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Abstract. We present a new strategy for partitioning proofs, and use it
to obtain new tightly secure encryption schemes. Speci�cally, we provide
the following two conceptual contributions:
� A new strategy for tight security reductions that leads to compact
public keys and ciphertexts.

� A relaxed de�nition of non-interactive proof systems for non-linear
(�OR-type�) languages. Our de�nition is strong enough to act as a
central tool in our new strategy to obtain tight security, and is achiev-
able both in pairing-friendly and DCR groups.

We apply these concepts in a generic construction of a tightly secure
public-key encryption scheme. When instantiated in di�erent concrete
settings, we obtain the following:
� A public-key encryption scheme whose chosen-ciphertext security can
be tightly reduced to the DLIN assumption in a pairing-friendly group.
Ciphertexts, public keys, and system parameters contain 6, 24, and
2 group elements, respectively. This improves heavily upon a recent
scheme of Gay et al. (Eurocrypt 2016) in terms of public key size, at
the cost of using a symmetric pairing.

� The �rst public-key encryption scheme that is tightly chosen-cipher-
text secure under the DCR assumption. While the scheme is not very
practical (ciphertexts carry 28 group elements), it enjoys constant-size
parameters, public keys, and ciphertexts.

Keywords: public-key encryption, tight security proofs.

1 Introduction

Tight security. Ideally, the only way to attack a cryptographic scheme S should
be to solve a well-investigated, presumably hard computational problem P (such
as factoring large integers). In fact, most existing constructions of cryptographic
schemes provide such security guarantees, by exhibiting a security reduction. A
reduction shows that any attack that breaks the scheme with some probability
εS implies a problem solver that succeeds with probability εP . Of course, we
would like εP to be as large as possible, depending on εS .

Speci�cally, we could call the quotient ` := εS/εP the security loss of a
reduction.1 A small value of ` is desirable, since it indicates a tight coupling of
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1Technically, we also need to take into account the complexity of the attacks on S

and P . However, for this exposition, let us simply assume that the complexity of these
attacks is comparable.



the security of the scheme to the hardness of the computational problem. It is
also desirable that ` does not depend, e.g., on the number of considered instances
of the scheme. Namely, when ` is linear in the number of instances, the scheme's
security guarantees might vanish quickly in large settings. This can be a problem
when being forced to choose concrete key sizes for schemes in settings whose size
is not even known at setup time.

Hence, let us call a security reduction tight if its security loss ` only depends
on a global security parameter (but not, e.g., on the number of considered in-
stances, or the number of usages). Most existing cryptographic reductions are
not tight. Speci�cally, it appears to be a nontrivial problem to construct tightly
secure public-key primitives, such as public-key encryption, or digital signature
schemes. (A high-level explanation of the arising di�culties can be found in [18].)

Existing work on tight security. The importance of a tight security re-
duction was already pointed out in 2000 by Bellare, Boldyreva, and Micali [4].
However, the �rst chosen-ciphertext secure (CCA secure) public-key encryption
(PKE) scheme with a tight security reduction from a standard assumption was
only proposed in 2012, by Hofheinz and Jager [18]. Their scheme is rather ine�-
cient, however, with several hundred group elements in the ciphertext. A number
of more e�cient schemes were then proposed in [2, 7, 5, 26, 21, 27, 3, 14, 17,
12]. In particular, Chen and Wee [7] introduced a very useful partitioning strat-
egy to conduct tight security reductions. Their strategy leads to very compact
ciphertexts (of as few as 3 group elements [12], plus the message size), but also
to large public keys. We will describe their strategy in more detail later, when
explaining our techniques. Conversely, Hofheinz [17] presented a di�erent parti-
tioning strategy that leads to compact public keys, but larger ciphertexts (of 60
group elements). We give an overview over existing tightly secure PKE schemes
(and some state-of-the-art schemes that are not known to be tightly secure for
reference) in Fig. 1.

Our contribution. In this work, we propose a new strategy to obtain tightly se-
cure encryption schemes. This strategy leads to new tightly secure PKE schemes
with simultaneously compact public keys and compact ciphertexts (cf. Fig. 1).
In particular, our technique yields a practical pairing-based PKE scheme that
compares well even with the recent tightly secure PKE scheme of Gay, Hofheinz,
Kiltz, and Wee [12]. However, we should also note that our scheme relies on a
symmetric pairing (unlike the scheme of [12], which can be instantiated even
in DDH groups). Hence, the price we pay for a signi�cantly smaller public key
is that the scheme of [12] is clearly superior to ours in terms of computational
e�ciency. Besides, the use of a symmetric pairing might entail larger group sizes
for comparable security.

Our technique also yields the �rst PKE scheme whose security can be tightly
reduced to the Decisional Composite Residuosity (DCR [29]) assumption in
groups of the form Z∗N2 for RSA numbers N = PQ. To obtain the DCR in-
stance of our scheme, we also introduce a new type of �OR-proofs� (i.e., a proof
system to show disjunctions of simpler statements) in the DCR setting. We give
more details on these proofs below.
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Scheme |pk | |C| − |M | sec. loss assumption pairing

CS98 [8] 3 3 O(q) DDH no
KD04, HK07 [25, 19] k + 1 k + 1 O(q) k-LIN (k ≥ 1) no
HJ12 [18] O(1) O(λ) O(1) DLIN yes
ADKNO13 [2] O(1) O(λ) O(1) DLIN yes
HKS15 [21] O(λ) 2 O(λ) subgroup yes
LPJY15 [26, 27] O(λ) 47 O(λ) DLIN yes
AHY15 [3] O(λ) 12 O(λ) DLIN yes
GCDCT16 [14] O(λ) 6k + 4 O(λ) k-LIN (k ≥ 1) yes
H16 [17] 2 60 O(λ) SXDH yes
GHKW16 [12] 2kλ 3k O(λ) k-LIN (k ≥ 1) no

This work 2k(k + 5) k + 4 O(λ) k-LIN (k ≥ 2) yes

CS02 [9] 9 2 O(q) DCR �
CS03 [6] 3 2 O(q) DCR �

This work 20 28 O(λ) DCR �

Fig. 1. Comparison of CCA-secure public-key encryption schemes. λ is the security
parameter, and q is the number of challenge ciphertexts. The sizes |pk | and |C|−|M | of
public key (excluding public parameters) and ciphertext overhead are counted in group
elements. For the ciphertext overhead |C| − |M |, we do not count smaller components
(like MACs) inherited from the used symmetric encryption scheme.

We remark that our main scheme is completely generic, and can be instan-
tiated both with prime-order groups, and in the DCR setting. Only some of
our building blocks (such as the �OR-proofs� mentioned above) require setting-
dependent instantiations, which we give both in a prime-order, and in the DCR
setting.

Hence, we view our main contribution as conceptual. Indeed, in terms of
computational e�ciency, our encryption schemes do not outperform existing
(non-tightly secure) schemes, even when taking into account our tight security
reduction in the choice of key sizes. Still, we believe that specializations of our
technique can lead to schemes whose e�ciency is at least on par with that of
existing non-tightly secure schemes.

1.1 Technical overview

Technical goal. To explain our approach, consider the following security game
with an adversary A. First, A obtains a public key, and then may ask for many
encryptions of arbitrary messages. Depending on a single bit b chosen by the
security game, A then either always gets an encryption of the desired message,
or an encryption of a random message. Also, A has access to a decryption oracle,
and is �nally supposed to guess b (i.e., whether the encrypted ciphertexts contain
the desired, or random messages). If no e�cient A can predict b non-negligibly
better than guessing, the used PKE scheme is considered CCA secure in the
multi-challenge setting. Note that regular (i.e., single-challenge) CCA security
implies CCA security in the multi-challenge setting using a hybrid argument
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(over the challenge encryptions A gets), but this hybrid argument incurs a large
security loss. Hence, the di�culty in proving multi-challenge security is to ran-
domize many challenge ciphertexts in as few steps as possible.

General paradigm. All of the mentioned works on tightly secure PKE fol-
low a general paradigm. Namely, in these schemes, each ciphertext C = (c, π)
carries some kind of �consistency proof� π that the plaintext message encrypted
in c is intact. What this concretely means varies in di�erent schemes. For in-
stance, in some works [18, 2, 26, 27, 17], π is explicit and proves knowledge of
the plaintext or of a valid signature on c. In other works [7, 5, 21, 3, 14, 12], π
is implicit, and proves knowledge of the plaintext or of a special authentication
tag for that ciphertext. All of these works, however, use π to enable the secu-
rity reduction to get leverage over the adversary A, as follows. For instance, in
the signature-based works above, the security reduction will be able to produce
proofs π for ciphertexts with unknown plaintexts (by proving knowledge of a sig-
nature), while an adversary can only construct proofs from which the plaintext
can be extracted. This enables the security reduction to implement a decryption
oracle, while being able to randomize plaintexts encrypted for A.
Chen and Wee's approach. Chen and Wee [7] implement the above approach
with an economic partitioning strategy (that in turn draws from an argument of
Naor and Reingold [28]). Speci�cally, in their scheme, π implicitly proves knowl-
edge of the plaintext or of a special tag T . Initially, T is constant, and committed
to in the public key. In their security analysis, Chen and Wee introduce depen-
dencies of T on the corresponding c. Speci�cally, in the i-th step of their analysis,
they set T = F(τ..i), where F is a random function, and τ..i is the i-bit pre�x
of the hash τ of c. After a small number of such steps, T is a random value
that is individual to each ciphertext. At this point, T is unpredictable for A on
fresh ciphertexts, and hence A's decryption queries must prove knowledge of the
respective plaintext. At the same time, the security game (which de�nes F) can
also prepare valid ciphertexts with unknown messages, and thus randomize all
challenge ciphertexts at once.

We call the approach of Chen and Wee a partitioning strategy, since each
hybrid step above proceeds as follows:
1. Partition the ciphertext space into two halves (in this case, according to the
i-th bit of τ).

2. Change the de�nition of the �authentication tag� T for all ciphertexts from
one half. (Keep the authentication tag for ciphertexts from the other half
unchanged.)

In particular, the second step introduces an additional dependency of T on the
bit τi. Most existing works use a partitioning strategy based on the individual
bits of (the hash of) the ciphertext. An exception is the recent work [17], which
implements a similar strategy based on an algebraic predicate of the ciphertext.
This latter approach leads to shorter public keys, but requires relatively complex
proofs π, and thus not only entails larger ciphertexts, but also requires a pairing.

Our approach. Here, we also follow the generic paradigm sketched above, but
re�ne the partitioning strategy of Chen and Wee. Namely, instead of partitioning
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the ciphertext space statically (e.g., through the hash of c), we add a special (en-
crypted) bit to π that determines the half in which the corresponding ciphertext
is supposed to be. In contrast to previous works, that bit is not always known,
not even to the security reduction itself. This change has several consequences:

� The bit that determines the partitioning in each ciphertext is easily accessible
with a suitable decryption key, and so leads to a simple consistency proof π
(and thus small ciphertexts). (This is in contrast to the scheme from [17],
which proves complex statements in π.)

� The partitioning bit can by changed dynamically in challenge ciphertexts in
di�erent steps of the proof. Hence, a single �bit slot� can be used to partition
the ciphertext space in many di�erent ways during the proof. Eventually, this
leads to compact public keys, since only few statements (about this single
bit slot) need to be proven. (This is in contrast to partitioning schemes in
which one proof for each bit position is generated.)

� However, since also the adversary can dynamically determine the partitioning
of his ciphertexts from decryption queries, the security analysis becomes more
complicated. Speci�cally, the reduction must cope with a situation in which
an adversary submits a ciphertext for which the partitioning bit is not known.

In particular the last consequence will require additional measures in our security
analysis. Namely, we will in some cases need to accept several authentication tags
T in A's decryption queries, simply because we do not know in which half of
the partitioning the corresponding ciphertext is. In fact, we will not be able
to force A to use �the right� authentication tag in his decryption queries. We
will only be able to force A to use an authentication tag T from a previous
challenge ciphertext (since all other tags are unpredictable to A). Hence, in order
to eventually exclude that A produces ciphertexts without a proof of knowledge
of the corresponding plaintext, we will need to work a bit more.

At this point, our main conceptual idea will be to introduce a dependency
of T on a suitable value τ that is individual to each ciphertext. (While the
construction in our scheme is slightly more complicated, one can think of τ as
being simply the hash of the ciphertext.) Hence, in the �rst part of our analysis,
we force A to reuse a tag T from a previous challenge ciphertext, while we tie
this T to a ciphertext-unique value τ in the second part. When this is done,
A's proofs π from decryption queries must prove knowledge of the encrypted
plaintext message, or break the collision-resistance of the used hash function.
Since the hash function will be assumed to be collision-resistant, A must prove
knowledge of the respective plaintext in each decryption query. Hence, we can
proceed with a proof of CCA security as in previous schemes.

Building blocks. To implement our strategy, we require a variety of building
blocks. Speci�cally, like previous works, we require re-randomizable (chosen-
plaintext-secure) encryption, and universal hash proof systems for linear lan-
guages. We also require tightly secure one-time signatures, for which we give the
�rst construction in the DCR setting. However, apart from our new partitioning
strategy, the main technical innovation from our work is the construction of a
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non-interactive proof system for disjunctions (of simpler statements) in the DCR
setting.

Namely, our proof system allows to prove that, given two ciphertexts c1, c2,
at least one of them decrypts to zero. (In fact, the syntactics are a little more
complicated, and in particular, honest proofs can only be formulated when the
�rst ciphertext decrypts to zero. However, proofs that one of the two ciphertexts
decrypts to zero can always be simulated using a special trapdoor, and we have
soundness even in the presence of such simulated proofs.)

Such a proof system for disjunctions already exists in pairing-friendly groups
(see [1]). A construction without pairings is far from obvious, though. Intuitively,
the reason is that the language of pairs (c1, c2) as above (with at least one ci that
encrypts zero) is not closed under addition (of the respective plaintexts). Hence,
disjunctions as above do not correspond to linear languages, and most common
constructions (e.g., for universal hash proof systems [9, 23]) do not apply. Our
DCR-based construction thus is not linear, and relies on new techniques.

Concretely, our proof system can be viewed as a randomized variant of a
universal hash proof system. Namely, depending on how many of the ci do not
encrypt zero, a valid proof reveals zero, one, or two linear equations about the
secret veri�cation key of our system. However, proofs in our system are ran-
domized, and the revealed equations are also blinded with precisely one random
value. Hence, up to one equation about the secret key is completely blinded.
But as soon as both ci encrypt nonzero values, a valid proof contains nontrivial
information about the secret key. Thus, such proofs cannot be produced by an
adversary who only sees proofs for valid statements (with at least one ci that
encrypts zero). Soundness follows as with regular universal hash proof systems.

Roadmap and additional content in full version

In Section 2, we recall some basic notation and de�nitions. In Section 3, we
formulate an algebraic setting that allows to express both our DLIN-based and
DCR-based schemes in a generic way. In Section 4, we recall some existing and
construct some new necessary tightly secure building blocks. In Section 5, we
introduce our notion of �benign� proof systems, and our DCR-based benign proof
system for �OR�-like languages. Finally, in Section 6, we describe our new generic
key encapsulation scheme.

Unfortunately, our work requires several rather technical concepts, and we
need to outsource several proofs and additional discussion into the full ver-
sion [16] of this paper. In particular, in [16], we discuss the security of our
scheme in the multi-user setting, analyze its performance, and suggest opti-
mizations. In the full version, we also present a new DCR-based tightly secure
one-time signature scheme (which constitutes a technical building block for our
main encryption scheme). Moreover, we present details for �more conventional�
benign proof systems, and full details of the proof for our encryption scheme.

Acknowledgements. I would like to thank Antonio Faonio for pointing out
a problem in the formulation of De�nition 8, and Dingding Jia and Ryo Nishi-
maki for a careful proofreading. In particular, Dingding spotted a mistake in

6



the description of honest key derivation. I am also indebted to Lin Lyu, who
found a �aw in an earlier version of the DCR-based one-time signature scheme
OTSDCR, a gap in the proof of a technical lemma from the main proof, and
many smaller mistakes in an earlier version in a very thorough proofreading.
Finally, I would like to thank the reviewers for helpful comments concerning the
presentation.

2 Preliminaries

Notation and conventions. For a group G of order |G|, a group element g ∈
G, and a vector u = (u1, . . . , un)

> ∈ Zn|G|, we write g
u := (gu1 , . . . , gun)> ∈ Gn.

Similarly, we de�ne gM ∈ Gn×m for matrices M ∈ Zn×m|G| . For integers x,N ∈ Z
with N > 0, we de�ne [x]N := x mod N , and [x]N to be the unique integer with
x = [x]N +N · [x]N . Furthermore, we de�ne the �absolute modular value� |x|N
through

|x|N :=

{
[x]N if [x]N < N/2

[−x]N if [x]N ≥ N/2,

such that 0 ≤ |x|N ≤ N/2 in any case. Finally, we let
(
x
N

)
denote the Jacobi

symbol of x modulo N . For a bit b ∈ {0, 1}, we denote with b = 1 − b the
complement of b. For a bitstring x = (x1, . . . , xn) ∈ {0, 1}n, we denote with
x..i = (x1, . . . , xi) the i-bit pre�x of x, and with xi.. = (xi, . . . , xn) the (n−i+1)-
bit post�x of x. For random variables X,Y ∈ {0, 1}∗, we let SD

(
X ; Y

)
denote

their statistical distance, and H∞(X) the min-entropy of X.

Global public parameters. To simplify notation, we assume that all algo-
rithms in this work (including adversaries) implicitly receive public parameters
pp as input. In our case, these public parameters will contain the description of
algebraic groups and related algorithms, and a collision-resistant and a universal
hash function. We give more details on these parameters when we discuss the
algebraic setting, collision-resistant hashing, and our key extractor (which uses
the universal hash function).

Collision-resistant hashing. We require collision-resistant hashing:

De�nition 1 (Collision-resistant hashing). A hash function generator is
a PPT algorithm CRHF that, on input 1λ, outputs (the description of) an
e�ciently computable function H : {0, 1}∗ → {0, 1}`H . We say that CRHF
outputs collision-resistant hash functions H (or, slightly abusing notation, that
CRHF is collision-resistant), if

AdvcrhfCRHF,A(λ) = Pr
[
x 6= x′ ∧ H(x) = H(x′)

∣∣ (x, x′)← A(1λ, H)
]

(where H ← CRHF(1λ)) is negligible for every PPT adversary A.

We assume that the public parameters pp contain a function H sampled with a
hash function generator CRHF.
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Universal hashing, and randomness extraction. We also assume a family
UHF = UHFλ of universal hash functions h : {0, 1}∗ → {0, 1}λ. Since universal
hash functions are good randomness extractors, we in particular have that for
any random variable X with min-entropy H∞(X) ≥ 3λ,

SD
(
(h, h(X)) ; (h,R)

)
≤ 1/2λ,

where h ∈ UHFλ and R ∈ {0, 1}λ are uniformly chosen.

Key encapsulation mechanisms, and multi-challenge security. A key
encapsulation mechanism (KEM) KEM consists of PPT algorithms (Gen,Enc,
Dec). Key generation Gen(1λ) outputs a public key pk and a secret key sk .
Encapsulation Enc(pk) takes a public key pk , and outputs a ciphertext c, and a
session key K. Decapsulation Dec(sk , c) takes a secret key sk , and a ciphertext
c, and outputs a session key K. For correctness, we require that for all (pk , sk)
in the range of Gen(1λ), and all (c,K) in the range of Enc(pk), we always have
Dec(sk , c) = K. Security is de�ned as follows:

De�nition 2 (Multi-challenge ciphertext indistinguishability). Given a
key encapsulation scheme KEM, consider the following game between a chal-
lenger C and an adversary A:
1. C samples a keypair through (pk , sk)← Gen(1λ), and chooses a uniform bit

b← {0, 1}.
2. A is invoked on input (1λ, pk), and with (many-time) access to the following

oracles:
� Oenc() runs (c,K) ← Enc(pk), sets K0 = K, samples a fresh K1 ←
{0, 1}λ, and returns (c,Kb).

� Odec(c) returns ⊥ if c is a previous output of Oenc. Otherwise, Odec re-
turns K ← Dec(sk , c).

3. Finally, A outputs a bit b′, and C outputs 1 i� b = b′.
Let

Advmcca
KEM,A(λ) = Pr [C outputs 1]− 1/2.

We say that KEM has indistinguishable ciphertexts under chosen-ciphertext at-
tacks in the multi-challenge setting (short: is IND-MCCA secure) if and only if
Advmcca

KEM,A(λ) is negligible for all PPT A.

Secure KEM schemes imply secure PKE schemes [8], and the corresponding
security reduction is tight also in the multi-challenge setting. Hence, like [12],
we will focus on obtaining an IND-MCCA secure KEM scheme in the following.

3 The generic algebraic setting

3.1 The generic setting

Groups and public parameters In the following, let G be a group of order
|G|. We require that |G| is square-free, and only has prime factors larger than
2λ. Furthermore, we assume two subgroups G1,G2 ⊆ G of order |G1| and |G2|,
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respectively, and such that G1 · G2 = {h1 · h2 | h1 ∈ G1, h2 ∈ G2} = G. Note
that we neither require nor exclude that |G| (or |G1| or |G2|) is prime, or that
G1 ∩G2 is trivial.

We assume that the global public parameters pp include

� (descriptions of) G, G1, and G2,
� �xed generators g of G, g1 of G1 and g2 of G2,
� the group order |G2| of G2,
� a positive integer `B, and a matrix gB1 , for B ∈ Z`B×`B|G1| .2

We stress that these parameters may depend on λ, and note that |G|, |G1|, and
B do not need to be public. However, we do require that there are e�cient
algorithms for the following tasks:

� performing the group operation in G,
� sampling uniformly distributed Z|G1|-elements,
� recognizing G (i.e., deciding group membership in G).
Since we assume |G2| to be public, we also have algorithms for deciding mem-
bership in G2, and for uniformly sampling from Z|G2| and G2, and thus also from
Z|G| and G.

Computational assumptions In our generic setting, we will use an assump-
tion that can be seen as a combination of the Extended Decisional Di�e-Hellman
assumption from [15], and the Matrix Decisional Di�e-Hellman assumption from
[10].

De�nition 3 (Generalized DDH, combining [15, 10]). We say that the
Generalized Decisional Di�e-Hellman (GDDH) assumption holds in our setting
if the following advantage is negligible for every PPT adversary A, and for uni-
formly chosen ω, r ∈ Z`B|G1|:

AdvgddhG,A (λ) =
1

2

(
Pr
[
A(1λ, gω

>B
1 , gBr

1 , gω
>Br

1 ) = 1
]

− Pr
[
A(1λ, gω

>B
1 , gBr

1 , gω
>Br

1 g2) = 1
] )
.

Besides GDDH, we will also assume that it is infeasible to �nd a nontrivial
element gu2 ∈ G2 that does not already generate G2:

De�nition 4 (G2-factoring assumption). We say that the factoring G2 is
hard in our setting if the following advantage is negligible for every PPT adver-
sary A whose output (gu1

2 , . . . , g
uq
2 ) ∈ Gq2 is always a vector of G2-elements:

AdvfactG2,A(λ) = Pr
[
∃i : gcd(|G2|, ui) /∈ {1, |G2|}

∣∣ (gu1
2 , . . . , g

uq
2 )← A(1λ)

]
.

2How `B and B are chosen depends in the concrete instance. In the prime-order
setting, `B and B determine what concrete computational problem is reduced to. Con-
versely, in the DCR setting, `B = 1, and B = 1 is trivial.
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Generalized ElGamal encryption To simplify our notation, and to structure
our presentation, we consider the following generalized variant of ElGamal:

Keypairs. Keypairs (epk , esk) are of the form (epk , esk) = (gω
>B

1 ,ω) for ω ∈
Z`B|G1|.

Encryption. To encrypt u ∈ Z|G2| with random coins r ∈ Z`B|G1|, compute

Eepk (u; r) = c = (c0, c1) = (gBr
1 , gω

>Br
1 gu2 ) ∈ G`B ×G.

If we omit r and only write Eepk (u), then r is implicitly chosen uniformly

from Z`B|G1|.

Decryption. A ciphertext c = (c0, c1) = (gγ , gδ) is decrypted to

Desk (c) = gδ−ω
>γ ∈ G.

Note that we encrypt exponents, while decryption only retrieves the respective
group element.

It will also be useful to generalize this encryption to vectors of plaintexts
with reused random coins: for pk = (epk1, . . . , epkn) and sk = (esk1, . . . , eskn)

with (epk i, esk i) = (g
ω>i B
1 ,ωi), and u = (u1, . . . , un) ∈ Zn|G2|, let

Epk(u; r) = (c0, (c1, . . . , cn))

= (gBr
1 , (g

ω>1 Br
1 gu1

2 , . . . , g
ω>nBr
1 gun2 )) ∈ G`B ×Gn

Dsk(c) = (gδ1−ω
>
1 γ , . . . , gδn−ω

>
n γ) ∈ Gn for c = (gγ , (gδ1 , . . . , gδn)).

When no confusion is possible, we may write (c0, c1, . . . , cn) instead of the
more cumbersome (c0, (c1, . . . , cn)). Sometimes, it will also be convenient to

write Ω = (ω1|| . . . ||ωn) ∈ Z`B×n|G1| , such that pk = gΩ
>B

1 and

Epk(u; r) = (gBr
1 , gΩ

>Br
1 gu2 )

Dsk(c) = gγ−Ω
>δ for c = (gγ , gδ) ∈ G`B ×Gn.

While this variant of ElGamal encryption will mainly be a notational tool,
it is also a very simple tightly (chosen-plaintext) secure encryption scheme:

De�nition 5 (IND-MCCPA security game for (E,D)). Consider the fol-
lowing game (which we call the IND-MCCPA security game, for �indistinguisha-
bility against multiple (partial) corruptions and chosen-plaintext attacks�) be-
tween a challenger C and an adversary A:
1. A(1λ) picks n ∈ N, and an index i∗ ∈ {1, . . . , n}.
2. C samples b ∈ {0, 1}, and ω1, . . . ,ωn ∈ Z`B|G1|, and sets (epk i, esk i) = (g

ω>i B
1 ,

ωi), and pk = (epk1, . . . , epkn) and sk = (esk1, . . . , eskn).
3. Next, A is run on input (epk i)

`B
i=1, (esk i)i 6=i∗ , and with (many-time) access

to the following oracle:
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� Oenc(u
(0),u(1)), for u(j) = (u

(j)
1 , . . . , u

(j)
n ) ∈ Zn|G2| (j ∈ {0, 1}), �rst checks

that u
(0)
i = u

(1)
i for all i 6= i∗, and returns ⊥ if not. Then, Oenc computes

and returns c = Epk(u
(b)).

4. If A terminates with output b′, then C outputs 1 i� b = b′.
Let

Advmccpa
G,A (λ) = Pr [C outputs 1]− 1/2.

Lemma 1 (Tight security of (E,D)). For every A, there exists an adversary
B (of essentially the same complexity as the IND-MCCPA game with A) for
which

AdvgddhG,B (λ) = Advmccpa
G,A (λ). (1)

Proof. B gets epk∗ = gω
∗>B

1 and c∗ = (c∗0, c
∗
1) = (gBr∗

1 , gω
∗>Br∗

1 gb2) (for unknown
b ∈ {0, 1}) as input. Now B �rst runs A to obtain n and i∗. Then, B generates
public and secret keys as follows:

� For i 6= i∗, B samples ωi ∈ Z`B|G1|, and sets (epk i, esk i) = (gω
>
i B,ωi).

� B sets epk i∗ = gω
∗>B

1 , and thus implicitly de�nes esk i∗ = ωi∗ = ω
∗.

Then, B runs A, on input pk = (epk i)i and (esk i)i 6=i∗ , and implements oracle
Oenc as follows:
� Upon an Oenc(u

(0),u(1)) query with u
(0)
i = u

(1)
i for i 6= i∗, B �rst samples a

fresh r′ ∈ Z`B|G1|, implicitly de�nes r = (u
(1)
i∗ − u

(0)
i∗ )r

∗ + r′, and sets up

c0 = g
(u

(1)

i∗ −u
(0)

i∗ )Br∗+Br′

1 = g
B((u

(1)

i∗ −u
(0)

i∗ )r∗+r′)

1 = gBr
1

ci = g
(u

(1)

i∗ −u
(0)

i∗ )ω>i Br∗

1 g
ω>i Br′

1 g
u
(0)
i

2 = g
ω>i Br
1 g

u
(0)
i

2 for i 6= i∗

ci = g
(u

(1)

i∗ −u
(0)

i∗ )ω∗>Br∗+ω∗>Br′

1 g
(u

(1)

i∗ −u
(0)

i∗ )·b+u(0)

i∗
2 = g

ω>i∗Br
1 g

u
(b)

i∗
2

For the resulting c = (c0, c1, . . . , cn), we have that c = Epk(u
(b); r) for

(independently and uniformly distributed) random coins r = (u
(1)
i∗ −u

(0)
i∗ )r

∗+
r′. Hence, Oenc returns c.

Finally, B relays any guess b′ from A as its own output.
Observe that B perfectly simulates the game from Lemma 1 (with the same

challenge bit b). We obtain (1).

3.2 The prime-order setting

The groups. We consider two concrete instantiations of our generic setting.
The �rst is a prime-order setting, in which G = G1 = G2 has prime order
|G| = |G1| = |G2|. In these cases, we assume that |G| > 2λ is public, and hence
most syntactic requirements from Section 3.1 are trivially met. However, we will
additionally need to assume that membership in G is e�ciently decidable. We
have numerous candidates for such groups (including, e.g., subgroups of Z∗p, or
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elliptic curves). In such groups, plausible assumptions include the Decisional
Di�e-Hellman (DDH) assumption, the k-Linear (k-LIN) assumption [30, 19], or
a whole class of assumptions called Matrix-DDH assumptions [10].

Hardness of the GDDH and factoring problems. All of the mentioned
assumptions imply our GDDH assumption for suitable `B and B. For instance,
GDDH with `B = 1 and uniform B is nothing but a reformulation of the DDH
assumption. More generally, GDDH with uniform B is actually the so-called
U`B -MDDH assumption. In particular, this means that the k-LIN assumption
implies GDDH with `B = k and uniform B (see [10]). Additionally, we note that
the G2-factoring assumption we make is trivially satis�ed in prime-order settings
(since AdvfactG2,A(λ) = 0 for all A if |G2| = |G| is prime).

Pairing-friendly groups. In Section 5.4, we also exhibit a building block in the
prime-order setting that uses a symmetric pairing G × G → GT (for a suitable
target group GT ). Also for such pairing-friendly groups, we have a variety of
candidates in case `B ≥ 2. (Unfortunately, for `B = 1, a symmetric pairing can
be used to trivially break the GDDH assumption.)

3.3 The DCR setting

The public parameters. The second setting we consider is compatible with
the Decisional Composite Residuosity (DCR) assumption [29]. In this case, the
global public parameters include an integer N = PQ, for distinct safe primes
P,Q (i.e., such that P = 2P ′+1 and Q = 2Q′+1 for prime P ′, Q′ > 2λ).3 We also
assume that P,Q, P ′, Q′ are pairwise di�erent, and that gcd(P +Q− 1, N) = 1
(the latter of which ensures that N is invertible modulo ϕ(N) = (P−1)(Q−1) =
4P ′Q′).

We implicitly set `B = 1, and the matrix B ∈ Z|G1|×|G1| from Section 3.1 to
be trivial (i.e., the identity matrix). Hence, neither `B nor gB1 will have to be
included in the parameters. However, we also include a generator g1 of G1 in the
public parameters, chosen as described below.

The groups. We now de�ne the groups G, G1, and G2. Since G should only
have large prime factors, we should avoid setting G = Z∗N2 . Instead, we could set
G1 and G2 to be the subgroups of order ϕ(N)/4 and N , respectively, and then
G = G1 · G2. However, in this case, membership in G would not be e�ciently
decidable in an obvious way. So here, we de�ne our groups in a slightly more
complex way, following the approach of signed quadratic residues [13, 11, 20].

Equipped with the notation |x|N and
(
x
N

)
from Section 2, we set

G1 =
{
|xN |N2

∣∣ x ∈ Z∗N2 ,

(
xN

N

)
= 1

}
⊆ Z∗N2

G2 =
{
|(1 +N)e|N2

∣∣ e ∈ ZN
}
⊆ Z∗N2

3We note that our DCR-based OR-proofs from Section 5.4 require P,Q to be some-
what larger, although still compatible with practical parameter choices.
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G =
{
|y|N2

∣∣ y ∈ Z∗N2 ,
( y
N

)
= 1

}
.

These sets are groups, when equipped with the group operation a · b = |a · b|N2 .

Indeed, since P,Q = 3 mod 4, we have
(−1
N

)
= 1, and thus

(
|y1y2|N2

N

)
=
(
y1y2
N

)
=

1 for
(
y1
N

)
=
(
y2
N

)
= 1. Hence, G1 and G are closed under group operation. It is

then straightforward to check that G1, G2 and G are groups.
A canonical generator g2 of G2 is |1 + N |N2 , and a generator g1 of G1 (to

be included in the public parameters) can be randomly chosen as |xN |N2 for a
uniform x ∈ ZN2 .

Properties of the groups. We claim that |G1| = ϕ(N)/4. Indeed, we have
that ∣∣{ |xN |N ∣∣ x ∈ Z∗N2

}∣∣ =
∣∣{ |xN |N2

∣∣ x ∈ Z∗N2

}∣∣ = ϕ(N)/2.

In other words, |xN |N uniquely determines |xN |N2 . Furthermore, since N is
invertible modulo ϕ(N), the map f : Z∗N2 → Z∗N with f(x) = xN mod N is

surjective. Hence, the set of all |xN |N with
(
xN

N

)
= 1 has cardinality ϕ(N)/4

(cf. [20, Lemma 1]). Using that |xN |N �xes |xN |N2 , we obtain |G1| = ϕ(N)/4.
Moreover, for e ∈ ZN , we can write |(1 +N)e|N2 = |1 + eN |N2 = e/|e|+ |e|NN ,
and thus |G2| = N . Finally, we have G = G1 · G2, since every |y|N2 ∈ G can

be written as |y|N2 = |xN (1 + N)e|N2 with
(
xN

N

)
= 1. Hence, since |G1| =

ϕ(N)/4 = P ′Q′ and |G2| = N = PQ are coprime, |G| = |G1| · |G2| = N ·ϕ(N)/4
is square-free.

We also note that the discrete logarithm problem is easy in G2. Indeed, for
gu2 ∈ G2, we have

gu2 = |(1 +N)e|N2 = |1 + eN |N2 =

{
[e]NN + 1 if [e]N < N/2

[−e]NN − 1 if [e]N > N/2.

A simple case distinction thus allows to compute [e]N .

Membership testing and sampling exponents. It is left to note that mem-
bership in G can be e�ciently decided (by checking that y ∈ ZN2 is invertible,
lies between −N2/2 and N2/2, and satis�es

(
y
N

)
= 1). However, since |G1| will

not be public, exponents s ∈ Z|G1| can only be sampled approximatively, e.g., by

uniformly sampling s ∈ ZbN/4c. This incurs a statistical defect of O(1/2λ) upon
each such sampling. In the following, we will silently ignore these statistical de-
fects (and assume that there is an algorithm that uniformly samples s ∈ Zϕ(N))
in our generic constructions for simplicity and ease of presentation. However, we
note that the concrete bound (8) also holds for such an approximative sampling
in the DCR setting.

Hardness of the GDDH and factoring problems. We claim that in the
setting described above, the Decisional Composite Residuosity (DCR) assump-
tion [29] implies the GDDH assumption. This connection has already been es-
tablished in [15, Theorem 2] for a slight variant of the groups G, G1, G2 above.
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(In their setting, G1 consists of elements xN ∈ ZN2 with
(
xN

N

)
= 1, instead of

elements |xN |N2 with
(
xN

N

)
= 1.) In fact, their proof applies also to our setting,

and we obtain that the DCR assumption implies the GDDH assumption with
` = 1 and trivial B = 1 in G (as in De�nition 3).

Furthermore, we note that the DCR assumption also implies the G2-factoring
assumption (De�nition 4). We sketch how any G2-factoring adversary A can be
transformed into a DCR adversary B. First, B runs A, and obtains elements
gu1
2 , . . . , g

uq
2 . Then, B uses that the discrete logarithm problem is easy in G2, and

retrieves the corresponding u1, . . . , uq ∈ Z|G2|. Now if gcd(|G2|, ui) /∈ {1, |G2|}
for some ui, then gcd(N, ui) ∈ {P,Q} directly allows to factor N . Hence, if
A succeeds, then B can factor N , and solve its own DCR challenge (e.g., by
computing the order of its input).

4 Tightly secure building blocks

In this section, we describe two building blocks for our main KEM construc-
tion. The �rst, tightly secure one-time signature schemes, is fairly standard, but
requires a new instantiation in the DCR setting to achieve tight security. The
second is, key extractors, is new, but similar building blocks have been been used
at least in the prime-order setting implicitly in previous works on tight security
(e.g., [12]).

4.1 One-time signature schemes

De�nition 6 (Digital signature scheme). A digital signature schemeOTS =
(SGen,SSig,SVer) consists of the following PPT algorithms:

� SGen(1λ) outputs a keypair (ovk , osk). We call ovk and osk the veri�cation,
resp. signing key.

� SSig(osk ,M), for a message M ∈ {0, 1}∗, outputs a signature σ.
� SVer(ovk ,M, σ), outputs either 0 or 1.

We require correctness in the sense that for all (ovk , osk) that lie in the range of
SGen(1λ), all M ∈ {0, 1}∗, and all σ in the range of SSig(osk ,M), we always
have SVer(ovk ,M, σ) = 1.

We only require one-time security (and call a signature scheme secure in this
sense also a one-time signature scheme):

De�nition 7 (EUF-MOTCMA security). Let OTS be a digital signature
scheme as in De�nition 6, and consider the following game between a challenger
C and an adversary A:
1. C runs A on input 1λ, and with (many-time) oracle access to the following

oracles:
� Ogen() samples a fresh keypair (ovk , osk)← SGen(), and returns ovk .
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� Osig(ovk ,M) �rst checks if ovk has been generated by Ogen, and returns
⊥ if not. Next, Osig checks if there has been a previous Osig(ovk , ·) query
(i.e., an Osig query with the same ovk), and returns ⊥ if so. Let osk
be the corresponding secret key generated alongside ovk . (If ovk has been
generated multiple times by Ogen, take the �rst such osk .) Osig returns
σ ← SSig(osk ,M).

2. If A returns (ovk∗,M∗, σ∗), such that SVer(ovk∗,M∗, σ∗) = 1, and ovk∗

has been returned by Ogen, but σ
∗ has not been returned by Osig(ovk

∗,M∗),
then C returns 1. Otherwise, C returns 0.

Let AdvotsOTS,A(λ) be the probability that C �nally outputs 1 in the above game. We
say that OTS is strongly existentially unforgeable under many one-time chosen-
message attacks (EUF-MOTCMA secure) i� for every PPT A, the function
AdvotsOTS,A(λ) is negligible.

We remark, however, that our security notion is �strong�, in the sense that a
forger is already successful when he manages to generate a new signature for an
already signed message.

A construction in the prime-order setting In case G = G1 = G2 with |G|
prime and public, [18] already give a simple construction of a digital signature
scheme that achieves EUF-MOTCMA security under the discrete logarithm as-
sumption. Most importantly for our case, their security reduction is tight (i.e.,
only loses a constant factor). We refer to their paper for details.

A construction in the DCR setting In the DCR setting (as in Section 3.3),
there exist simple and e�cient EUF-MOTCMA secure signature schemes from
the factoring [24] or RSA assumptions [22]. However, these schemes are not
known to be tightly secure.

Hence, in the full version [16], we construct a new digital signature scheme
whose EUF-MOTCMA security can be tightly reduced to the GDDH assumption
in the DCR setting.

4.2 Key extractors

Intuition. Intuitively, a key extractor derives a pseudorandom key K from a
given encryption c = E(0; r) of 0. This K can be derived either publicly, using a
public extraction key xpk and the witness r, or secretly, using a secret extraction
key xsk and only the ciphertext c. We desire security in the sense keys derived
secretly (i.e., using xsk) from random ciphertexts c = E(R; r) for random R
cannot be distinguished from truly random bitstrings K. This should hold even
for many such challenges, and in the face of oracle access to xsk on �consistent�
ciphertexts c = E(0; r).

In this sense, key extractors give a computational form of the soundness
guarantee provided by universal hash proof systems. We also note that a similar
tool has been implicitly used in [12] for a similar purpose in the prime-order
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setting. Hence, we abstract and generalize their construction in a straightforward
way.

De�nition. In the following, �x a function `ext = `ext(λ). In the following
de�nition, we will choose the value R encrypted in random ciphertexts uniformly
from Z2`ext . Our generic construction of key extractors works for any `ext ≥ 3λ
(and |G2| ≥ 23λ).

De�nition 8 (Key extractor). A key extractor EXT = (ExtGen,Extpub,
Extpriv) for G consists of the following PPT algorithms

� ExtGen(1λ, epk), on input a public encryption key epk = gω
>B

1 ∈ G`B1 for
(E,D) (as in Section 3.1), outputs a keypair (xpk , xsk). We call xpk the
public and xsk the private extraction key.

� Extpub(xpk , c, r), for c = Eepk (0; r), outputs a key K ∈ {0, 1}λ.
� Extpriv(xsk , c) also outputs a session key K ∈ {0, 1}λ.
We require the following:

Correctness. For all epk = gω
>B

1 , all keypairs (xpk , xsk) that lie in the range
of ExtGen(1λ, epk), all r ∈ Z`B|G1|, and all c = Eepk (0; r), we always have

Extpub(xpk , c, r) = Extpriv(xsk , c).
Indistinguishability. Consider the following game between a challenger C and

an adversary A:
1. C uniformly samples ω ∈ Z`B|G1| and sets (epk , esk) = (gω

>B
1 ,ω). Then,

C generates an EXT keypair (xpk , xsk) ← ExtGen(1λ, epk), and �nally
samples b ∈ {0, 1}.

2. A is run on input (1λ, epk , xpk), with (many-time) access to oracles Ocha

and Oext that operate as follows:
� Ocha() uniformly chooses a fresh R ∈ Z2`ext , computes c ← Eepk (R)
and K0 = Extpriv(xsk , c), and uniformly chooses K1 ∈ {0, 1}λ. Finally,
Ocha returns (c,Kb).

� Oext(c) �rst checks if Desk (c) = g02. If not, then we say that A fails,
and C terminates with output 0 immediately. Otherwise, Oext computes
and returns K = Extpriv(xsk , c).

� Finally, A outputs a bit b′, and C outputs 1 i� b = b′ (and 0 otherwise).
Let AdvextEXT,A(λ) = Pr [C outputs 1] − 1/2. We require that for all PPT A,
AdvsndPS,A(λ) ≤ ε for a negligible function ε = ε(λ).

A generic construction For our GDDH-based key extractor, we assume that
a function h chosen from a family of universal hash functions UHFλ is made
public in the global public parameters pp. Then, our extractor EXTgddh =
(ExtGengddh,Extgddhpub ,Extgddhpriv ) is de�ned as follows:

� ExtGengddh(1λ, epk), for epk = gω
>B

1 , uniformly samples s ∈ Z`B|G| and t ∈
Z|G|, and computes gw

>

1 := gs
>B+t·ω>B

1 ∈ G`B1 . The output of ExtGengddh

is xpk = gw
>

1 and xsk = (s, t).

� Extgddhpub (xpk , c, r), for xpk as above and c = Eepk (0; r), outputsK = h(gw
>·r

1 ).
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� Extgddhpriv (xsk , c), for c = (gγ , gδ) ∈ G`B ×G, outputs K = h(gs
>γ+t·δ).

Given gw
>

1 = gs
>B+t·ω>B

1 and a ciphertext c = E(0; r) = (gγ , gδ) = (gBr
1 , gω

>Br
1 ),

we have
gw
>r

1 = gs
>Br+t·ω>Br

1 = gs
>γ+t·δ,

and correctness follows. Indistinguishability follows from the following lemma:

Lemma 2. For `ext ≥ 3λ and |G2| ≥ 23λ, EXTgddh above satis�es the indis-
tinguishability property of De�nition 8, assuming GDDH in G. Speci�cally, for
every adversary A that makes at most q oracle queries, there is an adversary
B (with roughly the same complexity as the indistinguishability experiment with
EXTgddh and A), such that

AdvextEXTgddh,A(λ) ≤ AdvgddhG,B (λ) + q/2λ. (2)

Due to lack of space, we outsource a proof of Lemma 2 to the full version [16].
Summing up, we obtain

Theorem 1. Under the GDDH assumption, and for `ext ≥ 3λ and |G2| ≥ 23λ,
EXTgddh is a key extractor in the sense of De�nition 8.

5 Benign proof systems

Intuition. Benign proof systems are the central technical tool in our KEM
construction. Intuitively, a benign proof system for some language L is a non-
interactive designated-veri�er zero-knowledge proof system with strong sound-
ness guarantees. Concretely, the system guarantees soundness even if simulated
proofs for potentially false statements x /∈ L are known. However, we do not
quite require �simulation-soundness�, in the sense that this should hold for simu-
lated proofs for arbitrary false statements. (We note that simulation-sound proof
systems are extremely useful in the context of tight security proofs, but they are
also very hard to construct.)

Instead, we only require that no adversary can forge proofs for statements
x /∈ L that are �more false� than any statement for which a simulated proof is
known. A little more speci�cally, we require that even if simulated proofs for
statements x ∈ L′ ⊇ L are known, an adversary cannot forge a proof for some
x /∈ L′. The main bene�t over existing soundness notions is that L′ does not
even have to be known during the construction of the scheme. (For instance, our
�rst proof system provides a �graceful soundness degradation�, in the sense that
it is sound in this sense for arbitrary linear languages L′ ⊇ L.)
Overview over our constructions. Apart from the abstraction, we also
provide generic and setting-speci�c constructions of benign proof systems. Our
generic constructions (for a linear, and a �dynamically parameterized� linear lan-
guage) can be viewed as abstractions and generalizations of universal hash proof
systems. For L′ = L, soundness in the above sense follows immediately from
the correctness property of hash proof systems. (Indeed, hash proofs for valid
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instances x ∈ L are unique and completely determined by public information.)
For L′ ) L, we will use additional properties of speci�c (existing) hash proof
systems. In fact, the mentioned �graceful degradation� guarantees have already
been used implicitly in the work of [12].

However, we also consider a somewhat nonstandard (and in our application
crucial) �OR-language�. Here, we give a prime-order instantiation in pairing-
friendly groups (which is directly implied by the universal hash proof systems
for disjunctions from [1]), and a new instance in the DCR setting. This DCR
instance will be the key to the DCR-based instantiation of our KEM.

5.1 De�nition

De�nition 9 (Proof system). Let L = {Lpars} be a family of languages4

with Lpars ⊆ Xpars , and with e�ciently computable witness relation R. A non-
interactive designated-veri�er proof system (NIDVPS) PS = (PGen,PPrv,
PVer,PSim) for L consists of the following PPT algorithms:
� PGen(1λ, pars) outputs a keypair (ppk , psk). We call ppk the public and psk
the private key.

� PPrv(ppk , x, w), for x ∈ L and R(x,w) = 1, outputs a proof π.
� PVer(psk , x, π), for x ∈ X and a proof π, outputs a verdict b ∈ {0, 1}.
� PSim(psk , x), for x ∈ L, outputs a proof π.
We require correctness in the following sense:
Completeness. For all pars, all (ppk , psk) in the range of PGen(1λ, pars),

all x ∈ L, and all w with R(pars, x, w) = 1, we always have PVer(psk ,
x,PPrv(ppk , x, w)) = 1.

All relevant security properties of a NIDVPS are condensed in the following
de�nition.

De�nition 10 (Benign proof system). Let PS be an NIDVPS for L as in
De�nition 9, and let Lsim = {Lsim

pars}, Lver = {Lver
pars}, and Lsnd = {Lsnd

pars} be

families of languages. We say that PS is (Lsim,Lver,Lsnd)-benign if the following
properties hold:
(Perfect) zero-knowledge. For all pars, all (ppk , psk) that lie in the range of

PGen(1λ, pars), and all x ∈ L and w with R(pars, x, w) = 1, we have the
following equivalence of distributions:

PPrv(ppk , x, w) ≡ PSim(psk , x).

(Statistical) (Lsim,Lver,Lsnd)-soundness. Consider the following game played
between a challenger C and an adversary A:
1. A is run on input 1λ, and chooses pars.
2. C generates (ppk , psk)← PGen(1λ, pars).
3. A is run again on input (1λ, ppk), and with (many-time) access to oracles
Osim and Over that operate as follows:

4These languages may also implicitly depend on the global public parameters pp.
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� Osim(x) checks if x ∈ Lsim
pars , and if yes, returns PSim(psk , x). Other-

wise, Osim returns ⊥.
� Over(x, π) checks if x ∈ Lver

pars , and, if so, returns PVer(psk , x, π). Oth-
erwise, Over returns ⊥.

Finally, A wins i� it has queried Over with (x, π) such that x ∈ Xpars \Lsnd
pars

and PVer(psk , x, π) = 1. Let AdvsndPS,A(λ) the probability that A wins. We
require that for all (not necessarily computationally bounded) A that only
make a polynomial number of oracle queries, AdvsndPS,A(λ) is negligible.

Intuitively, the soundness condition of De�nition 10 thus states that no proofs
for X \ Lsnd

pars -statements can be forged, even when (simulated) proofs for Lsim
pars -

statements are available, and proofs for Lver
pars -statements can be veri�ed.

5.2 The generic linear language

We will be interested in proof systems for �linear languages�, in the sense that
instances are vectors of group elements, and the language is closed under vector
addition (i.e., componentwise group operation).

In the following, let D ∈ N and pk = (epk1, . . . , epkD) = (g
ω>1 B
1 , . . . ,

g
ω>DB
1 ) ∈ (G`B1 )D. For a concise notation, write Ω = (ω1|| . . . ||ωD) ∈ Z`B×D|G1| .

Also, �x a Z|G2|-module

U = {Mx | x ∈ Zd|G2|} ⊆ ZD|G2| (3)

de�ned by a matrix M ∈ ZD×d|G2| . Our languages are parameterized over pars lin =

(pk,M), although Llin
pk only depends on pk, and not on M. Namely, consider

Llin
pk =

{
Epk(u; r) | r ∈ Z`B|G1|, u = 0 ∈ ZD|G2|

}
Llin
sim,(pk,M) = Llin

ver,(pk,M) = Llin
snd,(pk,M)

=
{
Epk(u; r) | r ∈ Z`B|G1|, u ∈ U

}
X lin = G`B+D,

(4)

and set Llin = {Llin
pk} and Llin

sim = Llin
ver = Llin

snd = {Llin
sim,(pk,M)}. A witness for

x ∈ Llin
pk is r.

In the full version [16], we present a simple GDDH-based construction (based
upon hash proof systems) of an (Llin

sim,Llin
ver,Llin

snd)-benign proof system for Llin.

5.3 A dynamically parameterized linear language

In our scheme, we will also use a slight variant of the generic linear language
above. Speci�cally, we will consider a simple �dynamically parameterized� linear
language, where one parameter (i.e., coe�cient) is determined by the language
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instance. For a formal description, let parshash = pk = (epk1, epk2) ∈ (G`B1 )2,
and

Lhash
pk =

{(
Epk(u; r), τ

)
| u = 0 ∈ Z2

|G2|
}

Lhash
sim,pk = Lhash

ver,pk = Lhash
snd,pk

=
{(

Epk(u; r), τ
)
| u = (u1, u2)

> ∈ Z2
|G2|, u2 = τu1

}
X hash

pk =
{(

Epk(u; r), τ
)
| u ∈ Z2

|G2|
}
,

(5)

where r and τ always range over Z`B|G1| and Z|G2|, respectively. A witness for

x ∈ Lhash is r. The families Lhash, Lhash
sim , Lhash

ver , and X hash are de�ned in the
obvious way.

In the full version [16], we present a simple GDDH-based construction (based
upon hash proof systems) of an (Lhash

sim ,Lhash
ver ,Lhash

snd )-benign proof system for
Lhash.

5.4 The generic OR-language

We will also be interested in the following family L∨, together with its �simula-
tion�, �veri�cation� and �soundness� counterparts L∨sim, L∨ver and L∨snd. Here, the
actual languages in L∨ are linear like those in Llin. However, soundness also holds
when L∨sim-instances are simulated, and those instances have an �OR �avor�.

The language parameters are pars∨ = (pk, `∨) for pk = (epk1, epk2) ∈
(G`B1 )2, and a function `∨ = `∨(λ). The families L∨, L∨sim, L∨ver, L∨snd, and X∨
are comprised of the following languages, where we consider all r ∈ Z`B|G1|, and

u = (u1, u2) ∈ (Z∗|G2| ∪ {0})
2:

L∨pk = L∨ver,pk =
{
Epk(u; r) | u1 = 0

}
L∨sim,(pk,`∨) =

{
Epk(u; r) | u1 = 0 ∨ (|u1| < 2`∨ ∧ u2 = 0)

}
L∨snd,pk =

{
Epk(u; r) | u1 = 0 ∨ u2 = 0

}
X∨pk =

{
Epk(u; r)

}
.

Here, the value |u1| (in the de�nition of L∨sim,(pk,`∨) is to be understood simply
as the absolute value for signed Z|G2|-values in the prime-order setting, and as
|u1| = |u1|N in the DCR setting. Observe that L∨pk ⊆ L∨sim,(pk,`∨) ⊆ L

∨
snd,pk ⊆

X∨pk. A valid witness for x ∈ L∨ is r.

A construction in pairing-friendly groups Now assume that G = G1 = G2

is a prime-order group equipped with a symmetric pairing. Then, a benign proof
system for L∨ can be constructed from the universal hash proof systems for
disjunctions from [1]. Speci�cally, [1] construct universal hash proof systems for
languages of the form L = {(x1, x2) | x1 ∈ L1 ∨ x2 ∈ L2}, where Li ⊆ G`
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are linear languages (i.e., vector spaces over Z|G|). In our case, given pk =
(epk1, epk2), we can thus set

L1 =
{
Eepk1

(0; r)
}

L2 =
{
Eepk2

(0; r)
}

L =
{
x = (c0, c1, c2) | (c0, c1) ∈ L1 ∨ (c0, c2) ∈ L2

}
.

(6)

Invoking [1] with these languages yields a NIDVPS PS∨pair that achieves:

Theorem 2. PS∨pair is an (L∨sim,L∨ver,L∨snd)-benign NIDVPS for L∨.

A construction in the DCR setting In the following, we assume anN = PQ,
and groups G, G1, G2 as in Section 3.3. In particular, we have `B = 1, and B
is the trivial (identity) matrix. Furthermore, �x an `∨ = `∨(λ). We additionally
assume that P,Q > 2`∨+4λ. Recall that g1, epk1, epk2 ∈ G1 are of order |G1| =
ϕ(N)/4, and that g2 ∈ G2 is of order |G2| = N .

Our (L∨sim,L∨ver,L∨snd)-benign proof system PS∨DCR for L∨ is given by the
following algorithms:
� PGen∨(1λ) uniformly chooses s1, s2 ∈ ZbN2/4c and then outputs ppk∨ =

(epks11 , epk
s2
1 ) and psk∨ = (s1, s2).

� PPrv∨(ppk∨, x, r) (with ppk∨ = (epks11 , epk
s2
1 ), and x = (c0, c1, c2) = (gr1,

epkr1, epk
r
2g
u2
2 )) uniformly chooses t1, t2 ∈ ZN , and outputs

π∨ = (π0, π1, π2) =
(
ct1+N ·t22 , (epks11 )r · gt12 , (epk

s2
1 )r · gt22

)
.

� PVer∨(psk∨, x, π∨) (for psk = (s1, s2), x = (c0, c1, c2), and π∨ = (π0, π1, π2))
�rst checks that π1/c

s1
1 = gt12 and π2/c

s2
1 = gt22 for some t1, t2 ∈ ZN (and

outputs 0 if not). PVer then computes5 these t1, t2, and outputs 1 i� π0 =
ct1+N ·t22 .

� PSim∨(psk∨, x) (for psk = (s1, s2) and x = (c0, c1, c2)) uniformly picks
t1, t2 ∈ ZN2 and outputs

π∨ = (π0, π1, π2) =
(
ct1+N ·t22 , cs11 · g

t1
2 , c

s2
1 · g

t2
2

)
.

The completeness and zero-knowledge properties of PS∨DCR follow directly
from the fact that csi1 = (epkr1)

si = (epksi1 )r. To show the soundness of PS∨DCR,
we prove a helpful technical lemma:

Lemma 3. Let s1, s2, t1, t2 be distributed as in PS∨DCR, and �x any u ∈ Z with
|u| < 2`∨ . Let6

aux := ([s1]ϕ(N)/4, [s2]ϕ(N)/4, [t1 +N · t2]ϕ(N)/4, [us1 + t1]N , [us2 + t2]N ),

5Here, we implicitly use that computing discrete logarithms in G2 is easy, see Sec-
tion 3.3.

6In this lemma and its proof, we heavily rely on the notation of [s]N and [s]N from
Section 2.
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and write7 w1 := [s1/α]N (with the division performed in ZN ) for α := [N ]ϕ(N)/4.
Then, for an independently random R ∈ Z2λ , we have

ε := SD
(
([w1]2λ , aux ) ; (R, aux )

)
≤ 3/2λ.

In other words, w1 (and thus s1) is unpredictable, even given aux .

Proof. Without loss of generality, assume u ≥ 0. (For u < 0, we can invoke the
lemma with −u, −t1, and −t2 in place of u, t1 and t2.) We proceed in steps,
in each step modifying aux , and bounding the impact on ε. Speci�cally, in the
following, we will de�ne a number of random variables aux i, and abbreviate
εi := SD

(
([w1]2λ , aux i) ; (R, aux i)

)
. As a starting point, consider

aux 1 := ([t1 +N · t2]ϕ(N)/4, [us1 + t1]N , [us2 + t2]N ).

Now note that w1 = [s1/α]N and the [usi + ti]N (for i ∈ {1, 2}) only depend
on [si]N . However, our uniform choice of si ∈ ZbN2/4c is statistically 2/2`∨+4λ-
close to a uniform choice of si ∈ ZN ·ϕ(N)/4 (in which case [si]N and [si]ϕ(N)/4

are independently and uniformly random). Hence, the [si]ϕ(N)/4 are essentially

independent of w1 and aux 1, and we obtain ε ≤ ε1 + 4/2`∨+4λ. Next, consider

aux 2 := ([t1]α, [t2]
α, [t1]

α + [t2]α, [us1 + t1]N , [us2 + t2]N ).

Since t1 + α · t2 = [t1]α + α · ([t1]α + [t2]α) + α2 · [t2]α, we have that aux 1 is a
function of aux 2, and so ε1 ≤ ε2. Similarly, we can re�ne the last two components
of aux 2 to obtain

aux 3 := ([t1]α, [t2]
α, [t1]

α + [t2]α, [us1 + α · [t1]α]N , [us2 + [t2]α]N ).

Again, ε2 ≤ ε3 since aux 3 fully de�nes aux 2. Similar to our �rst step, now [t1]α
and [t2]

α are essentially independent of the remaining parts of aux (up to a
statistical defect of at most 2/2`∨+4λ for each). Hence, for

aux 4 := ([t1]
α + [t2]α, [us1 + α · [t1]α]N , [us2 + [t2]α]N ),

we get that ε3 ≤ ε4 + 4/2`∨+4λ. Now let w2 := [s2]N , and consider

aux 5 := ([t1]
α + [t2]α, uw1 + [t1]

α, uw2 + [t2]α).

Since aux 4 can be computed from aux 5, we have ε4 ≤ ε5. Next, we release
w1 + w2 (over Z):

aux 6 := ([t1]
α + [t2]α, w1 + w2, uw1 + [t1]

α).

Again, aux 5 can be computed from aux 6, and hence ε5 ≤ ε6. Since we consider
the statistical distance between [w1]2λ and R, we can release (and then drop)

[w1]
2λ . Concretely, consider

aux 7 := ([t1]
α + [t2]α, [w1]2λ + w2, u · [w1]2λ + [t1]

α, [w1]
2λ),

7Here, we use our assumption that [N ]ϕ(N)/4 = P +Q− 1 and N are coprime.
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aux 8 := ([t1]
α + [t2]α, [w1]2λ + w2, u · [w1]2λ + [t1]

α)

aux 9 := ([t1]
α + [t2]α, u · [w1]2λ + [t1]

α).

Here, ε6 ≤ ε7 since aux 6 can be computed from aux 7. Moreover, recall that
N > 22`∨+8λ by our choice of P,Q > 2`∨+4λ. Hence, ε7 ≤ ε8 + 1/22`∨+7λ, since

[w1]2λ and [w1]
2λ are independent up to a statistical defect of at most 1/22`∨+7λ.

Finally, ε8 ≤ ε9 + 1/22`∨+7λ, since w2 is uniformly and independently random
chosen from ZN .

Similarly, we can show that [t2]α blinds [[t1]
α]2`∨+2λ :

aux 10 := ([[t1]
α]2`∨+2λ + [t2]α, u · [w1]2λ + [[t1]

α]2`∨+2λ , [[t1]
α]2

`∨+2λ

),

aux 11 := ([[t1]
α]2`∨+2λ + [t2]α, u · [w1]2λ + [[t1]

α]2`∨+2λ ,

aux 12 := (u · [w1]2λ + [[t1]
α]2`∨+2λ).

With the same reasoning as in aux 7-aux 9 (and using that α,N/α > 2`∨+4λ/2
by P,Q > 2`∨+4λ), we get ε9 ≤ ε10, as well as ε10 ≤ ε11 + 1/22λ, and ε11 ≤
ε12 + 1/22λ. Finally, if we set aux 13 := () to be the empty sequence, we get
ε12 ≤ ε13+1/2λ+2/2`∨+4λ, since [t1]

α is 2/2`∨+4λ-close to uniform over ZdN/αe
(which implies that [[t1]

α]2`∨+2λ blinds u · [w1]2λ). It is left to observe that ε13 =
SD
(
[w1]2λ ; R

)
≤ 1/22`∨+7λ, since w1 ∈ ZN is uniformly random. Summing up,

we get ε ≤ 1/2λ + 2/22λ + 10/2`∨+4λ + 3/22`∨+7λ ≤ 3/2λ, as desired.

We can now proceed to show the soundness of PS∨DCR:

Lemma 4. PS∨DCR is statistically (L∨sim,L∨ver,L∨snd)-sound in the sense of Def-
inition 10. Concretely, for an adversary A that makes at most q = q(λ) oracle
queries in the soundness game from De�nition 10,

AdvsndPS∨DCR,A
(λ) ≤ 4q/2λ. (7)

Proof. Fix `∨ and pk, and let viewA be A's view in a run of the computa-
tional soundness game from De�nition 10. Speci�cally, viewA consists of A's
input ppk∨ = (epks11 , epk

s2
1 ), as well as all oracle queries (and the correspond-

ing answers). We �rst consider to what extent viewA determines the secret key
psk∨ = (s1, s2).
� A's input ppk∨ = (epks11 , epk

s2
1 ) only depends on the values[s1]ϕ(N)/4 and

[s2]ϕ(N)/4 (since epk1 has order ϕ(N)/4).

� Each Osim oracle query of A reveals a value π∨ = (π0, π1, π2) = (ct1+N ·t22 , cs11 ·
gt12 , c

s2
1 · g

t2
2 ) for A-supplied c1, c2 and fresh t1, t2. We may assume that c1 =

epkr1 · g
u1
2 and c2 = epkr2 · g

u2
2 with u1 = 0 or |u1|N < 2`∨ ∧ u2 = 0 (since

otherwise, Osim rejects the query). Hence, such a query reveals

(π0, π1, π2) = (epk
r(t1+N ·t2)
2 gu2t1

2 , epkrs11 · gu1s1+t1
2 , epkrs21 · gu1s2+t2

2 ),

which only depends on [s1]ϕ(N)/4, [s2]ϕ(N)/4, [t1 +N · t2]ϕ(N)/4, [u2t1]N , as
well as [u1s1 + t1]N and [u1s2 + t2]N . Thus, if u1 = 0, the query reveals only
[s1]ϕ(N)/4 and [s2]ϕ(N)/4 about (s1, s2). But if u1 6= 0 (and thus u2 = 0),
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we can apply Lemma 3 with u := u1, where we represent u1 ∈ ZN as an
integer between −N/2 and N/2. This yields that the query leaves [w1]2λ
undetermined, up to a small statistical defect. A hybrid argument over all
of A's Osim queries shows that the overall statistical defect is bounded by
3q/2λ.

� An Over query on input (x, π∨) yields ⊥ unless x ∈ L∨ver,(pk,`∨) = L
∨
(pk,`∨)

.

But for x = (c0, c1, c2) = (gr1, epk
r
1, epk

r
2g
u2
2 ) ∈ L∨(pk,`∨), we get that Over's

output only depends on csi1 = epkrsi1 , and hence only on [si]ϕ(N)/4 (for i =
1, 2).

To summarize, viewA is essentially independent of [w1]2λ , up to a statistical
defect of 3q/2λ.

It remains to prove that anyOver query on some (x, π∨) with x ∈ X∨\L∨snd,pk
(i.e., an x with x = (c0, c1, c2) = (gr1, epk

r
1 · g

u1
2 , epkr2 · g

u2
2 ) for u1, u2 ∈ Z∗N ) is

invalid in the sense that PVer(psk∨, x, π∨) = 0 with high probability. To this
end, write

π∨ = (π0, π1, π2) = (epkρ02 · g
α0
2 , epkρ11 · g

α1
2 , epkρ21 · g

α2
2 )

for suitable ρ0, ρ1, ρ2, α0, α1, α2. Recall that (x, π∨) is valid only if for i = 1, 2,
we have πi/c

si
1 = gti2 for some ti ∈ ZN , and if π0 = ct1+N ·t22 for those ti. Hence,

if (x, π∨) is valid, then the following holds for some t1, t2:

ρ0 = [r(t1 +N · t2)]ϕ(N)/4 α0 = [u2t1]N

ρ1 = [rs1]ϕ(N)/4 α1 = [u1s1 + t1]N

ρ2 = [rs2]ϕ(N)/4 α2 = [u1s2 + t2]N .

By assumption, u2 ∈ Z∗N , and thus α0 determines t1. Using also u1 ∈ Z∗N , hence
α0 and α1 determine [s1]N , and thus also w1 = [s1/α]N . However, as we have
argued above, viewA is essentially independent of [w1]2λ . The probability that
A correctly guesses an independently and uniformly random [w1]2λ with a single
query is exactly 1/2λ. Since A makes at most q guesses, the probability for a
correct guess is bounded by q/2λ. Taking into account the mentioned statistical
defect in viewA, we obtain (7).

Taking things together, we obtain

Theorem 3. PS∨DCR is an (L∨sim,L∨ver,L∨snd)-benign NIDVPS for L∨.

6 The key encapsulation scheme

In the following, we present our main construction of an IND-MCCA secure key
encapsulation (KEM) scheme. (This directly implies a PKE scheme with the
same security properties [8].)
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6.1 The construction

Ingredients and public parameters. In our construction, we use the follow-
ing ingredients:
� groups G, G1, G2 with |G2| > 23λ (see Section 3.1 for a description of the
generic setting),

� the generalized ElGamal scheme (E,D) implicitly de�ned through G, G1, G2

(Section 3.1),
� an EUF-MOTCMA secure one-time signature scheme OTS = (SGen,SSig,

SVer) (Section 4.1),
� a key extractor EXT = (ExtGen,Extpub,Extpriv) for G (see Section 4.2)
with `ext = 3λ,

� an (Llin
sim,Llin

ver,Llin
snd)-benign proof system denoted with PSlin = (PGenlin,

PPrvlin,PVerlin,PSimlin) for Llin (Section 5.2),
� an (Lhash

sim ,Lhash
ver ,Lhash

snd )-benign proof system denoted PShash = (PGenhash,

PPrvhash,PVerhash,PSimhash) for Lhash (Section 5.3),
� an (L∨sim,L∨ver,L∨snd)-benign proof system denoted PS∨ = (PGen∨,PPrv∨,

PVer∨,PSim∨) for L∨ (Section 5.4) with `∨ = 3λ, and
� a collision-resistant hash function generator CRHF (Section 2) with `H =

2λ.8

We can use the presented generic constructions for EXT, PSlin, and PShash,
and, in the prime-order and DCR settings, the presented concrete construc-
tions for OTS and PS∨. (We note, however, that the DCR-based proof system
PS∨DCR additionally requires that |G| has no prime factors smaller than 27λ.)
Speci�cally, we obtain instantiations both in the prime-order (with symmetric
pairing) and DCR settings.

We also assume public parameters pp that contain whatever public param-
eters our building blocks require. Speci�cally, pp de�nes groups G, G1, and G2

(as described in Section 3.1), and contains a hash function H output by CRHF.

The algorithms. Now our KEM KEM is de�ned through the following algo-
rithms:
� Gen(1λ) �rst uniformly picks ω1, . . . ,ω4 ∈ Z`B|G1|, and sets (pk, sk) = (epk i,

esk i)
4
i=1 = (g

ω>i B
1 ,ωi)

4
i=1. Next, Gen samples

(ppk lin, psk lin) ← PGenlin(1λ,pk)

(ppkhash, pskhash) ← PGenhash(1λ, (epk1, epk2/epk3))

(ppk∨,1, psk∨,1) ← PGen∨(1λ, (epk1, epk1))

(ppk∨,2, psk∨,2) ← PGen∨(1λ, (epk4, epk4))

(ppk∨,3, psk∨,3) ← PGen∨(1λ, (epk4, epk1))

(ppk∨,4, psk∨,4) ← PGen∨(1λ, (epk2/epk3, epk4))

8Since we assume collision-resistance (and not only target collision-resistance), we
will have to take into account, e.g., birthday attacks on the hash function. This unfor-
tunately entails `H ≥ 2λ.
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(ppk∨,5, psk∨,5) ← PGen∨(1λ, (epk2/epk3, epk4))

(ppk∨,6, psk∨,6) ← PGen∨(1λ, (epk2/epk3, epk1))

(xpk , xsk) ← ExtGen(1λ, epk2),

sets ppk = (ppk lin, ppkhash, ppk∨,1, . . . , ppk∨,6) and psk = (psk lin, pskhash,
psk∨,1, . . . , psk∨,6), and �nally outputs

pk = (pk,ppk, xpk) sk = (sk,psk, xsk).

� Enc(pk) (for pk as above) selects a random r, and computes

c = (c0, c1, . . . , c4) = E(pk,0; r)

(ovk , osk) ← SGen()

τ = H(ovk)

πlin ← PPrvlin(ppk lin, c, r)

πhash ← PPrvhash(ppkhash, ((c0, c1, c2/c3), τ), r)

π∨,1 ← PPrv∨(ppk∨,1, (c0, c1, c1/g2), r)

π∨,2 ← PPrv∨(ppk∨,2, (c0, c4, c4/g2), r)

π∨,3 ← PPrv∨(ppk∨,3, (c0, c4, c1/g2), r)

π∨,4 ← PPrv∨(ppk∨,4, (c0, c2/c3, c4), r)

π∨,5 ← PPrv∨(ppk∨,5, (c0, c2/c3, c4/g2), r)

π∨,6 ← PPrv∨(ppk∨,6, (c0, c2/c3, c1/g2), r)

π = (πlin, πhash, π∨,1, . . . , π∨,6)

σ ← SSig(osk , (c,π))

K = Extpub(xpk , (c0, c2), r).

Here, we interpret τ = (τ1, . . . , τ2λ) ∈ {0, 1}2λ as an integer τ =
∑2λ
i=1 2

i−1τi ∈
{0, . . . , 22λ − 1}, with τ1 being interpreted as the least signi�cant bit.
The �nal output of Enc is C = (c,π , ovk , σ) and K.

� Dec(sk , C) (for sk and C as above), �rst veri�es σ and all proofs in π using
ovk and sk, and, if all are valid, returns

K = Extpriv(xsk , (c0, c2)).

Explanation. The proofs in π require some explanation. They prove various
(seemingly highly redundant) properties of the vector u = (ui)

4
i=1 ∈ Z4

|G2| en-
crypted in c. Some of these properties will be violated in di�erent steps of our
security analysis already by the security game, and we will then rely on the
remaining properties. For instance, πlin always guarantees that the vectors u
encrypted in decryption queries lie in the subspace spanned by the vectors u
encrypted in challenge ciphertexts. (That subspace is initially trivial, since hon-
est encryptions contain u = 0, but will be larger in later parts of the analysis.)
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πhash guarantees that τu1 = u2−u3 in A's decryption queries (unless generated
challenge ciphertexts already violate that relation).

The PS∨-proofs π∨,i are a bit more delicate. First, π∨,1 and π∨,2 guarantee
that u1, u4 ∈ {0, 1}. The condition u1 ∈ {0, 1} only simpli�es the analysis, but
u4 ∈ {0, 1} is instrumental to enforce our partitioning strategy. In particular, u4
will be the bit that determines the partitioning of ciphertexts in our partitioning
argument. Depending on the value of u4, π∨,4 and π∨,5 give further guarantees:
π∨,4+b guarantees u2 = u3 ∨ u4 = b. At each point in our analysis, at least
one of these conditions (for one value of b) is never violated. Hence, u2 = u3 is
guaranteed in decryption queries whenever u4 6= b. Finally, the proofs π∨,3 and
π∨,6 ensure technical conditions (u4 = 0 ∨ u1 = 1 and u2 = u3 ∨ u1 = 1) that
will help to deal with the somewhat limited soundness guarantees of PS∨. (In
particular, these proofs help to cope with the fact that the soundness game of
PS∨only allows a limited type of veri�cation queries.)

Correctness. The correctness of KEM follows directly from the correctness
of the underlying primitives.

6.2 Security analysis

Theorem 4 (Security of KEM). If the ingredients from Section 6.1 are se-
cure, then KEM is IND-MCCA secure. Speci�cally, for every IND-MCCA ad-
versary A that makes at most q oracle queries, there are adversaries Bcrhf , Bots,
Bfact, Bmccpa, Blin, Bhash, and B∨ with

|Advmcca
KEM,A(λ)| ≤ AdvcrhfCRHF,Bcrhf (λ) + AdvotsOTS,Bots(λ)

+O(λ)AdvfactG2,Bfact(λ) +O(λ)Advmccpa
G,Bmccpa(λ) +O(λ)AdvsndPSlin,Blin(λ)

+O(λ)AdvsndPShash,Bhash(λ) +O(λ)AdvsndPS∨,B∨(λ) +O(λq)/2λ. (8)

Outline. The goal of our proof will be to randomize all keys handed out by Oenc

along with challenge ciphertexts. In order to do so, we rely on the indistinguisha-
bility of the key extractor EXT. However, to apply EXT's indistinguishability
(De�nition 8), we �rst need to establish a certain kind of �unfairness�. Specif-
ically, we will randomize the u2 component of all challenge ciphertexts, while
rejecting all decryption queries with u2 6= 0. (Note that this in particular means
that the experiment does not need to be able to decrypt challenge ciphertexts.)

Establishing this unfairness thus is the key to proving chosen-ciphertext se-
curity. But it will also form the main di�culty of the proof, and we will outsource
this process into several helper lemmas.

A little more speci�cally, we will proceed as hinted in the introduction.
Namely, to show that all adversarial decryption queries with u2 6= 0 are rejected,
we will gradually add more and more restrictive additional checks on decryption
queries with u2 6= 0. In particular, if u2 6= 0, then we will require that u2 �authen-
ticates� the full ciphertext, in the sense that u2 = T for a ciphertext-dependent
�authentication token� T (cf. also the description in the introduction). We will
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change the de�nition of T in a series of transformations such that eventually
T = X + τ , where X is a �xed secret value, and τ is the (up to OTS-forgeries
and CRHF-collisions ciphertext-unique) value of τ = H(ovk) from above. How-
ever, we will only be able to prove that the adversary must reuse a previously
used authentication in his decryption queries. This means that the following
rules apply:

� Any challenge ciphertext handed to the adversary satis�es u2 = X + τ .
� Any decryption query with u2 6= 0 must satisfy u2 = X + τ (j) for some τ (j)

from a challenge ciphertext. (Hence, the adversary must �reuse� an authen-
tication tag.)

Additionally, all challenge ciphertexts will satisfy u1 = 1 and u3 = X. Hence,
using the soundness of our benign proof systems PSlin and PS∨, also any decryp-
tion query with u1 6= 0 will have to satisfy u1 = 1 and u3 = X (or it is rejected).
Finally invoking the soundness of PShash (on the equation u2 = u3+τ ·u1, which
is ful�lled in all challenge ciphertexts), we obtain that also decryption queries
will have to satisfy u2 = X + τ for the respective value τ from that decryption
query.

Hence, the requirements on adversarial decryption queries with u2 6= 0 are
now that u2 = X + τ and u2 = X + τ (j), and thus that τ = τ (j) for some τ (j)

from a previous challenge. Since the value τ is ciphertext-unique, we obtain a
contradiction. (Thus, any decryption query with u2 6= 0 is rejected.)

Due to lack of space, we have to postpone our proof (and in particular the
more complex argument for establishing the requirement u2 = X + τ (j) on
adversarial decryption queries) to the full version [16].
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