
Depth-Robust Graphs and Their Cumulative
Memory Complexity

Joël Alwen1, Jeremiah Blocki2, and Krzysztof Pietrzak1

1 IST Austria
2 Purdue University

Abstract. Data-independent Memory Hard Functions (iMHFS) are find-
ing a growing number of applications in security; especially in the domain
of password hashing. An important property of a concrete iMHF is speci-
fied by fixing a directed acyclic graph (DAG) Gn on n nodes. The quality
of that iMHF is then captured by the following two pebbling complexities
of Gn:
– The parallel cumulative pebbling complexity Π

‖
cc(Gn) must be as

high as possible (to ensure that the amortized cost of computing the
function on dedicated hardware is dominated by the cost of memory).

– The sequential space-time pebbling complexity Πst(Gn) should be

as close as possible to Π
‖
cc(Gn) (to ensure that using many cores in

parallel and amortizing over many instances does not give much of
an advantage).

In this paper we construct a family of DAGs with best possible parame-
ters in an asymptotic sense, i.e., where Π

‖
cc(Gn) = Ω(n2/ log(n)) (which

matches a known upper bound) and Πst(Gn) is within a constant factor

of Π
‖
cc(Gn).

Our analysis relies on a new connection between the pebbling complexity
of a DAG and its depth-robustness (DR) – a well studied combinatorial

property. We show that high DR is sufficient for high Π
‖
cc. Alwen and

Blocki (CRYPTO’16) showed that high DR is necessary and so, together,

these results fully characterize DAGs with high Π
‖
cc in terms of DR.

Complementing these results, we provide new upper and lower bounds
on the Π

‖
cc of several important candidate iMHFs from the literature.

We give the first lower bounds on the memory hardness of the Catena
and Balloon Hashing functions in a parallel model of computation and
we give the first lower bounds of any kind for (a version) of Argon2i.
Finally we describe a new class of pebbling attacks improving on those
of Alwen and Blocki (CRYPTO’16). By instantiating these attacks we

upperbound the Π
‖
cc of the Password Hashing Competition winner Ar-

gon2i and one of the Balloon Hashing functions by O
(
n1.71

)
. We also

show an upper bound of O(n1.625) for the Catena functions and the two
remaining Balloon Hashing functions.

1 Introduction

Moderately hard functions. Functions which are “moderately” hard to compute
have found a variety of practical applications including password hashing, key-
derivation and for proofs of work. In the context of password hashing, the goal is

to minimize the damage done by a security breach where an adversary learns the
password file; Instead of storing (login, password) tuples in the clear, one picks
a random salt and stores a tuple (login, f(password, salt), salt), where f(.) is
a moderately hard function f(.). This comes at a price, the server verifying a
password must evaluate f(.), which thus cannot be too hard. On the other hand,
if a tuple (login, y, salt) is leaked, an adversary who tries to find the password by
a dictionary attack must evaluate f(.) for every attempt. A popular moderately
hard function is PBKDF2 (Password Based Key Derivation Function 2) [?], which
basically just iterates a cryptographic hash function H several times (1024 is a
typical value).

Unfortunately a moderately hard function like PBKDF2 offers much less pro-
tection against adversaries who can build customized hardware to evaluate the
underlying hash function than one would hope for. The reason is that the cost
of computing a hash function H like SHA256 or MD5 on an ASIC (Applica-
tion Specific Integrated Circuit) is orders of magnitude smaller than the cost of
computing H on traditional hardware [?,?].

Memory-Bound and Memory-Hard Functions. [?] recognized that cache-misses
are more egalitarian than computation, in the sense that they cost about the
same on different architectures. They propose “memory-bound” functions, which
are functions that will incur many expensive cache-misses. This idea was further
developed by [?].

Along similar lines, Percival [?] observes that unlike computation, memory
costs tend to be relatively stable across different architectures, and suggests to
use memory-hard functions (MHF) for password hashing. [?] also introduced the
scrypt MHF which has found a variety of applications in practice. Very recently
it has been proven to indeed offer optimal time/space trade-offs in the random
oracle model [?,?].

MHFs come in two flavours, data-dependent MHFs (dMHF) such as scrypt,
and data independent MHFs (iMHF). The former are potentially easier to con-
struct and allow for more extreme memory-hardness [?,?], but they leave open
the possibility of side-channel attacks [?], thus iMHFs are preferable when the
inputs are sensitive, as in the case of password hashing. We shortly discuss the
state of the art for dMHFs at the end of this section.

iMHF as Graphs. An iMHF comes with an algorithm that computes the function
using a fixed memory access pattern. In particular the pattern is independent
of the input. Such functions can thus be described by a directed acyclic graph
(DAG)G, where each node v of the graph corresponds to some intermediate value
`v that appears during the computation of the function, and the edges capture
the computation: if `v is a function of previously computed values `i1 , . . . , `iδ ,
then the nodes i1, . . . , iδ are parents of v in G. For an iMHF F , we’ll denote
with G(F) the underlying graph. For example G(PBKDF2) is simply a path.

Graph Labeling Functions. Not only can an iMHF be captured by a graph as
just outlined, we will actually construct iMHFs by first specifying a graph, and
then defining a “labeling function” on top of it: Given a graph G with node set
V = [n] = {1, 2, . . . , n}, a hash function H : {0, 1}∗ → {0, 1}w and some input x,

define the labeling of the nodes of G as follows: a source (a node v with indegree
0) has label `v(x) = H(v, x), a node v with parents v1 < v2 < · · · < vδ has label
`v(x) = H(v, `v1(x), . . . , `vδ(x)). For a DAG G with a unique sink s we define
the labeling function of G as fG(x) = `s(x). Note that using the convention from
the previous paragraph, we have G(fG) = G.

The Black Pebbling Game One of the main techniques for analyzing iMHF is
to use pebbling games played on graphs. First introduced by Hewitt and Pa-
terson [?] and Cook [?] the (sequential) black pebbling game (and its relatives)
have been used to great effect in theoretical computer science. Some early ap-
plications include space/time trade-offs for various computational tasks such as
matrix multiplication [?], the FFT [?,?], integer multiplication [?] and solving
linear recursions [?,?]. More recently, pebbling games have been used for various
cryptographic applications including proofs of space [?,?], proofs of work [?,?],
leakage-resilient cryptography [?], garbled circuits [?], one-time computable func-
tions [?], adaptive security proofs [?,?] and memory-hard functions [?,?,?,?].
It’s also an active research topic in proof complexity (cf. the survey on http:

//www.csc.kth.se/~jakobn/research/PebblingSurveyTMP.pdf).

The black pebbling game is played over a fixed directed acyclic graph (DAG)
G = (V,E) in rounds. The goal of the game is to pebble all sink nodes of
G (not necessarily simultaneously). Each round i ≥ 1 is characterized by its
pebbling configuration Pi ⊆ V which denotes the set of currently pebbled nodes.
Initially P0 = ∅, i.e., all nodes are unpebbled. Pi is derived from the previous
configuration Pi−1 according to two simple rules. (1) A node v may be pebbled
(added to Pi) if, in the previous configuration all of its parents were pebbled,
i.e., parents(v) ⊆ Pi−1. (2) A pebble can always be removed from Pi. In the
sequential version rule (1) may be applied at most once per round while in
the parallel version no such restriction applies. A sequence of configurations
P = (P0, P1, . . .) is a (sequential) pebbling of G if it adheres to these rules and
each sink node of G is contained in at least one configuration.

From a technical perspective, in this paper we investigate upper and lower
bounds on various pebbling complexities of graphs, as they can be related to the
cost of evaluating the “labeling function” fG (to be defined below) in various

computational models. In particular, let PG and P‖G denote all valid sequential
and parallel pebblings of G, respectively. We are interested in the parallel cumu-

lative pebbling complexity of G, denoted Π
‖
cc(G), and the sequential space-time

complexity of G, denoted Πst(G), which are defined as

Π‖cc(G) = min
(P1,...,Pt)∈P‖G

t∑
i=1

|Pi| Πst(G) = min
(P1,...,Pt)∈PG

t ·max
i

(|Pi|).

A main technical result of this paper is a family of graphs with high (in fact,

as we’ll discuss below, maximum possible) Π
‖
cc complexity, and where the Πst

http://www.csc.kth.se/~jakobn/research/PebblingSurveyTMP.pdf
http://www.csc.kth.se/~jakobn/research/PebblingSurveyTMP.pdf

complexity is not much higher than the Π
‖
cc complexity.3 Throughout, we’ll

denote with Gn the set of all DAGs on n nodes and with Gn,d ⊆ Gn the DAGs
where each node has indegree at most d.

Theorem 1. There exists a family of DAGs {Gn ∈ Gn,2}n∈N where

1. the parallel cumulative pebbling complexity is

Π‖cc(Gn) ∈ Ω(n2/ log(n))

2. and where the sequential space-time complexity matches the parallel cumula-
tive pebbling complexity up to a constant

Πst(Gn) ∈ O(n2/ log(n)).

The lower bound on Π
‖
cc in item 1. above is basically optimal due to the following

bound from [?]. 4

Theorem 2 ([?, Thm. 8]). For any constant ε > 0 and sequence of DAGs
{Gn ∈ Gn,δn}n∈N it holds that

Π‖cc(Gn) = o

(
δnn

2

log1−ε

)
.

In particular if δn = O(log1−ε) then Π
‖
cc(Gn) = o(n2), and

if δn = Θ(1) then Π‖cc(Gn) = o(n2/ log1−ε(n)). (1)

Pebbling vs. Memory-hardness. The reason to focus on the graph G = G(F)
underlying an iMHF F is that clean combinatorial properties of G – i.e., bounds
on the pebbling complexities – imply both upper and lower bounds on the cost
of evaluating F in various computational models. For upper bounds (i.e., at-
tacks), no further assumption on F are required to make the transition from
pebbling to computation cost. For lower bounds, we have to assume that there’s
no “shortcut” in computing F , and the only way is to follow the evaluation se-
quence as given by G. Given the current state of complexity theory, where not
even superlinear lower bounds on evaluating any function in NP are known, we
cannot hope to exclude such shortcuts unconditionally. Instead, we assume that
the underlying hash function H is a random oracle and circuits are charged unit
cost for queries to the random oracle.

For our lower bounds, we must insist on G having constant indegree. The
reason is that in reality H must be instantiated with some cryptographic hash

3 Note that Π
‖
cc(G) ≤ Πst(G) as parallelism can only help, and space-time complexity

(i.e., number of rounds times the size of the largest state) is always higher than
cumulative complexity (the sum of the sizes of all states).

4 The statement below is obtained from the result in [?] by treating the core-memory
ratio as a constant and observing that, trivially, at most n pebbles are on G during a
balloon phase and at most n pebbles are placed in one step during a balloon phase.

function like SHA1, and the indegree corresponds to the input length on which H
is invoked. To evaluate H on long inputs, one would typically use some iterated
construction like Merkle-Damgard, and the assumption that H behaves like a
black-box that can only be queried once the entire input is known would be
simply wrong in this case.

As advocated in [?], bounds onΠ
‖
cc(G) are a reasonable approximation for the

cost of evaluating fG in dedicated hardware, whereas a bound on Πst(G) gives
an upper bound on the cost of evaluating fG on a single processor machine. The
reason [?] consider cumulative complexity for lower and space-time complexity
for the upper bound is that when lower bounding the cost of evaluating fG we
do want to allow for amortization of the cost over arbitrary many instances,5

whereas for our upper bound we don’t want to make such an assumption. The
reason we consider parallel complexity for the lower and only sequential for the
upper bound is due to the fact that an adversary can put many (cheap) cores
computing H on dedicated hardware, whereas for the upper bound we only want
to consider a single processor machine.

IfΠ
‖
cc(G) is sufficiently larger than |V (G)| (in Theorem 1 it’s almost quadratic),

then the cost of evaluating fG in dedicated hardware is dominated by the mem-
ory cost. As memory costs about the same on dedicated hardware and general

purpose processors, if our G additionally satisfies Π
‖
cc(G) ≈ Πst(C), then we get

a function fG whose evaluation on dedicated hardware is not much cheaper than
evaluating it on an off the shelf machine (like a single core x86 architecture).
This is exactly what the family from Theorem 1 achieves. We elaborate on these
computational models and how they are related to pebbling in the full version.

On the positive side, previous to this work, the construction with the best

asymptotic bounds was due to [?] and achieved Π
‖
cc(Gn) ∈ Ω(n2/ log10(n)).

However the exponent 10 (and the complexity of the construction) makes this
construction uninteresting for practical purposes.

On the negative side [?,?,?] have broken many popular iMHFs in a rather
strong asymptotic sense. For example, in [?], the graph underlying Argon2i-
A [?], the winner of the recent Password Hashing Competition6, was shown

to have Π
‖
cc complexity Õ(n1.75). For Catena [?] the upper bound O(n5/3) is

shown in [?]. In [?] these results were extended to show that Argon2i-B [?]

has Π
‖
cc(G) = O

(
n1.8

)
. Moreover [?] show that for random instances of these

5 Π
‖
cc satisfies a direct product property: pebbling k copies of G cost k times as much

as pebbling G, i.e., Π
‖
cc(G

k) = k ·Π‖cc(G), but this is not true for Πst complexity.
6 The Argon2 specification [?] has undergone several revisions all of which are regularly

referred to as “Argon2.” To avoid confusion we follow [?] and use Argon2i-A [?] to
denote the version of Argon2i from the password hashing competition [?] and we use
Argon2i-B [?] to refer the version of Argon2 that is currently being considered for
standardization by the Cryptography Form Research Group (CFRG) of the IRTF.
We conjecture that the techniques introduced in this paper could also be used to
establish tighter bounds for Argon2i-B. However, we leave this as an open challenge
for future work.

functions (which is how they are supposed to be used in practice) the attacks

actually have far lower Π
‖
cc than these asymptotic analyses indicate.

A New Generic Attack and Its Applications. In this work we improve on the
attacks of [?,?,?] (Section 6). We give a new parallel pebbling strategy for peb-
bling DAGs which lack a generalization of depth-robustness. Next we investigate
this property for the case of Argon2i-A, the three Balloon-Hashing variants and

both Catena variants to obtain new upper bounds on their respective Π
‖
cc. For

example, we further improve the upper bound on Π
‖
cc for Argon2i-A and the

Single Buffer variant of Balloon-Hashing from Õ(n1.75) to O(n1.708).

New Security Proofs. Complementing these results, in Section 5, we give the first
security proofs for a variety of iMHFs. Hitherto the only MHF with a full secu-
rity proof in a parallel computational model was [?] which employed relatively
construction specific techniques. When restricted to sequential computation the
results of [?,?] show that Catena has Πst complexity Ω(n2). Similar results are
also shown for Argon2i-A and Balloon Hashing in [?].

In this work we introduce two new techniques for proving security of iMHFs.
In the case of Argon2i-A and Argon2i-B we analyze its depth-robustness to

show that its Π
‖
cc is at least Ω̃(n5/3). The second technique involves a new

combinatorial property called dispersion which we show to imply lower bounds

on the Π
‖
cc of a graph. We investigate the dispersion properties of the Catena

and Balloon Hashing variants to show their Π
‖
cc to be Ω̃(n1.5). Previously no

(non-trivial) lower bounds on Π
‖
cc were known for Argon2i-A, Catena or Balloon

Hashing. Interestingly, our results show that Argon2i-A and Argon2i-B have

better asymptotic security guarantees than Catena since Π
‖
cc = Ω(n5/3) for

Argon2i-A and Π
‖
cc = O(n13/8) for Catena.

While these lower bounds are significantly worse than what we might ideally

hope for in a secure iMHF (e.g., Π
‖
cc ≥ Ω(n2/ log(n))), we observe that, in light

of our new attacks in Section 6, they are nearly tight. Unfortunately, together
with the bounds on the sequential complexity of these algorithms our results do
highlight a large asymptotic gap between the memory needed when computing
the functions on parallel vs. sequential computational devices.

A table summarizing the asymptotic cumulative complexity of various iMHFs
can be found in Table 1.

Depth-Robust Graphs. The results in this work rely on a new connection be-

tween the depth-robustness of a DAG and its Π
‖
cc complexity. A DAG G is

(e, d)-depth-robust if, after removing any subset of at most e nodes there re-
mains a directed path of length at least d. First investigated by Erdös, Graham
and Szemerédi [?], several such graphs enjoying low indegree and increasingly
extreme depth-robustness have been constructed in the past [?,?,?,?,?] mainly
in the context of proving lower-bounds on circuit complexity and Turing ma-
chine time. Depth-robustness has been used as a key tool in the construction
of cryptographic objects like proofs of sequential work [?]. In fact depth-robust

graphs were already used as a building block in the construction of a high Π
‖
cc

graph in [?].

Algorithm Lowerbound Upperbound Appearing In

Argon2i-A Õ
(
n1.75

)
[?]

Argon2i-A Ω̃
(
n1.6̄

)
Õ
(
n1.708

)
This Work

Argon2i-B O
(
n1.8

)
[?]

Argon2i-B Ω̃
(
n1.6̄

)
This Work

Balloon-Hashing: Linear
and Double Buffer (DB)

O
(
n1.67

)
[?]

Balloon-Hashing: Linear
and Double Buffer(DB)

Ω̃
(
n1.5

)
Õ
(
n1.625

)
This Work

Balloon-Hashing: Single Buffer (SB) Õ
(
n1.75

)
[?]

Balloon-Hashing: Single Buffer (SB) Ω̃
(
n1.6̄

)
Õ
(
n1.708

)
This Work

Catena: Dragonfly O
(
n1.67

)
[?]

Catena: Dragonfly Ω̃
(
n1.5

)
Õ
(
n1.625

)
This Work

Catena: Butterfly O
(
n1.67

)
[?]

Catena: Butterfly Ω̃
(
n1.5

)
o
(
n1.625

)
This Work

[?] Ω
(

n2

log10 n

)
[?]

Theorem 1 Ω
(

n2

log n

)
This Work

Arbitrary iMHF O
(

n2 log log n
log n

)
[?]

Table 1: Overview of the asymptotic cumulative complexity of various iMHF.

Depth-Robustness and Π
‖
cc. While the flavour of the results in this work are

related to those of [?] the techniques are rather different. As mentioned above
already, they stem from a new tight connection between depth-robustness and

Π
‖
cc. A special case of this connection shows that if G is (e, d)-depth-robust, then

its Π
‖
cc can be lower bounded as

Π‖cc(G) ≥ e · d .

This complements a result from [?], which gives a pebbling strategy that is

efficient for graphs of low depth-robustness. Thus a DAG has high Π
‖
cc if and

only if it is very depth-robust.

Moreover, we give a new tool for reducing the indegree of a DAG while not

reducing the Π
‖
cc of the resulting graph (in terms of its size). Together these

results directly have some interesting consequences

– The family of DAGs {Gn ∈ Gn,log(n)}n∈N from Erdös et al. [?] have optimally

high Π
‖
cc(Gn) ∈ Ω(n2).

– Using our indegree reduction we can turn the above family of log(n) inde-

gree into a family of indegree 2 DAGs {G′n ∈ G(n,2)}n∈N with Π
‖
cc(G′n) ∈

Ω(n2/ log(n)), which by Theorem 2 is optimal for constant indegree graphs.

Data-Dependent MHFs. One can naturally extend the Π
‖
cc notion also to “dy-

namic” graphs – where some edges are only revealed as some nodes are pebbled
– in order to analyse data-dependent MHFs (dMHF) like scrypt. In this model,

[?] show that Π
‖
cc(scrypt) = Ω(n2/ log2(n)). Unfortunately unlike for iMHFs,

for dMHFs we do not have a proof that a lower bound on Π
‖
cc implies roughly the

same lower bound on the cumulative memory complexity in the random oracle
model.7 Recently a “direct” proof (i.e., avoiding pebbling arguments) – showing
that scrypt has optimal cumulative memory complexity Ω(n2) – has been an-
nounced, note that this bound is better than what we can hope to achieve for
iMHFs (as stated in Theorem 2). Unfortunately, the techniques that have now
been developed to analyse dMHFs seem not to be useful for the iMHF setting.

2 Pebbling Complexities and Depth-Robustness of
Graphs

We begin by fixing some common notation. We use the sets N = {0, 1, 2, . . .},
N+ = {1, 2, . . .}, and N≥c = {c, c + 1, c + 2, . . .} for c ∈ N. Further, we also use
the sets [c] := {1, 2, . . . , c} and [b, c] = {b, b + 1, . . . , c} where b ∈ N with b ≤ c.
For a set of sets A = {B1, B2, . . . , Bz} we use the notation ||A|| :=

∑
i |Bi|.

2.1 Depth-Robust Graphs

We say that a directed acyclic graph (DAG) G = (V,E) has size n if |V | = n.
A node v ∈ V has indegree δ = indeg(v) if there exist δ incoming edges δ =
|(V × {v}) ∩E|. More generally, we say that G has indegree δ = indeg(G) if the
maximum indegree of any node of G is δ. A node with indegree 0 is called a source
node and one with no outgoing edges is called a sink. We use parentsG(v) =
{u ∈ V : (u, v) ∈ E} to denote the parents of a node v ∈ V . In general,
we use ancestorsG(v) =

⋃
i≥1 parents

i
G(v) to denote the set of all ancestors of

v — here, parents2G(v) = parentsG (parentsG(v)) denotes the grandparents of v
and parentsi+1

G (v) = parentsG
(
parentsiG(v)

)
. When G is clear from context we

will simply write parents (ancestors). We denote the set of all sinks of G with
sinks(G) = {v ∈ V : @(v, u) ∈ E} — note that ancestors (sinks(G)) = V . We
often consider the set of all DAGs of equal size Gn = {G = (V,E) : |V | = n}
and often will bound the maximum indegree Gn,δ = {G ∈ Gn : indeg(G) ≤ δ}.
For directed path p = (v1, v2, . . . , vz) in G its length is the number of nodes it
traverses length(p) := z. The depth d = depth(G) of DAG G is the length of the
longest directed path in G.

We will often consider graphs obtained from other graphs by removing sub-
sets of nodes. Therefore if S ⊂ V then we denote by G − S the DAG obtained

7 [?] introduces a combinatorial conjecture, which if true, means that lower bounds

on Π
‖
cc translate to cumulative memory complexity. At this point a strong variant

of the conjecture has already been refuted, the state of the conjecture is updated in
the eprint version [?] of the paper.

from G by removing nodes S and incident edges. The following is a central
definition to our work.

Definition 1 (Depth-Robustness). For n ∈ N and e, d ∈ [n] a DAG G =
(V,E) is (e, d)-depth-robust if

∀S ⊂ V |S| ≤ e⇒ depth(G− S) ≥ d.

We will make use of the following lemma due to Erdös, Graham and Sze-
merédi [?], who showed how to construct a family of log indegree DAGs with
extreme depth-robustness.

Theorem 3 ([?]). For some fixed constants c1, c2, c3 > 0 there exists an infinite
family of DAGs {Gn ∈ Gn,c3 log(n)}∞n=1 such that Gn is (c1n, c2n)-depth-robust.

2.2 Graph Pebbling

We fix our notation for the parallel graph pebbling game following [?].

Definition 2 (Parallel/Sequential Graph Pebbling). Let G = (V,E) be a
DAG and let T ⊆ V be a target set of nodes to be pebbled. A pebbling config-
uration (of G) is a subset Pi ⊆ V . A legal parallel pebbling of T is a sequence
P = (P0, . . . , Pt) of pebbling configurations of G where P0 = ∅ and which satisfies
conditions 1 & 2 below. A sequential pebbling additionally must satisfy condition
3.

1. At some step every target node is pebbled (though not necessarily simultane-
ously).

∀x ∈ T ∃z ≤ t : x ∈ Pz.
2. Pebbles are added only when their predecessors already have a pebble at the

end of the previous step.

∀i ∈ [t] : x ∈ (Pi \ Pi−1) ⇒ parents(x) ⊆ Pi−1.

3. At most one pebble placed per step.

∀i ∈ [t] : |Pi \ Pi−1| ≤ 1 .

We denote with PG,T and P‖G,T the set of all legal sequential and parallel peb-

blings of G with target set T , respectively. Note that PG,T ⊆ P‖G,T . We will be
mostly interested in the case where T = sinks(G) and then will simply write PG
and P‖G.

Definition 3 (Time/Space/Cumulative Pebbling Complexity). The time,

space, space-time and cumulative complexity of a pebbling P = {P0, . . . , Pt} ∈ P‖G
are defined to be:

Πt(P) = t Πs(P) = max
i∈[t]
|Pi| Πst(P) = Πt(P)·Πs(P) Πcc(P) =

∑
i∈[t]

|Pi| .

For α ∈ {s, t, st, cc} and a target set T ⊆ V , the sequential and parallel pebbling
complexities of G are defined as

Πα(G,T) = min
P∈PG,T

Πα(P) and Π‖α(G,T) = min
P∈P‖G,T

Πα(P) .

When T = sinks(G) we simplify notation and write Πα(G) and Π
‖
α(G).

It follows from the definition that for α ∈ {s, t, st, cc} and any G the parallel
pebbling complexity is always at most as high as the sequential, i.e., Πα(G) ≥
Π
‖
α(G), and cumulative complexity is at most as high as space-time complexity,

i.e., Πst(G) ≥ Πcc(G) and Π
‖
st(G) ≥ Π‖cc(G).

In this work we will consider constant in-degree DAGs {Gn ∈ Gn,Θ(1)}n∈N,

and will be interested in the complexities Πst(Gn) and Π
‖
cc(Gn) as these will

capture the cost of evaluating the labelling function derived from Gn on a single
processor machine (e.g. a x86 processor on password server) and amortized AT
complexity (which is a good measure for the cost of evaluating the function on
dedicated hardware), respectively.

Before we state our main theorem let us observe some simple facts. Every n-
node graph can be pebbled in n steps, and we cannot have more than n pebbles
on an n node graph, thus

∀Gn ∈ Gn : Π‖cc(Gn) ≤ Πst(Gn) ≤ n2.

This upper bound is basically matched for the complete graph Kn = (V =
[n], E = {(i, j) : 1 ≤ i < j ≤ n}) as

n(n− 1)/2 ≤ Π‖cc(Kn) ≤ Πst(Kn) ≤ n2.

Graph Kn has the desirable properties that its Πst is within a constant factor to

its Π
‖
cc complexity and that its Π

‖
cc complexity is maximally high. Unfortunately,

Kn has very high indegree, which makes it useless for our purpose to construct
memory-hard functions. The path Qn = (V = [n], E = {(i, i+1) : 1 ≤ i ≤ n−1})
on the other hand has indegree 1 and its Πst is even exactly as large as its Π

‖
cc

complexity. Unfortunately it has very low pebbling complexity

Π‖cc(Qn) = Πst(Qn) = n

which means that in the labelling function we get from Qn (which is basically
PBKDF2 discussed in the introduction) the evaluation cost will not be dom-
inated by the memory cost even for large n. As stated in Theorem 1, in this
paper we construct a family of graphs {Gn ∈ Gn,2}n∈N which satisfies all three
properties at once: (1) the graphs have indegree 2 (2) the parallel cumulative

pebbling complexity is Π
‖
cc(Gn) ∈ Ω(n2/ log(n)), which by by Theorem 2 is op-

timal for constant indegree graphs, and (3) Πst(Gn) is within a constant factor

of Π
‖
cc(Gn).

3 Depth-Robustness Implies High Π‖
cc

In this section we state and prove a theorem which lowerbounds the Π
‖
cc of a

given DAG G in terms of its depth robustness.

Theorem 4. Let G be an (e, d)-depth-robust DAG, then Π
‖
cc(G) > ed.

Proof. Let (P1, . . . , Pm) be a parallel pebbling of minimum complexity, i.e.,∑m
i=1 |Pi| = Π

‖
cc(G). For any d, we’ll show that there exists a set B of size

|B| ≤ Π‖cc(G)/d such that there’s no path of length d in G−B, or equivalently,

G is not (Π
‖
cc(G)/d, d)-depth-robust, note that this implies the theorem.

For i ∈ [d] define Bi = Pi∪Pi+d∪Pi+2d We observe that by construction∑d−1
i=0 |Bi| ≤

∑m
i=1 |Pi| = Π

‖
cc(G), so the size of the Bi’s is ≤ Π

‖
cc(G)/d on

average, and the smallest Bi has size at most this. Let B be the smallest Bi, as

just outlined |B| ≤ Π‖cc(G)/d.
It remains to show that G−B has no path of length d. For this consider any

path v1, . . . , vd of length d in G. Let j be minimal such that vd ∈ Pj (so vd is
pebbled for the first time in round j of the pebbling). It then must be the case
that vd−1 ∈ Pj−1 (as to pebble vd in round j there must have been a pebble
on vd−1 in round j − 1). In round j − 2 either the pebble on vd−1 was already
there, or there was a pebble on vd−2. This argument shows that each of the
pebbling configurations {Pj−d+1, . . . , Pj} must contain at least one node from
v1, . . . , vd. As B contains each dth pebbling configuration, B contains at least
one of these pebbling configurations {Pj−d+1, . . . , Pj}. Specifically we can find
j − d+ 1 ≤ k ≤ j s.t Pk ⊆ B, thus the path v1, . . . , vd is not contained entirely
in G−B. �

An immediate implication of Theorem 4 and Theorem 3 is that there is an

infinite family of DAGs with maximal Π
‖
cc(G) = Ω(n2) whose indegree scales

with log n. Note that this means that allowing indegree as small as O(log(n))

is sufficient to get DAGs whose Π
‖
cc is within a constant factor of the n2 upper

bound on Π
‖
cc for any n node DAG. In the next section we will show how to

reduce the indegree to O(1) while only reducing Π
‖
cc(G) by a factor of O(log(n)).

Corollary 1 (of Theorem 4 and Theorem 3). For some constants c1, c2 > 0
there exists an infinite family of DAGs {Gn,δ ∈ Gn,δ}∞n=1 with δ ≤ c1 log(n)

and Π
‖
cc(G) ≥ c2n

2. This is optimal in the sense that for any family {δn ∈
[n]}∞n=1 and {Jn ∈ Gn,δn}∞n=1 it holds that Π

‖
cc(Jn) ∈ O(n2). Moreover if δn =

o(log(n)/ log log(n)) then Π
‖
cc(Jn) = o(n2) = o(Π

‖
cc(Gn)).

Corollary 2 lower bounds the cost of pebbling a target set T given a starting
pebbling configuration S. In particular, if the ancestors of T in G−S induce an

(e, d)-depth-robust DAG then the pebbling cost is at least Π
‖
cc(G− S, T) ≥ ed.

We will use Corollary 2 to lower bound Π
‖
cc for iMHFs like Argon2i and SB.

Corollary 2 (of Theorem 4). Given a DAG G = (V,E) and subsets S, T ⊂ V
such that S ∩ T = ∅ let G′ = G − (V \ ancestorsG−S(T)). If G′ is (e, d)-depth

robust then the cost of pebbling G− S with target set T is Π
‖
cc(G− S, T) > ed.

Proof. Note that Π
‖
cc(G − S, T) ≥ Π

‖
cc(G′) since we will need to pebble every

node in the set ancestorsG−S(T) = V (G′) to reach the target set T in G−S. By

Theorem 4, we have Π
‖
cc(G′) > ed. �

Corollary 3 states that it remains expensive to pebble any large enough set of
remaining nodes in a depth-robust graph even if we are permitted to first remove
an arbitrary node set of limited size. An application of Corollary 3 might involve
analysing the cost of pebbling stacks of depth-robust graphs. For example if there
are not enough pebbles on the graph at some point in time then there must be
some layers with few pebbles. If we can then show that many of the nodes on
those layers will eventually need to be (re)pebbled then we can use this lemma
to show that the remaining pebbling cost incurred by these layers is large.

Corollary 3 (of Theorem 4). Let DAG G = (V,E) be (e, d)-depth-robust and
let S, T ⊂ V such that

|S| ≤ e and T ∩ S = ∅.

Then the cost of pebbling G − S with target set T is Π
‖
cc(G − S, T) > (e −

|S|) (d− |ancestorsG−S(T)|).

Proof. Let G′ = G − (V − ancestorsG−S(T)) and observe that G′ is, at min-
imum, (e− |S|, d− |ancestorsG−S(T)|)-depth robust. By Corollary 2 we have

Π
‖
cc(G− S, T) ≥ Π‖cc(G′) > (e− |S|) (d− |ancestorsG−S(T)|). �

We remark that Theorem 4 is a special case of Corollary 3 by setting S = ∅
letting T = sinks(G). Recall that Π

‖
cc(G) is the parallel pebbling of minimal

cumulative cost when pebbling all sinks of G, this requires pebbling all nodes of
G at least once.

4 Indegree Reduction: Constant Indegree with Maximal
Π‖

cc

In this section we use the result from the previous section to show a new, more
efficient, degree-reduction lemma. We remark that Lemma 1 is similar to [?,
Lemma 9] in that both reductions replace high indegree nodes v in G with a
path. However, we stress two key differences between the two results. First,
our focus is on reducing the indegree while preserving depth-robustness. By

contrast, [?, Lemma 9] focuses directly on preserving Π
‖
cc. Second, we note that

the guarantee of [?, Lemma 9] is weaker in that it yields a reduced indegree

graph G′ whose size grows by a factor of indeg (n′ ≤ n × indeg) while Π
‖
cc

can drop by a factor of indeg — [?, Lemma 9] shows that Π
‖
cc(G′) ≥ Π‖cc(G)

indeg−1 .

By contrast, setting γ = indeg in Lemma 1 yields a reduced indegree graph G′

whose size grows by a factor of 2 × indeg (n′ ≤ 2n × indeg) and better depth-
robustness (e′, d′) = (e, d× indeg). In particular, when we apply Theorem 4 the

lower-bound Π
‖
cc(G′) ≥ ed× indeg improves by a factor of indeg when compared

with the original graph G.

Lemma 1. Let G be a (e, d)-depth-robust DAG. For γ ∈ Z≥0 there exists a
(e, dγ)-depth-robust DAG G′ with

size(G′) ≤ (indeg(G)+γ)·size(G) , indeg(G′) = 2 and Πst(G
′) ≤ size(G′)2

γ
.

Proof. Fix a γ ∈ Z≥0 and let δ = indeg(G). We identify each node in V ′ with
an element of the set V × [δ+ γ] and we write 〈v, j〉 ∈ V ′. For every node v ∈ V
with αv := indeg(v) ∈ [0, δ] we add the path pv = (〈v, 1〉, 〈v, 2〉, . . . , 〈v, αv + γ〉)
of length αv + γ. We call v the genesis node and pv its metanode. In particular
V ′ = ∪v∈V pv. Thus G has size at most (δ + γ)n.

Next we add the remaining edges. Intuitively, for the ith incoming edge (u, v)
of v we add an edge to G′ connecting the end of the metanode of u to the ith node
in the metanode of v. More precisely, for every v ∈ V , i ∈ [indeg(v)] and edge
(ui, v) ∈ E we add edge (〈ui, indeg(ui) + γ〉, 〈v, i〉) to E′. It follows immediately
that G′ has indegree (at most) 2.

Fix any node set S ⊂ V ′ of size |S| ≤ e. Then at most e metanodes can share
a node with S. For each such metanode remove its genesis node in G. As G is
(e, d)-depth-robust we are still left with a path p of length (at least) d in G. But
that means that after removing S from G′ there must remain a path p′ in G′

running through all the metanodes of p and |p′| ≥ |p|γ ≥ dγ. In other words G′

is (e, dγ)-depth-robust.
To see that Πst(G

′) ≤ size(G′)2/γ we simply pebble G′ in topological order.
We note that we never need to keep more than one pebble on any metanode
pv = (〈v, 1〉, 〈v, 2〉, . . . , 〈v, αv + γ〉) with αv = indeg(v). Once we pebble the last
node 〈v, αv + γ〉 we can permanently discard any pebbles on the rest of pv since
〈v, αv + γ〉 is the only node with outgoing edges. �

Proof of Theorem 1. Theorem 1 follows by applying Lemma 1 to the family from
Theorem 3 with γ = indeg = log n. We get that for some fixed constants c1, c2 >
0 there exists an infinite family of indegree 2 DAGs {Gn ∈ Gn,2}∞n=1 where Gn is
(c1n/ log n, c2n)-depth robust and Πst(Gn) ≤ O

(
n2/ log(n)

)
. By Theorem 4 then

Π
‖
cc(Gn) > (c1c2)n2/ log(n), which is basically optimal for constant indegree

DAGs by Theorem 2. �

5 Security Proofs of Candidate iMHFs

On the surface, in this and the next section we give both security proofs and
nearly optimal attacks for several of the most prominent iMHF proposals. That
is we show both lower and (relatively tight) upperbounds on their asymptotic
memory-hardness in the PROM. However, more conceptually, we also introduce

two new proof techniques for analysing the depth-robustness of DAGs as well as
a new very memory-efficient class of algorithms for pebbling a DAG improving
on the techniques used in [?]. Indeed for all candidates considered the attack in
the next section is almost optimal in light of the accompanying security proofs
in this section.

More specifically, in the first subsection we prove bounds for a class of random
graphs which generalize the Argon2i-A construction [?] and the Single Buffer
(SB) variant of Balloon Hashing [?]. To prove the lowerbound we use a simple
and clean new technique for bounding the depth-robustness of a random DAG.

In particular, we show that a random DAG is almost certainly
(
e, Ω̃

(
n2/e2

))
-

depth robust for any e >
√
n. Combined with Theorem 4 we could immediately

obtain a lower bound of Ω̃
(
n1.5

)
. We can improve the lower bound to Ω̃

(
n5/3

)
by introducing a stronger notion of depth-robustness that we call block depth-
robustness.

In the second subsection we prove bounds for a family of layered graphs
which generalize both of the Catena constructions [?] as well as Linear (Lin) and
Double Buffer (DB) variants of Balloon Hashing [?]. In particular, we introduce
a new technique for proving lowerbounds on the cumulative pebbling complexity
of a graph without going through the notion of depth-robustness. For example
the (single layer) version of the Catena Dragonfly graph has the worst possible
depth-robustness of any graph of linear depth. This shows that (in the lower
but still non-trivial regimes of) cumulative complexity alternative combinatorial
structures exist besides depth-robustness that can also confer some degree of
pebbling complexity.

5.1 Lowerbounding the CC of Random DAGs.

We begin by defining a (n, δ, w)-random DAG, the underlying DAGs upon which
Argon2i-A and SB are based. The memory window parameter w specifies the
intended memory usage and throughput of the iMHF — the cost of the näıve

pebbling algorithm is Π
‖
cc(N) = wn. In particular, a t-pass Argon2i-A iMHF

is based on a (n, 2, n/t)-random DAG. Similarly, a t-pass Single-Buffer (SB)
iMHF [?] is based on a (n, 20, n/t)-random DAG. In this section we focus on the
t = 1-pass variants of the Argon2i-A and [?] iMHFs.

Definition 4 ((n, δ, w)-random DAG). Let n ∈ N, 1 < δ < n, and 1 ≤ w ≤ n
such that w divides n. An (n, δ, w)-random DAG is a randomly generated directed
acyclic (multi)graph with n nodes v1, . . . , vn (which we identify with the set [n]
according to there topological order) and with maximum in-degree δ for each
node. The graph has directed edges (vi, vi+1) for 1 ≤ i < n and random forward
edges (vr(i,1), vi), . . . , (vr(i,δ−1), vi) for each node vi. Here, r(i, j) is independently
chosen uniformly at random from the set [max{0, i− w}, i− 1].

Theorem 5 states that for a (n, δ, n)-random DAG G such as Argon2i-A or

SB we almost certainly have Π
‖
cc(G) = Ω̃

(
n5/3

)
.

Theorem 5. Let G be a (n, δ, n)-random DAG then, except with probability
o
(
n−7

)
, we have

Π‖cc(G) = Ω̃
(
n5/3

)
.

Security Lower Bound. To prove the lower bound we rely on a slightly stricter
notion of depth robustness. Given a node v let N(v, b) = {v − b + 1, . . . , v}
denote a segment of b consecutive nodes ending at v and given a set S ⊆ V (G)
let N(S, b) =

⋃
v∈S N(v, b). We say that a DAG G is (e, d, b)-block depth-robust

if for every set S ⊆ V (G) of size |S| ≤ e we have depth(G−N(S, b)) ≥ d. Notice
that when b = 1 (e, d, b)-block-depth robustness is equivalent to (e, d)-depth-
robustness. However, when b > 1 (e, d, b)-block-depth robustness is a strictly
stronger notion since the set N(S, b) may have size as large as |N(S, b)| = eb. 8

The proof of Theorem 5 relies on Lemma 2, which states that for any e ≥
√
n,

with high probability, a (n, 2, n)-random DAG G will be (e, d, b)-block depth-

robust with d = n2

e2polylog(n) and b = n/(20e). By contrast Lemma 9 states that

G will be (e, d)-reducible with d = Õ
(
n2/e2

)
.

Lemma 2. For any e ≥
√
n any any δ ≥ 2 a (n, δ, n)-random DAG will be(

e,Ω
(

n2

e2 log(n)

)
, n

20e

)
-block depth robust except with negligible probability in n.

Setting e =
√
n in Lemma 2 and applying Theorem 4 already implies that

Π
‖
cc(G) = Ω̃

(
n1.5

)
. To obtain the stronger bound in Theorem 5 we rely on Corol-

lary 2 combined with a more sophisticated argument exploiting block depth-
robustness.

In more detail, let G be an (n, δ, n)-random DAG and let tj denote the first
time we place a pebble on node j. Observe that, since G contains all edges of
the form (j, j + 1) it must be that tj+i − tj ≥ i in any legal pebbling of G. We
will show that for any j > n/2 a legal pebbling must (almost certainly) incur a
cost of Ω̃

(
n4/3

)
between pebbling steps tj and tj+2k where k = Θ̃

(
n2/3

)
. That

is
∑tj+2k

t=tj
|Pt| = Ω̃

(
n4/3

)
for any legal pebbling of G. Thus,

∑tn
t=tn/2+1

|Pt| =

Ω̃
(
n4/3 n/2

k

)
= Ω̃

(
n5/3

)
. In the remaining discussion we set e = Ω̃

(
n2/3

)
,

d = Ω̃
(
n2/3

)
and b = Ω̃

(
n1/3

)
.

To show that
∑tj+2k

t=tj
|Pt| = Ω̃

(
n4/3

)
we consider two cases: we either have

|Pt| ≥ e/2 = Ω̃
(
n2/3

)
pebbles on the DAG during each round tj ≤ t ≤ tj+k, or

we do not. In the first case we trivially have
∑tj+2k

t=tj
|Pt| ≥ ke/2 = Ω̃

(
n4/3

)
.

The second case is the trickier one to handle. To address it we essentially
show that if, at some moment t′, few pebbles are left on G then between t′ and
tj+2k it must be that (in particular) a depth-robust sub-graph of G was pebbled
which we know requires a high pebbling cost. In more detail, suppose at some
moment t′ ∈ [tj , tj+k] only |Pt| < e/2 pebbles remain on G. Then we consider the

8 In particular, (e, d, b ≥ 1)-block depth robustness implies (e, d)-depth robustness.
However, (e, d)-depth robustness only implies (e/b, d, b)-block depth robustness.

sub-graph H induced by the node set ancestorsG1−N(Pt′ ,b)
([j + k + 1, j + 2k]).

We observe that, on the one hand, H must be fully pebbled during the interval
[t′, tj+2k]. On the other hand, we observe that G1 = G − {n/2 + 1, . . . , n} is
a (n/2, δ, n/2)-random DAG and, hence, by Lemma 2, G1 is (almost certainly)

(e, d, b)-block depth robust with e = Ω̃
(
n2/3

)
, d = Ω

(
n2/3

log(n)

)
and b = Ω̃

(
n1/3

)
.

By exploiting the block depth robustness of G1 we can show that H must itself

be
(
Ω̃
(
n2/3

)
, Ω̃
(
n2/3

))
-depth robust. But then by Corollary 2 we get that H

has cumulative complexity Ω̃(n4/3) and so have

tj+2k∑
t=tj+k+1

|Pt| ≥ Π‖cc (G1 − Pt′ , [j + k + 1, j + 2k]) ≥ Ω̃
(
n4/3

)
.

The proofs of Lemma 2 and Theorem 5 can be found in the full version. We
now make a couple of observations about Lemma 2 and Theorem 5.

1. The lower bounds from Lemma 2 and Theorem 5 also apply to Argon2i-B.
An Argon2i-B DAG G is similar to an (n, δ, n)-random DAG except that the
randomly chosen forward edge (r(i), i) for each node i is not chosen from
the uniform distribution. However, these edges are still chosen independently
and for each pair j < i we still have Pr[r(i) = j] = Ω(1/i). These are the
only properties we used in the proofs of Lemma 2 and Theorem 5. Thus,
essentially the same analysis shows that (whp) an Argon2i-B DAG G is(
e,Ω

(
n2/e2

)
, n

20e

)
-block depth robust and that Π

‖
cc(G) = Ω̃

(
n5/3

)
.

2. The lower bound from Lemma 2 is tight up to polylogarithmic factors. In
particular, a generalization of an argument of Alwen and Blocki [?] shows

that a (n, δ, n)-random DAG is
(
e, Ω̃

(
n2

e2

))
-reducible — see Lemma 9. How-

ever, this particular upper bound does not extend to Argon2i-B.

3. The lower bound from Theorem 5 might be tight. Alwen and Blocki [?] gave

an attack A such that Π
‖
cc(A) = O

(
n1.75δ log n

)
for a (n, δ, t)-random DAG.

In the following section we reduce the gap of Õ
(
n1/12

)
further by developing

an improved recursive version of the attack of Alwen and Blocki [?]. In

particular, we show that for any ε > 0 we have Π
‖
cc(A) = o

(
n1+
√

1/2+ε
)

=

o
(
n1.708

)
. Our modified attack also improves the upper bound for other

iMHF candidates like Catena [?].

4. Theorem 4 alone will not yield any meaningful lower bounds on the Π
‖
cc of

the Catena iMHFs [?]. In particular, the results from Alwen and Blocki [?]
imply that for any t-pass variant of Catena the corresponding DAG is (e, d)-
reducible for ed ≥ nt (typically, t = O(polylog(n))). However, in the re-
mainder of this section, we use an alternative techniques to prove that

Π
‖
cc(G) = Ω

(
n1.5

)
for the both Catena iMHFs and the Linear and DB

iMHFs of [?].

5.2 Lowerbounding Dispersed Graphs

In this section we define dispersed graphs and prove a lowerbound on their CC.
Next we show that several of the iMHF constructions from the literature are
based on such graphs. Thus we obtain proofs of security for each of these con-
structions (albeit for limited levels of security). In the subsequent section we give
an upperbound on the CC of these constructions showing that the lowerbounds
in this section are relatively tight.

Generic Dispersed Graphs. Intuitively a (g, k)-dispersed DAG is a DAG
ending with a path φ of length k which has widely dispersed dependencies. The
following definitions make this concept precise.

Definition 5 (Dependencies). Let G = (V,E) be a DAG and L ⊆ V . We say
that L has a (z, g)-dependency if there exist node disjoint paths p1, . . . , pz each
ending in L and with length (at least) g.

We are interested in graphs with long paths with many sets of such depen-
dencies.

Definition 6 (Dispersed Graph). Let g ≤ k be positive integers. A DAG G
is called (g, k)-dispersed if there exists a topological ordering of its nodes such
that the following holds. Let [k] denote the final k nodes in the ordering of G and
let Lj = [jg, (j + 1)g − 1] be the jth subinterval. Then ∀j ∈ [bk/gc] the interval
Lj has a (g, g)-dependency.

More generally, let ε ∈ (0, 1]. If each interval Lj only has an (εg, g)-dependency
then G is called (ε, g, k)-dispersed.

We show that many graphs in the literature consist of a stack of dispersed
graphs. Our lowerbound on the CC of a dispersed graph grows in the height of
this stack. The next definition precisely captures such stacks.

Definition 7 (Stacked Dispersed Graphs). A DAG G = (V,E) is called
(λ, ε, g, k)-dispersed if there exist λ ∈ N+ disjoint subsets of nodes {Li ⊆ V },
each of size k with following two properties.

1. For each Li there is a path running through all nodes of Li.
2. Fix any topological ordering of G. For each i ∈ [λ] let Gi be the sub-graph

of G containing all nodes of G up to the last node of Li. Then Gi is an
(ε, g, k)-dispersed graph.

We denote the set of (λ, ε, g, k)-dispersed graphs by Dλ,kε,g .

We are now ready to state and prove the lowerbound on the CC of stacks of
dispersed graphs.

Theorem 6.

G ∈ Dλ,kε,g ⇒ Π‖cc(G) ≥ ελg
(
k

2
− g
)
.

Intuitively we sum the CC of pebbling the last k nodes Li of each sub-graph
Gi. For this we consider any adjacent intervals A of 2g nodes in Li. Let p be a
path in the (εg, g)-dependency of the second half of A. Either at least one pebble
is always kept on p while pebbling the first half of A (which takes time at least
g since a path runs through Li) or p must be fully pebbled in order to finish
pebbling interval A (which also takes time at least g). Either way pebbling A
requires an additional CC of g per path in the (εg, g)-dependency of the second
half of A. Since there are k/2g such interval pairs each with εg incoming paths
in their dependencies we get a total cost for that layer of kgε/2. So the cost for
all layer of G is at least λkgε/2. The details (for the more general case when g
doesn’t divide n) can be found in the full version.

The Graphs of iMHFs. We apply Theorem 6 to some important iMHFs from
the literature. For this we first describe the particular DAGs (or at least their
salient properties) underlying the iMHF candidates for which we prove lower-
bounds in this section. Then we state a theorem summarizing our lowerbounds
for these graphs. Finally we prove the theorem via a sequence of lemma; one per
iMHF being considered.

Catena Dragonfly. We begin with the Catena Dragonfly graph. We briefly recall
the properties of the DFGnλ construction, relevant to our proof, summarized in
the following lemma which follows easily from the definition of DFGnλ in [?, Def.
8 & 9].

For this we describe the “bit-reversal” function (from which the underlying
bit-reversal graph derives its name). Let k ∈ N+ such that c = log2 k is an
integer. On input x ∈ [k] the bit-reversal function br(·) : [k]→ [k] returns y + 1
such that the binary representation of x − 1 using c bits is the reverse of the
binary representation of y using c bits.

Lemma 3 (Catena Dragonfly). Let λ, n ∈ N+ be such that k = n/(λ+1) is a
power of 2. Let G = DFGnλ be the Catena Bit Reversal graph. Then the following
holds:

1. G has n nodes.
2. Number them in topological order with the set [n] and ∀i ∈ [0, λ] let node set

Li = [1 + ik, (i+ 1)k]. A path runs through all nodes in each set Li.
3. Node ki+ x ∈ Li has an incoming edge from k(i− 1) + br(x) ∈ Li−1.

Catena Butterfly. Next describe the graph underlying the Catena Butterfly
graph. We summarize its key properties relevant to our proof in the follow-
ing lemma (which follows immediately by inspection of the Catena Butterfly
definition [?, Def. 10 & 11]).

Lemma 4 (Catena Butterfly Graph). Let λ, n ∈ N+ such that n = n̄(λ(2c−
1) + 1) where n̄ = 2c for some c ∈ N+. Then the Catena Butterfly Graph BFGnλ
consists of a stack of λ sub-graphs such that the following holds.

1. The graph BFGnλ has n nodes in total.

2. The graph BFGnλ is built as a stack of λ sub-graphs {Gi}i∈[λ] each of which is
a superconcentrator9. In the unique topological ordering of BFGnλ denote the
first and final n̄ nodes of each Gi as Li,0 and Li,1 respectively. Then there
is a path running through all nodes in each Li,1.

3. Moreover, for any i ∈ [λ] and subsets S ⊂ Li,0 and T ⊂ Li,1 with |S| =
|T | = h ≤ n̄ there exist h node disjoint paths p1, . . . , ph of length 2c from S
to T .

Balloon Hashing Linear. Finally we describe the graph underlying both the
Linear and DB construction [?]. The graph G = Linστ is a pseudo-randomly
constructed τ -layered graph with indeg(G) = 21. It is defined as follows:

– G = (V,E) has n = στ nodes V = [n], and G contains a path 1, 2, . . . , n
running through V .

– For i ∈ [0, τ − 1] let Li = [iσ + 1, (i + 1)σ] denote the i’th layer. For each
node x ∈ Li, with i > 0, we select 20 nodes y1, . . . , y20 ∈ Li−1 (uniformly at
random) and add the directed edges (y1, x), . . . , (y20, x) to E.

5.3 The Lowerbounds.

Now that we have our lowerbound for stacks of dispersed graphs it remains
to analyse for which parameters each of the above three graphs can be viewed
as being dispersed graphs. The results of this analysis are summarized in the
theorem bellow.

Theorem 7. [iMHF Constructions Based on Dispersed Graphs]

– If λ, n ∈ N+ such that n = n̄(λ(2c − 1) + 1) where n̄ = 2c for some c ∈ N+

then it holds that

BFGnλ ∈ Gn,3 BFGnλ ∈ Dλ,n̄
1,d√n̄e Π‖cc(BFG

n
λ) = Ω

(
n1.5

c
√
cλ

)
.

– If λ, n ∈ N+ such that k = n/(λ+ 1) is a power of 2 then it holds that

DFGnλ ∈ Gn,2 DFGnλ ∈ Dλ,k
1,d√ke Π‖cc(DFG

n
λ) = Ω

(
n1.5

√
λ

)
.

– If σ, τ ∈ N+ such that n = σ ∗ τ then with high probability it holds that

Linστ ∈ Gn,21 Linστ ∈ Dτ−1,σ
0.25,

√
σ/2

Π‖cc(Lin
σ
τ) = Ω

(
n1.5

√
τ

)
.

The theorem is proven in the following three lemma bellow (one lemma per
graph). We begin with the graph for Catena Dragonfly.

9 A superconcentrator is a DAG with m inputs and outputs such that any subset of
s ∈ [m] inputs and outputs are connected by s node disjoint paths.

Lemma 5. It holds that DFGnλ ∈ Dλ,k
1,
√
k

where k = n
(λ+1) and Π

‖
cc(DFG

n
λ) =

Ω
(
n1.5
√
λ

)
.

Proof of Lemma 5. Let G = DFGnλ and set k = n/(λ+1), c = log2 k and g =
√
k.

By construction c is an integer. For simplicity assume c is even and so g ∈ N+.10

Number the nodes of G according to (the unique) topological order with the
set [0, n− 1]. It suffices to show that for all i ∈ [λ] the sub-graph Gi consisting
of nodes [(i + 1)k − 1] is (g, k)-dispersed (with probability ε = 1). If this holds

then Theorem 6 immediately implies that Π
‖
cc

(
DFGnλ

)
= Ω

(
n1.5
√
λ

)
.

Recall that G consists of layerls Li of length k. For each j ∈ [k/2g] let Li,j
be the jth interval of 2g nodes of Li. Let Ri,j be the second half of Li,j . We
will show that there are g node-disjoint paths each terminating in Ri,j whose
remaining nodes are all in layer Li−1. Let node set Sx = [s+ y − (g − 2), s+ y]
where y = br(x) and s = (i− 1)k. The next three properties follow immediately
from Lemma 3 and they imply the lemma.

– ∀x ∈ R it holds that Sx ⊂ Li−1.
– ∀x ∈ R there is a path of length g going through the nodes of Sx and ending

in x.
– ∀ distinct x, x′ ∈ R sets Sx and Sx′ are disjoint. �

Next we turn to the Catena Dragonfly graph.

Lemma 6. Let λ, n ∈ N+ such that n = n̄(λ(2c− 1) + 1) with n̄ = 2c for some

c ∈ N+. It holds that BFGnλ ∈ Dλ,n̄1,g for g =
⌈√

n̄
⌉

and Π
‖
cc(BFG

n
λ) = O

(
n1.5

c
√
cλ

)
.

Proof of Lemma 6. Let G = BFGnλ and let G1, G2, . . . , Gλ be the sub-graphs
of G described in Lemma 4. We will show that each Gi is (g, n̄)-dispersed for
g =

⌊√
n̄
⌋
. Fix arbitrary i ∈ [λ] and L1 be the last n̄ nodes in the (the unique)

topological ordering of Gi. We identify the nodes in L1 with the set {1}×[n̄] such
that the second component follows their topological ordering. Let ḡ = bn̄/gc and
for each j ∈ [ḡ] let L1,j = {〈1, jg + x〉 : x ∈ [0, g − 1]}. We will show that L1,j

has a (g, g)-dependency.
Let L0 be the first n̄ nodes of Gi which we identify with the set {0} × [n̄]

(again with the second component respecting their topological ordering). Notice
that for n > 1 and g =

⌊√
n̄
⌋

it holds that g(g − 2c + 1) ≤ n. Thus the set
S = {〈0, i(g − 2c+ 1)〉 : i ∈ [g]} is fully contained in L0. Property (3) of Lemma 4
implies there exist g node disjoint paths from S to L1,j of length 2c. In particular
L1,j has a (g, 2c)-dependency.

We extend this to a (g, g)-dependency. Let path p, beginning at node 〈0, v〉 ∈
S, be a path in the (g, 2c)-dependency of L1,j . Prepend to p the path traversing

(〈0, v − (g − 2c− 1)〉, 〈0, v − (g − 2c− 2)〉, . . . , 〈0, v〉)
10 The odd case is identical but with messy but inconsequential rounding terms.

to obtain a new path p+ of length g. As this is a subinterval of L0 property
(2) of Lemma 4 implies this prefix path always exists. Moreover since any paths
p 6= q in a (g, 2c)-dependency of L1,i are node disjoint they must, in particular,
also begin at distinct nodes 〈0, vp〉 6= 〈0, vq〉 in S. But by construction of S any
such pair of nodes is separated by g − 2c nodes. In particular paths p+ and q+

are also node disjoint and so by extending all paths in a (2c, g)-dependency we
obtain a (g, g)-dependency for L1,i. This concludes the first part of the lemma.

It remains to lowerbound Π
‖
cc(BFG

n
λ) using Theorem 6.

Π‖cc(BFG
n
λ) ≥ λg

(
k

2
− g
)
≥ λ

⌊√
n̄
⌋(n̄

2
−
⌊√

n̄
⌋)

= λ
√
n̄
(n̄

2
−
√
n̄
)
−O(n̄) = Ω

(
λn̄1.5

)
= Ω

(
n1.5

c
√
cλ

)
.

�
Finally we prove a lowerbound for the Linear and DB variants of Balloon Hash-
ing.

Lemma 7. If σ, τ ∈ N+ such that n = στ then with high probability it holds
that

Linστ ∈ Gn,21 Linστ ∈ Dτ−1,σ
0.25,

√
σ/2

Π‖cc(Lin
σ
τ) = Ω

(
n1.5

√
τ

)
.

Proof. (sketch) It suffices to show that Linστ ∈ Dτ−1,σ
0.25,

√
σ/2

. By Theorem 6 it

immediately follows that

Π‖cc(Lin
σ
τ) ≥ (τ − 1)

√
σ/2

4

(
σ/2−

√
σ/2

)
= Ω

(
n1.5

√
τ

)
.

Fix any i ∈ [0, τ−1]. Consider layer Li and given set Sx = [x, x+
√
σ/2−1] ⊂ Li

denoting an interval of
√
σ/2 nodes in Li begining at node x. Without loss of

generality we suppose that each node in Sx only has one randomly chosen parent
in Li−1 — adding additional edges can only improve dispersity. We partition Li−1

into
√
σ intervals of length

√
σ. We say that an interval [u, u+

√
σ − 1] ⊂ Li−1

is covered by Sx if there is exists edge (y, v) from the second half of the interval
to a node in Sx; that is if y ∈ [u +

√
σ/2, u +

√
σ − 1] and v ∈ Sx. In this case

the path (u, u + 1, . . . , y, v) has length ≥
√
σ/2 and this path will not intersect

the corresponding paths from any of the other (disjoint) intervals in Li−1 (recall
that we are assuming that v ∈ Sx only has one parent in Li−1). The probability
that an interval [u, u+

√
σ − 1] ⊂ Li−1 is covered by Sx is at least

1−
(

1−
√
σ/2

σ

)√σ
≈ 1−

√
1/e .

Thus, in expectation we will have at least µ =
√
σ
(

1−
√

1/e
)
≥ 0.39 ×

√
σ

node disjoint paths of length
√
σ/2 ending in Sx. Standard concentration bounds

imply that we will have at least
√
σ/4 such paths with high probability. �

6 New Memory-Efficient Evaluation Algorithm and
Applications

In this section we introduce a new generic parametrized pebbling algorithm for
DAGs (i.e. an evaluation algorithm for an arbitrary iMHF). We upperbound the
pebbling strategy’s cumulative pebbling complexity in terms of its parameters.
In particular we see that for graphs which are not depth-robust there exist
parameter settings for which the algorithm results in low CC pebbling strategies.
Next we instantiate the parameters to obtain attacks on the random graphs
defined in the previous section. By “attack” we mean that, for Argon2i-A and SB,
the algorithm has significantly less asymptotic memory-hardness in the PROM
than both that of their näıve algorithms, and even that of the attack in [?].

Review of [?]. In order to describe the results in this section we first review the
generic pebbling algorithm PGenPeb of [?] which produces a pebbling P1, P2, . . . , Pn
of G as follows. PGenPeb takes as input a node set S ⊂ V of size |S| = e such
that removing S reduces the depth of the DAG depth(G − S) ≤ d. Intuitively,
keeping pebbles on S compresses G in the sense that G can now quickly be
entirely (re)pebbled within d (parallel) steps. This is because when S is al-
ready pebbled then no remaining unpebbled path has length greater than d.
Algorithm PGenPeb never removes pebbles from nodes in S and its goal is
to always pebble node i at time i so as to finish in n = size(G) steps.11 To
ensure that parents of node i are all pebbled at time i algorithm PGenPeb
sorts nodes in topological order and partitions them into consecutive intervals
of g nodes (where g ∈ [d, n] is another input parameter). Nodes in interval
Ic = [(c− 1)g + 1, cg] ∩ [n] ⊂ V are pebbled during “light phase” Λc which runs
for g time steps. To ensure that the result is a legal pebbling, PGenPeb guar-
antees the following invariant I: just before light phase Λc begins (i.e. at time
(c − 1)g) we have Xcg = parents(Ic) ∩ [(c − 1)g] ⊂ P(c−1)g so that we begin Λc
with all of the necessary pebbles. Now, in phase Λc algorithm PGenPeb simply
places a pebble on node i ∈ Ic at time i.

Notice that for c = 1, X1 = ∅ and so I is trivially satisfied. Let c > 1.
Partition Xcg into X−cg = Xcg ∩ [(c − 1)g − d + 1] and X+

cg = Xcg \ X−cg. Since
X+
cg is pebbled in the final d steps of light phase Λc−1, PGenPeb can simply not

remove those until time step (c− 1)g. In order to ensure that X−cg is pebbled at
that time PGenPeb also runs a “balloon phase” Bc−1 in parallel with the final d
steps of Λc−1.12 Intuitively in phase Bc−1 all nodes in [(c− 1)g] ⊆ V are quickly
“decompressed” by greedily re-pebbling everything possible in parallel. Recall
that pebbles are never removed from nodes in S. So at time j all of S ∩ [j] is

11 Formally, i ∈ Pi and S ∩ [i] ⊆ Pi for each i ≤ n.
12 Recall that g ≥ d so Λc−1 lasts long enough to accommodate Bc−1.

already pebbled. Therefore, at time (c− 1)g, there is no unpebbled path longer
than d nodes within the first [(c − 1)g] nodes and so Bc−1 can indeed entirely
(and legally) repebble those nodes (and so in particular X−cg). Thus, together
with the nodes in X+

cg pebbled in the final d steps of Λc−1 it follows that I also
holds for Λc.

The runtime of PGenPeb is n. Thus the cost is at most Π
‖
cc(PGenPeb) ≤

en+ δgn+ dn/ge(dn) where δ = indeg(G). The en term upper bounds the cost
of always keeping pebbles on S, δgn bounds the cost of all light phases, and the
third term upper bounds the cost of all balloon phases — each balloon phase
costs at most dn and at most dn/ge balloon phases are run.

Notice that (for constant δ) we would like to set g ≤ e so that the second
term doesn’t dominate the first. Conversely, to keep the number of (expensive)
balloon phases at a minimum we also want g to be large. Therefore, as long as
e ≥ d, the asymptotically minimal complexity is obtained when g = e.

Recursive Attack: Intuition. Our new algorithm relies on the following key in-
sight. Algorithm PGenPeb can actually pebble, not just the sink with the above
complexity, but instead any target set T ⊆ V simultaneously.13 This more gen-
eral view allows us to recast the task of the balloon phase as such a pebbling
problem. The graph being pebbled is G′ = G − (S ∪ [(c − 1)g − d + 1]) and
the target set is X−c . So instead of implementing balloon phases with an expen-
sive greedy pebbling strategy as in PGenPeb we can apply the same strategy
as (the generalized version of) PGenPeb recursively. This is the approach of the
new algorithm RGenPeb. (The complete pseudocode of RGenPeb can be found
in the full version. For this approach to work we need that not only is G (e, d)-
reducible via some set S but that there is also a set S′ of size e′ > e such that
depth(G − S′) = d′ < d. Only when these conditions can no longer be met do
we have to resort to greedy pebbling for the balloon phases. As we show below,
it turns out that RGenPeb leads to improved attacks compared to PGenPeb for
the DAGs underlying key iMHFs like Argon2i, Catena and Balloon Hashing.

Outline. The remainder of this section has the following structure. First, in Lemma 8
we generalize the results of [?] to upperbound the CC of a graph by the cost
of pebbling all light phases plus the CC of the pebblings problems solved by
balloon phases. Next we define a generalization of (e, d)-reducible graphs called
f -reducible graphs; namely graphs which are (f(d), d)-reducible for all d ∈ [n].
This allows us to state the main theorem of this section. It considers a certain
class of functions f and upper bounds the complexity of RGenPeb on such f -
reducible graphs using any number k levels of recursion. To apply the theorem
to the iMHFs from the literature we prove Lemma 9 which describes the f -
reducibility of their underlying DAGs. Thus we obtain the final corollary of the
section describing new upperbounds on those iMHFs. At the end of this section
we give a more detailed description of RGenPeb and the proof of Lemma 8.

13 For example, in the final d steps of the execution one last balloon phase can be run
to (re)pebble all of G including T at no added cost to the asymptotic complexity.

Generalizing [?]. In order to derive the new pebbling strategy we first generalize
the results of [?]. Given a DAG G = (V,E), node set T ⊆ V and integer t we

define P‖G,T,t ⊆ P
‖
G,T to be the set of all parallel pebblings (P1, . . . , Pz) of G

such that z ≤ t. Analogously we let Π
‖
cc(G,T, t) = min

P∈P‖G,T,t
Π
‖
cc(P).

We remark that if depth(G) = d then Π
‖
cc(G,T, d) ≤ dn since we can greedily

pebble G in topological order in time depth(G). Lemma 8 provides an alternative

upper bound on Π
‖
cc(G,T, 2d).

Lemma 8. Let G = (V,E) be a DAG of size n, indegree δ and depth(G) ≤ d0. If
G is (e1, d1)-reducible with parameters e1, d1 such that 2d1n ≤ e1d0 and d1 ≤ d0

then for any target set T ⊆ V we have

Π‖cc(G,T, 2d0) ≤ (4δ + 4) e1d0 +
n

e1

 max
T ′⊆V−S1
|T ′|≤δ·e1

Π‖cc (G− S1, T
′, 2d1)

 ,

where S1 ⊆ V has size |S1| ≤ e1 such that depth (G− S1) ≤ d1.

To prove the lemma we first define the RGenPeb algorithm and argue the legality
of the pebbling it produces at the end of this section. Armed with this, it remains
only to upperbound the complexity of a call to RGenPeb in terms of the com-
plexity of the recursive call it makes. This involves a relatively straightforward
(but somewhat tedious) counting of the pebbles placed by RGenPeb, the details
of which can be found in the full version.

We observe that Lemma 8 generalizes the main result of [?] as that work only
considered the special case where balloon phases are implemented with a greedy
pebbling strategy. The advantage of the above formulation (and the more general
RGenPeb) is that now we can be apply the lemma (and algorithm) recursively.

In order to apply this lemma repeatedly we will need graphs which are
reducible for a sequence of points parameters (e, d) satisfying the conditions
laid out in Lemma 8 relating consecutive parameters. To help characterize such
graphs we generalize the notion of reducibility as follows.

Definition 8. Let G = (V,E) be a DAG with n nodes and let f : N → N be a
function. We say that G is f -reducible if for every positive integer n ≥ d > 0
there exists a set S ⊆ V of |S| = f(d) nodes such that depth(G− S) ≤ d.

Next we state the main theorem of this section which, for a certain class of
natural functions f , upperbounds the CC of any f -reducible graph.

Theorem 8. Let G be a f -reducible DAG on n nodes then if f(d) = Õ
(
n
db

)
for

some constant 0 < b ≤ 2/3 and let a = 1−2b+
√

1+4b2

2 . Then for any constant
ε > 0

Π‖cc(G) ≤ O
(
n1+a+ε

)
.

The proof of Theorem 8 can be found in the full version. We briefly sketch
the intuition here. We define a sequence e1, e2, . . . and d1, d2, . . . such that G is

(ei, di)-reducible for each i, ei = nai+ε/3 and di = n
1−ai
b with

ai+1 = 1 +
(a− 1)(1− ai)

b
, where a1 = a =

1− 2b+
√

1 + 4b2

2
.

If b ≤ a we have ei+1di ≥ ndi+1 for every i so we can repeatedly invoke Lemma 9
as many times as we desire. By exploiting several key properties of the sequence
{ai}∞i=1 we can show that unrolling the recurrence k times yields a pebbling with
cost at most k (4δ + 2)n1+a+ε/3 + n1+a+ε/3dk. For any ε > 0 we can select the
constant k sufficiently large that dk ≤ nε/3. Thus, the pebbling cost is o

(
n1+a+ε

)
.

Analysing Existing iMHFs. We can now turn to applying Theorem 8 to iMHFs
from the literature. Lemma 9 below states that an (n, δ, n)-random DAGs and
λ-layered DAGs are f -reducible. In particular these are the types of DAGs un-
derlying all of the iMHFs considered in the previous section.

Lemma 9. Let fb(d) = Õ
(
n
db

)
then

1. Let δ = O(polylog(n)) then a (n, δ, n)-random DAG is f0.5-reducible with
high probability.

2. The Catena DAGs DFGnλ and BFGnλ are both f1-reducible for λ = O(polylog(n)).
3. The Balloon Hashing Linear (and the DB) graph Linστ is f1-reducible for

τ = O(polylog(n)).

The proof generalizes the arguments used in [?] to first establish a particular
pair (e, d) for which the graphs are reducible. It can be found in the full version.

Together with Theorem 8 and Lemma 9 we now obtain the main application
of RGenPeb which is described in the following corollary upperbounding the
memory-hardness of each of the considered iMHFs.

Corollary 4. Let ε > 0 be any constant

1. Let δ = O(polylog(n)) then an (n, δ, n)-random DAG G has Π
‖
cc(G) =

O
(
n1+
√

1/2+ε
)
≈ O

(
n1.707+ε

)
.

2. Both Π
‖
cc

(
DFGnλ

)
and Π

‖
cc (BFGnλ) are in Õ

(
n

13
8

)
= Õ

(
n1.625

)
.

3. Π
‖
cc

(
Linστ

)
= Õ

(
n

13
8

)
= Õ

(
n1.625

)
, where Linστ has n = τσ nodes.

We remark that Theorem 8 does not yield tighter bounds for Catena iMHFs
DFGnλ or BFGnλ or for Linστ . Each DAG is indeed fb reducible for any b ≤ 2/3

(even for b ≤ 1), but for b ≤ 2/3 it follows that a = 1−2b+
√

1+4b2

2 ≥ 2/3.

Thus, Theorem 8 yields an attack with cost O
(
n

5
3 +ε
)

, which does not im-

prove on the non-recursive PGenPeb attack in [?] as that has cost O
(
n

5
3

)
. How-

ever, we can set e1 = n5/8, e2 = n7/8 and exploit the fact that the DAGs are

(ei, di)-reducible with di = Õ(n/ei). Applying Lemma 8 twice we have Π
‖
cc(G) =

O
(
e1n+ n

e1

(
e2d1 + n

e2
nd2

))
= O

(
n13/8 + n3/8+7/8d1 + n3/8+1/8+1d2

)
= Õ

(
n

13
8

)
.

Note that e2d1 = Õ
(
n10/8

)
> Õ

(
n9/8

)
= nd2 so it is legal to invoke Lemma 8

for sufficiently large n.

The RGenPeb Algorithm. In the remainder of this section we sketch RGenPeb
algorithm and justify that it produces a legal pebbling. The analysis of its com-
plexity in terms of the complexity of its recursive call is contained in the proof
of Lemma 8. The final complexity of an execution requires unravelling the re-
cursive statement of Lemma 8 which is done in the proof of Theorem 8.

In the following we will ignore rounding errors here as they are inconse-
quential for the asymptotic behaviour while adding needless complexity to the
exposition. For completeness we observe that if RGenPeb finishes a light phase
and there is not enough steps left to complete a full light phase then it can sim-
ply runs the next light phase as far as it can (and completely omits any further
balloon phases). This affects neither the legality of the resulting pebbling nor its
asymptotic complexity.

Algorithm RGenPeb takes input a DAG G = (V,E), sets S1 ⊆ S2 ⊆ . . . ⊆
Sk ⊆ V , integers d1, d2, . . . , dk and a target set T such that ∀i ∈ [k] : eidi−1 ≥ ndi
and di ≥ depth(G − Si) where n = |V |, ei = |Si| and d0 = depth(G). For this
RGenPeb makes use of an arbitrary partition of the nodes of G into 2d0 into sets
D1, D2, . . . , D2d0 such that the following properties hold:14

Topologically Ordered: ∀j ∈ [2d0 − 1] parents(Dj+1) ⊆
⋃
y∈[j]Dy,

Maximum Size: ∀j ≤ 2d0 |Dj | ≤ n
d0

.

Intuitively, the set Dj is the set of nodes that will be pebbled by a light phase
in the jth step. So for PGenPeb we would simply have Dj = {j}.

At the top level of the recursion RGenPeb looks relatively similar to PGenPeb.
The goal is to pebble G0 = G with the target set T0 = sinks(G0) in at most 2d0

steps which is done by executing a sequence of light phases lasting m = e2d0/n
steps and balloon phases lasting 2d1 steps. The requirement that e2d0 ≥ 2d1n
ensures that m ≥ 2d1 so that we can complete each balloon phase in time for
the upcoming light phase. For t ∈ [2d0] let Ut =

⋃
j∈[t]Dj be all nodes pebbled

by light phases up to step t. Then for c ∈ [2d0/m] the light phase Λc runs
during time interval Ic = [(c − 1)m + 1, cm] during which it will pebble nodes
Ucm\U(c−1)m. It never removes pebbles from S1 and, at each time step t it keeps
pebbles on parents(Ucm \ Ut) as it will still need those to finish the light phase.

As for PGenPeb the light phase Λ1 is trivially a legal pebbling. Let Xcm =
parents(Ucm+m \ Ucm+1) ∩ Ucm and X−cm = (Xcm ∩ Ucm−2d1) \ S1 and X+

cm =
Xcm\X−cm. To ensure that all pebbles placed by during light phase Λc+1 are done
so legally it suffices for RGenPeb to ensure that Xcm is fully pebbled at time cm.
This is done by balloon phase running in parallel to the final 2d1 steps of Λc; that
is during the interval [cm−2d1, cm]. The pebbling for the balloon phase may be

14 For example we can sort the nodes in topological order and divided them up into the
partition. Whenever a set is larger than n/d0 we insert a new set into the partition
with the overflow.

obtained by a recursive call to RGenPeb for the graph G′ = G−S−(V \Ucm−2d1))
(G′ is the DAG induced by nodes Ucm−2d1 − S) with target set X−cm as well as
parameters S2 ⊆ S3 ⊆ . . . ⊆ Sk and d2, d3, . . . , dk (both lists now have length
k − 1 and clearly still satisfy the conditions on parameters stated above). If
RGenPeb is ever called with empty lists S̄ = ∅ and d̄ = ∅ (i.e., k = 0) then it
simply greedy pebbles G. The result of the recursive call is added to the final
2d1 steps of light phase Λc. Finally the pebbling is modified to never remove
pebbles from Xcm during the those final steps of Λc−1. Notice that each node
in X+

cm is either in S or is pebbled at some point during the final 2d1 steps of
Λc+1. Thus we are guaranteed that Xcm ⊆ P(c−1)m as desired.

To see why RGenPeb produces a legal pebbling it suffices to observe that
pebbles placed during light phases always have their parents already pebbled.
So if the recursive call returns a legal pebbling for the balloon phase then the final
result is also legal. But at the deepest level of the recursion RGenPeb resorts to
a greedy pebbling which is trivially legal. Thus, by induction, so is the pebbling
at the highest level of the recursion.

7 Open Questions

We conclude with several open questions for future research.

– We showed that for some constant c ≥ 0 we can find a DAG G on n nodes
with Π

‖
cc(G) ≥ cn2/ log(n) and indeg(G) = 2. While this result is asymptot-

ically optimal the constant terms are relevant for practical applications to
iMHFs. How big can this constant c be? Can we find explicit constructions
of constant-indegree, (c1n/ log(n), c2n)-depth robust DAGs that match these
bounds?

– Provide tighter upper and lower bounds on Π
‖
cc(G) for Argon2i-B [?], the

most recent version of Argon2i which was submitted to IRTF for standard-
ization.

– Another interesting direction concerns understanding the cumulative peb-
bling complexity of generic graphs. Given a graph G is it computationally

tractable to (approximately) compute Π
‖
cc(G)? An efficient approximation

algorithm for Π
‖
cc(G) would allow us to quickly analyze candidate iMHF

constructions. Conversely, as many existing iMHF constructions are based
on fixed random graphs, [?,?] showing that approximating such a graphs
complexity is hard would provide evidence that an adversary will likely not
be able to leverage properties of the concrete instance to improve their eval-
uation strategy for the iMHF. Indeed, it may turn out that the most effective
way to construct depth-robust graphs with good constants is via a random-
ized construction.

Acknowledgments

The authors would like to thank Pierrick Gaudry for his careful reading and
many helpful suggestions. The first and third authors were supported by the
European Research Council, ERC consolidator grant (682815 - TOCNeT).

	Depth-Robust Graphs and Their Cumulative Memory Complexity

