
Indistinguishability Obfuscation from
Constant-Degree Graded Encoding Schemes

Huijia Lin?

University of California, Santa Barbara

Abstract. We construct an indistinguishability obfuscation (IO) scheme
for all polynomial-size circuits from constant-degree graded encoding
schemes, assuming the existence of a subexponentially secure pseudo-
random generator computable by constant-degree arithmetic circuits,
and subexponential hardness of the Learning With Errors (LWE) prob-
lem. Previously, all candidate general purpose IO schemes rely on polynomial-
degree graded encoding schemes.

1 Introduction

Program obfuscation [13] aims to make computer programs unintelligible while
preserving their functionality. Recently, the first candidate general purpose in-
distinguishability obfuscation (IO) scheme for all polynomial-size circuits was
proposed by Garg et. al. [37]. Soon after that, an explosion of follow-up works
showed the impressive power of IO, not only in obtaining classical cryptographic
primitives, from one-way functions [47], trapdoor permutations [15], public-key
encryption [61], to fully homomorphic encryption [27], but also in reaching new
possibilities, from functional encryption [37], 2-round adaptively secure multi-
party computation protocols [38,35,25], succinct garbling in time independent
of the computation time [26,14,48,49], to constant-round concurrent ZK pro-
tocol [29]. It seems that IO is charting a bigger and more desirable map of
cryptography.

However, the Achilles heel of IO research is that it is still unknown whether
general purpose IO can be based on standard hardness assumptions. So far, all
general purpose IO schemes are constructed in two steps [22,12,60,41,4,63,7].
First, an IO scheme for (polynomial size) NC1 circuits is built using some candi-
date graded encoding schemes. The latter is an algebraic structure, introduced
by Garg, Gentry and Halevi [36], that enables homomorphically evaluating cer-
tain polynomials over encoded ring elements and testing whether the output is
zero. Next, a bootstrapping theorem transforms an IO scheme for NC1 into one
for P/poly, assuming the LWE assumption [37].

? rachel.lin@cs.ucsb.edu. Huijia Lin was partially supported by NSF grants CNS-
1528178 and CNS-1514526. This work was done in part while the author was visiting
the Simons Institute for the Theory of Computing, supported by the Simons Foun-
dation and by the DIMACS/Simons Collaboration in Cryptography through NSF
grant CNS-1523467.

Tremendous efforts have been spent on basing the first step on more solid
foundations. Unfortunately, the state of affairs is that all candidate graded
encoding schemes [36,32,33,39] are susceptible to the so called “zeroizing at-
tacks” [36,28,40,20,31] to different degrees.

In this work, we approach the problem from a different, more complexity
theoretic, angle.

How much can we strengthen the bootstrapping theorem, and hence, sim-
plify the task of building graded encoding schemes?

We explore answers to this question and obtain the following main result:

Theorem 1 (Informal) Assuming constant-degree PRG and LWE with subex-
ponential hardness, there is a general purpose IO scheme using only constant-
degree graded encodings.

Though our result does not eliminate the need of graded encoding schemes, it
weakens the requirement on them to only supporting evaluation of constant-
degree polynomials; such a scheme is referred to as constant-degree graded en-
coding schemes. In comparison, previous IO schemes rely on polynomial degree
graded encodings, polynomial in the size of the obfuscated circuit. This improve-
ment is established exactly via a stronger bootstrapping theorem.

– Bootstrapping IO for constant-degree arithmetic circuits. We show that there
is a class C of special-purpose constant-degree arithmetic circuits (i.e., cor-
responding to constant-degree polynomials), such that, special-purpose IO
for C can be bootstrapped to general purpose IO for P/poly, assuming the
sub-exponential hardness of LWE, and the existence of a sub-exponentially
secure Pseudo-Random Generator (PRG) computable by constant-degree
arithmetic circuits. An candidate of such a PRG is Goldreich’s PRG in
NC0 [42].

– Constant-degree graded encodings suffice. Then, we show that special pur-
pose IO for C can be constructed from constant-degree graded encoding
schemes.

Relation with recent works [59,52,16]. At a first glance, our main theo-
rem is surprising in light of the recent results by [59,52,17]. They showed that
any general-purpose IO scheme using ideal constant-degree graded encodings
can be transformed into an IO scheme in the plain model. Alternatively, their
results can be interpreted as: Ideal constant-degree graded encodings do not
“help” constructing general-purpose IO schemes. In contrast, our results says
that concrete constant-degree graded encodings imply general-purpose IO (as-
suming sub-exponentially secure constant-degree PRG and LWE). The divide
stems from the fact that ideal graded encodings can only be used in a black-box
manner, whereas our IO scheme crucially makes non-black-box use of the un-
derlying graded encoding scheme. Because of the non-black-box nature of our
construction, we actually do not obtain an IO scheme for P/poly in the ideal

constant-degree graded encoding model, and hence we cannot apply the trans-
formation of [59,52,17] to eliminate the use of graded encodings.

Moreover, it is interesting to note that our construction of IO for P/poly uses
as a component the transformation from sub-exponentially secure compact func-
tional encryption to general purpose IO by [16,3]. Their transformation makes
non-black-box use to the underlying functional encryption, and is in fact the only
non-black-box component in our construction. Therefore, if there were a black-
box transformation from sub-exponentially secure compact functional encryption
to general purpose IO, we would have obtained a general purpose IO scheme in
the ideal constant-degree graded encoding model, and then by [59,52,17], a gen-
eral purpose IO in the plain model. In summary, the following corollary suggests
another avenue towards realizing IO.

Corollary 1 Assume constant-degree PRG and LWE (with subexponential hard-
ness). If there is a black-box transformation from any (subexponentially secure)
compact functional encryption to an IO scheme for P/poly, there is an IO scheme
for P/poly in the plain model.

1.1 Overview

Our results contain three parts: First, we establish a stronger bootstrapping
theorem from IO for a class {Cλ} of special-purpose constant-degree arithmetic
circuits to general-purpose IO. Second, we show that thanks to the constant-
degree property and the simple structure of the special-purpose circuits, IO
for {Cλ} can be constructed using only constant-degree graded encodings. The
construction of the special-purpose IO scheme makes only black-box use of the
constant-degree graded encodings, and is secure in the ideal model; but, the
bootstrapping requires using the code of the special-purpose IO scheme. There-
fore, to stitch the two first parts together, in the third part, we instantiate the
special-purpose IO scheme using semantically secure graded encodings (c.f. [60]),
and obtain general-purpose IO via bootstrapping. Below, we explain each part
in more detail.

Part 1: Bootstrapping IO for constant-degree arithmetic circuits. So
far, there are only two bootstrapping techniques in the literature, both starting
from IO for NC1. The first technique, proposed by [37], combines fully homo-
morphic encryption (FHE) and IO for NC1, where the latter is used to obfuscate
a circuit that performs FHE decryption and verifying the correctness of a com-
putation trace, both can be done in logarithmic depth. The second technique
by [27] is based on Applebaum’s idea of bootstrapping VBB for NC0 [5], where
the underlying IO for NC1 is used for obfuscating a circuit that computes for each
input a randomized encoding (w.r.t. that input and the obfuscated circuit), using
independent randomness produced by a Puncturable Pseudo-Random Functions
(PPRF) [62] computable in NC1 [23].

In sum, current bootstrapping techniques require the basic IO scheme to be
able to handle complex cryptographic functions. It is an interesting question
to ask what is the simplest circuit class — referred to as a “seed class” —

such that, IO for it is sufficient for bootstrapping. In this work, we reduce the
complexity of “seed classes” for NC1 to circuits computable in constant degree.
More specifically,

Proposition 1 (Informal, bootstrapping constant-degree computations)
Assume constant-degree PRG and LWE with subexponential hardness. There is a
class of special-purpose constant-degree circuits {Cλ} with domains {Dλ}, where
Dλ ⊆ {0, 1}poly(λ), such that, IO for {Cλ} with universal efficiency (explained
below) can be bootstrapped into IO for P/poly.

Let us explain our bootstrapping theorem in more detail.

Model of Constant Degree Computations Every arithmetic circuit AC naturally

corresponds to a polynomial by associating the ith input wire with a formal
variable xi; the degree of AC is exactly the degree of the polynomial. In this work,
we consider using arithmetic circuit to compute Boolean functions f : {0, 1}n →
{0, 1}m, or logic circuits C. A natural model of computation is the following: Fix
a ring R (say, the integers or the reals); a Boolean function f (or logic circuit C)
is computed by an arithmetic circuit AC, if ∀x ∈ {0, 1}n, C(x) = AC(x) over
R (the 0 and 1 bits are mapped to the additive and multiplicative identities of
R respectively). However, in this work, we consider a even weaker computation
model that requires AC to agree with C over any choice of ring R.

– Constant-Degree Computations: We say that a Boolean function f (or logic
circuit C) is computed by an arithmetic circuit AC, if ∀x ∈ {0, 1}n, C(x) =
AC(x), over any ring R.

This model of constant-degree computations is quite weak, in fact, so weak
that it is equivalent to NC0. Nisan and Szegedy [57] showed that the degree
of the polynomial that computes a Boolean function f over the ring of reals is
polynomially related with the decision tree complexity of f . Therefore, if f has
constant degree in our model, it has constant decision tree complexity, implying
that it is in NC0.

On the other hand, it is well known that IO for NC0 can be trivially con-
structed by searching for canonical representations, which can be done efficiently
as every output bit is computed by a constant-size circuit. Though it would be
ideal to bootstrap IO for NC0, we do not achieve this. Instead, we strengthen the
above model of computation by considering partial Boolean functions (or logic
circuits) defined only over a subset D ∈ {0, 1}n (i.e., we only care about inputs
in D).

– Constant-Degree Computations with Partial Domains: We say that a Boolean
function f (or logic circuit C) with domain D ∈ {0, 1}n is computed by an
arithmetic circuit AC, if ∀x ∈ D, C(x) = AC(x), over any ring R.

A concrete constant-degree partial function that is not computable in NC0 is a
variant of the multiplexer function mux that on input (x, ei), where x, ei ∈ {0, 1}n
and the hamming weight of ei is 1, outputs xi. Clearly, the output bit has to

depend on all bits of ei and cannot be computed in NC0. But, xi can be computed
in degree 2 as the inner product of x and ei over any ring R.

Nevertheless, our model of constant degree computations (with potentially
partial domains) is still weak. In particular, it is separated from AC0, since we
cannot compute unbounded AND in it. In the body of the paper, we put even
more constraints and say that a class of circuits (as opposed to a single circuit) is
constant degree only if they have universal circuits of constant degrees; we omit
this detail in the introduction. As a further evidence on how weak our model
of constant degree computations are, we show next that even statistical IO is
feasible for such circuits.

Trivial, Statistical IO for Constant Degree Computations Let C be a logic cir-
cuit computable by a degree-d arithmetic circuit AC, which corresponds to
a degree-d polynomial. At a high-level, because degree-d polynomials can be
learned in poly(nd) time, we can obfuscate C in the same time with statistical
security. More specifically, the degree-d polynomial p(x) can be equivalently rep-
resented as a linear function L(X) over ` = nd variables, each associated with
a degree d monomial over x1 · · ·xn. To obfuscate C, we simply pick ` inputs
x1, · · · , x` ∈ {0, 1}n, such that, their corresponding monomial values X1, · · · , X`

are linearly independent. Now, the obfuscation C̃ of C is simply the set of input
output pairs (x1, y1), · · · , (x`, y`) where yi = C(xi).

Given C̃, we can to evaluate C on any input x, since C(x) = L(x) over any
ring, and the linear function L can be learned from the set of input output pairs
using Gaussian elimination. Moreover, it is easy to see that obfuscation of any
two functionally equivalent circuits C and C ′ are identically distributed, as C
and C ′ have the same truth table and their obfuscations simply reveal a part of
their truth tables.

The above construction, though achieve statistical security, is however, triv-
ial: The truth table of a degree-d circuit effectively has only size nd (by Gaussian
elimination), and the above construction simply publishes the effective truth ta-
ble. As a result, it is not sufficient for our bootstrapping.

Computational IO for Constant Degree Computations, with Universal Efficiency.
Instead, we require IO for constant degree computations with better, non-trivial,
efficiency. More specifically,

– Universal Efficiency: We say that IO for constant degree circuits has univer-
sal efficiency, if its run-time is independent of the degree of the computation.
That is, there is a universal polynomial p, such that, for every d, obfuscating
a degree-d circuit C takes time p(1λ, |C|) for sufficiently large λ.

In fact, our bootstrapping theorem works even if the efficiency of IO for constant
degree circuits grows with the degree, as long as it is bounded by nh(d) for a
sufficiently small function h, say, h(d) = log log log(d). For simplicity, we consider
the above universal efficiency.

General Connection between Complexity of PRG and Complexity of Seed Class.
Finally, we note that our bootstrapping theorem can be generalized to establish a

connection between the complexity of PRG and the complexity of “seed classes”
sufficient for bootstrapping IO. Consider any PRG scheme PRG (not necessarily
computable in constant degree). There is a family {Cλ} of special-purpose or-
acle circuits that have constant degree (such a circuit can be computed by an
arithmetic circuit with oracle gates, and its degree is the degree of the arith-
metic circuit when replacing the oracle gates with additions), such that, IO for
the class of composed circuits in {CPRGλ }, with again universal efficiency, can be
bootstrapped into IO for P/poly.

Proposition 2 (Informal, general bootstrapping theorem) Assume a PRG
scheme PRG and LWE with sub-exponential hardness. There is a class of special-
purpose oracle circuits {Cλ} that have constant degree, such that, special purpose
IO for {CPRGλ } with universal efficiency can be bootstrapped into IO for P/poly.

In particular, plugging in a constant-degree PRG yields Proposition 1, and plug-
ging in a PRG in AC0 or TC0 establishes that IO for AC0 or TC0 with universal
efficiency suffices for constructing general purpose IO.

Given the general connection between the complexity of PRG and that of
the seed class, we summarize the state-of-the-art of low depth PRG at the end
of the introduction.

Techniques. Our starting point is two beautiful recent works by Bitansky and
Vaikuntanathan [16] and Ananth and Jain [3] showing that sub-exponentially
secure (sublinearly) compact FE for NC1 implies IO for P/poly. Unfortunately,
so far, the former is only known from IO for NC1; thus, our goal is to construct
compact FE using IO for the simplest circuits.

Technically, the transformation in the first step is similar to that in [3,50].
However, the former [3] requires IO for a class of special-purpose Turing ma-
chines (as opposed circuits). Our transformation uses the same idea as in [50],
but requires a much more refined analysis in order to identify and simplify the
circuits, whose special structure plays a key role later.

The work of Ananth and Jain [3], and another very recent work by the author,
Pass, Seth and Telang [50] already explored this direction: They show that a
compact FE scheme for NC1 circuits with single output bit (which can be based
on LWE [44]) can be transformed into a compact FE for all NC1 circuits with
multiple output bits, using IO for circuits (Turing machines in [3]) with only a
logarithmic number c log λ of input wires; such circuits have λc-sized truth table.
[50] further weakens the efficiency requirement on such IO schemes: As long as
the IO scheme outputs obfuscated circuits whose size is sub-linear in the size of
the truth table (matching the sub-linear compactness of FE), the transformation
goes through.

However, the circuits used in [3,50] are complex, in NC1. In this work, we
significantly reduce the complexity of the circuits using more refined analysis and
a number of new techniques. For example, we build a special-purpose PPRF for
polynomial sized domain that is computable in constant degree. Interestingly,
the polynomial-sized domain is not of the form {0, 1}c log λ, rather is embedded
sparsely in a much larger domain D ⊂ {0, 1}poly(λ). This crucially allows us

to circumvent lower bounds on the complexity of normal PPRF. Moreover, we
design ways to perform comparisons, such as, testing =, ≥, ≤ relations, between
two integers i, i′ ∈ [poly(λ)] in constant degree; here again, we crucially rely on
the fact that we can represent the integers in a different way, embedded sparsely
in a much larger domain.

Part 2: Special purpose IO in constant-degree ideal graded encoding
model. Ideal grade encoding model [36,22,12,63,7] captures generic algebraic
attacks over graded encodings: In this model, players have black-box access to a
ring, and can only perform certain restricted operations over ring elements, and
determine whether a “legal” polynomial (one satisfying all restrictions) evaluates
to 0 or not—this is referred to as a “zero-test query”.

An important parameter, called the degree of the graded encodings [59,52],
is the maximum degree of (legal) polynomials that can be “zero-tested”. Clearly,
the lower the degree is, the weaker of the graded encodings are. Consider for
instance, when the degree is one, the ideal graded encoding model is equivalent
to the generic group model, in which operations are restricted to be linear (i.e.,
degree 1 polynomials), and when degree is two, ideal graded encodings capture
idealized groups with bilinear maps. Both special cases have been extensively
studied.

So far, general-purpose IO schemes in ideal models all require high degree
graded encodings (polynomial in the size of the circuit being obfuscated) [22,12,63,7].
The dilemma is that such models are so powerful that even general purpose VBB
obfuscation is feasible, which is impossible in the plain model [13]. Two recent
works [59,52] initiated the study of low-degree ideal graded encodings, showing
that when the degree is restricted to a constant, general purpose VBB obfusca-
tion becomes infeasible. Therefore, constant-degree ideal graded encoding model
is qualitatively weaker than its high-degree counterpart, and is much closer to
the plain model.

Nevertheless, we show that for the simple class of constant-degree computa-
tions, it is sufficient.

Proposition 3 (Informal, special-purpose IO in ideal model) There is a
universally efficient IO scheme for the class {Cλ} of constant-degree special-
purpose circuits in Proposition 1, in the constant-degree ideal graded encoding
model.

Our special-purpose IO scheme crucially exploits the constant degree property
of our seed class, as well as the simple structure of circuits in the class.

Type-Degree Preserving IO Construction. Our main technique is characterizing
a general type of circuits that admit IO schemes with low degree ideal graded
encodings. More specifically, we define a new measure, called type degree, for
arithmetic circuits, which is a quantity no smaller than the actual degree of
the circuit, and no larger than the maximum degree of circuits with the same
topology (achieved by a circuit with only multiplication gates). We show that
if a class of circuits have type degree td, then there is an IO scheme for this
class using ideal graded encodings of roughly the same degree O(td); we say that

such an IO construction is type-degree preserving. Our type-degree preserving IO
construction is based on the IO scheme of Applebaum and Brakerski [7] in the
composite order ideal graded encoding model; we believe that our construction
is of independent interests.

Furthermore, thanks to the simplicity of our special purpose circuits in
Proposition 1, we can show that they not only have constant degree, but also
have constant type degree, leading to Proposition 4.

Part 3: Instantiation with Concrete Graded Encoding Schemes. The
final part combine our bootstrapping theorem (Proposition 1) with our special-
purpose IO scheme (Proposition 4) to obtain general-purpose IO, for which we
must first instantiate the ideal graded encodings with concrete ones, for the boot-
strapping theorem makes non-black-box use of the special-purpose IO. Towards
this, the technical question is “under what computational hardness assumption
over graded encodings can we prove the security of our special-purpose IO scheme
in the plain model?”

So far, in the literature, there are two works that answer questions like the
above. Pass, Seth and Telang [60] proposed the meta-assumption of semantic
security over prime order graded encoding schemes, from which the security of
a general purpose IO scheme follows via an explicit security reduction. Subse-
quently, Gentry, Lewko, Sahai and Waters [41] proposed the Multilinear Sub-
group Elimination assumption over composite order graded encoding schemes
which improves upon semantic security in terms of simplicity and the number
of assumptions in the family (albeit requiring a sub-exponential security loss).

Following [60], we show that our special purpose IO schemes in Proposition 4
can be instantiated with any composite order graded encoding schemes satisfying
an analogue of semantic security for composite order rings; importantly, the
graded encoding scheme only need to support constant-degree computation. 1

Hence, combining with our bootstrapping theorem from Part 1, we obtain a
general purpose IO scheme from constant-degree graded encoding schemes.

Proposition 4 (Informal, special-purpose IO in the plain model) There
is a universally efficient IO scheme for the class {Cλ} of constant-degree special-
purpose circuits in Proposition 1, assuming semantically-secure constant-degree
graded encodings.

Finally, applying our bootstrapping theorem (Proposition 1) on the special-
purpose IO scheme in the above proposition, gives our main theorem (Theo-
rem 1).

1.2 Low Depth PRG

We survey constructions of low depth PRGs. Some of the texts below are taken
verbatim from Applebaum’s book [6].

1 We note that the security of (variants of) our IO scheme could potentially be proven
from the multilinear subgroup elimination assumption of [41]; we leave this as future
work.

The existence of PRG in TC0 follows from a variety of hardness assump-
tion including intractability of factoring, discrete logarithm, or lattice problems
(e.g. [54,55,56,11]). Literature on PRG in AC0 is limited; more works focus di-
rectly on PRG in NC0. On the negative side, it was shown that there is no
PRG in NC0

4 (with output locality 4) achieving super-linear stretch [34,53]. On
the positive side, Applebaum, Ishai, and Kushilevitz [8] showed that any PRG
in NC1 can be efficiently “compiled” into a PRG in NC0 using randomized en-
codings, but with only sub-linear stretch. The authors further constructed a
linear-stretch PRG in NC0 under a specific intractability assumption related to
the hardness of decoding “sparsely generated” linear codes [9], previously con-
jectured by Alekhnovich [1]. Unfortunately, to the best of our knowledge, there
is no construction of PRG in NC0 (or even AC0) with polynomial stretch from
well-known assumptions. But, candidate construction exists.

Goldreich’s Candidate PRGs in NC0. Goldreich’s one-way functions f : {0, 1}n →
{0, 1}m where each bit of output is a fixed predicate P of a constant number d of
input bits, chosen at random or specified by a bipartite expander graph with the
right degree, is also a candidate PRG when m > n. Several works investigated
the (in)security of Goldreich’s OWFs and PRGs: So far, there are no success-
fully attacks when the choice of the predicate P avoids certain degenerating
cases [30,18,58,10]. Notably, O’Donnell and Witmer [58] gave evidence for the
security of Goldreich’s PRGs with polynomial stretch, showing security against
both subexponential-time F2-linear attacks, as well as subexponential-time at-
tacks using SDP hierarchies such as Sherali-Adams+ and Lasserre/Parrilo.

1.3 Organization

We provide more detailed technical overviews at the beginning of Section 3, 4,
and 5.

In section 2, we formalize our model of constant-degree computations, IO
with universal efficiency, and provide basic preliminaries. In Section 3, we prove
a prelude of our bootstrapping theorem that identifies a class of special purpose
circuits, such that IO for this class with universal efficiency can be bootstrapped
to general purpose IO. In Section 4, we show that the class of special purpose
circuits identified in Section 3 are computable in constant degree, when the
underlying PRG is. Then, we construct a universally efficient IO scheme for
these special purpose circuits in constant-degree ideal graded encoding model
in Section 5. Due to the lack of space, we refer the readers to the full version
on how to instantiate our special-purpose IO with semantically secure graded
encodings.

2 Preliminaries

Let Z and N denote the set of integers, and positive integers, [n] the set {1, 2, . . . , n},
R denote a ring, and 0,1 the additive and multiplicative identities.

Due to the lack of space, we omit definitions of standard cryptographic prim-
itives such as, PRG, PPRF, (compact) functional encryption and randomized
encodings (see [16,3,8]), and only discuss our models of computation and give
definitions of IO and universal efficiency below.

2.1 Models of Computation

Logic Circuits and Partial Domains In this work, by circuit, we mean logic
circuits from {0, 1}∗ to {0, 1}∗, consisting of input gates, output gates, and logical
operator gates (AND and OR gates with fan-in 2 and fan-out > 0, and NEG
gate with fan-in 1).

Any circuit with n-bit input wires and m-bit output wires defines a total
Boolean function f mapping {0, 1}n to {0, 1}m. In this work, importantly, we
also consider partial functions f defined only over a (partial) domain D ⊂ {0, 1}n.
Correspondingly, we associate a circuit C with a domain D ⊂ {0, 1}n, meaning
that we only care about evaluating C over inputs in D.

Arithmetic Circuits We also consider arithmetic circuits AC consisting of
input gates, output gates and operator gates for addition, subtraction, and mul-
tiplication (with fan-in 2 and fan-out > 0). Every arithmetic circuit AC with n
input gates defines a n-variate polynomial P over Z, by associating the ith input
gate with a formal variable xi. We say that AC has degree d if P has degree d.
An arithmetic circuit AC can also be evaluated over any other ring R (different
from Z), corresponding to computing the polynomial P over R.

Boolean Functions Computable by Arithmetic Circuits In this work, we,
however, do not consider evaluating arithmetic circuits over any specific ring.
Rather, we say that a Boolean function f from domain D ⊆ {0, 1}n to range
{0, 1}m, is computed/implemented by an arithmetic circuit AC if for every input
x ∈ D with output y = C(x), AC evaluated on x equals to y over any ring R,
where x and y are vectors of ring elements derived from x and y respectively,
by mapping 0 to the additive identity 0 and 1 to the multiplicative identity 1 of
R. We omit explicitly mentioning this conversion in the rest of the paper, and
simply write AC(x) = C(x).

We stress again that, in our model, a Boolean function f is computable by
an arithmetic circuit only if it produces the correct outputs for all inputs in D,
no matter what underlying ring is used. This restriction makes this model of
computation very weak.

Similarly, we say that a circuit C with domain D ⊂ {0, 1}n is computable by
an arithmetic circuit AC, if the Boolean function f : D→ {0, 1}m defined by C
is computable by AC.

Circuit Classes and Families of Circuit Classes We use the following ter-
minologies and notations:

– A family of circuits C with domain D is simply a set of circuits C ∈ C with
common domain D.

– A class of circuits {Cλ}λ∈N with domains {Dλ}λ∈N is an ensemble of sets of
circuits, where each Cλ is associated with domain Dλ. We use the shorthands
{Cλ} and {Dλ}.

– A family of circuit classes {{Cxλ}}
x∈X

is a set of circuit classes, where each
circuit class {Cxλ} is indexed by an element x in a (countable) index set
X. For convenience, when the index set X is clear in the context, we use
shorthand {{Cxλ}}. A family of circuit classes can also be associated with
domains {{Dxλ}}, meaning that each set Cxλ is associated with domain Dxλ
For example, NC1 circuits can be described as a family of circuit classes{{
Cdλ
}}d∈N

, where for every d ∈ N, the circuit class
{
Cdλ
}

contains all circuits
of depth d log λ.

Universal (Arithmetic) Circuits Let C be a family of circuits with domain
D, where every C ∈ C is described as an `-bit string, and let U be an (arithmetic)
circuit. We say that U is the universal (arithmetic) circuit of C if every C ∈ C
is computed by U(?, C) over domain D. Moreover, we say that an ensemble of
(arithmetic) circuits {Uλ} is the universal (arithmetic) circuits of a circuit class
{Cλ} with domain {Dλ} if for every λ, U is an (arithmetic) universal circuit of
Cλ with domain Dλ.

Degree of (Logic) Circuits Degree is naturally defined for arithmetic circuits
as described above, but not so for logic circuits and Boolean functions. In this
work, we define the degrees of logic circuits and Boolean functions through the
degree of the arithmetic circuits that compute them. Moreover, we also define
degrees for families of circuits, circuit classes, and families of circuit classes,
through the degrees of the universal arithmetic circuits that compute them.

Degree of a (logic) circuit: We say that a circuit C with domain D has de-
gree d, if it is computable by an arithmetic circuit of degree d.

Degree of a family of circuits: We say that a family of circuits C with do-
main D has degree d, if it has a universal arithmetic circuit U of degree
d.

Degree of a class of circuits: We say that a class of circuits {Cλ} with do-
main Dλ has degree d(λ), if it has universal arithmetic circuits {Uλ}, with
degree d(λ). If d(λ) is a constant function, then we say {Cλ} has constant
degree.

Degree of a family of circuit classes: We say that a family of circuit classes
{{Cxλ}} with domains {{Dxλ}} has constant degree, if for every x ∈ X, circuit
class {Cxλ} with domains {Dxλ} has constant degree.

It is important to note that we define the degree of a class of circuits via
the degree of its universal arithmetic circuit, not the degree of individual cir-
cuits inside. For example, consider the natural class of circuits containing all
(polynomial-sized) circuits with a fixed constant degree d (c.f., the class of poly-
sized NC0 circuits with a fixed constant depth d), under our definition, it is
not clear whether this class itself has constant degree, as it is not clear (to us)
whether there is a constant degree universal arithmetic circuit that computes

all of them. Nevertheless, this more stringent definition only makes our boot-
strapping result that it suffices to construct IO for a family of circuit classes
with constant degree stronger, and makes the task of constructing IO for such a
family easier.

2.2 Indistinguishability Obfuscation

We recall the notion of indistinguishability obfuscation for a class of circuit
defined by [13], adding the new dimension that the class of circuits may have
restricted domains {Dλ}.

Definition 1 (Indistinguishability Obfuscator (iO) for a circuit class)
A uniform PPT machine iO is a indistinguishability obfuscator for a class of
circuits {Cλ}λ∈N (with potentially restricted domains {Dλ}λ∈N), if the following
conditions are satisfied:

Correctness: For all security parameters λ ∈ N, for every C ∈ Cλ, and every
input x (in Dλ), we have that

Pr[C ′ ← iO(1λ, C) : C ′(x) = C(x)] = 1

µ-Indistinguishability: For every ensemble of pairs of circuits {C0,λ, C1,λ}λ
satisfying that Cb,λ ∈ Cλ, |C0,λ| = |C1,λ|, and C0,λ(x) = C1,λ(x) for every x
(in Dλ), the following ensembles of distributions are µ-indistinguishable,{

C1,λ, C2,λ, iO(1λ, C1,λ)
}
λ{

C1,λ, C2,λ, iO(1λ, C2,λ)
}
λ

In the above definition, µ can be either negligible for standard IO, or subexpo-
nentially small for sub-exponentially secure IO.

Definition 2 (IO for P/poly) A uniform PPT machine iOP/poly(?, ?) is an in-
distinguishability obfuscator for P/poly if it is an indistinguishability obfuscator
for the class {Cλ} of circuits of size at most λ.

2.3 Indistinguishability Obfuscation for Families of Circuit Classes

In this work, we consider families of circuit classes, and the task of building a
family of indistinguishability obfuscators, one for each circuit class.

Definition 3 (IO for Families of Circuit Classes) Let {{Cxλ}}
x∈X

be a fam-
ily of circuit classes (with potentially restricted domains {Dxλ}). A family of
uniform machines {iOx}x∈X is a family of indistinguishability obfuscators for

{{Cxλ}}
x∈X

, if for every constant x ∈ X, iOx is an indistinguishability obfuscator
for the circuit class {Cxλ} (with domains {Dxλ}).

The above definition implicitly requires that for every x ∈ X, iOx runs in
some polynomial time, potentially depending on x. However, depending on how
the run-time of iOx vary for different x, qualitatively different types of efficiency
could be considered.

We consider the following notion of universal efficiency in this work.

Definition 4 (Universal Efficiency) A family of indistinguishability obfusca-

tors {iOx}x∈X for a family of circuit class {{Cxλ}}
x∈X

(with potentially restricted
domains {{Dxλ}}) has universal efficiency, if there exists a universal polynomial
p, such that, for every x ∈ X, iOx(1λ, C) runs in time p(λ, |C|), for every suf-
ficiently large λ (i.e., greater than a constant cx depending on x), and circuit
C ∈ Cxλ.

We note that it is without loss of generality to only consider the run-time of iOx
for sufficiently large λ (> cx), because the security of iOx already only holds for
sufficiently large λ.

3 Bootstrapping IO for Special-Purpose Circuits

In this section, we identify a family of special-purpose circuit classes and show
how to bootstrap IO for this family to all polynomial-sized circuits.

Proposition 5 Assume the following primitives:

– a sub-exponentially secure compact FE scheme FE for Boolean NC1 circuits,
– a sub-exponentially secure PPRF scheme PPRF, and
– a sub-exponentially secure RE scheme RE in NC0.

Then, there is a family of special-purpose circuit classes {{PT,nλ }} indexed by two
polynomials T (?) and n(?) and defined w.r.t. FE, PPRF and RE as in Figure 1,
such that, the following holds:

– If there exists a family {iOT,n} of IO schemes for {{PT,nλ }} with universal
efficiency, then there are two sufficiently large polynomials T ∗ and n∗, such
that, iOT

∗,n∗
can be transformed into an IO scheme for P/poly.

We note in Section 3.1 that all the underlying primitives of the above Propo-
sition are implied by the sub-exp hardness of LWE.

Overview. Towards the proposition, recall that recent works [16,3,2] show that
to construct IO for P/poly, it suffices to construct a compact FE scheme for NC1

circuits. Formally,

Theorem 2 ([16,3,2]) Let n be a sufficiently large polynomial. Assume the ex-
istence of a sub-exponentially secure, and (1− ε)-weakly-compact (single-query,
public-key) FE scheme for NC1 circuits, and weak PRF in NC1. There exists an
indistinguishability obfuscator for P/poly.

Therefore, the natural direction is constructing compact FE scheme for NC1

circuits using IO for the special-purpose circuits. We proceed in two steps: For
any polynomials T and n, let NC1,T,n be the subclass of NC1 circuits with at
most size T (λ) and at most n(λ) input bits.

– Our first step (in Section 3.2) constructs an FE scheme FET,n for NC1,T,n

from any IO scheme iOT,n for {PT,nλ } (and the underlying primitives of
Proposition 5), for arbitrary T and n. Importantly, the encryption time of
the resulting FE scheme is directly proportional to the obfuscation time of
the underlying IO scheme:

TimeiOT,n(1λ, C) ≤ pT,n(λ, |C|)
TimeFE.Enc(mpk,m) ≤ pT,n(λ, q(λ, n(λ), log T (λ)))

where q is a universal polynomial independent of T and n. Note that, this
does not guarantee that the resulting FE scheme is compact, since the run-
time of the IO scheme may depend on T arbitrarily, in particular, it is
possible that pT,n(λ, |C|) > T (λ), while iOT,n is still a valid polynomial

time IO scheme for {PT,nλ }.
– To overcome the above issue, our next step (in Section 3.3) starts with

a stronger premise: The existence of a family {iOT,n} of IO schemes for

the family {{PT,nλ }} with universal efficiency. This means for any T, n, the

obfuscation time of iOT,n is bounded by a universal polynomial p, and (for
sufficiently large λ)

TimeiOT,n(1λ, C) ≤ p(λ, |C|)
TimeFE.Enc(mpk,m) ≤ p(λ, q(λ, n(λ), log T (λ)))

This essentially means that the FE schemes are compact — encryption time
is independent of T (λ). In particular, for some sufficiently large polynomials

T ∗ and n∗, encryption time of FET
∗,n∗

is much smaller than the time of
the computation, that is, p(λ, q(λ, n∗(λ), log T ∗(λ))) < T ∗. With a closer

examination, such an FE scheme FET
∗,n∗

is sufficient for the transformation
of [16,3,2] to go through. More specifically, the final IO scheme for P/poly
they construct only need to use the underlying FE scheme for NC1 circuits
with some sufficiently large size T ∗ and sufficiently long input length n∗; the
proof goes through, as long as encryption time is sub-linearly (T ∗)1−ε in T ∗.

Putting the two steps together, we conclude Proposition 5.

Technically, the transformation in the first step is similar to that in [3,50].
However, the former [3] requires IO for a class of special-purpose Turing ma-
chines (as opposed circuits). Our transformation uses the same idea as in [50],
but requires a much more refined analysis in order to identify and simplify the
circuits, whose special structure plays a key role later.

3.1 Instantiating the Underlying Primitives from LWE

The first primitive of Proposition 5—a compact FE for Boolean NC1 circuits—
can be derived from the work of Goldwasser, Kalai, Popa, Vaikuntanathan and
Zeldovich [44]: Assuming sub-exp LWE, they construct a sub-exp secure FE
scheme for the class of polynomial-sized Boolean circuits

{
Cn,d(n)

}
with n input

bits and depth d(n). Furthermore, the size of the ciphertexts is poly(λ, n, d)
(independent of the size of the circuits); when restricting to Boolean circuits in
NC1 (as needed for Proposition 5), the ciphertexts are compact. Summarizing,

Theorem 3 (Compact FE scheme for Boolean NC1 Circuits [44]) Assume
sub-exponential hardness of the LWE problem. There exists a sub-exponentially
secure compact (single-query, public-key) FE scheme for the class of Boolean
NC1 circuits.

The second primitive—a sub-exp secure PPRF—can be constructed from the
necessary assumption of sub-exp secure OWFs [19,21,46]; but, the evaluation
algorithms of these PPRF schemes have high depth. Recently, Brakerski and
Vaikuntanathan [24] showed that assuming LWE, the depth of the evaluation
algorithm can be reduced to logarithmic O(log λ).

Finally, the third primitive—a sub-exp secure RE scheme in NC0—can be
constructed from sub-exp secure low-depth PRG [8,45], which is in turn implied
by sub-exp secure LWE.

3.2 FE for NC1,T,n from IO for {PT,n
λ }

Fix arbitrary polynomials T and n. We present an FE scheme FET,n for NC1,T,n

from IO for {PT,nλ }. Our construction starts with a compact FE scheme for
Boolean NC1 circuits bFE = (bFE.Setup, bFE.Enc, bFE.Dec) (as discussed in 3.1,
such a scheme can be constructed from LWE), and transforms it into FET,n. The
transformation makes uses of the following additional building blocks:

– a puncturable PRF PPRF = (PRF.Gen,PRF.Punc,F) for input domain {0, 1}λ.
– a randomized encoding scheme RE = (RE.Enc,RE.Eval) in NC0, and

– an IO scheme iOT,n for circuit class {PT,nλ } consisting all circuits of the form
P [λ, T, n,mpk, i∗,K,m1, y,m0] defined in Figure 1.

Let `mpk(λ) be the maximal length of master public keys of bFE, and `key(λ)
that of punctured keys of PPRF respectively.

Construction of FET,n . For any λ, T = T (λ) and n = n(λ), message m of length
n and circuit C with size at most T and input length at most n. The FE scheme
FET,n = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec) proceeds as follow:

Setup FE.Setup(1λ, T): Samples (mpk,msk)
$← bFE.Setup(1λ, T ′), where T ′ is

a time bound for circuits C̄ defined below.

Circuit P [T, n,mpk, i∗,K,m<, Π̂,m>](i)

Constant: A security parameter λ ∈ N, a time bound T ∈ N, a threshold
i∗ ∈ {0, · · · , T + 1}, a public key mpk ∈ {0, 1}`mpk of bFE, a punctured
key K ∈ {0, 1}`key of PPRF, strings m<, m> of equal length n, and an
RE encoding Π̂.

Input: An index i ∈ [T].
Procedure:

1. (Ri||R′i) = F(K, i);
2. If i < i∗, set Π̂i = RE.Enc

(
1λ, bFE.Enc, (mpk, m<||i ; Ri) ; R′i

)
.

3. If i = i∗, set Π̂i = Π̂.
4. If i > i∗, set Π̂i = RE.Enc

(
1λ, bFE.Enc, (mpk, m>||i ; Ri) ; R′i

)
.

Output: Encoding Π̂i.
Padding: The hardwired encoding Π̂ is padded to be of length η′(λ, n, log T),

and the circuit is padded to be of size η(λ, n, log T), for some polynomials
η′ and η.

Circuit classes {PT,nλ } contains all circuits of form P [λ, T (λ), n(λ), ∗, ∗, ∗, ∗, ∗],
where all wild-card values satisfy length constraints specified above.

Fig. 1. Special-Purpose Circuit P

Key Generation FE.KeyGen(msk,C): Let C̄(m, i) be a circuit that on input
m and i ∈ [T] outputs the ith bit yi of the output y = C(m).
Sample skC̄ ← bFE.KeyGen(msk, C̄); output sk = skC̄ .

Encryption FE.Enc(mpk,m):

1. SampleK
$← PRF.Gen(1λ), and puncture it at input 0,K(−0) = PRF.Punc(K, 0).

2. Sample P̃
$← iOT,n(1λ, P), where P = P [λ, T, n,mpk, 0,K(−0), 0λ, 0κ,m]

as defined in Figure 1.
3. Output ciphertext ξ = P̃ .

Decryption FE.Dec(sk, ξ):

1. Parse ξ as an obfuscated program P̃ ; for i ∈ [T], compute Π̂i = P̃ (i).
2. For every i ∈ [T], decode ci = RE.Eval(Π̂i).
3. For i ∈ [T], evaluate ci with sk to obtain yi = bFE.Dec(sk, ci).
4. Output y = y1|| · · · ||yT .

It is clear that all algorithms above are PPT. Below, we first analyze the encryp-
tion efficiency of FET,n in Lemma 1 and then show its correctness and security
in Lemma 2.

Lemma 1 There exists a universal polynomial q, such that,

if TimeiOT,n(1λ, C) ≤ pT,n(λ, |C|),
then, TimeFE.Enc(mpk,m) ≤ pT,n(λ, q(λ, n(λ), log T (λ)))

Proof. Towards this, we analyze the efficiency of each step of FE.Enc(mpk,m):

– It follows from the efficiency of PPRF that Step 1 of FE.Enc takes a fixed,
universal, polynomial time q1(λ).

– It follows from the compactness of bFE that the size of the special pur-
pose circuit P is bounded by and padded to a fixed, universal, polynomial
η(λ, n, log T) (in Figure 1).

– It follows from the efficiency of iOT,n that the second step of encryption
takes time TimeiOT,n(1λ, P) = pT,n(λ, η(λ, n, log T)).

Therefore, there exists a sufficiently large universal polynomial q w.r.t. which
the lemma holds.

Lemma 2 Let bFE, PPRF, RE, iOT,n be defined as above. FE is correct and
selectively secure for NC1 circuits with n(λ)-bit inputs. Moreover, if all primitives
are sub-exponentially secure, so is FE.

We omit the of this lemma due to the lack of space.

3.3 Obtaining IO for P/poly

By the construction of FE scheme FET,n for NC1,T,n in Section 3.2, we immedi-
ately have the following lemma:

Lemma 3 Assume the same underlying primitives as Proposition 5. Suppose
there is a family of IO schemes {iOT,n} for {{PT,nλ }} with universal efficiency,
that is,

TimeiOT,n(1λ, C) ≤ p(λ, |C|) , where p is a universal polynomial.

Then, there is a family of FE schemes {FET,n} for {NC1,T,n} with the following
encryption efficiency

TimeFE.EncT,n(mpk,m) ≤ p(λ, q(λ, n(λ), log T (λ))) , where q is a universal polynomial.

Clearly, this family of FE schemes {FET,n} gives a compact FE scheme for
NC1 = {NC1,T,n}, and hence already implies IO for P/poly by Theorem 2 shown
in [3,16,2]. We further examine their results, and observe that for any compact
FE scheme, there exist some sufficiently large polynomials T ∗ and n∗, such that,
the resulting IO for P/poly only uses the FE scheme to generate keys for NC1

circuits with time bound T ∗(λ) and input length bound n∗(λ). More precisely,
we observe the more refined results of [3,16,2]

Theorem 4 (Refined version of Theorem 2, implicit in [16,3,2]) Assume
the existence of a sub-exponentially secure weak PRF in NC1, and a (single-query,
public-key) FE scheme for NC1,T,n, with encryption time bounded by T (λ)1−ε,
for sufficiently large polynomials n and T . Then, there exists an indistinguisha-
bility obfuscator for P/poly.

Fix any constant ε. By Lemma 3, for any two sufficiently large polynomials
T ∗, n∗ that satisfy the following condition, the FE scheme FET

∗,n∗
constructed

from iOT
∗,n∗

satisfy the premise of Theorem 4, in particular, the encryption
time is smaller than T ∗(λ)1−ε.

p(λ, q(λ, n∗(λ), log T ∗(λ))) ≤ T ∗(λ)1−ε

Hence, by Theorem 4, iOT
∗,n∗

suffices for building IO for P/poly. This concludes
Proposition 5.

4 Special-Purpose Circuits in Constant Degree

Assuming a constant-degree PRG, we show how to implement the special-purpose
circuits in Figure 1 using constant-degree arithmetic circuits.

Proposition 6 Instantiated with a constant-degree PRG, the class of special-
purpose circuits {PT,nλ } in Figure 1 has universal arithmetic circuits {Uλ} of
constant degree deg and size u(λ, n, log T) for a universal polynomial u indepen-
dent of T, n.

Thus, the family of special-purpose circuit classes {{PT,nλ }} has constant-
degree.

By Proposition 5, and the fact that all underlying primitives of the Proposition
are implied by the hardness of LWE (see the discussion in Section 3.1), we obtain
the following bootstrapping theorem.

Theorem 5 (Bootstrapping IO for constant degree circuits) Assume sub-
exponential hardness of LWE, and the existence of a sub-exponentially secure
constant-degree PRG. There exist a family of circuit classes of constant degree,
such that, IO for that family with universal efficiency can be bootstrapped into
IO for P/poly.

Overview. The class {PT,nλ } consists of special purpose circuits of the form
P [λ, T, n, ?1](?2), where T = T (λ) and n = n(λ), where ?1 represents the rest of
the constants (including mpk, i∗,K,m<, Π̂,m>) and ?2 represents the input i.
By viewing the rest of the constants as a description of the circuit, U(?2, ?1) =

P [λ, T, n, ?1](?2) can be viewed as the universal circuit of family PT,nλ . Hence,
towards the proposition, we only need to argue that P [λ, T, n, ?](?) can be im-
plemented by an arithmetic circuit of constant degree and size poly(λ, n, log T).

The computation of P can be broken down into three parts: i) Evaluating the
PPRF in Step 1, ii) performing comparison between i and i∗, and iii) depending
on the outcome of comparison, potentially compute a RE encoding in NC0. By
definition of RE in NC0, part iii) has constant degree. The challenges lie in
implementing Part i) and ii) in constant degree. More specifically,

Challenge 1: Let bi,<, bi,=, bi,> be decision bits indicating whether the input
i is smaller than, equal to, or greater than the hardwired threshold i∗. Since
i ∈ [T] and i∗ ∈ {0, · · · , T + 1}, their binary representation has logarithmic
length l = dlog(T+2)e. Under binary representation, the straightforward way
of computing these decision bits also requires logarithmic O(l) = O(log T)
multiplications. E.g., equality testing can be done as bi,= =

∏
j∈[l](1− (ij −

i∗j)
2) (over any ring, where ij and i∗j are the jth bit of i and i∗).

Challenge 2: The state-of-the-art PPRF scheme [23] has an evaluation algo-
rithm in NC1 (assuming LWE), far from computable in constant degree. Even
without the puncturing functionality, standard PRFs cannot be computed
in constant degree, or even AC0, since such functions are learnable [51].

Towards overcoming above challenges, we rely on the simple, but powerful,
observation is that in our special-purpose circuits, the input i and threshold i∗

both belong to a polynomial-sized set {0, · · · , T + 1} (T by definition is polyno-
mial in λ). This allows us to switch the representation of i and i∗ from binary
strings of length O(log T) to strings of constant length over a polynomial-sized
alphabet, presented below.

New Input Representation Instead of using binary alphabet, we represent
the input i ∈ [T], as well as the hardwired threshold i∗ ∈ {0, · · · , T + 1}, using
an alphabet Σ consisting of a polynomial number of vectors of length λ,

Σ = {e0, · · · , eλ} , (1)

where ej for j ∈ {0, · · · , λ} contains 1 at position i and 0 everywhere else (in
particular, e0 is the all 0 vector). Since T is polynomial in λ, there is a minimal
constant, c such that, i (as well as i∗) can be divided into c blocks of length
blog(λ+ 1)c, denoted as i = i1||i2|| · · · ||ic. Therefore, using alphabet Σ,

i
Σ
= ei1 || · · · ||eic , with length |i|Σ = cλ ,

where a
Σ
= b denote that b is the representation of a using alphabet Σ, and |a|Σ

denote the number of bits needed in order to describe the representation over
Σ.

We sketch how to resolve the two challenges, using the new representation.

Overcoming the first challenge: consider the simple task of testing equality of one

block, ik and i∗k—flag bki,= is set to 1 iff ik = i∗k. With the new representation, this

equality can be tested by simply computing bki,=eik ·ei∗k
in degree two. Moreover,

after testing equality of all blocks, which can be done in parallel, the equality
between i and i∗ can be computed as bi,= =

∏
k∈[c] b

k
i,= in constant degree c.

Testing other relations, smaller than and greater than, between i and i∗ can be
performed similarly. See Section 4.1 for details.

Overcoming the second challenge: To circumvent the impossibility results, we
leverage the fact that we only need to construct a PPRF for a special polynomial-
sized domain σc. Assume the existence of a constant-degree PRG with polyno-
mial stretch. The most natural idea is to construct a PPRF using the GGM

PRF tree [43] as done in previous constructions of PPRF [19,21,46]. Clearly, the
degree of the PPRF evaluation grows exponentially with the depth of the tree.
Therefore, we can tolerate at most a constant depth. Fortunately, our domain
is of polynomial size, and if we use a high-degree GGM tree, where each node
has λ children, the depth is constant O(c). However, an issue arises when using
high-degree tree. Recall that the evaluation of the GGM PRF requires following
the path leading to the leaf indexed by the input; at a particular node, the eval-
uator needs to choose the appropriate child in the next layer. When the tree has
degree λ, choosing a child corresponds to the indexing function called the multi-
plexer mux(v, j) = vj , which has at least depth Ω(log |v|) when j is represented

in binary. But, again thanks to our new input presentation j
Σ
= ej , mux can be

implemented as v · ej in degree 2. See Section 4.2 for details on the PPRF.
Finally, we put all pieces together in Section 4.3. Our final implementation

of special purpose circuits had degree of order exp(logλ(Tn)).

4.1 Performing Comparisons in Constant-Degree

We show how to perform various comparison between i and i∗ represented using
the new input representation in constant degree. Towards this, we first show
how to perform comparison over any single block of i and i∗ in degree 2. For any
k ∈ [c], let bki,<, bki,=, bki,> be flags indicating whether the kth block of i, ik, is
smaller than, or equal to, or greater than the corresponding block of i∗k, i∗k; they
can be computed as follows:

– bki,= can be computed as the inner product bki,= = eik · ei∗k
.

– bki,< can be computed as the inner product bki,< = eik ·e<i∗k
, where e<i∗k

denote
the vector that contains 1s in the first i∗k − 1 positions, and 0s in the rest.

– bki,> can be similarly computed as the inner product bki,> = eik · e>i∗k
, where

e>i∗k
denote the vector that contains 0s in the first i∗k positions, and 1s in the

rest.

Next, performing comparison over entire i and i∗ involves congregating the
results of comparisons over individual blocks, which can be done using only a
constant number O(c) of multiplications as described in Figure 2.

4.2 PRF Evaluation in Constant-Degree

The special purpose circuits require a PPRF function with input domain {0, · · · , T},
key domain {0, 1}λ, and range {0, 1}L(λ) for L(λ) long enough to supply the ran-
dom coins for bFE and RE; hence L(λ) = poly(λ, n, log T). The following lemma
provides such a PPRF in constant degree.

Lemma 4 Assume the existence of a degree-d PRG with λ1+ε-stretch for some
constant d ∈ N and ε > 0. For every polynomial D and L, there is a degree
deg′ PPRF scheme with input domain {0, · · · , D(λ)}, key domain {0, 1}λ, and
range {0, 1}L(λ), where deg′ ∈ N is some constant depending on d, ε, D and L.
Furthermore, if the underlying PRG is subexponentially secure, then so is the
PPRF.

Performing Comparisons Compare(i)

Constants: a threshold i∗ ∈ {0, · · · , T + 1} represented as i∗
Σ
= (ei∗

k
)k∈[c]

together with vectors (e<i∗
k
, e>i∗

k
)k∈[c].

Input: an input i ∈ [T] represented as i
Σ
= (ei∗

k
)k∈[c].

Procedure:
1. For every k ∈ [c], compute bki,= = eik · ei∗

k
, bki,< = eik · e<i∗

k
, and

bki,> = eik · e>i∗
k

.
2. Do the following in parallel:

Testing i = i∗ requires checking whether all blocks are equal. There-
fore,

bi,= =
∏
k∈[c]

bki,= . (2)

Testing i < i∗ requires checking whether one of the following cases
occur: For some k ∈ [c], the first k − 1 blocks of i and i∗ are equal,
and the kth block of i is smaller than that of i∗. Therefore,

bi,< = 1−
∏
k∈[c]

(
1−

(∏
j<k∈[c]

bji,=

)
× bki,<

)
. (3)

Testing i > i∗ requires checking whether one of the following cases
occur: For some k ∈ [c], the first k − 1 blocks of i and i∗ are equal,
and the kth block of i is larger than that of i∗. Therefore,

bi,> = 1−
∏
k∈[c]

(
1−

(∏
j<k∈[c]

bji,=

)
× bki,>

)
. (4)

Fig. 2. Performing comparisons between i and i∗ in constant degree.

Proof. Let PRG be the PRG in the premise. We first make the observation that
it implies a constant-degree PRG scheme qPRG with quadratic stretch: If the
stretch of PRG is already more than quadratic, (i.e., 1 + ε ≥ 2) simply truncate
the output to length λ2. Otherwise, iteratively evaluate PRG for a sufficient
number I = d1/ log(1 + ε)e of times to expand the output to length λ2, that is,
qPRG(s) = PRGI(s). The degree of qPRG increases to dI , still a constant, and
the security of qPRG follows from standard argument. Below, we will view the
output of qPRG as a vector v = v[1], · · · ,v[λ] of λ elements, each v[i] is a λ-bit
binary string.

Furthermore, we observe that to get a PPRF with range {0, 1}L(λ), it suffices
to construct one with range {0, 1}λ, since one can always apply PRG iteratively
to expand the output to L(λ) as argued above.

Using qPRG, we now construct a PPRF scheme PPRF = (PRF.Gen,PRF.Punc,F)
with λ-bit outputs. Since D is a polynomial, there is a minimal integer c such
that for all λ ∈ N, D(λ) < λc. Fix any security parameter λ, and D = D(λ). Our

scheme PPRF with input domain {0, · · · , D} represents inputs under alphabet
Σ (in equation (1)), or alternatively, the input domain is Σc.

Key Generation PRF.Gen(1λ) samples a random λ-bit string K
$← {0, 1}λ.

Key Puncturing PRF.Punc(K, i∗) sets K0 = K and computes the following
for every k ∈ [c]:
– vk = qPRG(Kk−1).
– Let vk[6= i∗k] be the vector identical to vk, but with the i∗k

th element
replaced with 0.

Set the punctured key as K(−i∗) = (ei∗k
, vk[6= i∗k])k∈[c]. Note that the size

of K(−i∗) is bounded by O(λ2).
PRF Evaluation F(K(−i∗), i) is presented in Figure 3. It is easy to verify that

the algorithm indeed has constant-degree.

PRF Evaluation F(K(−i∗), i)

Input: A punctured key K(−i∗) = (ei∗
k
,vk[6= i∗k])k∈[c], and an input i ∈

{0, · · · , D} represented as i
Σ
= (eik)k∈[c]. By definition i∗ 6= i.

Procedure:
1. For every k ∈ [c], compute bki,= = ei∗

k
· ei∗

k
, which indicates whether

the kth blocks i∗k and ik are equal.
2. For every k ∈ [c], compute dki indicating whether the following occurs:

The first k − 1 blocks of i and i∗ are equal, but the kth block differs.

dki =
(∏
j<k∈[c]

bji,=

)
×
(

1− bki,=
)
.

3. For every k ∈ [c], do:
– Select the ithk element in vk[6= i∗k], Kk

k = vk[6= i∗k] · eik .
– For j = k + 1 to c, compute wj = qPRG(Kk

j−1) , Kk
j = wj · eij .

4. Compute the final output y = Σk∈[c](K
k
c × dki).

In the last two steps, multiplication between a string z and bit b yields 0|z| if
b = 0 and z if b = 1, and addition between two strings is bit-wise addition.
Inner product between a vector of strings and a vector of bits are defined
accordingly.

Fig. 3. Constant-degree PRF evaluation

Efficiency and security: The only difference between the above scheme and
the original constructions of PPRF based on GGM tree [19,21,46] is (i) the tree
has degree λ instead of degree 2, and (ii) the inputs i and i∗ are represented
under Σ. For efficiency, the second difference has no impact, since under Σ, the
representation of i and i∗ are still of fixed polynomial size; the only effect the
first difference has is that the punctured key consists of a λ-sized vector per layer

of the tree, as opposed to 1 element per layer, but the size of the punctured key
is still bounded by a fixed polynomial. For security, the same proof of [19,21,46]
goes through even when the tree has higher degree; we omit details here.

Constant Degree Circuit P [λ, T, n,mpk, i∗,K,m<, Π̂,m>]

Constants: λ, T,mpk,m<, Π̂,m> are defined as in Figure 1; i∗ ∈
{0, · · · , T + 1} is represented as i∗

Σ
= (ei∗

k
)k∈[c], together with vectors

(e<i∗
k
, e>i∗

k
)k∈[c]; K is a punctured key of a constant degree PPRF PPRF.

Input: index i ∈ [T] represented under Σ, that is, (eik)k∈[c].
Procedure:

1. (Ri||R′i) = F(K, (eik)k∈[c]). (See Figure 3.)
2. bi,<, bi,=, bi,> = Compare[i∗]((eik)k∈[c]). (See Figure 2.)
3. For ? ∈ {<,>}, compute

Π̂i,? = RE.Enc
(
1λ, bFE.Enc, (mpk, m?||(eik)k∈[c]); Ri); R

′
i

)
.

4. Output Π̂i = Π̂i,< × bi,< + Π̂ × bi,= + Π̂i,> × bi,>.
Padding: The hardwired encoding Π̂ is padded to be of length η̄′(λ, n, log T),

and the circuit is padded to be of size η̄(λ, n, log T), for some polynomials
η̄′ and η̄ set similarly as in Figure 1.

Fig. 4. Special-Purpose Circuit P in Constant Degree

4.3 Putting Pieces Together

Given the sub-routine Compare and a constant-degree PPRF scheme PPRF with
domain {0, · · · , T + 1} and appropriate output length L(λ) = poly(λ, n, log T),
a constant-degree implementation the special-purpose circuits is presented in
Figure 4, where Step 1 and 2 evaluate the new functions Compare and PPRF
respectively. The choice of which randomized encoding to output, depending
on the outcome of comparisons, is made in Step 4 using simple addition and
multiplication. Moreover, since the index i is now represented under Σ, each of
its appearance in the special purpose circuit (e.g. in Step 3), as well as in the
bootstrapping transformation of Proposition 5 is replaced with (ei1 , · · · , eic).
Since this representation also has a fixed polynomial size (bounded by λ2 for
sufficiently large λ), all constructions and proofs remain intact.

It is easy to see that the implementation is correct, and furthermore the
circuit size of this implementation is still u(λ, n, log T) for some universal poly-
nomial u independent of T, n: In Step 1, the evaluation of the PPRF takes
fixed (universal) polynomial time poly(λ), and so is the evaluation of function
Compare in Step 2. The run-time of Step 3 and 4 is determined by that of RE
and bFE as before, which again is bounded by a fixed (universal) polynomial
poly(λ, n, log T). Therefore, the worst-case run-time and hence circuit size is
bounded by u(λ, n, log T), for some universal polynomial u.

5 IO for Special-Purpose Circuits in Ideal Model

In this section, we construct IO for our special-purpose circuits in ideal graded
encoding model. Due to the lack of space, we provide only an overview of our
construction. We refer the reader to the full version for more details.

Overview Our goal is to construct IO for {{PT,nλ }} with universal efficiency
in constant degree ideal graded encoding model. Constructions of IO for NC1 in
the literature follow two approaches: Either obfuscate the branching programs
of circuits [22,12,60,41] or directly obfuscate circuits [4,63,7]. The first approach
seems to inherently require high-degree graded encodings, since the evaluation
of a branching program has degree proportional to its length. This limitation
does not hold for the second approach, but known constructions still require
polynomial degree. We base our construction on the construction of IO for NC1

by Applebaum and Brakerski [7] (shorthand AB-IO) in composite order ideal
graded encoding model, and use new ideas to reduce the degree of graded en-
codings.

Review of Applebaum-Brakerski IO Scheme: Let P be a program with universal
arithmetic circuit U(x, P). Consider the following simple idea of encoding every
bit of P and both values 0 and 1 for each input bit i ∈ [n], that is, P̂ =
{[b]vi,b}i∈[n],b∈{0,1}, {[Pi]vi+n}i∈[m]. Then, given an input x, an evaluator can
simply pick the encodings {[xi]vi,xi }i∈[n], and homomorphically evaluate U on
encodings of (bits of) x and P to obtain an encoding of U(x, P), which can then
be learned by zero-testing. This simple idea does not go far. We mention several
key issues and their solutions.

1. To prevent an adversary from using inconsistent values for the same input
bit at different steps of the evaluation, AB-IO follows the standard solution
of “straddling sets” [12], and uses a set of special levels, so that, if both
Zi,0 = [0]vi,0 and Zi,1 = [1]vi,1 for some input bit i are used, the resulting
encoding never reaches the zero testing level vzt. To see this, consider a
simplified example: Set vi,0 = (1, 0, 1) and vi,1 = (0, 1, 1), and provide two

additional encodings Ẑi,b of random values under levels v̂i,0 = (0, d, 0) and
vi,1 = (d, 0, 0); the only way to reach level (d, d, d) is to use Zi,b consistently,

followed by multiplication with Ẑi,b. Note that doing this for every input
already requires degree n multiplication.

2. Graded encodings only support addition in the same levels. Since different in-
put and program bits are encoded under different levels, homomorphic eval-
uation of U cannot be done. To resolve this, AB-IO uses El-Gamal encoding,

under which a value w is represented as (r, rw)
$← EG(w) with a random r.

Encodings of El-Gamal encodings of w1 and w2, (R1 = [r1]v1 , Z1 = [r1w1]v1)
and (R2 = [r2]v2 , Z2 = [r2w2]v2) can be “added” using an addition gadget ⊕
that does (R1R2 = [r1r2]v1+v2

, Z1R2 + Z2R1 = [r1r2(w1 + w2)]v1+v2
), even

if they are under different levels. Note that the new gadget, however, turns
every addition in U into multiplications (and additions) in the homomorphic
evaluation, which now has much higher degree, up to 2depth, than U .

3. Point 1 ensures that an adversary must use an input x consistently, but,
it can still deviate from evaluating U . AB-IO uses an information theoretic
authentication method to prevent this. It samples a random value yi for
each input wire, and computes ȳ = U(y1, · · · , yn+m). The idea is to use the
structure of the composite order ring to “bind” the program and input bits
with their corresponding y values, for example, instead of encoding EG(Pi),
encode EG(wn+i) where wn+i = (Pi, yn+i). Therefore, whichever compu-
tation the adversary performs over x and P , the same is performed over
y1, · · · , yn+m. An honest evaluation yields encodings of EG((U(x, P), ȳ)). By
additionally releasing encodings of EG((1, ȳ)), the output U(x, P) can be
learned by first subtracting the encodings and zero-test. Moreover, deviat-
ing from computing U leads to encodings of EG(Y (x, P), Y (y1, · · · , yn+m))
with some Y 6= U , and the value Y (y1, · · · , yn+m) cannot be eliminated to
allow zero-testing Y (x, P), which hence remains hidden.

Due to Point 1 and 2, AB-IO requires the graded encodings to support degree-
(n2depth) computations.

Towards Using Constant-Degree Graded Encodings, we modify AB-IO as follows:

1. We use the same method as AB-IO to prevent an adversary from using
inconsistent input values, but we cannot afford to do that for every input
bit. Instead, recall that the domain of our special purpose circuits is Σc,
where Σ has size λ. We view each symbol x1, · · · , xc (though described as
a λ-bit string) as a “single input”, and apply the straddling sets of AB-
IO for each input symbol. (Ignore the El-Gamal encoding and the y-values
temporarily.) For the ith symbol, release for every possible value s ∈ Σ,
encoding Zis = [s]vis , and Ẑis of a random value under set v̂is. Consider a

simplified example: Set vis = (0 · · · 0, 1, 0 · · · 0, 1) with 1 at position s and
λ+ 1, and v̂is = (d · · · d, 0, d · · · d, 0) correspondingly. (As in Point 1 above,)
the only way to reach (d, · · · , d) is using Zis for some s consistently followed
by a multiplication with Ẑis. The actual encoding is more complicated as s
is described as a λ-bit string s1, · · · , sλ, and each bit needs to be encoded
separately Zi

s = {[sj]vis}j .
2. Informally speaking, the addition gadget ⊕ of AB-IO turns addition over

encodings under different levels into multiplication; to reduce the degree of
homomorphic evaluation, we want to have as many additions under the same
levels as possible. In particular, encodings of form (R1 = [r]v, Z1 = [rw1]v)
and (R2 = [r]v, Z2 = [rw2]v) can be directly “added” (R1 = [r]v, Z1 + Z2 =
[r(w1 + w2)]v)—we call this the constrained addition gadget ⊕̃. Fortunately,
thanks to the special domain Σc, encodings for different bits of an input
symbol Zi

s have the same level vis. To allow for using ⊕̃, we further let their
El-Gamal encodings share the same randomness ris, that is, Ris = [ris]vis and

Zi
s = {[rissj]vis}j . Now addition of different bits in the same input symbol

can be performed using only homomorphic addition.
More generally, we assign “types” to input wires—all wires describing P have
one type, and these describing xi for each i has another. Encodings for input

wires of the same type share the same level and El-Gamal randomness, and
can be added using ⊕̃ for “free”, whereas addition across different types is
done using⊕ as in AB-IO, involving homomorphic multiplication. We further
assign types to all wires in U recursively: When the incoming wires of an
addition gate in U have the same types, ⊕̃ can be applied and its outgoing
wire keeps the same type; in all other cases, homomorphic multiplication is
required, and the types of the incoming wires add up. Careful examination
reveals that the degree of homomorphic evaluation is proportional to the
1-norm of the output wire type, which we call the type-degree of U .

Combining the above ideas, we obtain a construction of IO for general circuit
class in ideal model where the degree of the graded encodings is O(td + c),
proportional to the type degree td and the number of input type c of the circuit
class; we say such a construction is type degree preserving.

For certain circuits, their type-degrees are much smaller than 2depth. For
example, our special purpose circuits, instantiated with a constant-degree PRG,
have a constant type degree td, and hence constant degree graded encodings
suffice. More generally, when PRG has degree d(λ), the type degree of the special
purpose circuits is polynomial in d(λ).

Our actual IO scheme is more complicated than sketched above due to 1) it
is based on the robust obfuscator in [7] as opposed to the simple obfuscator de-
scribed above; like the robust obfuscator of [7], our IO scheme has the property
that a generic attacker can only generate encodings of 0 at the zero-testing level.
Such a construction can work with graded encoding schemes with unique encod-
ings and seems to be more secure in face of zeroizing attacks on graded encodings.
In particular, [31] showed that a simplified version of the simple obfuscator of [7]
can be attacked. 2) Our IO scheme directly obfuscates non-Boolean circuits. Pre-
vious constructions of IO for NC1 considers only Boolean circuits; this is w.l.o.g.
as a NC1 circuit C can be turned into a Boolean one C̄(x, i) = C(x)i, still in
NC1. But, when aiming at type-degree preserving constructions of IO, we cannot
use this trick, as C̄ may have much higher type degree than C.

Acknowledgements

The author would like to thank Ran Canetti, Shafi Goldwasser, Shai Halevi,
Shachar Lovett, Rafael Pass, and Vinod Vaikuntanathan for delightful and in-
sightful discussions. Moreover, the author would like to give special thanks to
Benny Applebaum and Stefano Tessaro for many helpful inputs.

References

1. M. Alekhnovich. More on average case vs approximation complexity. In 44th
Symposium on Foundations of Computer Science (FOCS 2003), 11-14 October
2003, Cambridge, MA, USA, Proceedings, pages 298–307, 2003.

2. P. Ananth, Z. Brakerski, G. Segev, and V. Vaikuntanathan. From selective to
adaptive security in functional encryption. In R. Gennaro and M. J. B. Robshaw,
editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 657–677, Santa
Barbara, CA, USA, Aug. 16–20, 2015. Springer, Heidelberg, Germany.

3. P. Ananth and A. Jain. Indistinguishability obfuscation from compact functional
encryption. In R. Gennaro and M. J. B. Robshaw, editors, CRYPTO 2015, Part
I, volume 9215 of LNCS, pages 308–326, Santa Barbara, CA, USA, Aug. 16–20,
2015. Springer, Heidelberg, Germany.

4. P. V. Ananth, D. Gupta, Y. Ishai, and A. Sahai. Optimizing obfuscation: Avoiding
Barrington’s theorem. In G.-J. Ahn, M. Yung, and N. Li, editors, ACM CCS 14,
pages 646–658, Scottsdale, AZ, USA, Nov. 3–7, 2014. ACM Press.

5. B. Applebaum. Bootstrapping obfuscators via fast pseudorandom functions. In
P. Sarkar and T. Iwata, editors, ASIACRYPT 2014, Part II, volume 8874 of LNCS,
pages 162–172, Kaoshiung, Taiwan, R.O.C., Dec. 7–11, 2014. Springer, Heidelberg,
Germany.

6. B. Applebaum. Cryptography in Constant Parallel Time. Information Security
and Cryptography. Springer, 2014.

7. B. Applebaum and Z. Brakerski. Obfuscating circuits via composite-order graded
encoding. In Y. Dodis and J. B. Nielsen, editors, TCC 2015, Part II, volume 9015
of LNCS, pages 528–556, Warsaw, Poland, Mar. 23–25, 2015. Springer, Heidelberg,
Germany.

8. B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography in nc0. In FOCS, pages
166–175, 2004.

9. B. Applebaum, Y. Ishai, and E. Kushilevitz. On pseudorandom generators with

linear stretch in nc0. Computational Complexity, 17(1):38–69, 2008.

10. B. Applebaum and S. Lovett. Algebraic attacks against random local functions
and their countermeasures. Electronic Colloquium on Computational Complexity
(ECCC), 22:172, 2015.

11. A. Banerjee, C. Peikert, and A. Rosen. Pseudorandom functions and lattices. In
D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012, volume 7237 of
LNCS, pages 719–737, Cambridge, UK, Apr. 15–19, 2012. Springer, Heidelberg,
Germany.

12. B. Barak, S. Garg, Y. T. Kalai, O. Paneth, and A. Sahai. Protecting obfusca-
tion against algebraic attacks. In P. Q. Nguyen and E. Oswald, editors, EU-
ROCRYPT 2014, volume 8441 of LNCS, pages 221–238, Copenhagen, Denmark,
May 11–15, 2014. Springer, Heidelberg, Germany.

13. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and
K. Yang. On the (im)possibility of obfuscating programs. In J. Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 1–18, Santa Barbara, CA, USA,
Aug. 19–23, 2001. Springer, Heidelberg, Germany.

14. N. Bitansky, S. Garg, H. Lin, R. Pass, and S. Telang. Succinct randomized en-
codings and their applications. In R. A. Servedio and R. Rubinfeld, editors, 47th
ACM STOC, pages 439–448, Portland, OR, USA, June 14–17, 2015. ACM Press.

15. N. Bitansky, O. Paneth, and D. Wichs. Perfect structure on the edge of chaos -
trapdoor permutations from indistinguishability obfuscation. In Theory of Cryp-
tography - 13th International Conference, TCC 2016-A, Tel Aviv, Israel, January
10-13, 2016, Proceedings, Part I, pages 474–502, 2016.

16. N. Bitansky and V. Vaikuntanathan. Indistinguishability obfuscation from func-
tional encryption. In IEEE 56th Annual Symposium on Foundations of Computer

Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 171–190,
2015.

17. N. Bitansky and V. Vaikuntanathan. Indistinguishability obfuscation: From ap-
proximate to exact. In Theory of Cryptography - 13th International Conference,
TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part I, pages
67–95, 2016.

18. A. Bogdanov and Y. Qiao. On the security of goldreich’s one-way function. Com-
putational Complexity, 21(1):83–127, 2012.

19. D. Boneh and B. Waters. Constrained pseudorandom functions and their applica-
tions. In ASIACRYPT (2), pages 280–300, 2013.

20. D. Boneh, D. J. Wu, and J. Zimmerman. Immunizing multilinear maps against
zeroizing attacks. Cryptology ePrint Archive, Report 2014/930, 2014. http://

eprint.iacr.org/2014/930.

21. E. Boyle, S. Goldwasser, and I. Ivan. Functional signatures and pseudorandom
functions. In PKC, pages 501–519, 2014.

22. Z. Brakerski and G. N. Rothblum. Virtual black-box obfuscation for all circuits
via generic graded encoding. In Y. Lindell, editor, TCC 2014, volume 8349 of
LNCS, pages 1–25, San Diego, CA, USA, Feb. 24–26, 2014. Springer, Heidelberg,
Germany.

23. Z. Brakerski and V. Vaikuntanathan. Constrained key-homomorphic prfs from
standard lattice assumptions - or: How to secretly embed a circuit in your PRF.
In Theory of Cryptography - 12th Theory of Cryptography Conference, TCC 2015,
Warsaw, Poland, March 23-25, 2015, Proceedings, Part II, pages 1–30, 2015.

24. Z. Brakerski and V. Vaikuntanathan. Constrained key-homomorphic PRFs from
standard lattice assumptions - or: How to secretly embed a circuit in your PRF.
In Y. Dodis and J. B. Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS,
pages 1–30, Warsaw, Poland, Mar. 23–25, 2015. Springer, Heidelberg, Germany.

25. R. Canetti, S. Goldwasser, and O. Poburinnaya. Adaptively secure two-party com-
putation from indistinguishability obfuscation. In Y. Dodis and J. B. Nielsen, ed-
itors, TCC 2015, Part II, volume 9015 of LNCS, pages 557–585, Warsaw, Poland,
Mar. 23–25, 2015. Springer, Heidelberg, Germany.

26. R. Canetti, J. Holmgren, A. Jain, and V. Vaikuntanathan. Succinct garbling and
indistinguishability obfuscation for RAM programs. In R. A. Servedio and R. Ru-
binfeld, editors, 47th ACM STOC, pages 429–437, Portland, OR, USA, June 14–17,
2015. ACM Press.

27. R. Canetti, H. Lin, S. Tessaro, and V. Vaikuntanathan. Obfuscation of probabilistic
circuits and applications. In Y. Dodis and J. B. Nielsen, editors, TCC 2015, Part
II, volume 9015 of LNCS, pages 468–497, Warsaw, Poland, Mar. 23–25, 2015.
Springer, Heidelberg, Germany.

28. J. H. Cheon, K. Han, C. Lee, H. Ryu, and D. Stehlé. Cryptanalysis of the mul-
tilinear map over the integers. In E. Oswald and M. Fischlin, editors, EURO-
CRYPT 2015, Part I, volume 9056 of LNCS, pages 3–12, Sofia, Bulgaria, Apr. 26–
30, 2015. Springer, Heidelberg, Germany.

29. K. Chung, H. Lin, and R. Pass. Constant-round concurrent zero-knowledge from
indistinguishability obfuscation. In Advances in Cryptology - CRYPTO 2015 - 35th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015,
Proceedings, Part I, pages 287–307, 2015.

30. J. Cook, O. Etesami, R. Miller, and L. Trevisan. Goldreich’s one-way function
candidate and myopic backtracking algorithms. In TCC, pages 521–538, 2009.

http://eprint.iacr.org/2014/930
http://eprint.iacr.org/2014/930

31. J.-S. Coron, C. Gentry, S. Halevi, T. Lepoint, H. K. Maji, E. Miles, M. Raykova,
A. Sahai, and M. Tibouchi. Zeroizing without low-level zeroes: New MMAP
attacks and their limitations. In R. Gennaro and M. J. B. Robshaw, editors,
CRYPTO 2015, Part I, volume 9215 of LNCS, pages 247–266, Santa Barbara, CA,
USA, Aug. 16–20, 2015. Springer, Heidelberg, Germany.

32. J.-S. Coron, T. Lepoint, and M. Tibouchi. Practical multilinear maps over the in-
tegers. In R. Canetti and J. A. Garay, editors, CRYPTO 2013, Part I, volume 8042
of LNCS, pages 476–493, Santa Barbara, CA, USA, Aug. 18–22, 2013. Springer,
Heidelberg, Germany.

33. J.-S. Coron, T. Lepoint, and M. Tibouchi. New multilinear maps over the integers.
In R. Gennaro and M. J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215
of LNCS, pages 267–286, Santa Barbara, CA, USA, Aug. 16–20, 2015. Springer,
Heidelberg, Germany.

34. M. Cryan and P. B. Miltersen. On pseudorandom generators in nc0. In Proc. 26th
MFCS, 2001.

35. D. Dachman-Soled, J. Katz, and V. Rao. Adaptively secure, universally compos-
able, multiparty computation in constant rounds. In Y. Dodis and J. B. Nielsen,
editors, TCC 2015, Part II, volume 9015 of LNCS, pages 586–613, Warsaw, Poland,
Mar. 23–25, 2015. Springer, Heidelberg, Germany.

36. S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices.
In T. Johansson and P. Q. Nguyen, editors, EUROCRYPT 2013, volume 7881
of LNCS, pages 1–17, Athens, Greece, May 26–30, 2013. Springer, Heidelberg,
Germany.

37. S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In 54th
FOCS, pages 40–49, Berkeley, CA, USA, Oct. 26–29, 2013. IEEE Computer Society
Press.

38. S. Garg and A. Polychroniadou. Two-round adaptively secure MPC from indis-
tinguishability obfuscation. In Y. Dodis and J. B. Nielsen, editors, TCC 2015,
Part II, volume 9015 of LNCS, pages 614–637, Warsaw, Poland, Mar. 23–25, 2015.
Springer, Heidelberg, Germany.

39. C. Gentry, S. Gorbunov, and S. Halevi. Graph-induced multilinear maps from
lattices. In Y. Dodis and J. B. Nielsen, editors, TCC 2015, Part II, volume 9015 of
LNCS, pages 498–527, Warsaw, Poland, Mar. 23–25, 2015. Springer, Heidelberg,
Germany.

40. C. Gentry, S. Halevi, H. K. Maji, and A. Sahai. Zeroizing without zeroes: Crypt-
analyzing multilinear maps without encodings of zero. Cryptology ePrint Archive,
Report 2014/929, 2014. http://eprint.iacr.org/2014/929.

41. C. Gentry, A. Lewko, A. Sahai, and B. Waters. Indistinguishability obfuscation
from the multilinear subgroup elimination assumption. Cryptology ePrint Archive,
Report 2014/309, 2014. http://eprint.iacr.org/2014/309.

42. O. Goldreich. Candidate one-way functions based on expander graphs. Cryptology
ePrint Archive, Report 2000/063, 2000. http://eprint.iacr.org/2000/063.

43. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.
J. ACM, 33(4):792–807, 1986.

44. S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich.
Reusable garbled circuits and succinct functional encryption. In D. Boneh,
T. Roughgarden, and J. Feigenbaum, editors, 45th ACM STOC, pages 555–564,
Palo Alto, CA, USA, June 1–4, 2013. ACM Press.

45. Y. Ishai and E. Kushilevitz. Perfect constant-round secure computation via perfect
randomizing polynomials. In ICALP, pages 244–256, 2002.

http://eprint.iacr.org/2014/929
http://eprint.iacr.org/2014/309
http://eprint.iacr.org/2000/063

46. A. Kiayias, S. Papadopoulos, N. Triandopoulos, and T. Zacharias. Delegatable
pseudorandom functions and applications. In CCS, pages 669–684, 2013.

47. I. Komargodski, T. Moran, M. Naor, R. Pass, A. Rosen, and E. Yogev. One-way
functions and (im)perfect obfuscation. 2014.

48. V. Koppula, A. B. Lewko, and B. Waters. Indistinguishability obfuscation for
turing machines with unbounded memory. In R. A. Servedio and R. Rubinfeld,
editors, 47th ACM STOC, pages 419–428, Portland, OR, USA, June 14–17, 2015.
ACM Press.

49. H. Lin, R. Pass, K. Seth, and S. Telang. Output-compressing randomized encodings
and applications. IACR Cryptology ePrint Archive, 2015:720, 2015.

50. H. Lin, R. Pass, K. Seth, and S. Telang. Indistinguishability obfuscation with
non-trivial efficiency. In Public-Key Cryptography - PKC 2016 - 19th IACR Inter-
national Conference on Practice and Theory in Public-Key Cryptography, Taipei,
Taiwan, March 6-9, 2016, Proceedings, Part II, pages 447–462, 2016.

51. N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, fourier transform,
and learnability. In 30th FOCS, pages 574–579, 1989.

52. M. Mahmoody, A. Mohammed, and S. Nematihaji. More on impossibility of virtual
black-box obfuscation in idealized models. Cryptology ePrint Archive, Report
2015/632, 2015. http://eprint.iacr.org/2015/632.

53. E. Mossel, A. Shpilka, and L. Trevisan. On e-biased generators in NC0. In 44th
Symposium on Foundations of Computer Science (FOCS 2003), 11-14 October
2003, Cambridge, MA, USA, Proceedings, pages 136–145, 2003.

54. M. Naor and O. Reingold. Synthesizers and their application to the parallel con-
struction of pseudo-random functions. In 36th FOCS, pages 170–181, Milwaukee,
Wisconsin, Oct. 23–25, 1995. IEEE Computer Society Press.

55. M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-
random functions. In 38th FOCS, pages 458–467, Miami Beach, Florida, Oct. 19–
22, 1997. IEEE Computer Society Press.

56. M. Naor, O. Reingold, and A. Rosen. Pseudo-random functions and factoring
(extended abstract). In 32nd ACM STOC, pages 11–20, Portland, Oregon, USA,
May 21–23, 2000. ACM Press.

57. N. Nisan and M. Szegedy. On the degree of boolean functions as real polynomials.
Computational Complexity, 4:301–313, 1994.

58. R. O’Donnell and D. Witmer. Goldreich’s PRG: evidence for near-optimal polyno-
mial stretch. In IEEE 29th Conference on Computational Complexity, CCC 2014,
Vancouver, BC, Canada, June 11-13, 2014, pages 1–12, 2014.

59. R. Pass and abhi shelat. Impossibility of VBB obfuscation with ideal constant-
degree graded encodings. Cryptology ePrint Archive, Report 2015/383, 2015.
http://eprint.iacr.org/2015/383.

60. R. Pass, K. Seth, and S. Telang. Indistinguishability obfuscation from semantically-
secure multilinear encodings. In J. A. Garay and R. Gennaro, editors,
CRYPTO 2014, Part I, volume 8616 of LNCS, pages 500–517, Santa Barbara,
CA, USA, Aug. 17–21, 2014. Springer, Heidelberg, Germany.

61. A. Sahai and B. Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In D. B. Shmoys, editor, 46th ACM STOC, pages 475–484,
New York, NY, USA, May 31 – June 3, 2014. ACM Press.

62. A. Sahai and B. Waters. How to use indistinguishability obfuscation: Deniable
encryption, and more. Proc. of STOC 2014, 2014.

63. J. Zimmerman. How to obfuscate programs directly. In E. Oswald and M. Fischlin,
editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 439–467, Sofia,
Bulgaria, Apr. 26–30, 2015. Springer, Heidelberg, Germany.

http://eprint.iacr.org/2015/632
http://eprint.iacr.org/2015/383

	Indistinguishability Obfuscation from Constant-Degree Graded Encoding Schemes

