice successfully reveals d | (Comm∗,Open∗)]) ≤ 1 +
4P

Q1/3

which proves the desired proposition.

If we want to perform an ε-sum-binding P -string commitment protocol then we need to send log(Q) =

log( 64P 3

ε3 ) = 3(log(P ) + | log(ε)|) + 8 bits for each round of the protocol.

4.3 Parallel repetiton of RBC

The problem with string commitment is that it is not possible to reveal only some bits of the string: by
construction, one has to reveal the whole string. In order to circumvent this issue, we need to consider
performing a bit commitment n times in parallel. This then allows one to reveal only a fraction of the bits.
The scheme will still feature sum-binding property but the scaling in parameters – although still polynomial
– will not be as good as for string commitment.

1. Preparation phase: A1,A2 (resp. B1,B2) share n random bits a1, . . . , an ∈ FQ (resp. b1, . . . , bn ∈ FQ).
2. Commit phase: B1 sends each bi to A1, who returns for each i yi = ai + di ∗ bi where d1, . . . , dn ∈ {0, 1}

is the sequence of committed bits.
3. Sustain phase: A1 and A2 wait for some time τ ≤ D/c.
4. Reveal phase: Let S be the subset of indices Alice wants to reveal. A2 indicates S to B2 and reveals the

values {ai}i∈S and {di}i∈S to B2 who checks that for each i ∈ S, the relation yi = ai + di ∗ bi holds.

Proposition 6. Fix a subset S of indices Alice will reveal to. Relative to S, the above protocol is ε-sum

binding with ε = 4( 2|S|22|S|
Q )1/3 ≤ 4( 2n22n

Q )1/3.

Proof. Fix a subset S. As before, we can use a strategy for the relativistic bit commitment to solve an
instance of CHSHQ(2)⊗|S| which implies∑

d∈{0,1}|S|
max
Open∗

(Pr[Alice successfully reveals d | (Comm∗,Open∗)])

≤ 2|S|ω∗(CHSHQ(2)⊗|S|).



Since we know that ω∗(CHSHQ(2)⊗|S|) ≤ 1
2|S|

+ 4( 2|S|
Q2|S|

)1/3, we can immediately conclude that

∑
d∈{0,1}|S|

max
Open∗

(Pr[Alice successfully reveals d | (Comm∗,Open∗)]) ≤ 2|S|

≤ 1 + 4(
2|S|22|S|

Q
)1/3.

If we want the above protocol to be ε-sum-binding, we need to send n log(Q) = O(n2 log(n) + n| log(ε)|)
bits at each round.

5 Relativistic zero-knowledge

In this section, we present our relativistic zero-knowledge protocol for NP. Our protocol will be based on the
well known protocol for the NP-complete problem Hamiltonian Cycle , which uses bit commitment.

5.1 The zero-knowledge Hamiltonian cycle protocol

Here, we present the zero-knowledge Hamiltonian cycle protocol and its adaptation to the relativistic setting.
Let Sn the set of permutation on {1, . . . , n}.

Definition 9. A cycle of {1, . . . , n} is a set of couples

{(Π(1), Π(2)), (Π(2), Π(3)), . . . , (Π(n− 1), Π(n)), (Π(n), Π(1))}

for a permutation Π ∈ Sn. We denote by Γn the set of cycles of {1, . . . , n}. We have |Γn| = (n− 1)!. For a
cycle C = {(u, v)} and a permutation Π, we also define Π(C) := {(Π(u), Π(v)}

Definition 10. A Hamiltonian cycle of a graph G = (V,E) is a cycle C of {1, . . . , |V |} such that C ∈ E i.e.
∀(i, j) ∈ C, (i, j) ∈ E.

Determining whether a graph G has a Hamiltonian cycle or not is an NP-complete problem. The corre-
sponding decision problem is Hamiltonian Cycle and G ∈ Hamiltonian Cycle means that the graph
contains a Hamiltonian cycle.

5.2 The protocol

We recall the zero-knowledge protocol for Hamiltonian Cycle first presented by Blum [Blu86].

Zero knowledge protocol for Hamiltonian Cycle

Input — The prover and the verifier are given a graph G = (V,E).
Auxiliary Input — The prover knows a Hamiltonian cycle C of G.
Protocol —

1. The prover picks a random permutation Π : V → V . He commits to each of bit of the adjacency
matrix MΠ(G) of Π(G).

2. The verifier sends a random bit (called the challenge) chall ∈ {0, 1} to the prover.
3. – If chall = 0, the prover decommits to all the elements of MΠ(G), and reveals Π.

– If chall = 1, he reveals only the bits (of value 1) of the adjacency matrix that correspond to
a Hamiltonian cycle C′ = Π(C) of Π(G).

4. The verifier checks that these decommitments are valid and correspond, for chall = 0 to MΠ(G)

and, for chall = 1, to a Hamiltonian cycle.

We now present the relativistic zero-knowledge protocol, that uses the FQ bit commitment.



Relativistic zero knowledge protocol for Hamiltonian Cycle

Input — The provers and the verifiers are given a graph G = (V,E).
Auxiliary Input — The provers P1 and P2 know a Hamiltonian cycle C of G.
Preprocessing — P1 and P2 agree beforehand on a random permutation Π : V → V and on an

n× n matrix A ∈MFQ
n where each element of A is chosen uniformly at random in FQ.

Protocol —

1. Commitment to each bit of MΠ(G) : V1 sends a matrix B ∈ MFQ
n where each element of B is

chosen uniformly at random in FQ. P1 outputs the matrix Y ∈MFQ
n such that ∀i, j ∈ [n], Yi,j =

Ai,j + (Bi,j ∗ (MΠ(G))i,j).
2. The verifier V2 sends a random bit (called the challenge) chall ∈ {0, 1} to the prover P2.
3. – If chall = 0, P2 decommits to all the elements of MΠ(G), i.e. he sends all the elements of A

to V2 and reveals Π.
– If chall = 1, P2 reveals only the bits (of value 1) of the adjacency matrix that correspond to

a Hamiltonian cycle C′ of Π(G), i.e. for all edges (u, v) of C′, he sends Au,v as well as C′.
4. The verifier checks that those decommitments are valid and correspond to what the provers have

declared. He also checks that the timing constraint of the bit commitment is satisfied. This means
that
– if chall = 0, the prover’s opening A must satisfy ∀i, j ∈ [n], Yi,j = Ai,j + (Bi,j ∗ (MΠ(G))i,j).
– if chall = 1, the prover’s opening A must satisfy ∀(u, v) ∈ C′, Yu,v = Au,v +Bu,v.

5.3 Proof of security

Our goal is to show that the above protocol is a relativistic zero-knowledge protocol for Hamiltonian Cycle
. In order to do this, we show the following

– Completeness: If the prover and the verifier are honest then for any graph G that has a Hamiltonian
cycle, the verifier accepts with certainty.

– Soundness: If we take Q = 64n!23k, we have that for any cheating prover, ∀G /∈ Hamiltonian Cycle ,
the verifier accepts with probability at most 1

2 + 2−k. With this parameter Q, the amount of bits sent
during the protocol is log(Q) for each committed bit and is therefore n2 log(Q) = O(kn3 log(n)) at each
round.

– Perfect zero-knowledge: for any cheating verifier V ∗, there exists a quantum poly-time simulator Σ that
can reproduce the cheating verifier’s view of the protocol for any input G ∈ Hamiltonian Cycle and
any auxiliary input ρ. More details about this zero-knowledge property can be found in the corresponding
subsection.

Completeness. If both players are honest and G contains a Hamiltonian cycle then the protocol always suc-
ceeds. Indeed, the original protocol from Blum has perfect completeness. Moreover, the FQ bit commitment
always succeeds when done honestly.

Soundness. The soundness can be reduced to the following 2-player game GRZK−HAM .

– P1 receives a matrix B ∈MFQ
n where each element of B is chosen uniformly at random in FQ. P2 receives

a random input bit chall.

– P1 outputs a matrix Y ∈ MFQ
n . If chall = 0 then P2 outputs a permutation Π and a matrix A ∈ MFQ

n .
If chall = 1 then P2 outputs a cycle C′ and n strings {A′(u,v)}(u,v)∈C′ in FQ.

– If chall = 0, the two players win if ∀i, j ∈ [n], Yi,j = Ai,j + (Bi,j ∗ (MΠ(G))i,j). If chall = 1, the two
players win if for all edges (u, v) of C′, Yu,v = Au,v +Bu,v, which corresponds to revealing 1 for each edge
of the cycle C′.

This game is n!-projective: once the permutation (or the cycle) is chosen, the winning output is fixed. In
order to study this game, we study the game GRZK−HAMcoup . We fix an input/output pair (B, Y ) for P1 and



we consider winning outputs for P2 for both inputs. For chall = 0, we have a permutation Π and a matrix

A ∈MFQ
n which is a valid opening of MΠ(G) meaning that

∀(i, j), Ai,j = Yi,j −Bi,j ∗ (MΠ(G))i,j . (6)

For chall = 1, we have a cycle C′ of {1, . . . , |V |} as well as openings A′u,v for each (u, v) ∈ C′. Because it is a
winning output, the openings must satisfy

∀(u, v) ∈ C′, A′u,v = Yu,v −Bu,v. (7)

If the graph G (hence also Π(G)) does not contain a Hamiltonian cycle then there has to be an edge (u, v)
of C′ such that

(
MΠ(G)

)
u,v

= 0. For this specific (u, v), we combine Equations 6 and 7 and get:

Au,v = Yu,v ; A′u,v = Yu,v −Bu,v.

This implies that Au,v − A′u,v = Bu,v which happens with probability at most 1
Q from non-signaling. We

therefore conclude that ω∗(GRZK−HAMcoup ) ≤ 1
Q . From there, we can apply Proposition 1 and obtain

ω∗(GRZK−HAM ) ≤ 1

2
+

(
64n!

Q

)1/3

.

If we take Q = 64n!23k then the protocol has soundness 1
2 +2−k. The amount of bits sent during the protocol

is log(Q) for each committed bit and is therefore n2 log(Q) = O(kn3 log(n)), which shows that the protocol
is efficient.

5.4 Zero-knowledge property.

In this section, we show that the above protocol is zero-knowledge. One of the main difficulties in proving
zero-knowledge in the quantum setting arises when requiring the simulator to perform rewinding while
preserving an auxiliary state. Here, there is no need for rewinding and the simulation can be done perfectly
and quite simply. The simulator will simply simulate each round of the protocol from the first one to the
last one. The reason of this simplicity is that in our bit commitment scheme, the verifier and the simulator
are able, for any commitment, to reveal an arbitrary value of their choice. This is a rare feature because the
prover shouldn’t be able to do this to preserve the binding property. In our case, this asymmetry comes from
the relativistic constraints imposed on the provers.

Zero-knowledge in the relativistic setting. From the provers’ point of view, each of them receives a message
and replies. We assume that a cheating verifier can totally bypass the timing constraints. We therefore
consider one cheating verifier that interacts with both provers. Moreover, we allow the verifier to send a
query to the second prover after receiving the answer from the first prover or vice-versa. All of this is meant
to have a cheating verifier as strong as possible. Proving the zero-knowledge property in this setting will
therefore be stronger in this model. Also, this will show the zero-knowledge property both for relativistic
zero-knowledge and for the (very related) 2-prover 1-round multi-prover interactive proof model.

A cheating verifier V ∗ is modeled by a polynomial-time uniform family of pairs of circuits {(V ∗1 (n), V ∗2 (n)}
where each V ∗i (n) represents the verifier action towards prover Pi on input size n. The verifier sends a query
to each prover in respective classical registers Q1 and Q2 and gets responses in respective classical registers
R1 and R2. The verifier also has access to private quantum register V, which initially contains a quantum
auxiliary state ρ.

Fix a cheating verifier V ∗. For any message B ∈MFQ
n sent from the verifier to P1, the message from P1

is a uniformly random matrix Y =MFQ
n while the message from P2 consists of:

– if chall = 0, a random permutation Π and a matrix A satisfying Y = A + B ∗ MΠ(G) where the
multiplication is the entry-wise matrix multiplication.

– if chall = 1, a random cycle C′ and a family of strings {A′u,v}(u,v)∈C′ satisfying

∀(u, v) ∈ C′, Yu,v = A′u,v +Bu,v.



The verifier receives as a first message a random matrix Y and as second message a random permutation
(for chall = 0) or a cycle (for chall = 1) with a uniquely determined message A or A′ that he can perfectly
infer from the information available to him. Notice that in the soundness analysis, the prover doesn’t know
what message he has to send because of relativistic constraints which do not apply for the verifier (as we
said, this only increases our claim on zero-knowledge).

All of the above remains true for any strategy for the cheating verifier and with any auxiliary input, and
even if the verifier queries a prover depending on the answer of the other prover. Moreover, simulating the
interaction between V ∗ and the provers can be done step by step following V ∗’s actions, without any need
for rewinding. This therefore shows the perfect zero-knowledge property of our scheme. In order to illustrate
this, we present below a step by step simulation of the verifier’s view in a more formal way than what we
did above.

Step by step simulation of the verifier’s view of the protocol. For a cheating verifier V ∗, we construct a
quantum poly-time simulator such that on any input G ∈ Hamiltonian Cycle and auxiliary input ρ, the
simulator can recreate the verifier’s view of the protocol perfectly. The simulator will use V ∗ as a black box
and will mimic the verifier’s view of the protocol after each round. When considering the interaction between
the verifier and the provers, we will always distinguish 2 cases

1. The action of V ∗2 depends on the interaction with P1.

2. The action of V ∗1 depends on the interaction with P2.

Note that both of these events cannot happen simultaneously. In the analysis below, we will consider case 1
but the other one can be treated in the exact same way.

We first describe the different view for a cheating verifier V ∗ and then show how to perform the simulation.
Let σi be the verifier’s view at step i of the protocol.

– At the beginning of the protocol, the verifier’s view consists of σ0 := ρV .

– After the verifier’s first message to P1, the verifier’s view is

σ1 := V ∗1 (ρ) =
∑

B∈M
FQ
n

pB |B〉〈B|Q1 ⊗ ρ(B)V .

– After the first prover’s answer, the shared state between the provers and the verifier is

σ2 :=
1

n!

1

Qn2

∑
Π∈Sn

∑
A∈M

FQ
n

∑
B∈M

FQ
n

pB |Y (Π,A)〉〈Y (Π,A)|R1 ⊗ |B〉〈B|Q1 ⊗ ρ(B)V .

where Y (Π,A) := A+B ∗Π(G) with ∗ being the entry wise matrix multiplication.

– Now, the verifier sends his challenge bit, which can depend on everything that happened before. His view
becomes

σ3 :=
1

n!

1

Qn2

∑
Π∈Sn

∑
A∈M

FQ
n

∑
B∈M

FQ
n

∑
c∈{0,1}

pB,c |Y (Π,A)〉〈Y (Π,A)|R1
⊗ |c〉〈c|Q2

⊗|B〉〈B|Q1
⊗ ρ(B, c, Y (Π,A))V .

– After the final message from the prover, the verifier’s view becomes

σ4 :=
1

n!

1

Qn2

∑
Π∈Sn

∑
A∈M

FQ
n

∑
B∈M

FQ
n

|Y (Π,A)〉〈Y (Π,A)|R1
⊗|B〉〈B|Q1

⊗

(
pB,0|0〉〈0|Q2 ⊗ |Π,A〉〈Π,A|R2 ⊗ ρ(B, 0, Y (Π,A))

+pB,1|1〉〈1|Q2 ⊗ |Π(C), AΠ(C)〉〈Π(C), AΠ(C)|R2 ⊗ ρ(B, 1, Y (Π,A))
)
.



Notice that we are interested here in the verifier’s view on a ’Yes’ instance, meaning that on challenge
′1′ in register Q2, the answer |Π(C), AΠ(C)〉〈Π(C), AΠ(C)| satisfies

∀(i, j) ∈ Π(C), Yi,j = Ai,j +Bi,j .

meaning that the prover revealed the output bit ’1’ for entry Π(G)i,j . Notice also that for a fixed cycle C,
the mapping Π → Π(C) is a bijection between the set of permutation and the set of cycles.

We show now how to simulate the view of the verifier. The simulator can easily simulate σ0 and σ1 since
he has a copy of ρ and knows V ∗1 . Notice that in σ2, the message from the prover is a uniform random matrix
because of the randomness A. Therefore, we have

σ2 =
1

Qn2

∑
Y ∈M

FQ
n

∑
B∈M

FQ
n

pB |Y 〉〈Y |R1
⊗ |B〉〈B|Q1

⊗ ρ(B)V .

This can be easily created by the simulator by just tensoring the totally mixed state in register R1 to σ1. In
order to construct σ3, the simulator just applies V ∗2 to transform σ2 into σ3 as the cheating verifier would
and gets exactly

σ3 =
1

Qn2

∑
Y ∈M

FQ
n

∑
B∈M

FQ
n

∑
c∈{0,1}

pB,c |Y 〉〈Y |R1
⊗ |c〉〈c|Q2

⊗ |B〉〈B|Q1
⊗ ρ(B, c, Y )V .

Finally, in order to construct σ4, the simulator does the following

– conditioned on c = 0 in registerQ2, the simulator picks a random permutationΠ and puts |Π,A(Π,B, Y )〉〈Π,A(Π,B, Y )|
in register R2 where A(Π,B, Y ) := Y −B ∗Π(G), with ∗ being the entry wise matrix multiplication.

– conditioned on c = 1 in registerQ2, the simulator picks a random cycle C′ and outputs |C′, A′(C′, B, Y )〉〈C′, A′(C′, B, Y )|
such that for all (i, j) ∈ C′, it holds that A′(C′, B, Y )i,j := Yi,j −Bi,j .

The state constructed by the simulator is therefore

1

Qn2

∑
A∈M

FQ
n

∑
B∈M

FQ
n

|Y 〉〈Y |R1 ⊗ |B〉〈B|Q1⊗

(pB,0|0〉〈0|Q2 ⊗
1

n!

∑
Π∈Sn

|Π,A(Π,B, Y )〉〈Π,A(Π,B, Y )|R2 ⊗ ρB,0,Y

+pb,1|1〉〈1|Q2
⊗ 1

(n− 1)!

∑
C′∈Γn

|C′, A′(C′, B, Y )〉〈C′, A′(C′, B, Y )|R2
⊗ ρB,1,Y ).

By simple changes of variables, we can see that the above state is actually exactly equal to σ4. Therefore,
we succeeded in the simulation and we can conclude that our protocol is perfectly zero-knowledge against
quantum adversaries.
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