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Abstract. We show the first positive results for the indifferentiability security of the confusion-
diffusion networks (which are extensively used in the design of block ciphers and hash functions).
In particular, our result shows that a constant number of confusion-diffusion rounds is sufficient to
extend the domain of a public random permutation.

1 Introduction

In this work we simultaneously address the following two questions:

– Question 1: secure domain extension of a public random permutation.

– Question 2: theoretical soundness of Shannon’s (or Feistel’s) confusion-diffusion paradigm.

Domain Extension of RPs. The question of domain extension of various cryptographic primi-
tives, such as encryption, signatures, message authentication codes, pseudorandom functions (PRFs),
pseudorandom permutations (PRPs), etc., is one of the fundamental questions in cryptography.

In this paper we address a similar question for a public random permutation. Namely, given
one (or a constant number of) n-bit random permutation(s) P : {0, 1}n → {0, 1}n, and a number
w ≥ 2, build a wn-bit random permutation Π : {0, 1}wn → {0, 1}wn. This question is clearly
natural and interesting it is own right, but also seems extremely relevant in practice. Indeed, the
random permutation model (RPM) has recently received a lot of attention [2,9,23,26], starting to
“compete with” and perhaps even “overtake” the more well known random oracle model (ROM)
and the ideal cipher model (ICM). Aside from elegance, one of the reasons for this renewed attention
comes from the fact that one can abstract the design of both the block-cipher standard AES and
the new SHA-3 standard Keccak as being in the RPM. Namely, AES can be viewed as a 10-round
key-alternating cipher applied to a concrete (“random-looking”) permutation, while SHA-3 can be
viewed as applying a “sponge” mode of operation [2] to a similarly “random-looking” permutation.
In fact, in his invited talk at Eurocrypt’13, the designer of both AES and SHA-3 Joan Daemen
claimed that the RPM is much closer to the existing practice of designing hash functions and block
ciphers than either the ROM or ICM, challenging the cryptographic community to switch to the
RPM!

Of course, one must now build those “random looking permutations” Π on relatively large
domains (perhaps from 128 bits, like AES-128, to 1600 bits, like Keccak, or even longer). In practice,
we have two well-known methods for accomplishing such a goal. The first method is based on
applying several rounds of the Feistel network to some (not necessarily invertible) round functions.
In our (public) setting, this method was theoretically analyzed only recently by Holenstein et
al. [15] (building on an earlier work of [7]), who showed that a 14-round Feistel network is indeed
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sufficient for building a random permutation (RP), provided the round functions are modeled as
(easily made) independent random oracles (ROs). Although very important in theory (i.e., showing
the equivalence between ROM and RPM), this method does not seem to be used in practice, as
it appears almost as hard, — if not harder, — to design “random-looking” non-invertible round
functions on large domains as it is to design the desired random-looking permutation Π.

Confusion-Diffusion Paradigm. Instead, practitioners use the second method, — the confusion-
diffusion (CD) paradigm,1 — which directly connects our motivating Questions 1 and 2. The idea
of CD goes back to the seminal paper of Feistel [11] and even2 back to Shannon [25]. Abstractly, one
splits the input x to Π into several shorter blocks x1 . . . xw, and then alternates the following two
steps for several rounds: (a) Confusion, which consists of applying some fixed short permutations
P1 . . . Pw (called S-boxes) to x1, . . . xw; and (b) Diffusion, which consists of applying some “mixing”
non-cryptographic permutation π(y1 . . . yw) (typically, carefully chosen linear function, sometimes
also called D-box) to the results y1 . . . yw of step (a).

Despite its extensive use in practice, the CD paradigm received extremely little attention from
the cryptographic community. A notable exception is a beautiful work of Miles and Viola [20], who
only looked at the secret-key setting — where the permutations P1, . . . , Pw are secret — and also
primarily considered the “weaker-than-indistinguishability” properties which can be proven about
CD (and, more generally, SPN networks). In contrast, we are interested in the public setting, where
the permutations Pi are modeled as RPs, and seek to examine the indifferentiability properties [5,18]
of the CD paradigm. This leads us to the following more precise reformulation of our motivating
Questions 1 and 2:

– Main question: Analyze indifferentiability of the confusion-diffusion paradigm as a way to
extend the domain of a (constant number of) random permutation(s). More precisely, for how
many rounds r, and under what conditions on theD-boxes π1 . . . πr, is the r-round CD paradigm
indifferentiable from an nw-bit random permutation Π?

Before presenting our results, we make a few remarks. First, we will model the “small permutations”
Pi as both random and independent. The independence assumption is crucially used in our current
proofs, but does not appear necessary. Unfortunately, the proofs we have are already extremely
involved, so we feel this initial simplification is justified. We notice similar abstractions are made
by other papers in the area (including the seminal Luby-Rackoff paper [17]), though one hopes it
might be lifted in future work.

As for modeling Pi as random, it seems inherent if we want to build a random permutation Π;
e.g., we cannot build it from “nothing”, and it seems unlikely that any weaker assumption on the
Pi will work. However, it does come with an important caveat: the best security bound ε we can
naturally get with this approach will certainly be ε ≫ 2−n, where n is the domain of the S-boxes
Pi. In practice, however, the S-boxes use a very small value of n (e.g., n = 8 for the AES), partly
so that S-boxes can be easily and efficiently implemented as lookup tables. With such a small
value of n, however, our bounds appear “practically meaningless”, irrespective of the number of

1 This is closely related to the substitution-permutation network (SPN) paradigm. Historically, though, the term
SPN usually refers to the design of block ciphers as opposed to a single permutation, where one also XORs some
key material in between successive CD rounds. To avoid confusion, we will stick with the term CD and not use
the term SPN.

2 Shannon [25] introduces “confusion” and “diffusion” into the cryptographic lexicon while Feistel [11] articulates
the modern notion of a confusion-diffusion network, crediting Shannon with inspiration. There are some notable
gaps between Shannon and the modern viewpoint. In particular Shannon does not seem to view confusion as a
local operation, nor does he advocate repeatedly alternating steps of “confusion” and “diffusion”. Instead, Shannon
seems to view confusion and diffusion as globally desirable attributes of a cryptographic mixing operation.



queries q made by the attacker. This means that none of our results would be directly applicable
to any of the “practical” permutations Π used in the existing hash functions and block ciphers.
Still, we believe establishing “structural soundness” of the CD paradigm is an important conceptual
contribution—and an overdue sanity check—even with this serious (and inherent) limitation.

Our Results. We give a sequence of results establishing the soundness of the CD paradigm as
a method for domain-extension of random permutations. These results are discussed in detail in
Section 3, and summarized in Theorem 1. Here we only mention a few highlights. We establish
different indifferentiability bounds for various number of rounds r, from as low as r = 5 and as
high as r = 11. All these bounds critically depend on some purely combinatorial properties of the
diffusion permutations πi (which are described in Section 2), and unsurprisingly become potentially
better if we allow more rounds. In particular, while our 5-round result inherently contains terms of
the order qw

2

/2n and also requires nonlinear diffusion permutations, our 11-round result achieves
(modulo the problem of giving explicit constructions of diffusion permutations that achieve certain
combinatorial properties that are provably achieved by random permutations) “birthday” security
O(q2/2n) and even use all linear diffusion permutations πi (although this “convenience” seems to
degrade the security to about O(q4/2n)).

We also believe that some of the combinatorial properties that we discovered in the course of
our analysis (e.g., something we call “conductance”) are very natural and interesting in their own
right, and could be fruitfully used by the future work in the area.

Other Related Work. The question of domain extension ideal primitives was considered by [5,
19] for the setting of public random functions (ROM), and by [6] for the setting of block ciphers
(ICM). While none if these domain extensions directly apply to the RPM (e.g., the result of [6]
crucially relies of the existence of a key for the “small ideal cipher”), they can be composed with
the series of results showing the equivalence between RPM, ICM and ROM [1,5,7–10,15] to achieve
various theoretical domain extension methods in the RPM. For example, one can get a “small
RO” from “small RP” [8,9], extend domain of RO [5], and apply the 14-round Feistel construction
to get a large-domain RP [15] (many other combinations of prior results will suffice as well).
However, all such combinations of prior work will be much less efficient (and elegant) than our
natural construction, and, more importantly, such results will not correspond to the way random
permutations are built in real life.

Finally, domain extension of secret-key random permutations is well studied: examples include
PEP [3], XCB [13], HCTR [29], HCH [4] and TET [14] (and even the original Feistel construc-
tions [17,21] could be viewed as domain doubling techniques in this setting). However, it is easy to
see that none of those constructions provide the indifferentiability property in the public permuta-
tion setting.

2 Definitions

Basic Notations. We write [w] for the set of integers {1, . . . , w}. Vectors in F
w, where F denotes

a finite field, are written in bold letters such as x, y. The i-th entry of x, i ∈ [w], is written x[i].

Except in Appendices A and B, where for the sake of conceptual correctness we work with an
arbitrary field F, we will set F = GF(2n). Then elements in F can (under some representation) be
identified with n-bit strings, and moreover a string in {0, 1}wn can be identified with an element
x ∈ F

w.

Random Permutations and Ideal Primitives. In this paper, the only ideal primitives un-
der consideration are random permutations. A random permutation from {0, 1}k to {0, 1}k is a



permutation drawn uniformly at random from the set of all permutations from {0, 1}k to {0, 1}k .
Such a permutation is implemented as an oracle accessible to a specified subset of the parties per-
forming a security experiment. In our setting all parties also have access to the inverse oracle (i.e.,
implementing the inverse of the random permutation).

Confusion-Diffusion Networks. Fix integers w,n, r ∈ N. Let

P = {Pi,j : (i, j) ∈ [r]× [w]}

be an array of rw permutations from {0, 1}n to {0, 1}n, i.e., Pi,j is a permutation from {0, 1}n to
{0, 1}n for each i ∈ [r] and each j ∈ [w]. Also let

π = (π1, . . . , πr−1)

be an arbitrary sequence of r − 1 permutations, each from {0, 1}wn to {0, 1}wn.
Given P and x ∈ {0, 1}wn we let

Pi(x)

denote the value in {0, 1}wn obtained by applying the permutations Pi,1, . . . , Pi,w blockwise to x.
In other words, Pi : {0, 1}wn → {0, 1}wn is defined by setting

Pi(x)[j] = Pi,j(x[j])

for all j ∈ [w]. It is obvious that Pi is a permutation of {0, 1}wn.
Given P and π, we define the permutation P = P [P, π] from {0, 1}wn to {0, 1}wn as the

composition
P [P, π] = Pr ◦ πr−1 ◦ . . . ◦ P2 ◦ π1 ◦ P1.

I.e.,
P [P, π](x) = Pr(πr−1(. . . P2(π1(P1(x))) . . .))

for x ∈ {0, 1}wn. We call P [P, π] the confusion-diffusion network built from P and π. The permu-
tations in P are variously called the confusion permutations or S-boxes. The permutations in π are
variously called the diffusion permutations or D-boxes.

The values n, w and r will be called the wire length, the width and the number of rounds
respectively.

In practice, the S-boxes are implemented by “convoluted” or “random-like” permutations while
the D-boxes are implemented by “easy” (typically linear) permutations that are cryptographi-
cally weak. In our indifferentiability model, described next, the S-boxes are modeled as random
permutations while the D-boxes are publically fixed parameters of the network.

Indifferentiability. Let C be a construction making calls to an ideal set of primitives P, which
we notate as CP . Let Z be an ideal primitive with the same interface as CP (e.g., Z is a random
permutation if CP implements a permutation). Indifferentiability is meant to capture the intuitive
notion that the construction CP is “just as good” as Z, in some precise sense. The definition
involves a simulator:

Definition 1. An (oracle) circuit C with access to a set of ideal primitives P is (tS , qS , ε)-indif-
ferentiable from an ideal primitive Z if there exists a simulator S such that

Pr
[

DCP ,P = 1
]

− Pr
[

DZ,SZ
]

≤ ε

for every distinguisher D making at most q0 queries to its oracles, and such that S runs in total
time tS and makes at most qS queries to Z. Here tS, qS and ε are functions of q0.



We note that in the “real world” D has oracle access to the construction CP as well as to the
primitives P; in the “ideal world” CP is replaced by the ideal primitive Z and the ideal primitives
P are replaced by the simulator S. Thus, S’s job is to make Z look like CP by inventing “answers
that fit” for D’s queries to the primitives in P. For this, S requires query access to Z (notated as
SZ); on the other hand, S does not get to see which queries D is making to Z.

We emphasize thatD is information-theoretic: there is no hardness assumption. What is at stake
is the statistical distance between two worlds with two different underlying sources of randomness
(P versus Z).

Informally, CP is indifferentiable from Z if it is (tS , qS, ε)-indifferentiable for “reasonable” values
of (tS , qS, ε). An essential composition theorem [5, 18] states that any cryptosystem that is secure
when implemented with Z remains secure if Z is replaced with CP , if CP is indifferentiable from
Z. However, the class of adversaries with respect to which the cryptosystem’s security is defined
must be a class that is large enough to accomodate the simulator S from Definition 1. See, e.g., [22]
for a dramatic example in which indifferentiability fails completely.

The value qS in Definition 1 is called the query complexity of the simulator. Having a small
value of qS is important for “quality of composition”, i.e., to avoid an unacceptable watering-down
of the security bounds when the afore-mentioned composition theorem is applied; ideally qS should
be as close to q0 as possible.

In our setting “P will be P” (i.e., the set of ideal primitives P will be the set of wr indepen-
dent random permutations discussed in the previous subsection), while CP will be P [P, π]. (As
explained, the diffusion permutations π are a fixed, publically known parameter of the construc-
tion.) Consequently, Z (matching CP ’s syntax) will be a random permutation from {0, 1}wn to
{0, 1}wn. Like all permutation oracles, Z can be queried in both forward and backward directions.

Combinatorial Properties of the Diffusion Permutations. Our main result is of the
type “for a certain number of rounds and for diffusion permutations π with certain combinatorial
properties for certain πi’s, P [P, π] is xyz-indifferentiable from a random permutation Z”. Here we
define some of the “combinatorial properties” involved.

Properties will be defined unidirectionally: π might satisfy a property while π−1 doesn’t.
Given π : {0, 1}wn → {0, 1}wn, a vector x ∈ {0, 1}wn and indices j, j′ ∈ [w], we let

πx

j,j′ : {0, 1}n → {0, 1}n

be the function from {0, 1}n to {0, 1}n obtained by restricting the i-th block of input of π, i 6= j, to
x[i], by replacing x[j] with the input x ∈ {0, 1}n, and by considering only the j′-th block of output.
(The value x[j] being, thus, immaterial to πx

j,j′, since it is replaced by the input.)
We define

MaxPreim(π) = max
x,j,h,y

|{x ∈ {0, 1}n : πx

j,h(x) = y}|

and
MaxColl(π) = max

x,x′,j,h
|{x ∈ {0, 1}n : πx

j,h(x) = πx
′

j,h(x)}|

where the latter maximum is taken over all tuples x, x′, j, h such that x[j′] 6= x′[j′] for some j′ 6= j.
Then by definition

Pr
x
[πx

j,h(x) = y] ≤ MaxPreim(π)

2n

for all x ∈ {0, 1}wn, y ∈ {0, 1}n, and j, h ∈ [w], where the probability is computed over a uniform
choice of x ∈ {0, 1}n, and

Pr
x
[πx

j,h(x) = πx
′

j,h(x)] ≤
MaxColl(π)

2n



for all x, x′ ∈ {0, 1}wn, j, h ∈ [w], such that x[j′] 6= x′[j′] for at least one j′ 6= j. For lack of better
terminology, we refer to MaxPreim(π) as the entry-wise randomized preimage resistance of π and
to MaxColl(π) as the entry-wise randomized collision resistance of π.

Small values of MaxPreim(π) and of MaxColl(π) are better. It is easy to construct permutations
with MaxPreim(π) = 1 (which is optimal): simply use a linear permutation π : GF(2n)w → GF(2n)w

whose associated matrix (a w×w matrix with entries in GF(2n)) has all nonzero entries. Construct-
ing permutations with small values of MaxColl(π) is more tricky. In Appendix C we show how to
construct permutations that simultaneously achieve small entry-wise randomized preimage resis-
tance and small entry-wise randomized collision resistance (of order O(w) each).

Conductance. Another combinatorial metric that we identify for a permutation π : {0, 1}wn →
{0, 1}wn is the so-called “conductance” of the permutation. This metric plays a key role in some of
our simulators for improving the security bound and reducing the query complexity.

The conductance Condπ of a permutation π : ({0, 1}n)w → ({0, 1}n)w is a function of q defined
by

Condπ(q) = max
U1,...,Uw,V1,...,Vw⊆{0,1}n

|U1|=···=|Vw|=q

|{(x,y) : y = π(x),x[j] ∈ Uj ,y[j] ∈ Vj , 1 ≤ j ≤ w}|.

One can observe that w is a hidden parameter of the conductance (e.g., the conductance of a
permutation π : {0, 1}1024 → {0, 1}1024 isn’t defined on its own without knowing w) and that

q ≤ Condπ(q) ≤ qw

for any permutation π, 0 ≤ q ≤ 2n. Indeed, q ≤ Condπ(q) since we can always choose q distinct
vectors x1, . . . ,xq ∈ {0, 1}wn and set

Uj = {xk[j] : 1 ≤ k ≤ q}
Vj = {yk[j] : 1 ≤ k ≤ q}

where yk = π(xk). On the other hand Condπ(q) ≤ qw since the number of vectors x such that
x[j] ∈ Uj for 1 ≤ j ≤ w is at most |U1 × · · · × Uw| = qw.

For technical reasons we also define a notion of all-but-one conductance, which is essentially the
same as conductance but where one coordinate position in either the input or output is ignored.
The all-but-one conductance of a permutation π at q queries is denoted aboCondπ(q).

Formally, given a permutation π : ({0, 1}n)w → ({0, 1}n)w, we define

Condh,+π (q) = max
U1,...,Uw,V1,...,Vw⊆{0,1}n

|U1|=···=|Vw|=q

|{(x,y) : y = π(x),x[j] ∈ Uj ∀j ∈ [w],y[j] ∈ Vj ∀j ∈ [w]\h}|,

Condh,−π (q) = max
U1,...,Uw,V1,...,Vw⊆{0,1}n

|U1|=···=|Vw|=q

|{(x,y) : y = π(x),x[j] ∈ Uj ∀j ∈ [w]\h,y[j] ∈ Vj ∀j ∈ [w]}|

aboCondπ(q) = max(max
h∈[w]

(Condh,+(π, q)),max
h∈[w]

(Condh,−(π, q)))

(Here the first two definitions are for all h ∈ [w], and we use ∀ in postfix notation.) Thus the set
Vh is immaterial in the definition of Condh,+, while the set Uh is immaterial in the definition of
Condh,−. We call aboCondπ(q) as the all-but-one conductance of π (at q queries).

In Appendix A we show that the conductance and all-but-one conductance of a random permu-
tation π are both roughly qwn, which is essentially q log(q) since q is exponential in n. Constructing
explicit permutations with low conductance is an interesting open problem.

More intuition regarding the purpose of conductance and all-but-one conductance is given in
Section 4.



3 Network Nomenclature and Main Result

In this section we give a syntax-oriented description of the confusion-diffusion networks for which
our main results are obtained. This material is intended to cover the bare minimum that is necessary
to state the main result. In the next section we explain the design principles of the simulator(s)
that attempt to emulate these confusion-diffusion networks.

A round of a confusion-diffusion network refers to a round of S-boxes. More precisely, all S-box
permutations Pi,j with the same value of i lie in the same round of the network.

As mentioned, our results concern eight different confusion-diffusion networks with between 5
and 11 rounds. Since, say, the middle round of the 5-round confusion-diffusion network plays the
same structural role (with respect to our simulator) as the middle round in the 9-round confusion-
diffusion network, it makes more sense to designate rounds according to their structural role instead
of by their round number (as the latter will keep changing from network to network, even while
the structural purpose of the round stays the same).

For this purpose, we replace the array P = {Pi,j} of r×w random permutations with an array
Q of 12 × w random permutations where each “round” (value of the index i) is designated by a
different alphabet letter. Specifically, we let

Q = {Fj , Gj , Ij ,Dj , Jj , Bj , Aj , Cj ,Kj , Ej , Lj ,Hj : j ∈ [w]} (1)

be a set of 12w random permutations, where each permutation is thus indexed by an alphabet
letter from the set {A, . . . , L} as well as by an index j ∈ [w].

Having traded the set of indices {i : i ∈ [r]} (the possible round numbers) for the set of letters
{A, . . . , L}, a “round” will henceforth mean, for us, a member of the latter set, i.e., a “round”
means one of the letters A, . . . , L.

Not all rounds will be used for all confusion-diffusion networks. For example, our 5-round
confusion-diffusion network uses the rounds

G,D,A,E,H

and no others. However the order in which rounds appear, if they appear, is invariant and is the
same as the order in which we listed the elements of Q, cf. (1). (Thus, for example, the permutation
P1,1 according to our old naming scheme becomes the permutation G1 in the 5-round network, in
our new naming scheme.)

Our eight different confusion-diffusion networks correspond to the eight different possible set-
tings of three independent boolean flags called XtraMiddleRnd, XtraOuterRnd and XtraUntglRnds.
The rounds that appear in each network, as a function of these boolean flags, are as follows:

{

A if XtraMiddleRnd is off

B,C if XtraMiddleRnd is on
{

G,H if XtraOuterRnd is off

F,G,H if XtraOuterRnd is on
{

D,E if XtraUntglRnds is off

I,D, J,K,E,L if XtraUntglRnds is on

As can be seen, toggling either of XtraMiddleRnd or XtraOuterRnd “costs” one extra round, whereas
toggling XtraUntglRnds four extra rounds respectively. Hence the number of rounds in the network
will be

5 + XtraMiddleRnd+ XtraOuterRnd+ 4 · XtraUntglRnds



which spans the integers 5, 6, 6, 7, 9, 10, 10, 11.
For example, our 11-round network consists of the rounds

F,G, I,D, J,B,C,K,E,L,H

in this order. (See also Fig. 1 in Section 4 for the following discussion.) The 10-round network with
XtraMiddleRnd= false consists of the rounds

F,G, I,D, J,A,K,E,L,H

in this order as well. All other networks can be obtained by removing rounds from one of these two
sequences. In more detail, round F is removed to un-toggle XtraOuterRnd and rounds I, J , K, L
are removed to un-toggle XtraUntglRnds.

We will also rename the diffusion permutations π = (π1, . . . , πr) according to their structural
roles in the diffusion network. This time, however, we will find it convenient to reuse the name π
for the set of diffusion permutations (as opposed to above, where we switched from P to Q). We
let

π = (ν, πG, πI , πJ , πB , τ, πC , πK , πL, πH)

where each element in the sequence π is a permutation from {0, 1}wn to {0, 1}wn. In the 11-round
confusion-diffusion network, diffusion permutations appear interleaved with the S-box rounds in
the order

F–ν–G–πG–I–πI–D–πJ–J–πB–B–τ–C–πC–K–πK–E–πL–L–πH–H

(i.e., the S-box round consisting of the parallel application of the permutations Fj is followed by
the diffusion permutation ν, and so on), whereas in the 10-round network with XtraMiddleRnd=
false the diffusion permutations appear in the order

F–ν–G–πG–I–πI–D–πJ–J–πB–A–πC–K–πK–E–πL–L–πH–H

with τ dropped. From either of these configurations one can un-toggle XtraOuterRnd by dropping
F–ν– and one can un-toggle XtraUntglRnds by dropping I–πI–, –πJ–J , K–πK– and –πL–L. For
example, our 9-round confusion-diffusion network has the order

G–πG–I–πI–D–πJ–J–πB–A–πC–K–πK–E–πL–L–πH–H

whereas the 5-round and 6-round network with XtraMiddleRnd toggled respectively have order

G–πG–D–πB–A–πC–E–πH–H

G–πG–D–πB–B–τ–C–πC–E–πH–H

and so on.
Altogether the confusion-diffusion network is a function of the confusion permutations Q, of

the diffusion permutation vector π and of the three boolean flags XtraMiddleRnd, XtraOuterRnd and
XtraUntglRnds. For brevity we write this network as

P [Q, π]

keeping the three boolean flags implicit. Depending on the value of the flags some permutations
in Q and/or π are of course unused. In particular, we assume that unused permutations in Q are
simply ignored for the purpose of the indifferentiability experiment (i.e., these unused permutations
are not accessible as oracles).



In order to more succinctly state the main result, we define

MaxColl(π) = max(MaxColl(πG),MaxColl(π−
B),MaxColl(πC),MaxColl(π−

H))

MaxPreim(π) = max(MaxPreim(πG),MaxPreim(π−
B),MaxPreim(πC),MaxPreim(π−

H),

MaxPreim(πI),MaxPreim(π−
J ),MaxPreim(πK),MaxPreim(π−

L ))

MaxCoPr(π) = max(MaxColl(π),MaxPreim(π))

where π− denotes the inverse of π.
Moreover we define

N = 2n

and

α(q) =

{

(2q)w if XtraMiddleRnd is off,

Condτ (2q) if XtraMiddleRnd is on,

β(q) =

{

(q + α(q))w if XtraOuterRnd is off,

Condν(q + α(q)) if XtraOuterRnd is on.

The definitions of α(q) and β(q) might seem annoyingly technical right now. In Section 4 we will
provide more digestible semantic explanations for α(q) and β(q).

Theorem 1. Let N = 2n. The confusion-diffusion network P [Q, π] achieves (tS , qS , ε)-indifferentiability
from a random permutation Z : {0, 1}wn → {0, 1}wn for ε equal to

β(q)(q + α(q))w

Nw − q − α(q)
+

1

Nw
+

4w(q + α(q))2

N − q − α(q)

+
4wq aboCondτ (2q)

N − 2q
if XtraMiddleRnd is on

+
2w(q + α(q)) aboCondν(q + α(q))

N − q − α(q)
if XtraOuterRnd is on

+
4wα(q)(q + α(q))MaxCoPr(π)

N − q − α(q)
if XtraUntglRnds is off

+
6w(q + α(q))2 MaxPreim(π)

N − q − α(q)
if XtraUntglRnds is on

and for qS = β(q), tS = O(w(q+α(q))w). Here q = q0(1+rw) where q0 is the number of distinguisher
queries and r ∈ {5, 6, 7, 9, 10, 11} is the number of rounds in the confusion-diffusion network.

Interpretation. In order to get a rough feel for the bound of Theorem 1 it is helpful to make the
order-of-magnitude approximations

MaxPreim(π) = MaxColl(π) ≈ O(1)

Condτ (2q) = aboCondτ (2q) ≈ q

Condν(q + α(q)) = aboCondν(q + α(q)) ≈ α(q).

With these approximations in place, and given q ≪ N (in fact we can assume q ≤ N1/2, since the
security bound is void otherwise) it easy to verify that the largest terms in Theorem 1 are of the
order

α(q)2

N



and which is, therefore, a first approximation to the security ε that we achieve. Unfolding the
definition of α(q), we thus find

ε ≈
{

(2q)2w/N if XtraMiddleRnd is off,

q2/N if XtraMiddleRnd is on

for the security, to a first approximation. On the other hand we find

qS = β(q) ≈























(2q)w
2

if XtraMiddleRnd/XtraOuterRnd are off/off

(2q)w if XtraMiddleRnd/XtraOuterRnd are off/on

(2q)w if XtraMiddleRnd/XtraOuterRnd are on/off

q if XtraMiddleRnd/XtraOuterRnd are on/on

for the query complexity, again to a first approximation.
Digging a little deeper into lower-order factors, if we let

µ(π) =

{

MaxCoPr(π)) if XtraUntglRnds is off

MaxPreim(π)) if XtraUntglRnds is on

then it is easy to verify that

ε =

{

O(w)α(q)2µ(π)/N if XtraOuterRnd is off,

O(w)α(q)aboCondν(q + α(q))/N if XtraOuterRnd is on
(2)

by keeping only the biggest term(s) in the security bound and by folding lower-order terms—as
well as factors of the type N/(N − q − α(q)), which are dominated by constants—into the big-Oh
constant.

In Appendix C we discuss the explicit construction of diffusion permutations with low values of
MaxColl, and also unconditional lower bounds on MaxColl. In that appendix, we show that

µ(π) =

{

O(w) if XtraUntglRnds is off,

1 if XtraUntglRnds is on,

in the best case, and with these bounds being matched by explicit constructions. With this value
of µ(π) the first line of (2) (i.e., with XtraOuterRnd = false) becomes

{

O(w2)α(q)2/N if XtraUntglRnds is off

O(w)α(q)2/N if XtraUntglRnds is on

where α(q) can be further unfolded in each case according to the value of XtraMiddleRnd.
In summary, the security bound is essentially a function of the flag XtraMiddleRnd with sec-

ondary influences from the flags XtraOuterRnd and XtraUntglRnds. The query complexity, for its
part, is highly sensitive to both XtraMiddleRnd and XtraOuterRnd, while the simulator’s time com-
plexity is essentially qw in all cases.

It should be noted that while security of the form, e.g., q2/N , is hardly relevant for practical
values of n such as n = 8, security in the current model can actually not exceed q = wrN distin-
guisher queries regardless of the simulator because the distinguisher can learn the entire content
of the S-boxes with this many queries. In other words, no simulator can hope to handle practical



parameters. Nonetheless, an improved “beyond birthday” security bound, if it could be attained,
might shed additional theoretical insight.

The effect of linear permutations. It is relatively easy to see that MaxColl(π) = 2n = N for any
linear permutation π : GF(2n)w → GF(2n)w as long as w > 2. In this case MaxCoPr(π) = N ,
and Theorem 1 becomes void if XtraUntglRnds is on. Thus one of the main reasons for toggling
XtraUntglRnds would be to enable the use of linear diffusion permutations, or any other3 family
of permutations that have small entry-wise randomized preimage resistance (but potentially large
entry-wise randomized collision resistance).

It should be emphasized that the only properties required of the permutations ν and τ are low
conductance and low all-but-one conductance—no other combinatorial property of these permu-
tations is ever considered. If these permutations are required to be linear over4 GF(2n) however,
we know from Appendix B that these conductances will be adverserly affected, and can no longer
approach the theoretical minimums forecast by random permutations.

Even though we do not know the actual q-query conductance of a “generic” GF(2n)-linear
permutation, we can take an educated guess and assume that both the conductance and all-but-
one conductance are in the vicinity of q2, which is compatible with the bounds in Appendix B.5

Then, assuming that both of the flags XtraMiddleRnd and XtraOuterRnd are set, we have

α(q) = Condτ (2q) = aboCondτ (2q) = O(q2)

and

β(q) = Condν(q + α(q)) = aboCondν(q + α(q)) = O(q4)

leading to security ≈ q4/N and to query complexity ≈ q4.

It is also conceivable, however, to use GF(2n)-linear permutations for all permutations in π
except ν and τ . This would especially make sense if one could devise a fast diffusion permutation
with provably low conductance (or even with conductance that is believed to be low according to
some heuristic criteria).

Further discussion—including an extension of our main result—is given in Section 7.

Space complexity of the simulator, and the potential benefit of adding an extra round to the right-
hand side detect zone. As will be clarified by the description of our simulator given in Section 4,
adding an extra round to the right-hand outer detect zone (assuming XtraOuterRnd is set) does not
further decrease the simulator’s query complexity, nor improve security. Nonetheless, such an extra
zone can be used to reduce the simulator’s space complexity while maintaining essentially the same
query complexity.

Without going into details here (see more discussion after Lemma 52, at the end of Section 5),
the simulator’s space complexity can be reduced from O(β(q)) to O(q) by keeping the same number
of rounds in both the outer left and outer right detect zones (i.e., either 1 for each or 2 for each);
taking advantage of this space savings, though, means slightly increasing the query complexity, to
4β(q) from β(q).

3 Indeed, an interesting research direction would be the design of faster-than-linear diffusion permutations with small
entry-wise randomized preimage resistance.

4 Indeed, the result of Appendix B says nothing about the conductance of, say, GF(2)-linear permutations, i.e.,
in which each output bit is an xor of some specified set of input bits. Such permutations might well have low
conductance, as far as we know!

5 The purpose of taking such an educated guess is just for the sake of curiosity. We do not aim or claim to draw any
hard conclusions here!



4 Simulator Overview

Context.We start with some very high-level description and reminder-of-purpose of our simulator.
For this discussion it will be more convenient if we momentarily revert to indexing the S-boxes by
coordinate pairs (i, j) where i ∈ [r] the round number and j ∈ [w] the layer number, with r being
the number of rounds and w being the width. The diffusion permutation between the i-th and
(i+ 1)-th rounds will again be denoted πi as well.

The simulator is responsible for answering queries to the S-boxes, and has access to a random
permutation oracle Z : {0, 1}wn → {0, 1}wn that is being independently accessed by the distin-
guisher. The simulator’s job is to keep the S-box answers compatible with Z in the sense that it
looks to the distinguisher as if Z is implemented by the confusion-diffusion network.

For each pair (i, j) ∈ [r] × [w] the simulator maintains a pair of tables Pi,j and P−1
i,j , each

containing 2n entries of n bits each, in which the simulator keeps a record of “what it has already
decided” about the (i, j)-th S-box. Initially the tables are blank, meaning that Pi,j(x) = P−1

i,j (y) =

⊥ for all x, y ∈ {0, 1}n. The simulator sets Pi,j(x) = y, P−1
i,j (y) = x to indicate that the (i, j)-th

S-box maps x to y. The simulator never overwrites values in Pi,j or in P−1
i,j and always keeps these

two tables consistent. Hence Pi,j encodes a partial matching (or “partial permutation”) from {0, 1}n
to {0, 1}n from which edges are never subtracted. We also note that the edges in Pi,j are a superset
of those queries that the distinguisher has made to the (i, j)-th S-box or to its inverse (i.e., Pi,j

contains the answers to those queries, and possibly more).
By analogy with the notation of Section 2 we write

Pi(x) = y (3)

if x,y ∈ {0, 1}wn are vectors such that Pi,j(x[j]) = y[j] for all j ∈ [w]. Note that (3) is a time-
dependent statement, in the sense that the tables Pi,j keep accruing entries as the distinguishing
experiment proceeds. For example, (3) is initially false for all i and all vectors x, y. Moreover Pi is
not an actual table maintained by the simulator—i.e., (3) is “just notation”.

A sequence of vectors (x1,y1, . . . ,xr,yr) is called a completed path6 if Pi(x
i) = yi for i = 1, . . . , r

and if πi(y
i) = xi+1 for i = 1, . . . , r − 1. The set of completed paths is also time-dependent. The

vectors x1 and yr are called the endpoints of the path.
We informally say that the distinguisher completes a path if it makes queries to the simulator

that form a completed path. (There are many different possible ways to order such a set of queries,
obviously.) One can picture the distinguisher as trying to complete paths in various devious ways
(typically, reusing the same queries as part of different paths), and checking that the path endpoints
are each time compatible with Z.

The simulator’s job, in response, is to run ahead of the distinguisher and pre-emptively complete
paths that it thinks the distinguisher is interested in, such as to make these paths compatible with
Z. The simulator’s dilemna is that it must choose under which conditions to complete a path; if
it waits too long, or completes paths in only highly specialized cases, it may find itself trapped in
a contradiction (typically, while trying to complete several paths at once); but if it is too trigger-
happy, having a very large number of conditions under which it will choose to complete a path, the
simulator runs the risk creating7 an out-of-control chain reaction of path completions.

6 This definition, made for the sake of expository convenience, is superceded further down, where we redefine “com-
pleted path” by adding the requirement that the endpoints be compatible with Z, i.e., that Z(x1) = yr.

7 Indeed, the simulator makes no distinction between those entries in its tables Pi,j that are the direct result of an
distinguisher query, and those which it created on its own while pre-emptively completing paths. It seems very
hard to leverage such a distinction. Note for example that the distinguisher may know values in Pi,j without having
made the relevant queries, simply by virtue of knowing how the simulator works.



Essentially the simulator must be safe, but in a smart enough way that it avoids (out-of-control)
chain reactions. We will informally refer to the problem of showing that no out-of-control chain
reactions occur as the problem of simulator termination.
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Fig. 1. Emplacement of the outer detect (O), adapt (A), middle detect (M) and untangle (U) zones for the 11- and
5-round simulators. The adapt zones always consist of rounds D and E.

Simulator Zones. Conceptually our simulator divides the confusion rounds and diffusion permu-
tations into nine zones of four different types, to wit, one middle detect zone (M), left and right
outer detect zones (O), four untangle zones (U) and two adapt zones (A). Each zone consists of one
or more contiguous rounds8 and/or diffusion permutations with every round and every diffusion
permutation belonging to exactly one zone.

Fig. 1 shows how zones are divided for the 11- and 5-round networks. The zone division for
networks with other numbers of rounds can easily be extrapolated from these. For example, the
four untangle zones will be

{

πG, πB , πC , πH if XtraUntglRnds is off

πG–I–πI , πJ–J–πB, πC–K–πK , πL–L–πH if XtraUntglRnds is on

depending only on the value of XtraUntglRnds, while the outer detect zones will be
{

G,H if XtraOuterRnd is off

F–ν–G,H if XtraOuterRnd is on

8 We recall from Section 3 that a round refers to an S-box round.



depending only the value of XtraOuterRnd, and so on. We observe that zones (specifically, untangle
zones with XtraUntglRnds = false) might consist solely of diffusion permutations. This contrasts
with semantically similar zoning systems for Feistel network simulators and key-alternating simu-
lators [15,16,24] for which the zones always contain at least one ideal component. We also observe
that in the minimalist 5-round simulator, each round and each diffusion permutation corresponds
to an individual zone.

Table Notation, Columns and Matching Query Sets. We revert to identifying rounds with
letters in {A, . . . , L}. Under this notation tables Pi,j , P

−1
i,j described above become, e.g., tables Aj

and A−1
j . Thus for each round T ∈ {A, . . . , L} that is “operational” (as will depend on the flag

settings) the simulator maintains tables Tj , T
−1
j for 1 ≤ j ≤ w, as already described above under

the notation Pi,j , P
−1
i,j .

We write T (x) = y if Tj(x[j]) = y[j] for each j ∈ [w], and for all T ∈ {A, . . . , L}. We also write
T (x) = ⊥ if Tj(x[j]) = ⊥ for at least one value of j. The notation T−1(y) is analogous, with T−1

being the inverse of T . As emphasized above this notation is really “notation only” in the sense
that the simulator does not maintain such things as tables T or T−1.

A non-null entry in table Tj will be called an (S-box) query. More formally, an S-box query is
a quadruple (T, j, x, y) where T ∈ {A, . . . , L}, j ∈ [w], x, y ∈ {0, 1}n, such that Tj(x) = y.

A set of w queries with the same value of T but with different values of j will be called a
column or a T -column when we wish to emphasize the round. The (unique) vectors x, y such that
(T, j,x[j],y[j]) is a query in the column for each j ∈ [w] are called the input and output of the
column respectively. We note that a column is uniquely determined by either its input or output.

Two columns are adjacent if their rounds are adjacent. (E.g., a B-column and a C-column are
adjacent.) Two adjacent columns are matching if π(y) = x, where y is the output of the first
column, where x the input of the second column, and where π is the diffusion permutation between
the two rounds.

A pair of columns from the first and last round of the confusion-diffusion network are likewise
matching if Z(x) = y, where x is the input to the first-round column (either an F - or G-column)
and y is the output of the last-round column (the H-column).

The notion of matching columns naturally extends to sequences of columns from consecutive
rounds of length greater than two. (The first and last round of the network are always considered
adjacent.) If a set of matching columns encompasses all rounds we call the set a completed path.
Thus, since the first and last column of a network are considered adjacent, completed paths are
compatible with Z by definition.

The set of queries in a matching sequence of columns of any length is called a matching set
of queries. We will also refer to the queries of a single column as a matching set, considering that
column as a matching sequence of columns of length 1.

One can also observe that two different completed paths cannot contain the same column.
Indeed, each D-box is a permutation and each round implements a partial permutation as well.

Simulator Operation and Termination Argument. Our simulator applies a design paradigm
pioneered by Yannick Seurin [24] that has also been used in other simulators for Feistel networks
or key-alternating ciphers [15,16]. As for all such simulators, our simulator completes two types of
paths, where one type of path is triggered by a “middle detect zone” and the other is triggered by
an “outer detect zone”.



In more detail, our simulator pre-emptively completes a path9 for every matching set of queries
in the middle detect zone (such a matching set will consist of either one or two columns, depending
on whether XtraMiddleRnd is toggled) and also for every matching set of queries in the two outer
detect zones, considered as a single consecutive set of columns (the latter kind of matching set will
thus consist of either two or three columns, depending on whether XtraOuterRnd is toggled).

Crucially, one can show that, unless some bad event of negligible probability occurs, each outer-
triggered path completion is associated to a unique pre-existing query made by the distinguisher to
Z. Since the distinguisher makes only q queries in total, this means that at most q outer-triggered
path completions occur, with high probability. In fact our simulator aborts if it counts10 more than
q outer-triggered path completions, so in our case at most q outer-triggered path completions occur
with probability 1.

Moreover, a middle-triggered path completion does not add any new queries to the middle
detect zone. This means that all queries in the middle detect zone can be chalked up to one of two
causes: (1) queries directly made by the distinguisher, (2) queries made by the simulator during
outer-triggered path completions.

Cause (1) accounts for at most q queries to each S-box and, as just seen, cause (2) accounts
for at most q queries as well. Hence a middle detect zone S-box is never queried at more then 2q
points, i.e., the table Tj for T ∈ {A,B,C} never has more than 2q non-⊥ entries.

In particular, if XtraMiddleRnd is off, the latter implies that no more than (2q)w middle-triggered
path completions occur, or one for every possible combination of an entry from each of the tables
A1, . . . , Aw. If XtraMiddleRnd is on, on the other hand, than at most Condτ (2q) middle-triggered
path completions occur, as is easy to see per the definition11 of conductance. In other words, α(q)
(cf. Section 3) is an upper bound on the number of middle-triggered path completions. In fact, α(q)
is an upper bound for the total number of path completions performed (including also outer path
completions), since each completed path is also associated to a unique set of matching queries from
the middle detect zone.

As for all S-boxes outside the middle detect zone, their queries can also be chalked up to one of
two sources, namely direct distinguisher queries and path completions. There are at most q direct
distinguisher queries, and each completed path contributes at most 1 query to each S-box, so each
S-box outside the middle detect zone ends up with at most q + α(q) queries.

The simulator, moreover, only queries Z in order to either complete paths or else in order to
detect outer-triggered path completions. This implies the number of distinct simulator queries to
Z is upper bounded by the number of matching sets of queries in the left-hand outer detect zone.
Indeed each completed path is obviously associated to a matching set of queries in the left-hand
outer detect zone; and for the purpose of outer-triggered path detection, it is easy to see that the
simulator only needs to query Z at most once for each such matching set as well by maintaining a

9 The phrase “completes a path” is informal at this point, as there are generally many different ways to complete a
path. (E.g., where to “adapt” a path to make it compatible with Z, etc.) More details follow below.

10 This means the simulator knows the value of q beforehand, which introduces a small amount of non-uniformity
into the simulator. One could remove this non-uniformity—i.e., not tell the simulator the value of q beforehand—at
the cost of a more complicated theorem statement and proof. But the fact that essentially all security games allow
adversaries that know the value of q for which they want to carry out an attack makes the issue a bit moot.

11 More precisely, let Uj = {y ∈ {0, 1}n : B−1

j (y) 6= ⊥, let Vj = {x ∈ {0, 1}n : Cj(x) 6= ⊥} at the end of the
distinguishing experiment. Then |Uj |, |Vj | ≤ 2q for each j, and the number of middle-triggered path completions
that have occurred is at most

{(x,y) : τ (x) = y,x ∈
∏

j

Uj ,y ∈
∏

j

Vj} ≤ Condτ (2q).



table12 of queries already made to Z. If XtraOuterRnd is off, thus, the number of simulator queries
to Z will be at most (q + α(q))w; whereas if XtraOuterRnd is on, the same number will be at most
Condν(q + α(q)). The simulator query complexity is thus at most β(q) (cf. Section 3).

Procedure Names and Aliases. The procedures implementing the oracles maintained by the
simulator are denoted using uppercase plaintext letters, where the letter matches the round of the
S-box in question. The first argument to the oracle denotes the index of the S-box within the
round. Thus A(j, x) denotes a query to the j-th S-box in round A in input x ∈ {0, 1}n. Likewise
A−1(j, y) denotes a query to the inverse of the j-th S-box in round A on input y ∈ {0, 1}n, and so
on. These are the oracles available to the distinguisher, ranging over all rounds that are in use as
determined by the boolean flags.

Moreover, it will be convenient to have a single name, e.g., for “the last round of the middle
detect zone” or “the first round of the left-hand outer detect zone” irrespective of the boolean flag
values. For this we implement the following three “round aliases” U , V and X:

- U denotes A if XtraMiddleRnd is off, denotes B otherwise

- V denotes A if XtraMiddleRnd is off, denotes C otherwise

- X denotes G if XtraOuterRnd is off, denotes F otherwise

For example, the table Uj denotes the table Aj if XtraMiddleRnd is off, the table Bj otherwise, and
so on.

Further Details: Query Handling. S-box queries from the adversary to the simulator, and
from the simulator to itself, are handled differently according to whether or not they occur in a
position and in a direction that might trigger a path completion. Queries outside the detect zones—
i.e., queries in the adapt or untangle zones—cannot trigger path completions and are answered by
lazy permutation sampling, if they are not already present in the relevant table Tj . Likewise, new
queries to B, C−1, G−1, H as well as to F and F−1 are unlikely to trigger new path completions and
are answered by lazy permutation sampling. (For example, a new query to C−1 is unlikely to form
a new pair of matching B and C columns together with some other 2w − 1 pre-existing queries.
The degree to which this is unlikely, however, depends on the all-but-one conductance of τ , which
is precisely how all-but-one conductance enters into the proof. As another example, a new query to
F−1 or H is unlikely to trigger a new outer path completion, because it is unlikely that the random
answer to this query will “meet up” with a previous query to Z.)

All other queries—namely queries to A, A−1, B−1, C, G and H−1—can reasonably be expected
to result in new path completions. Instead of being lazy-sampled “on the spot”, these queries are
handled by a system of requests. In more detail, when the simulator fields a request to A, A−1,
B−1, C, G or H−1, the simulator makes note of the request and determines what path completions
the request will trigger. Instead of answering the request, the simulator proceeds to begin these
path completions in “the other direction” (i.e., the direction for which the answer to the current
request isn’t needed); these tentative path completions eventually engender new requests of their
own, which engender new path completions of their own, and so on. The recursive process eventually
stops with a list of pending requests and a list of pending path completions. At this point (and we
give more details below) the simulator simultaneously lazy samples all the pending requests, and
simultaneously completes all the pending path completions.

12 Thus, in particular, adding an extra round to the right-hand detect zone would not further reduce the query
complexity, since the query complexity is only proportional to the number of matching query sets for the left-hand
outer detect zone.



Crucially for this idea, requests to U−1 (i.e., requests to A−1 or B−1, depending) can only
give rise to new requests to G, as is easy to see13, and likewise requests to G can only engender
new requests to U−1. Symmetrically, requests to V only engender new requests to H−1 and vice-
versa. Thus, there exist only two possible “closed systems” of recursive request calls: the G/U−1

system and the V/H−1 system. At most one of the two possible systems is triggered by any given
distinguisher query. (To be precise, a G or U−1 query will trigger the G/U−1 system; a V or H−1

query will trigger the V/H−1 system; other queries trigger neither system.)

Unfolding of Recursive Calls. We now describe in more detail how a recursive system of
G/U−1 requests unfolds. The simulator maintains sets ToBeAssignedGj

and ToBeAssigned−Uj
for

1 ≤ j ≤ w that hold the requests to G and U−1 respectively. At the beginning of the query cycle
(a query cycle is the portion of game execution between when the distinguisher makes a query and
when that query is answered) these sets are empty.

Assume, say, that the system of recursive calls starts with a distinguisher query G(j, x). At this
point the simulator requests the value G(j, x) by an internal call RequestG(j, x). If Gj(x) 6= ⊥ the
request has no effect and the call returns with no value.

Otherwise, if Gj(x) = ⊥, the simulator adds the value x to the set ToBeAssignedGj
. The

simulator then enumerates outer path completions, if any, that will be triggered by the new query
(G, j, x, ·). In more detail, the simulator enumerates all vectors xG such that xG[j] = x and such
that either Gj′(x

G[j′]) 6= ⊥ or xG[j′] ∈ ToBeAssignedGj′
for all j′ 6= j. If XtraOuterRnd is off the

simulator defines yH = Z(xG) and checks that H−1(yH ) 6= ⊥; if XtraOuterRnd is on, the simulator
checks that ⊥ 6= xF := F−1(ν−(xG)), evaluates yH = Z(xF ), and checks again that H−1(yH) 6= ⊥.
(As soon as the first check fails, the simulator moves on to the next candidate for xG. In particular,
the simulator does not define any new queries via lazy sampling at this stage.)

For each xG for which all of the above checks succeed, the simulator starts completing a path
backward starting from the vector xH = H−1(yH). For this the simulator fills in missing queries to
the path (working backward through the rounds) by lazy sampling until it reaches round U ; here,
instead of filling in the missing queries, it calls RequestU−1(j,yU [j]) for 1 ≤ j ≤ w, where yU is the
input to U−1 for the path in question. It also adds the pair (xG,yU ) to a list of such pairs named
ToBeAdaptedD (initially empty at the start of the query cycle).

A description of how requests to U−1 are handled will finish the description of the recursive
procedure. Firstly, as for G-requests, a U−1-request (j, y) returns immediately if U−1

j (y) 6= ⊥
of if y ∈ ToBeAssigned−

Uj
already. Otherwise, the value y is added to ToBeAssigned−

Uj
and the

simulator enumerates all middle path completions, if any, that will be triggered by the new request.
In more detail the simulator enumerates all vectors yU such that yU [j] = y and such that either
Uj(y

U [j′]) 6= ⊥ or yU [j′] ∈ ToBeAssigned−
Uj′

for all j 6= j′; moreover if XtraMiddleRnd is on the

simulator checks that ⊥ 6= yV := C(τ(yU )); otherwise (if XtraMiddleRnd is off) we have yV = yU .

For each such yU for which yV is defined, the simulator starts completing a path forward from
yV . The simulator fills missing queries to the path by lazy sampling until it reaches round G (after
calling Z−1). At this point the simulator adds the pair (xG,yU ) for the corresponding xG to the
list ToBeAdaptedD and calls RequestG(j,xG[j]) for all 1 ≤ j ≤ w, so the recursion continues.

When the recursion terminates control reverts to the original procedure G(j, x) (queried by
the distinguisher) that placed the first request. So far, no requests have been answered, though all

13 The path completion(s) triggered by the request to U−1 will “pass through” rounds H and F (if present) without
triggering new path completions, due to the fact, argued above, that (forward) queries to H and F are unlikely to
cause new outer-triggered path completions.



requests have been recorded, and all partially-built, yet-to-be-completed paths have been recorded
as well by a pair (xG,yU ) in the set ToBeAdaptedD.

At this point G(j, x) will calls a procedure AdaptLeft which simultaneously samples all the
pending requests and completes all pending paths, “adapting” each such path at round D. This
procedure is discussed below.

A recursive system of G/U−1 calls can also be triggered by a distinguisher query to U−1 (A−1

or B−1 depending), but this case is exactly analogous. Moreover a recursive system of V/H−1 calls
is analogous as well.

Path Completion and the Purpose of the Untangle Zones. When AdaptLeft is called it
has the sets ToBeAssignedGj

and ToBeAssigned−
Uj

for 1 ≤ j ≤ w, as well as the list ToBeAdaptedD

consisting of pairs of the form (xG,yU ) for paths to be completed. We will assume that ToBeAdaptedD

has k elements, and write the pairs in ToBeAdaptedD as

(xG
1 ,y

U
1 ), . . . , (x

G
k ,y

U
k ).

It is easy to see that Gj(x) = ⊥ and U−1
j (y) = ⊥ for each x ∈ ToBeAssignedGj

and each

y ∈ ToBeAssigned−Uj
. Moreover, and as we argue in the proof, one can show that for each pair

(xG
i ,y

U
i ) there is some j ∈ [w] such that xG

i [j] ∈ ToBeAdaptedGj
and some h ∈ [w] such that

yU
i [h] ∈ ToBeAdapted−Uh

. Moreover, one can also show that xG
i 6= xG

i′ , y
U
i 6= yU

i′ for all i 6= i′.

AdaptLeft consists of three stages:

(1) Values of Gj(x), U−1
j (y) are (finally) lazy sampled for each x ∈ ToBeAssignedGj

, y ∈
ToBeAssigned−Uj

, for each j ∈ [w], whence vectors yG
i := G(xG

i ), x
U
i := U−1(yU

i ) become defined
for 1 ≤ i ≤ k.

(2) The vector yG
i is “evaluated forward” to a vector xD

i that is an input to round D for
1 ≤ i ≤ k, while the vector xU

i is “evaluated backward” to a vector yD
i that is an output to

round D (in a little more detail, if XtraUntglRnds is off, we have xD
i = πG(y

G), yD
i = π−

B(x
U ); if

XtraUntglRnds is on, lazy sampling of rounds I and J is required to define xD
i , y

D
i ).

(3) AdaptLeft (tries to) set Dj(x
D
i [j]) = yD

i [j] for each i ∈ [k] and each j ∈ [w].

The only step that can run into problems is step (3). Namely, the step (3) fails if either (i) there
exists values i ∈ [k], j ∈ [w] such that either Dj(x

D
i [j]) 6= ⊥ or D−1

j (yD
i [j]) 6= ⊥ before the start

of step (3), or (ii) there exists values i, i′ ∈ [k], i 6= i′, j ∈ [w], such that either xD
i [j] = xD

i′ [j] or
yD
i [j] = yD

i′ [j] before the start of step (3). The purpose of the untangle zones is to make these two
types of bad events unlikely.

If XtraUntglRnds is off, a bit of thought reveals that small values ofMaxPreim(πG),MaxPreim(π−
C )

are sufficient and necessary to ensure that (i) only occurs with low probability whereas small values
of MaxColl(πG), MaxColl(π−

C ) are sufficient and necessary to ensure (ii) only occurs with low prob-
ability. The argument is simple (involving a union bound) but the details are notationally tedious,
and we refer to the proof of Lemma 38 in Section 5 for the details.

If XtraUntglRnds is on, a little bit more thought14 reveals that small values of MaxPreim(πG),
MaxPreim(πI) as well as small values of MaxPreim(π−

J ), MaxPreim(π−
C ) ensure that both (i) and (ii)

are unlikely. Here too we refer to the proof of Lemma 38 in Section 5 for more details.

14 Focusing on the first untangle zone, the intuition is, firstly, that small MaxPreim(πG) implies that all queries to I
will be fresh, i.e., will be lazy sampled during AdaptLeft, even if there are some indices i 6= i′ for which (some of)
those queries overlap; then because πG is a permutation, for each i 6= i′, there is at least one j ∈ [w] such that
xI
i [j] 6= xI

i′ [j] and, hence, such that Ij(x
I
i [j]) is independently lazy sampled from Ij(x

I
i′ [j]); focusing on the last of

these two value to be lazy sampled, and coupled with the fact that MaxPreim(πI) is small, we can conclude that
all entries in xD

i , xD
i′ are distinct with high probability.



Interestingly, one could imagine relying on even weaker combinatorial properties of the diffusion
permutations in the untangle zones, if the untangle zones had more rounds. We refer to Section 7
for more ideas in this direction.

The Simulator in Pseudocode. Our “official” simulator is given by the pseudocode in Figures
2–4 in Section 5, more specifically by all procedures in game G1 of that pseudocode, except for
procedures Z and Z−1 which implement the random permutation Z, and which are not part of the
simulator properly speaking.

We note that following [15] our simulator uses explicit random tapes for its lazy sampling. More
precisely, for each T ∈ {A, . . . , L} and for each j ∈ [w] there is a tape pTj

(and, implicitly, an inverse
p−Tj

) that encodes a random permutation of {0, 1}n in the form of a table: pTj
(x) is the image of x

for all x ∈ {0, 1}n; moreover p−Tj
(y) is the preimage of y for all y ∈ {0, 1}n. Likewise the random

permutation Z (implemented by the procedures Z and Z−1) relies on a random permutation tape
pZ .

Of course, in a practical implementation of the simulator such random tapes would be too
large to keep in memory, and an independent lazy sampling process would substitute for each tape
access.

5 Proof

In this section we provide the proof of Theorem 1. More precisely, we show that the simulator
discussed in Section 4 and formally given by the pseudocode in Figures 2–6 fulfills the claims of
Theorem 1.

On a high level, the formal structure of our indifferentiability proof(s) follows [1] rather closely.
On the other hand our simulator shares more in common with the simulator of [15] (which also
employs Seurin’s termination paradigm) so our proof is also descended from [15]. Moreover our
proof utilizes (with some refinements) the randomness mapping technique pioneered by [15], and
described in more detail below.

5.1 Overview

An indifferentiability theorem encompasses at least three claims: an upper bound on the simulator
running time, an upper bound on the simulator query complexity, and lastly the indistinguishability
of the real and simulated worlds. Here (in the proof overview) we focus on the latter aspect. Lemmas
51, 52 in subsection 5.5 establish upper bounds on the simulator efficiency and query complexity
respectively.

The indistinguishability argument uses a sequence of five games G1, G2, . . ., G5. The games are
specified by the pseudocode in Figs. 2–8. More precisely, the pseudocode in Figs. 2–6 collectively
describes games G1, G2 and G3 (the differences between the various games being highlighted in red,
and also by comment lines), whereas Fig. 7–8 depicts games G4 and G5. Game G1 is the simulated
world and G5 is the real world.

Following [1] the simulator explicitly aborts (‘abort’) if runs into an unexpected state. The
distinguisher is consequently notified and, in such a case, knows that it is in the simulated world
(since game G5, the real world, doesn’t abort).

As stated, game G1 is the simulated world. The interface available to the distinguisher consists
of the public procedures, of which the simulator controls all but Z and Z−1 (which implement
Z and Z−1). The procedures Z/Z−1 maintain a partial permutation table PZ that records which
queries have already been made to these procedures either by the adversary or by the simulator. In



game G1 the table PZ serves no effective purpose, but this changes in later games. Moreover Z and
Z−1 are the only procedures to access the permutation table PZ in game G1 (as should be, since
the simulator shouldn’t know which queries to Z/Z−1 the distinguisher has already made).

Game G2 contains only one change from game G1, in the procedure CheckZ used by the simula-
tor (see Fig. 2). In G1 CheckZ(x,y) calls Z(x) to see if Z(x) = y. In game G2, however, CheckZ(x,y)
answers instead according to the table PZ of values already queried to Z/Z−1 by either the distin-
guisher or the simulator, and returns false if the relevant table entry is blank, without calling Z.
Thus CheckZ may return a “false negative” in game G2. The G1–G2 game transition is inspired by
a similar transition in [15]. Our transition is substantially simpler, however, since (and following [1])
we keep Z as a permutation instead of replacing it by a “two-way random function” [15].

The fact that G1 and G2 are hard to distinguish for a q-query distinguisher is proven in Lemma
40, Section 5.4. The proof is relatively straightforward but relies on having an upper bound on the
number of times that CheckZ is called in G1 and G2. This upper bound is given by Lemma 23 at
the end of Section 5.2.

Game G3 adds a number of abort conditions over game G2. (These abort conditions could not
be present in G2 because they involve the simulator reading values in PZ , or because they involve
abort conditions placed in Z/Z−1, which should of course not abort in the real simulated world.)
In fact, one doesn’t need to upper bound the distinguishability of G2 from G3: one simply observes
that the pair (G3,G5) is strictly easier to distinguish than the pair (G2,G5) (as abortions never
occur in G5—we refer to Lemma 41 for a formal statement and proof). Hence it suffices to show
that G3 and G5 are hard to distinguish.

The transition from G3 to G5 is analyzed via G4. In G4 the procedures Z and Z−1 are changed:
instead of using the random tape pZ these procedures now use (some subset of) the random tapes
pA1

, . . . , pLw and the “real” substitution-permutation network; see Figs. 7–8. There is another minor
technicality: the random tape pTj

is renamed qTj
in G4, in order to clarify subsequent simultaneous

discussion of G3 and G4.

The proof’s key transition is the transition from G3 to G4. For this a randomness mapping
argument is used, following [15]. We borrow the idea of footprints from [1], but we manage to
eschew their “execution trees”.

The randomness mapping argument is sketched in some detail after Lemma 41 in Section 5.4.
For completeness, however, we provide a briefer sketch here.

A footprint is that subset of the random tapes (plus its contents) which is actually accessed
during an execution15. If we change portions of a random tape outside of its footprint, the execution
doesn’t change. The set of possible footprints is a function of the distinguisher (which is presumed
fixed and deterministic, wlog). A moment’s thought reveals that two distinct footprints (with respect
to the same distinguisher) are never compatible: they always overlap in at least one conflicting entry.

A footprint is said to be good if the execution doesn’t abort for that footprint. Essentially,
the randomness mapping argument maps good footprints of G3 to good footprints of G4 by the
following rule: the content of the table Tj at the end of the G3-execution becomes the G4-footprint
for pTj

(actually, qTj
in G4). One must prove that points in the image of this mapping are really

footprints for G4, that the mapping is injective (maps distinct footprints to distinct footprints),
and that a G3-execution with a good footprint looks identical from the distinguisher’s perspective
to a G4-execution run with the image footprint. For all this to be useful one must also show that
the “probability mass” of good footprints in G3 (i.e., the probability of obtaining a good footprints,
taken over the uniform choice of random tapes) is high, and that a good G3 footprint has roughly

15 An execution consists of one run of the distinguishing experiment from beginning to end.



the same probability of occuring as its image in G4. Once all these elements in place it is easily
seen that G3 are G4 are hard to distinguish.

We note that the probability of obtaining a good footprint in G3 is exactly the probability
of not aborting in G3. Hence for the randomness mapping argument to be effective one must, in
particular, show that G3 aborts with low probability. Section 5.3 is devoted to upper bounding the
latter probability. For more details we refer to the afore-mentioned material in Section 5.4.

For the transition from G4 to G5, we first argue that queries in G4 are all answered by the value
found in the underlying random tape (i.e., query T(j, x) is answered by qTj

(x), and so on) as long
as abort does not occur. (See Lemma 49.) Hence the only effective difference between G4 and G5

is the possibility that G4 aborts. The probability that G4 aborts can be upper bounded from the
probability that G3 aborts and from the randomness map. This is the argument adopted by [1].
However, we note that a more careful additive accounting of the transition probabilities causes the
probability of abortion in G4 to cancel out entirely from the final distinguishing upper bound (see
the computation in the proof of Lemma 50) which makes the latter argument superfluous, and
which also saves us a factor of two16 in the final indistinguishability bound over [1, 15,16]. This is
another (small) technical contribution of our proof.

Proof Organization. A prerequisite for much of the analysis is to have upper bounds on the
operations of various types (e.g., path completions, queries) carried out by the simulator. The proof
starts by subsection 5.2, where we establish the most important such upper bounds.

Another crucial component of the analysis is to upper bound the probability of bad executions
(i.e., executions in which the simulator aborts) in game G3. This is the topic of subsection 5.3.

The high-level assembly of these prior low-level results occurs in subsection 5.4, where we
separately analyze each of the game transitions G1–G2, G3–G4 and G4–G5 and, in particular, carry
out the randomness mapping argument (for the transition from G3 to G4).

5.2 Simulator Efficiency

Last Minute Reminders. We have α(q) = (2q)w if XtraMiddleRnd is off, α(q) = Condτ (2q) if
XtraMiddleRnd is on; β(q) = (q+α(q))w if XtraOuterRnd is off, β(q) = Condν(q+α(q)) if XtraOuter-
Rnd is on. We recall that pT , p

−
T are a pair of random tapes encoding a random permutation from

{0, 1}n to {0, 1}n for all T ∈ {A, . . . , L} whereas pZ , p
−
Z are a pair of random tapes encoding a

random permutation from {0, 1}wn to {0, 1}wn.

An execution refers to the entire run of the distinguishing experiment; a q-query execution is
an execution in which the distinguisher makes at most q queries; a query cycle is that time portion
of an execution between when the distinguisher makes a query and when that query is answered.

For T ∈ {A, . . . , L} we write T (x) to denote the vector whose j-th entry is Tj(x[j]), if those
w values are all defined, where Tj refers to the table maintained by the simulator; T (x) = ⊥ if
Tj(x[j]) = ⊥ for any j. Similar conventions hold for T−1(y) with respect to the tables T−1

j , j ∈ [w].

For the time being, q is the number if distinguisher queries. The distinction between q and q0
is elucidated in subsection 5.4.

Lemma 1. Each pair of tables Tj, T−1
j , T ∈ {F,G, I,D, J,B,A,C,K,E,L,H}, 1 ≤ j ≤ w,

represents a partial permutation at all points in the execution of G1, G2 and G3 outside of calls to
SetTable. Moreover, values in these tables are never overwritten.

16 In fact, Andreeva et al. [1], thanks to their use of footprints, save a factor of two in the transition from G3 to G4

over the traditional approach of [15,16]. But Andreeva et al. lose this factor again in the transition from G4 to G5

by double-counting abort probabilities. In our approach the saved factor of two is conserved all the way through.



Proof. The lemma transparently follows from the fact that these tables are initialized to ⊥ and
from the fact that the only function to write to the tables Tj , T

−1
j is SetTable, which is set to abort

the game rather than overwrite. ⊓⊔

Lemma 2. The pair of tables PZ , P
−1
Z represents a partial permutation at all points in the execu-

tion of G1, G2 and G3 outside of calls to SetTable. Moreover PZ remains consistent with pZ.

Proof. The lemma directly follows from the fact that table PZ , P
−1
Z are presumed initialized to

⊥ and from the fact that the tables PZ , P
−1
Z are only modified by the ReadTape calls in Z and

Z−1. ⊓⊔

Definition 2. For G1, G2 and G3 we define

IndexGj
= ToBeAssignedGj

∪ {x : Gj(x) 6= ⊥},
Index−Hj

= ToBeAssigned−
Hj
∪ {y : H−1

j (y) 6= ⊥},
IndexAj

= ToBeAssignedAj
∪ {x : Aj(x) 6= ⊥},

Index−Aj
= ToBeAssigned−

Aj
∪ {y : A−1

j (y) 6= ⊥},
Index−Bj

= ToBeAssigned−
Bj
∪ {y : B−1

j (y) 6= ⊥},
IndexCj

= ToBeAssignedCj
∪ {x : Cj(x) 6= ⊥},

at all time points in the execution.

As per the aliases introduced in Section 3 Index−Uj
will stand for Index−Aj

if XtraOuterRnd is off, for

Index−Bj
otherwise, and IndexVj

will stand for IndexAj
if XtraOuterRnd is off, for IndexCj

otherwise.

Lemma 3. The sets Index
(−)
Tj

are monotone increasing in G1, G2 and G3: elements are never
removed from these sets.

Proof. The set {x : Gj(x) 6= ⊥} is monotone increasing by Lemma 1. Moreover x is only removed
from ToBeAssignedGj

in AdaptLeft after Gj(x) has been read from pGj
(see Fig. 5). Similar state-

ments apply to Index−Hj
, Index−Uj

, and IndexVj
. ⊓⊔

We will refer to the procedures RequestG, RequestU−1, AdaptLeft as well as the public proce-
dures G and U−1 (A−1 or B−1 depending on XtraMiddleRnd) as left-hand procedures and to
the procedures RequestH−1, RequestV, AdaptRight as well as the public procedures H−1 and
V (A or C depending on XtraMiddleRnd) as right-hand procedures. Moreover, the data struc-
tures ToBeAssignedGj

, ToBeAssigned−
Uj
, ToBeAdaptedD are left-hand (data structures), while

ToBeAssignedVj
, ToBeAssigned−Hj

, ToBeAdaptedE are right-hand (data structures).

A query made by the distinguisher is left-hand if it is a query to G or U−1 it is right-hand if it is
a query to H−1 or V.17 Other adversarial queries are neutral. Finally a left-hand distinguisher query
gives rise to a “left-hand” query cycle, a right-hand distinguisher query gives rise to a “right-hand”
query cycle, etc.

The following lemma holds for G1, G2 and G3.

17 We observe one last time that U−1 and V aren’t actual procedures, but stand for A−1 or B−1 in the first case
and for A or C in the second case. On the other hand, RequestU−1, RequestV as well as BlockRequestU−1,
BlockRequestV, BlockU−1 and BlockV are not aliases, but the actual names of pseudocode procedures.



Lemma 4. Left-hand data structures are only modified by left-hand procedures, right-hand data
structures are only modified by right-hand procedures. Right-hand procedures are never evaluated
during left-hand or neutral query cycles and left-hand procedures are never evaluated during right-
hand or neutral query cycles.

Proof. These claims are all syntatically clear from the code. In particular, one can observe that the
only closed systems or recursive calls that occurs are between G or U−1, which is a left-hand closed
system, and between H−1 or V, which is a right-hand closed system. ⊓⊔

Lemma 5. Outside a left-hand query cycle, the left-hand data sets ToBeAssignedGj
, ToBeAssigned−Uj

,
ToBeAdaptedD are empty in the execution of G1, G2 and G3. A symmetric statement holds for
right-hand data.

Proof. ToBeAssignedGj
, ToBeAssigned−

Uj
, ToBeAdaptedD are empty when AdaptLeft returns with-

out abort. Moreover, these sets are initially empty and never modified in a right-hand or neutral
query cycle by Lemma 4. ⊓⊔

Lemma 6. For any j ∈ [w], the sets {y : Gj(y) 6= ⊥} and ToBeAssignedGj
are disjoint at all points

in the execution of G1, G2 and G3 except for inside the first forall loop in AdaptLeft.

Similar statements hold for ToBeAssigned−Uj
,ToBeAssignedVj

and ToBeAssigned−Hj
(for the lat-

ter two, with respect to AdaptRight).

Proof. We focus on the table Gj . Other tables are treated similarly.

Outside a left-hand query cycle ToBeAssignedGj
is empty by Lemma 5.

Inside a left-hand query, before AdaptLeft is called, Gj is unmodified and x is added to
ToBeAssignedUj

only if Gj(x) = ⊥.
Finally, ToBeAssignedGj

is empty after the first forall loop in AdaptLeft. ⊓⊔

Lemma 7. For any q-query execution of G1, G2 or G3, the number of times lines 17–18 of Re-
questG are executed plus the number of times lines 17–18 of RequestH−1 are executed is at most
q. Moreover, the number of times line 20 of RequestG is executed plus the number of times line 20
of RequestH−1 is executed is at most q. (Nb: line 20 is the last line of RequestG, RequestH−1.)

Proof. Both statements easily from the fact that when line 16 of RequestG−1 or RequestH is
executed, NumOuter is increased by 1 and from the fact that the simulator aborts when NumOuter

exceeds q. ⊓⊔

Lemma 8. For any j ∈ [w] and for any q-query execution of G1, G2 or G3 the number of calls
made to RequestU−1(j, ·) plus the number of calls made to B(j, ·) is at most 2q if XtraMiddleRnd

is on. A symmetric statement holds for C−1(j, ·) and RequestV(j, ·).
If XtraMiddleRnd is off, the number of calls made to RequestU−1(j, ·) plus the number of calls

made to RequestV(j, ·) is at most 2q.

Proof. Note that RequestU−1(j, ·) is called only by U−1(j, ·) or by BlockRequestU−1. Moreover
U−1(j, ·) (which is A−1(j, ·) or B−1(j, ·), depending) is only called by the distinguisher.

If XtraMiddleRnd is on: The number of calls to B(j, ·) made by the distinguisher plus the number
of calls to B−1(j, ·) is at most q (as just noted, B−1(j, ·) is only called by the distinguisher). Hence,
the number of calls to B(j, ·) made by the distinguisher plus the number of times RequestU−1(j, ·)
is called by B−1(j, ·) is at most q.



It remains to account for non-distinguisher calls to B(j, ·) as well as for the number of times
BlockRequestU−1 calls RequestU−1(j, ·), i.e., the number of times BlockRequestU−1 is called. How-
ever non-distinguisher calls to B(j, ·) only occur in BlockB, called only by the function LeftToMid-
dle, itself called only on line 17 of RequestH−1. Moreover BlockRequestU−1 is only called on line
20 of RequestG. Hence the sum of these two types of calls is at most q by Lemma 7.

If XtraMiddleRnd is off: The number of times RequestU−1(j, ·) is called by A−1(j, ·) plus the
number of times RequestV(j, ·) is called by A(j, ·) is at most q, the number of distinguisher queries.
Indeed, A and A−1 are not called by the simulator.

It remains again to account for calls to RequestU−1(j, ·) made by BlockRequestU−1 and for
calls to RequestV(j, ·) made by BlockRequestV. But this number of calls is at most q by Lemma
7, as BlockRequestU−1 only appears on line 20 of RequestG and BlockRequestV only appears on
line 20 of RequestV. ⊓⊔

Lemma 9. For any j ∈ {1, . . . , w} and for any q-query execution of G1, G2 or G3 the size of
Index−1

Uj
is at most 2q and the size of Uj is at most 2q.

The same holds for IndexVj
and Vj.

Proof. The size of Uj is no greater than the size of Index−1
Uj

, so it suffices to prove the statement
for IndexUj

.

If XtraMiddleRnd is on: The only functions to possibly increase the size of Index−1
Uj

are B(j, ·)
and RequestU−1(j, ·). Moreover the size of Index−1

Uj
increases by at most 1 during calls to either of

these functions. The conclusion thus follows by Lemma 8.
If XtraMiddleRnd is off: The only functions to possibly increase the size of Index−1

Uj
= Index−1

Aj

are RequestU−1(j, ·) and AdaptRight. (Indeed, the latter adds entries to A−1
j ; AdaptLeft also adds

entries to A−1
j , but the y’s for which AdaptLeft sets A−1

j (y) are already in ToBeAssigned−Uj
at the

start of AdaptLeft.) Moreover, for each value x such that Aj(x) is assigned in AdaptRight there
obviously exists a unique corresponding call to RequestV(j, ·), namely the call which added x to
ToBeAssignedVj

. Hence the conclusion also follows by Lemma 8. ⊓⊔

Lemma 10. In G1, G2 and G3, when a pair (xG,yU ) is added to ToBeAdaptedD in RequestU−1,
yU [k] ∈ Index−Uk

for every k ∈ [w], and there exists j ∈ [w] such that yU [j] ∈ ToBeAssigned−
Gj

.

Moreover, if XtraMiddleRnd is on, let xV = τ(yU ). Then xV [k] ∈ IndexVk
for every k ∈ [w]

when (xG,yU ) is added to ToBeAdaptedD.
A symmetric statement holds for RequestV.

Proof. If (xG,yU ) is added to ToBeAdaptedD in RequestU−1 then BlockDefined(U,yU ,−) = true,
so yU [k] ∈ Index−Uk

for all k ∈ [w]. Moreover if j and y are the arguments to RequestU−1 then it’s

clear that yU [j] = y and that y ∈ ToBeAssigned−
Uj
. (See the pseudocode of RequestU−1.)

If XtraMiddleRnd is on, moreover, then it’s necessary (see the pseudocode again) that BlockDefined(C, τ(yU ),
true in order for a pair (xG,yU ) to be added to ToBeAdaptedD in RequestU−1. So xV [k] ∈ IndexVk

for all k ∈ [w]. ⊓⊔

Lemma 11. For every pair (xG,yU ) ever added to ToBeAdaptedD,

yU ∈ Index−U1
× . . .× Index−Uw

Moreover, if XtraMiddleRnd is on, then

τ(yU ) ∈ IndexV1
× . . . × IndexVw .



A symmetric statement holds for every pair (xV ,yH) added to ToBeAdaptedE. (This for G1, G2

and G3.)

Proof. This is a simple corollary of Lemma 10. ⊓⊔

Lemma 12. The same pair (xG,yU ) is never added twice to ToBeAdaptedD. In fact, if (xG,yU )
and (x′G,y′U ) are two pairs added to ToBeAdaptedD at different points in time, then both xG 6= x′G

and yU 6= y′U . A symmetric statement holds for pairs (xV ,yH) and ToBeAdaptedE. (This for G1,
G2 and G3.)

Proof. We start by noting that the second statement easily follows from the first: when (xG,yU ) is
added to ToBeAdaptedD in RequestU−1, yU is associated to a unique vector yH , which association
remains unchanged for the rest of the execution by virtue of the fact that the tables PTj

are never
overwritten (Lemma 1); moreover the mapping from xX to yH is also invariant given that values
in PZ are never overwritten either (Lemma 2); finally the mapping from xX to xG is invariant as
PFj

is never overwritten. Hence yU “non-malleably” determines xG and vice-versa.

We now argue that the same pair (xG,yU ) is never added twice to ToBeAdaptedD in RequestU−1.
For the following argument it helps to picture a modified (but equivalent) version of the code in
which the last forall loop of RequestU−1 is detached from the main body of that function, and
executed separately by whatever function called RequestU−1 in the first place, right after the call
to RequestU−1. With this (cosmetic) change in place the execution stack only ever contains one
active copy of RequestU−1. (In other words, RequestU−1 is never called while another instance of
RequestU−1 is still waiting to terminate.)

Firstly, now, a given pair (xG,yU ) cannot be added twice to ToBeAdaptedD by the same call
to RequestU−1 because the forall loop of RequestU−1 only considers each value of yU once. Thus
if a pair (xG,yU ) is added twice to yU it is added during two distinct calls to RequestU−1.

Let the first such call be RequestU−1(j1, y1) and the second call be RequestU−1(j2, y2). (We do
not assume (j1, y1) 6= (j2, y2).) By the remarks above we can assume—via our mental experiment—
that RequestU−1(j1, y1) has finished executing when RequestU−1(j2, y2) is called. Also yU [j1] = y1
and yU [j2] = y2 since the forall loop of RequestU−1(j, y) only iterates over vectors yU such that
yU [j] = y. For RequestU−1(j2, y2) to not immediately return we must have U−1

j2
(y2) = ⊥ and

y2 6∈ ToBeAssigned−1
Uj2

when the call RequestU−1(j2, y2) occurs. But this implies yU [j1] 6∈ IndexUj1

before the second call, which contradicts the fact that yU [j1] ∈ IndexUj1
after the first call by

Lemma 3. ⊓⊔

Lemma 13. Let (xG,yU ) be a pair added to ToBeAdaptedD at some point and let (xV ,yH) be a
pair added to ToBeAdaptedE at some other point of an execution of G1, G2 or G3. Then τ(yU ) 6=
xV if XtraMiddleRnd is on. Moreover if XtraMiddleRnd is off, A(xV ) 6= yU (and A−1(yU ) 6= xV )
for all j ∈ [w] if A(xV ) (or A−(yU )) ever becomes defined.

Proof. Without loss of generality, we can assume the addition of (xV ,yH) to ToBeAdaptedE occurs
after the addition of (xG,yU ) to ToBeAdaptedD. Note moreover these additions will occur in
distinct query cycles, since RequestU−1 is a left-hand procedure and RequestV is a right-hand
procedure. For the second query cycle to occur at all, naturally, the first query cycle must be
successful (i.e., not abort).

If XtraMiddleRnd is on: Lemma 11 implies that τ(yU ) ∈ IndexV1
× . . .× IndexVw when (xG,yU )

is added to ToBeAdaptedD. Hence any subsequent call RequestV(j, x) that doesn’t immediately
return must have x 6= τ(yU )[j]. (More precisely, Cj(τ(y

U )[j]) will be defined for all j ∈ [w] if



the query cycle that adds (xG,yU ) to ToBeAdaptedD completes without aborting.) So any pair
(xV ,yH ) added to ToBeAdaptedE by RequestV must have xV 6= τ(yU ).

If XtraMiddleRnd is off: Lemma 11 implies that yU ∈ Index−U1
× · · · × Index−Uw

when (xG,yU ) is

added to ToBeAdaptedD, and Lemma 3 implies that A−(yU ) 6= ⊥ after that query cycle completes
(since ToBeAssigned−Uj

= ∅ for all j at the end of a non-aborted query cycle). Thus any subsequent

call RequestV(j, x) such that xG[j] = x will return immediately. So any pair (xV ,yH) added later to
ToBeAdaptedE by RequestV must have xV 6= A−(yU ) or, equivalently (cf. Lemma 1) A(xV ) 6= yU .

⊓⊔

For the remaining lemmas of this section, we define

Index−Uj
∧ IndexVj

= {(x, y) : Aj(x) = y} ∪
{(x,⊥) : Aj(x) = ⊥, x ∈ IndexVj

} ∪
{(⊥, y) : A−

j (y) = ⊥, y ∈ Index−Uj
}

if XtraMiddleRnd is off. We note that since XtraMiddleRnd is off, and by definition of Index−Uj
and

IndexVj
, this definition can also be written

Index−Uj
∧ IndexVj

= {(x, y) : Aj(x) = y} ∪
{(x,⊥) : Aj(x) = ⊥, x ∈ ToBeAssignedAj

} ∪
{(⊥, y) : A−

j (y) = ⊥, y ∈ ToBeAssigned−Aj
}.

We note that by definition, a pair (x, y) cannot exist in Index−Uj
∧ IndexVj

if either of the pairs

(x,⊥) or (⊥, y) is in Index−Uj
∧ IndexVj

. Moreover pairs of the form (x,⊥) can only exist during

right-hand query cycles, and pairs of the form (⊥, y) can only exist during left-hand query cycles,
as is clear from the definition and from Lemma 5.

Each pair in Index−Uj
∧ IndexVj

will be called a slot. A slot of the form (x, y) is permanent by
Lemma 1. Thus, two distinct slots cannot have the same non-null first coordinate, nor can they
share the same non-null second coordinate. (Case analysis: if (x, y) and (x, y′) are two slots then
Aj(x) = y and Aj(x) = y′, so y = y′ by Lemma 1; secondly, by the definition of Index−Uj

∧ IndexVj
,

(x, y) and (x,⊥) cannot both be slots, as noted above.)

Lemma 14. If XtraMiddleRnd is off, Index−Uj
∧ IndexVj

never contains more than 2q elements at
any point in an execution of G1, G2 or G3.

Proof. AdaptLeft and AdaptRight do not add entries to Index−Uj
∧ IndexVj

, since they simply turns

pairs of the form (⊥, y) into pairs of the form (x, y) (in the case of AdaptLeft) or turn pairs of the
form (x,⊥) into pairs of the form (x, y) (in the case of AdaptRight).

Thus, the only functions to add pairs to Index−Uj
∧ IndexVj

are calls to RequestU−1(j, ·) and

calls to RequestV(j, ·). However each such call adds at most one pair (since these call add at most
one element to ToBeAssigned−Aj

and ToBeAssignedAj
, respectively), and the total number of such

calls is at most 2q by Lemma 8. ⊓⊔

We note that when XtraMiddleRnd is off, the value of the function φ—defined in the following
lemma—on a given pair (xG,yU ) or (xV ,yH) is time-dependent, as the table Aj is time-dependent.



Lemma 15. If XtraMiddleRnd is on: Let φ(xG,yU ) = yU for each pair (xG,yU ) added to ToBeAdaptedD,
and let φ(xV ,yH) = τ−1(xV ) for each pair (xV ,yH) added to ToBeAdaptedE. Then φ is injective,
and the range of φ always lies in the set

{y : y ∈ Index−U1
× · · · × Index−Uw

∧ τ(y) ∈ IndexV1
× · · · × IndexVw}.

If XtraMiddleRnd is off: Let φ(xG,yU ) be the w-tuple whose j-th element is the pair (A−
j (y

U [j]),

yU [j]) for each j, for each (xG,yU ) added to ToBeAdaptedD, and let φ(xV ,yH) be the w-tuple
whose j-th element is the pair (xV [j], Aj(x

V [j])) for each j, for each (xV ,yU ) added to ToBeAdaptedE.
Then φ is injective, and the range of φ remains in the set (Index−U1

∧ IndexV1
)× · · · × (Index−Uw

∧
IndexVw).

Proof. Whether XtraMiddleRnd is on or off φ has the claimed range by Lemma 10 and is injective
by lemmas 12 and 13. ⊓⊔
Lemma 16. At the end of each successful query cycle in G1, G2 and G3, every pair (yU ,xV ) in

Γ =

{

{

(yB ,xC) : τ(yB) = xC ,∀j yB [j] ∈ Index−Bj
∧ xC [j] ∈ IndexCj

}

if XtraMiddleRnd is on
{

(yA,xA) : ∀j Aj(x
A[j]) = yA[j]

}

if XtraMiddleRnd is off

is in a completed path.

Proof. If XtraMiddleRnd is on: For any such pair (yU ,xV ), consider the query cycle during which
(yU ,xV ) becomes contained by the above set. Without loss of generality, has that j′ ∈ [w] has the
property that is yU [j′] added to Index−

B′
j
after yU [j] is added to Index−Bj

for all j 6= j′, and also

after xV [j] is added to IndexCj
for all j.

As already noted in Lemma 9, a value y is added to Index−
B′

j
only by calls to B(j′, ·) or to

RequestU−1(j′, y). If yU [j′] is added to Index−1
B′

j
via B, then the query cycle is neutral or a right-

hand query cycle, so B−
j (y

U [j]) 6= ⊥ for all j 6= j′ and xV [j] ∈ IndexVj
for all j ∈ [w] by assumption,

so the simulator will abort inside of B. (See the pseudocode for procedure B(j, x).)
Therefore we can assume that yU [j′] is added to Index−

B′
j
by a function call of the form

RequestU−1(j′, y), which can only occur in a left-hand query cycle. By assumption, then yU [j] ∈
Index−1

Uj
and xV [j] ∈ IndexVj

for all 1 ≤ j ≤ w after yU [j′] is added to ToBeAssigned−1
B′

j
inside

of RequestU−1(j′,yU [j′]). The forall loop of RequestU−1(j′,yU [j′]) will iterate with yU and both
BlockDefined(U,yU ,−) and BlockDefined(V,xV = τ(yU ),+) will return true. A corresponding
pair (xG,yU ) is then added to ToBeAdaptedD and, assuming successful completion of the query
cycle, a completed chain containing yU ,xV is created by AdaptLeft.

If XtraMiddleRnd is off: We assume without loss of generality that (yA,xA) enters Γ for the
first time during a left-hand query cycle, as neutral query cycles don’t modify the tables Aj. Then
there exists some j′ ∈ [w] such that yA[j′] is added to ToBeAssigned−Aj′

during that query cycle.

We can moreover define j′ such that yA[j′] is added to ToBeAssigned−Aj′
after any other value yA[j]

is added to ToBeAssigned−
Aj

during that query cycle. Then we have yA[j] ∈ Index−Aj
for all j when

yA[j′] is added to ToBeAssigned−Aj′
, since yA[j] ∈ Index−Aj

for all j at the end of the query cycle

(and being added to Index−Aj
can only happen by being added to ToBeAssigned−Aj

, for a left-hand

query cycle). Thus the call to RequestU−1 that adds yA[j′] to ToBeAssigned−
Aj

will add a pair

(xG,yU ) to ToBeAdaptedD with yU = yA. Assuming successful completion of the query cycle, a
completed chain containing yA is thus created by AdaptLeft. ⊓⊔



Lemma 17. The total number of pairs (xG,yU ) ever added to ToBeAdaptedD plus the total number
of pairs (xV ,yH) ever added to ToBeAdaptedE in G1, G2 or G3 is at most (2q)w if XtraMiddleRnd

is off and is at most Condτ (2q) is XtraMiddleRnd is on.

Proof. When XtraMiddleRnd is off this is a direct corollary of lemmas 14 and 15.
When XtraMiddleRnd is on this follows from Lemma 15 and from the fact that

{

yU : yU ∈ Index−U1
× . . .× Index−Uw

∧ τ(yU ) ∈ IndexV1
× . . .× IndexVw

}

has size at most Condτ (2q) by the definition of conductance. ⊓⊔

In other words, the total number of pairs (xG,yU ) added to ToBeAdaptedD plus the total number
of pairs (xV ,yH) added to ToBeAdaptedE is at most α(q).

Lemma 18. The number of times lines 8–11 of RequestU−1 plus the number of times lines 8–9
of RequestV are executed is at most α(q).

Proof. This is a corollary of lemmas 17 and 12, since lines 8–11 of RequestU−1 and lines 8–9 of
RequestV are executed each time before an element is added respectively to ToBeAdaptedD or
ToBeAdaptedE . ⊓⊔

For the next two lemmas, let AllAdapted be the set of all pairs (xG,yU ) ever added to
ToBeAdaptedD unioned with the set of all pairs (xV ,yH) ever added to ToBeAdaptedE .

Lemma 19. For every T ∈ {D, . . . , L} and for every j ∈ [w] there is an injection from the set of
pairs (x, y) such that Tj(x) = y to AllAdapted ∪ [q], at any point in time of any execution of G1,
G2 or G3.

Proof. If the distinguisher previously queried T(j, x) or T−1(y) with (say) his h-th query, we map
the pair (x, y) to the value h ∈ [q].

Otherwise the distinguisher did not query T(j, x) or T−1(y), and the entry was added to Tj

either by line 17 of RequestG, by line 17 of RequestH−1, by line 8 of RequestU−1, by line 8 of
RequestV, by line 11 of RequestU−1, by line 11 of RequestV, or else inside the second forall loop
of AdaptLeft or AdaptRight. (Recall that T 6= A,B,C.) However, for each of these cases it is
straightforward (by direct examination of the pseudocode) to associate either some pair (xG,yU )
added to ToBeAdaptedD or some pair (xV ,yH) added to ToBeAdaptedE . Moreover it is equally
easy to see that under this natural mapping, no element of AllAdaptedis the image of more than
one pair (x, y), for a given T and j (in a nutshell, because the query Tj(x) = y lies on the path
corresponding to the element in AllAdapted, which limits x and y to one possible combination). ⊓⊔

Lemma 20. Let T ∈ {D, . . . , L}, j ∈ [w]. Then the number of x for which Tj(x) 6= ⊥ is at most
q+α(q) at any point of any execution of G1, G2 and G3. Moreover if T ∈ {A,B,C} then the same
number is at most 2q.

Proof. The first statement follows by Lemma 19 coupled with Lemma 17. The second statement is
a restatement of Lemma 9. ⊓⊔

Lemma 21. In any execution of G1, G2 or G3 the total number of distinct18 calls from RequestU−1

to BlockRequestG and from RequestV to BlockRequestH−1 is at most α(q).

18 Distinct means with distinct arguments. The total number of calls may be greater.



Proof. This follows from Lemma 17 since for each call BlockRequestG(xG) there is a pair (xG,yU ) ∈
ToBeAdaptedD for some yU and for each call BlockRequestH−1(yH) there is a pair (xV ,yH) ∈
ToBeAdaptedE for some xV . ⊓⊔

Lemma 22. For any j ∈ [w] and at any point in an execution of G1, G2 or G3, IndexGj
and

Index−Hj
have size at most q + α(q).

Proof. The size of IndexGj
is upper bounded by the number of distinguisher calls to G and G−1

plus the number of distinct values x for which a call RequestG(j, x) occurs plus the number of
times BlockG−1 is called. The number of distinguisher calls to G and G−1 is at most q in total.
Moreover, since RequestG is otherwise (that is, when it isn’t being called by G because of a direct
distinguisher query to G) only called by BlockRequestG and the end of RequestU−1, and since
BlockG−1 is only called from within MiddleToLeft from within RequestV, the conclusion follows
by Lemma 21. ⊓⊔

Lemma 23. In any execution of G1, G2 or G3, the total number of distinct pairs (xX ,yH) such
that a call CheckZ(xX ,yH) occurs is at most β(q)(q + α(q))w. ⊓⊔

Proof. CheckZ is only called from within on arguments of the type (xX ,yH), where yH satisfies
BlockDefined(H,yH ,−) = true. There are at most (q+α(q))w distinct such xX over the course of
an execution by Lemma 20.

Moreover, if XtraOuterRnd is off then BlockDefined(G,xX ,+) = true and there are at most
β(q) = (q + α(q))w distinct such xX over the course of an execution by the same lemma.

If XtraOuterRnd is on, finally, CheckZ is only called on arguments of then xX satisfies BlockDefined(F,xX ,+)
true and BlockDefined(G, ν(BlockF(xX)),+) = true. Obviously there are at most β(q) = Condν(α(q)+
q) distinct such xX by Lemma 20 and by the definition of conductance. ⊓⊔

5.3 Bounding the Abort Probability in G3

Lemma 24. An execution of G3 never aborts inside ReadTape unless the function calling Read-
Tape is D, D−1, E or E−1.

Proof. Note that values in Aj , Bj , Cj , Fj , Gj ,Hj , Ij , Jj ,Kj , Lj and PZ are always set via ReadTape;
hence, ReadTape never aborts except the second argument to ReadTape is Dj or Ej, and such calls
to ReadTape only occur in procedures eD, D−1, E and E−1. ⊓⊔

Lemma 25. The number of times Z/Z−1 is called during an execution of G2 or G3 is at most
q + α(q).

Proof. Note that Z is no longer called by CheckZ in game G2 and G3. Hence, the only calls to Z
are those which occur in RequestU−1 and RequestV, or else are distinguisher calls. The number of
former calls is at most α(q) by Lemma 17 while the latter is at most q. ⊓⊔

Lemma 26. The probability that G2 or G3 aborts inside of Z or Z−1 is at most w(q+α(q))2/(N−
q − α(q)).

Proof. Note that values in PZ are always set via ReadTape and never via SetTable; hence, calls to
ReadTape never abort in Z or Z−1.

The number of entries in any of the tables Xj , Yj is at most q+α(q) by Lemma 20. Moreover, a
lookup in pZ produces a value z1 . . . zw ∈ {0, 1}wn where each zi is uniform in a set of size at least



N − q − α(q) by Lemma 25. Thus, by a union bound over the entries in Xj (for queries to Z−1) or
over the entries in Yj (for queries to Z) as well as over the value of j the probability that a query
to Z or Z−1 causes an abort is at most w(q +α(q))/(N − q−α(q)). The total number of queries to
Z/Z−1 being at most q + α(q), the lemma follows by a union bound over all these queries. ⊓⊔

Lemma 27. The procedure CheckZ is never called twice on the same input pair (x,y) over the
course of an execution of G3.

Proof. Calls to CheckZ occur only in RequestG and RequestH−1. Oviously, the given call to Re-
questG or RequestH−1 will not call CheckZ twice on the same pair (xX ,yH), as is clear by inspection
of the pseudocode. Therefore if CheckZ is called twice on the same pair (xX ,yH), the two calls must
occur from within distinct instances of RequestG and/or RequestH−1. For concreteness, assume to
start with that the two calls are issued by distinct instances of RequestG. (This is in fact the more
interesting case, since if one call occurs within RequestG and the other occurs within RequestH−1,
the calls are happening in different query cycles.)

Let the two calls to RequestG in question be RequestG(j1, x1) and RequestG(j2, x2), where
RequestG(j1, x1) starts executing before RequestG(j2, x2); we do not assume (j1, x1) 6= (j2, x2).

Since RequestG(j1, x1) does not start making recursive calls until its last forall loop, the call
CheckZ(xX ,yH) that occurs in RequestG(j1, x1) occurs before RequestG(j2, x2) starts executing.
At the point when the call CheckZ(xX ,yH ) is made (or even when RequestG(j1, x1) is called)
xX is associated to a unique xG, which is namely xG = ν(F (xX)) if XtraOuterRnd is on and
which is xG = xX if XtraOuterRnd is off. Moreover xG[j1] = x1 by design of RequestG, and
xG[j2] = x2 because RequestG(j2, x2) also makes the call CheckZ(xX ,yH ) by assumption. But
since xG[j] ∈ IndexGj

for all j when RequestG(j1, x1) calls CheckZ(xX ,yH), this implies that
x2 ∈ IndexGj2

when RequestG(j2, x2) is called, since the latter call occurs after RequestG(j1, x1)

calls CheckZ(xX ,yH ), and hence RequestG(j2, x2) would return immediately, a contradiction.

Other cases (e.g., when one call to CheckZ is caused by RequestG, and the other by RequestH−1)
can be handled by a similar analysis. ⊓⊔

Lemma 28. The probability that G3 aborts inside of ForwardOutside or BackwardOutside is at
most (q + wα(q))(q + α(q))/(N − q − α(q)).

Proof. BackwardOutside(T, j, y) is called with T ∈ {F,G} while ForwardOutside(T, j, x) is called
with T = H. By Lemma 20, values read from p−Fj

, p−Gj
or pHj

come uniformly at random from a set

of size at least N − q − α(q). Since PZ contains at most q + α(q) entries by Lemma 25, the abort
probability in a query to ForwardOutside or BackwardOutside is at most (q+α(q))/(N −q−α(q)).

The total number of queries to ForwardOutside and BackwardOutside is no more than q+wα(q),
including no more than q queries directly issued by the distinguisher and, by Lemma 18, no more
than wα(q) queries made by MiddleToLeft and MiddleToRight. The lemma thus follows by a union
bound. ⊓⊔

Lemma 29. When XtraOuterRnd is on, the probability that G3 aborts inside of F or G−1 is at
most

2w(q + α(q))aboCondν(q + α(q))

N − q − α(q)
. (4)

Proof. We focus on a call F(j, x). Calling F(j, x) causes abort if and only if Fj(x) = ⊥ and if
once we set Fj(x) = y := pFj

(x), there exist yF ,xG such that yF [j] = y, xG = ν(yF ) and



BlockDefined(F,yF ,−) = BlockDefined(G,xG,+) = true. Since there is no such thing as a set
ToBeAssigned−Fj

, the set of values y that will cause an abort is

{

y ∈ {0, 1}n : ∃yF ,xG s.t. yF [j] = y, ν(yF ) = xG,∀k 6= j F−
k (yF [k]) 6= ⊥,∀k xG[k] ∈ IndexGk

}

.

The size of this set can be upper bounded by the size of
{

(yF ,xG) : ν(yF ) = xG,∀k 6= j F−
k (yF [k]) 6= ⊥,∀k xG[k] ∈ IndexGk

}

which is upper bounded by aboCondν(q+α(q)) by the definition of all-but-one conductance and by
lemmas 20, 22. Moreover y comes uniformly at random from a set of size at least N − q − α(q) by
Lemma 20. Thus the probability of abort for a call to F(j, ·) is no more than Condν(q+α(q))/(N −
q − α(q)), and it is easy to see that the same bound holds for a call to G−1(j, ·). Multiplying by
q + α(q) to account for all calls to F(j, ·) and by a further factor of 2w to account for all values of
j as well as for calls to G−1 yields the final bound. ⊓⊔

Lemma 30. The probability that NumOuter exceeds q in G3 is zero.

Proof. Each increment of NumOuter is associated to a unique pair (xX ,yH ) such that CheckZ(xX ,
yH) = true. Moreover a given pair (xX ,yH) only contributes at most once to the increase in
NumOuter by Lemma 27. We claim that before the call CheckZ(xX ,yH) occurs the distinguisher
has already made the call Z(xX) → yH or Z−1(yH) → xX . This would complete the proof since
the distinguisher has at most q queries.

To prove the latter claim, consider wlog the case where NumOuter is incremented within a left-
hand query cycle, so that the call to CheckZ occurs from within RequestG. Assume by contradiction
that the distinguisher did not make the call Z(xX) → yH or Z−1(yH) → xX , so that the entry
PZ(x

X) = yH which results in CheckZ(xX ,yH) returning true (see the pseudocode of procedure
CheckZ in G3, Fig. 2) was created by a call to Z−1 in RequestU−1 or by a call to Z in RequestV,
as no other simulator functions call Z/Z−1 in G3. In the latter case the call to Z must have occured
during a previous query cycle because RequestV is a right-hand function while RequestG is a left-
hand function and, thus, the pair (xX ,yH) was in a completed path already at the beginning of
the current query cycle, a contradiction to the first line of RequestG since values are never removed
from the tables Tj and since the vector xX would have already been associated to a unique vector
xG such that G(xG) 6= ⊥ at the beginning of the query cycle. (I.e., the vector xG on the same
completed path as xX .) In the other case, when the entry PZ(x

X) = yH was created by a call to
Z−1 in RequestU−1, then either that query to Z−1 occured in a previous query cycle, in which case
the same argument applies, or else (xX ,yU ) ∈ ToBeAdaptedD for some vector yU , contradicting
the fact that RequestG made it to the increment of NumOuter. This completes the proof. ⊓⊔

Lemma 31. The probability that an execution of G3 aborts inside either of D, D−1, E or E−1 is,
altogether, at most 2wα(q)(q + α(q))/(N − q − α(q)).

Proof. We fix a value of j and focus on calls D(j, ·), D−1(j, ·), and later multiply by 2w (union
bound) to obtain the final bound.

Note that at most α(q) entries of Dj are fixed by SetTable, since at most α(q) paths are
completed by Lemma 17. Moreover, every lookup in the table pDj

or p−1
Dj

gives a value drawn

uniformly at random from a set of size at least N − q − α(q) by Lemma 20. Hence the probability
that an abort occurs because a drawn value “hits” a predefined value within D or D−1 is at most
α(q)/(N − q−α(q)) per query. Furthermore the number of queries to D(j, ·) or D−1(j, ·) that result
in a call ReadTable is at most q + α(q) again by Lemma 20. Multiplying by 2w to account for the
different values of j and for queries to D gives the union bound its final form. ⊓⊔



Lemma 32. When AdaptLeft is called, for every pair (xG,yU ) ∈ ToBeAdaptedD and for every
1 ≤ j ≤ w, either xG[j] ∈ ToBeAssignedGj

or Gj(x
1[j]) 6= ⊥, but not both, and, similarly, either

yU [j] ∈ ToBeAssigned−1
Uj

or U−1
j (yU [j]) 6= ⊥, but not both. A symmetric statement holds for calls

to AdaptRight and pairs (xV ,yH) ∈ ToBeAdaptedE.

Proof. The “but not both” clauses follows from Lemma 6. Subsequently, the statement is obvious
for yU , given that the forall loop of RequestU−1 doesn’t proceed unless BlockDefined(U,yU ,−) =
true. Moreover, once a pair (xG,yU ) is added to ToBeAdaptedD the call BlockRequestG(xG)
occurs, which implies (by direct inspection of BlockRequestG and of RequestG) that the statement
also hold for xG. ⊓⊔

Lemma 33. The probability that an execution of G3 aborts inside of BlockU−1, BlockV, BlockG
or BlockH−1 is zero.

Proof. First we consider the call to BlockG in RequestH−1 via LeftToMiddle. Since RequestH−1

is only called during a right-hand query cycle, the tables ToBeAssignedGj
remain empty during

a right-hand query cycle. Hence if BlockDefined(G,xG,+) = true in RequestH−1 it implies that
Gj(x

G[j]) 6= ⊥ for 1 ≤ j ≤ w. This implies that the call to BlockG doesn’t abort within RequestH−1.
When XtraMiddleRnd is on, BlockU−1 can be called in RequestV via MiddleToLeft. Since Re-

questV is only called during a right-hand query cycle, the tables ToBeAssigned−1
Uj

remain empty

during a right-hand query cycle. Hence if BlockDefined(B,yB ,−) = true in RequestV it implies
that Bj(y

B [j]) 6= ⊥ for 1 ≤ j ≤ w. This implies that the call to BlockU−1 never aborts within
RequestV.

Otherwise, BlockU−1, BlockG are only called in AdaptLeft. The claim thus follows by Lemma
32 and by direct inspection of AdaptLeft.

Calls to BlockV, BlockH−1 are symmetrically analyzed. ⊓⊔

Lemma 34. When XtraMiddleRnd is on, the probability that G3 aborts inside of B or C−1 is at
most

4wq · aboCondτ (2q)
N − 2q

.

Proof. By Lemma 24, ReadTape does not abort when called by B or C−1. By Lemma 9, values
read from the tape pBj

or from the tape p−1
Cj

come uniformly at random from a set of size at least
N − 2q.

Calling B(j, x) causes abort if and only Bj(x) = ⊥ and if once we set Bj(x) = y := pBj
(x),

there exists a pair yB , xC such that yB [j] = y, xC = τ(yB) and BlockDefined(B,yB ,−) =
BlockDefined(C,xC ,+) = true. As in Lemma 29, the number of such y’s is upper bounded by the
size of the set

{

(yB ,xC) : τ(yB) = xC ,∀k 6= j yB [k] ∈ Index−1
Bk

,∀k xC [k] ∈ IndexCk

}

which is upper bounded by aboCondτ (2q) by the definition of all-but-one conductance and by
Lemma 9. Hence the probability of abort for a single call to B is no more than aboCondτ (2q)/(N −
2q). Moreover at most 2q distinct queries to B(j, ·) occur by Lemma 9 again, so the final bound
follows by symmetry between B and C−1 and by a straightforward union bound. ⊓⊔

Lemma 35. During a left-hand query cycle, entries are not added to tables Gj or Uj until AdaptLeft
is called. Moreover, the only entries added to Hj are via forward calls to H. A symmetric statement
holds for right-hand query cycles.



Proof. Focusing on left-hand query cycles, the first statement follows by inspection of the procedures
RequestG and RequestU−1. The second statement follows by inspection of the same procedures and
by noting that the procedure BlockH−1 (called in RequestG via RightToMiddle) does not actually
call H−1, but performs look-ups in the tables H−1

j instead. ⊓⊔

Lemma 36. At the end of each non-aborted query cycle in G3, every pair (xG,yH) such that

1. Gj(x
G[j]) 6= ⊥ and H−1

j (yH [j]) 6= ⊥ for all 1 ≤ j ≤ w;

2. If XtraOuterRnd is on and yF = ν−1(xG) then F−1
j (yF [j]) 6= ⊥ for all 1 ≤ j ≤ w;

3. PZ(x
X) = yH , where xX = F−1(yF ) if XtraOuterRnd is on, xX = xG otherwise

is in a completed path.

Proof. We prove the statement by induction on the number of distinguisher queries. We refer to
the lemma’s assertion as “the invariant” in the proof below. Obviously, the invariant holds before
the distinguisher starts making queries.

Distinguisher queries to Z and Z−1 do not affect the invariant, thanks to the abort conditions
installed in those functions in game G3. Nor do distinguisher queries to G−1, H and F, F−1 thanks
to similar abort conditions installed in those functions.

Other neutral calls obviously leave the lemma’s invariant unaffected as well, since such calls
don’t affect any of the tables on which the invariant depends.

For the rest we focus on a left-hand query (i.e., to G or U−1), the case of a right-hand query
being symmetric.

Let (xG
∗ ,y

H
∗ ) be a putative pair that satisfies the lemma’s constraints at the end of the query

cycle, but such that xG
∗ and yH

∗ don’t lie in a (common) completed path at the end of the query
cycle.

At the end of a non-aborted query cycle the condition Gj(x
G
∗ [j]) 6= ⊥ is equivalent to xG

∗ [j] ∈
IndexGj

. So xG
∗ and yH

∗ satisfy

1. xG
∗ [j] ∈ IndexGj

for all j ∈ [w];

2. H−1
j (yH

∗ [j]) 6= ⊥ for all j ∈ [w];

3. if XtraOuterRnd is on then F−1(yF
∗ ) 6= ⊥ where and yF

∗ = ν−1(xG
∗ );

4. PZ(x
X
∗ ) = yH

∗ , where xX
∗ = F−1(yF

∗ ) if XtraOuterRnd is on, and where
xX
∗ = xG

∗ otherwise

at the end of the query cycle. Moreover, by the hypothesis that the invariant holds at the start of
the query cycle, one or more of these constraints doesn’t hold at the start of the query cycle.

Consider the first time the pair (xG
∗ ,y

H
∗ ) satifies constraints 1–4. Note this cannot occur in H,

F, F−1, Z and Z−1 because of the abort conditions in those functions. (As far as the last claim is
concerned, in fact, constraint 1 could be replaced with “Gj(x

G
∗ [j]) 6= ⊥” as well, which would only

make the constraints harder to satisfy. One can also note that F−1 is never actually called during
a left-hand query cycle.)

As argued in Lemma 35, H−1 and RequestH−1 are never called during a left-hand query cycle.
Moreover AdaptLeft leaves IndexGj

and Hj, Fj and PZ invariant, so (xG
∗ ,y

H
∗ ) must satisfy the

constraints 1–4 before AdaptLeft is called.

We have ruled out all the functions that affect the tables Fj , Hj and PZ (being respectively F, H
and Z/Z−1) during a left-hand query cycle as being the point where constraints 1–4 become satisfied
for the first time, and we know the constraints become satisfied before AdaptLeft. The only re-
maining possibility is that the constraints become satisfied when xG

∗ [k] is added to ToBeAssignedGk



for some k. But when xG
∗ [k] is added to ToBeAssignedGk

inside RequestG(k,xG
∗ [k]), and since by

assumption all the constraints 1–4 are satisfied at that moment, the pair (xG
∗ ,y

U
∗ ) would be added

to ToBeAdaptedD for some yU
∗ and, if abort doesn’t occur, xG

∗ must be in a completed path at the
end of the query cycle, which would perforce include yH

∗ . ⊓⊔

Lemma 37. When AdaptLeft is called in G3, for every pair (xG,yU ) ∈ ToBeAdaptedD there
exists a j ∈ [w] such that xG[j] ∈ ToBeAssignedGj

and there exists k ∈ [w] such that yU [k] ∈
ToBeAssigned−1

Uk
. A symmetric statement holds for calls to AdaptRight and pairs (xV ,yH) ∈

ToBeAdaptedE.

Proof. The claim is clear for vector yU by inspection of RequestU−1, where pairs are added to
ToBeAdaptedD. Indeed every addition of a pair (xG,yU ) to ToBeAdaptedD is preceded by adding
yU [j] to ToBeAssigned−Uj

for some j, and yU [j] is not removed from ToBeAssigned−
Uj

until AdaptLeft

is called. We also note that in this case the pair (xG,yU ) is added to ToBeAdaptedD during the
call RequestU−1(j,yU [j]).

In order to argue a similar conclusion for the vector xG of the pair (xG,yU ) in question we
can consider the point in time after xG has been computed in RequestU−1(j,yU [j]) but before
BlockRequestG(xG) is called.

If at this point Gh(x
G[h]) = ⊥ for some h ∈ [w] then BlockRequestG(xG) will add xG[h]

to ToBeAssignedGh
, and the conclusion follows as well for xG. Therefore we can assume that

Gh(x
G[h]) 6= ⊥ for all h ∈ [w] at this point, i.e., that G(xG) 6= ⊥ at this point. Since new entries

aren’t added to the tables Gh before AdaptLeft is called, this also implies that G(xG) 6= ⊥ already
at the start of the query cycle.

However, RequestU−1(j,yU [j]) has computed a (forward) path going all the way from yU to
xG via a vector yH (computed in MiddleToRight), and one can check that the pair (xG,yH) now
meets the conditions 1–4 listed in the previous lemma. But following the same argument as in the
proof of that lemma (i.e., seeking the first point in time at which (xG,yH) meets conditions 1–4)
leads us to a contradiction, for we concluded there the existence of some value k such that xG[k] is
added to ToBeAssignedGk

during the query cycle, which cannot be the case here if G(xG) 6= ⊥ at
the start of the query cycle. ⊓⊔

Lemma 38. The probability that abort occurs in AdaptLeft or in AdaptRight in an execution of
G3 is no more than

2wα(q)(q + α(q)) ·MaxPreim(π)

N − q − α(q)
+

2wα(q)2 ·MaxCoPr(π)

N − q − α(q)

if XtraUntglRnds is off, and no more than

(4wα(q) + 2wα(q)2) ·MaxPreim(π)(q + α(q))

N − q − α(q)

if XtraUntglRnds is on.

Proof. As all values of Gj , Uj , Ij , Jj are set by ReadTape, the calls to ReadTape that occur in
AdaptLeft cannot cause abort (Lemma 24).

Moreover, by Lemma 33, the calls to BlockG and BlockU−1 that occur in AdaptLeft cannot
cause abort either. Therefore, the only calls that might cause AdaptLeft to abort are the calls to
SetTable. Specifically, a call SetTable(Dj , x, y) will abort if either the x- or y-argument already
appears in Dj. Arguing by symmetry, we will bound the probability that Dj(x) 6= ⊥.



For concreteness, assume that ToBeAdaptedD contains k pairs

(xG
1 ,y

U
1 ), . . . , (x

G
k ,y

U
k )

when AdaptLeft is called. Let

Si = {j : 1 ≤ j ≤ w,Gj(x
G
i [j]) = ⊥}

Note that Si 6= ∅ for 1 ≤ i ≤ k by Lemma 37.
Let D ⊆ {0, 1}n be the domain of Dj when AdaptLeft is called and, if XtraUntglRnds is on, let

I ⊆ {0, 1}n be the domain of Ij when AdaptLeft is called. In other words,

Dj = {x ∈ {0, 1}n : Dj(x) 6= ⊥}
Ij = {x ∈ {0, 1}n : Ij(x) 6= ⊥}

with these “snapshots” of Dj and Ij being taken when AdaptLeft is called. (Thus subsequent
modifications to Dj, Ij do not affect Dj, Ij.)

Define
yG
i = G(xG

i )

xD
i = πG(y

G
i ) if XtraUntglRnds is off

xI
i = πG(y

G
i ) if XtraUntglRnds is on

yI
i = I(xI

i ) if XtraUntglRnds is on

xD
i = πI(y

I
i ) if XtraUntglRnds is on

If XtraUntglRnds is off, yG
i and xD

i become defined after the first forall loop of AdaptLeft has
completed. If XtraUntglRnds is on, yG

i and xI
i become defined after the forall loop has completed,

while yI
i and xD

i only become defined within the second (outermost) forall loop of AdaptLeft.
In either case, the underlying probability space for the following argument is all the coins

thrown during the AdaptLeft call. One can think of yG
i , x

I
i , y

I
i , x

D
i as random variables over this

probability space. Moreover, for the sake of having these random values always be well-defined, we
will assume that SetTable(Dj , ·, ·) doesn’t actually stop the execution of AdaptLeft if abort occurs,
but throws some kind of uncaught exception instead. This way both forall loops fully complete
and all afore-mentioned values are defined, modulo the flag XtraUntglRnds.

We define the following bad events:

– PreExistingi,j occurs if and only if xD
i [j] ∈ Dj (i ∈ [k], j ∈ [w])

– Collidingi,i′,j occurs if and only if xD
i [j] = xD

i′ [j] (1 ≤ i < i′ ≤ k, j ∈ [w])

It is easy to see that some call SetTable(Dj , x, y) aborts because Dj(x) 6= ⊥ if and only if an event
from these two families occurs.

First we bound the probability of one of these events occuring when XtraUntglRnds is off. We
have |Dj | ≤ q + α(q) by Lemma 20. Note that xD

i [j] only becomes defined (and for all j at once)
once ReadTape(Gj ,x

G
i [j], pGj

) has been called for all j ∈ Si. The last such call to ReadTape, for a
given value of i, will be called the defining call for xD

i .
As in Section 2, let

πx

j,j′

be the function from {0, 1}n to {0, 1}n obtained by restricting the i-th block of input of π, i 6= j,
to x[i], an by considering only the j′-th block of input. Recall that

MaxPreim(π) = max
x,j,h,y

|{x ∈ {0, 1}n : πx

j,h(x) = y}|.



Since the random value accessed by ReadTape during the defining call for xD
i comes uniformly

at random from a set of size at least N − q−α(q) by Lemma 20, the defining call to ReadTape for
xD
i has probability at most

MaxPreim(πG)|Dj |
N − q − α(q)

(5)

of causing PreExistingi,j to occur for each 1 ≤ j ≤ w, by a union bound over Dj . Thus, given that
|Dj | ≤ q + α(q),

Pr





∨

1≤i≤k,1≤j≤w

PreExistingi,j



 ≤ wk ·MaxPreim(πG)(q + α(q))

N − q − α(q)
. (6)

If the defining calls for vectors xD
i , x

D
i′ are distinct calls, moreover, then

Pr
[

Collidingi,i′,j
]

≤ MaxPreim(πG)

N − q − α(q)
.

(The right-hand side is the same as (5), but with |Dj | replaced by 1, as there is only one bad value
for the second of the two defining calls to land on.) If xD

i , x
D
i′ share the same defining call, however,

then

Pr
[

Collidingi,i′,j
]

≤ MaxColl(πG)

N − q − α(q)

where we recall that

MaxColl(π) = max
x 6=x′,j,h

|{x ∈ {0, 1}n : πx

j,h(x) = πx
′

j,h(x)}|.

Thus,

Pr





∨

i 6=i′,j

Collidingi,i′,j



 ≤ wk2 ·MaxCoPr(πG)

N − q − α(q)
(7)

where MaxCoPr(π) = max(MaxPreim(π),MaxColl(π)). Thus, the probability that AdaptLeft aborts
during this call because SetTable(Dj , x, y) is call with Dj(x) 6= ⊥ is at most

wk ·MaxPreim(πG)(q + α(q))

N − q − α(q)
+

wk2 ·MaxCoPr(πG)

N − q − α(q)
(8)

and, by symmetry and by a union bound, the overall probability that AdaptLeft aborts (thus also
including bad events of type D−

j (y) 6= ⊥) is upper bounded by

2wk ·MaxPreim(π)(q + α(q))

N − q − α(q)
+

2wk2 ·MaxCoPr(π)

N − q − α(q)
(9)

as per the definitions of MaxPreim(π), MaxCoPr(π) given in Section 3.
By symmetry, (9) holds equally well for a call to AdaptRight, provided ToBeAdaptedE has k

pairs when AdaptRight is called.
If the distinguisher’s i-th query is a left-hand query let ki be the size of ToBeAdaptedD when

AdaptLeft is called; if the distinguisher’s i-th query is a right-hand query, let ki be the size of
ToBeAdaptedE when AdaptRight is called; and if the distinguisher’s i-th query is a neutral query
let ki = 0. Then k1, . . . , kq are random variables (functions of the execution) such that

k1 + · · ·+ kq ≤ α(q) (10)



with probability 1 by Lemma 17 and, by extension, such that

k21 + · · ·+ k2q ≤ α2(q) (11)

with probability 1. Even while the ki’s are random variables, a little thought reveals that the total
probability of aborting in AdaptLeft or AdaptRight is upper bounded by replacing respectively k
and k2 in (9) by the upper bounds α(q) and α2(q) on these sums, cf. (10), (11). The total probability
that G3 aborts in AdaptLeft or AdaptRight is thus upper bounded by

2wα(q)(q + α(q)) ·MaxPreim(π)

N − q − α(q)
+

2wα(q)2 ·MaxCoPr(π)

N − q − α(q)
(12)

when XtraUntglRnds is off.
When XtraUntglRnds is on, we define an extra bad event:

– PreHiti,j occurs if and only if xI
i [j] ∈ Ij (1 ≤ i ≤ k, 1 ≤ j ≤ w)

Similarly to (6), we have

Pr





∨

1≤i≤k,1≤j≤w

PreHiti,j



 ≤ wk ·MaxPreim(πG)(q + α(q))

N − q − α(q)
. (13)

If none of the events PreHiti,j occur each yI
i [j] is randomly chosen from a set of at least N−q−α(q)

values (Lemma 20) during the second forall loop of AdaptLeft. We note this does not preclude the
possibility that yI

i [j] = yI
i′ [j] for certain pairs i 6= i′ and certain values of j.

We proceed to upper bound the probability that some event PreExistingi,j or Collidingi,i′,j occurs
given that no event PreHiti,j occurs. For the remainder of the argument the underlying randomness
is only the randomness remaining in I. (We note, indeed, that this randomness isn’t skewed by
assuming none of the events PreHiti,j occurs, since these events depend only the randomness in G.)

We can define the “defining call” of xD
i similarly to the case XtraUntglRnds = false; the only

difference is that we are now conditioning on G-values, and that the defining call is a call to I.
Once again, the random value accessed by ReadTape during the defining call for xD

i comes
uniformly at random from a set of size at least N − q− α(q) by Lemma 20. Thus, the defining call
for xD

i has probability at most
MaxPreim(πI)|Dj |

N − q − α(q)
(14)

of causing PreExistingi,j to occur for each 1 ≤ j ≤ w, by a union bound over Dj . Thus, given that
|Dj | ≤ q + α(q),

Pr





∨

1≤i≤k,1≤j≤w

PreExistingi,j



 ≤ wk ·MaxPreim(πI)(q + α(q))

N − q − α(q)
. (15)

If the defining calls for vectors xD
i , x

D
i′ are distinct calls, moreover, then

Pr
[

Collidingi,i′,j
]

≤ MaxPreim(πI)

N − q − α(q)
(16)

as before. Note that xG
i 6= xG

i′ implies xI
i 6= xI

i′ , so there exists 1 ≤ j′ ≤ w that xI
i [j

′] 6= xI
i′ [j

′]. In
fact we can assume without loss of generality that ReadTape(Ij′ ,x

I
i′ [j

′], pIj′ ) is the defining call of



xD
i . (This is because changing the order in which values are sampled does not change the sampled

values; indeed, the underlying random tapes are the same.) Thus

Pr





∨

i 6=i′,j

Collidingi,i′,j



 ≤ wk2 ·MaxPreim(πI)

N − q − α(q)
. (17)

because (16) holds for each i, i′, j individually.

The probability that AdaptLeft aborts during this call because SetTable(Dj , x, y) is called with
Dj(x) 6= ⊥ is thus at most

wk ·MaxPreim(πG)(q + α(q))

N − q − α(q)
+

wk ·MaxPreim(πI)(q + α(q))

N − q − α(q)
+

wk2 ·MaxPreim(πI)

N − q − α(q)
. (18)

as obtained by summing (13), (15), (17). The overall probability that AdaptLeft aborts during this
call is thus upper bounded by

(4wk(q + α(q)) + 2wk2) ·MaxPreim(π)

N − q − α(q)
(19)

by taking bad events of the type D−
j (y) 6= ⊥ into account. The same upper bound also holds for

AdaptRight by symmetry.

Similarly to when XtraUntglRnds is off, one can then argue that the total probability that G3

aborts in AdaptLeft or AdaptRight is upper bounded by

(4wα(q)(q + α(q)) + 2wα(q)2) ·MaxPreim(π)

N − q − α(q)
(20)

as obtained by replacing k with α(q) in (19). ⊓⊔

Lemma 39. The probability that G3 aborts for a q-query distinguisher is at most

w(q + α(q))2

N − q − α(q)
+

(q + wα(q))(q + α(q))

N − q − α(q)
+

2wα(q)(q + α(q))

N − q − α(q)

+
4wq · aboCondτ (2q)

N − 2q
if XtraMiddleRnd is on

+
4w(q + α(q))

(

aboCondν(q + α(q))
)

N − q − α(q)
if XtraOuterRnd is on

+
2wα(q)(q + α(q)) ·MaxPreim(π)

N − q − α(q)
+

2wα(q)2 ·MaxCoPr(π)

N − q − α(q)
if XtraUntglRnds is off

+
(4wα(q)(q + α(q)) + 2wα(q)2) ·MaxPreim(π)

N − q − α(q)
if XtraUntglRnds is on

Proof. This follows by summing the bounds of Lemmas 24, 26, 28, 29, 30, 31, 33, 34 and 38. ⊓⊔

5.4 Proof of Indifferentiability

We say that a distinguisher D completes all paths if, for every query Z(xX) ← yH or query
Z−1(yH) ← xX made by D, D subsequently and eventually makes the (possibly redudant) rwq



queries
F(1,xF [1])→ yF [1], . . . , F(w,xF [w])→ yF [w], if XtraOuterRnd is on
G(1,xG[1])→ yG[1], . . . , G(w,xG[w])→ yG[w],
I(1,xI [1])→ yI [1], . . . , I(w,xI [w])→ yI [w], if XtraMiddleRnd is on

...
. . .

...
H(1,xH [1])→ y′H [1], . . . , H(w,xH [w])→ y′H [w]

unless the game aborts, where xF = xX ,xG = ν(yF ) if XtraOuterRnd is on, xG = xX otherwise,
etc. (Here we don’t presume y′H = yH , though obviously D will be able to distinguish the simulated
world from the real world if y′H 6= yH .)

For this section we presume a fixed q-query (information-theoretic) distinguisher D that com-
pletes all paths. The object is to upper bound

∆D(G1,G5) = Pr[DG1 = 1]− Pr[DG5 = 1]. (21)

The upper bounds we obtain for D will imply appropriately modified upper bounds for arbitrary
distinguishers by noting that if D′ is an arbitrary q0-query distinguisher there exists a (q0 + rwq0)-
query distinguisher D∗ that completes all paths and that achieves advantage at least as good as
D′.

SinceD is information-theoretic we can assume without loss of generality thatD is deterministic.
Moreover since G5 never aborts we can assume that if the environment aborts then D outputs 1,
which can only serve to maximize (21).

Lemma 40. Let D be as described above. Then ∆D(G1,G2) ≤ β(q)(q + α(q))w/(Nw − q − α(q)).

Proof. The only difference between G1 and G2 is in the procedure CheckZ. Specifically, CheckZ
will call Z in G1 whereas CheckZ consults PZ in G2. Hence CheckZ is answered according to pZ
in G1 and according to PZ in G2. Also, a call to CheckZ might modify PZ in G1 whereas a call to
CheckZ never modifies PZ in G2. (We note, however, that PZ always remains consistent with pZ
in either G1 or G2: PZ is a subset of pZ .)

Consider two concurrent executions of G1 and G2, executed on the same random tapes pA1
, . . .,

pLw , pZ . We say the two executions diverge if CheckZ is ever called with arguments (x,y) such
that pZ(x) = y and such that PZ(x) = ⊥ in the G2-execution. We claim that as long as the two
executions don’t diverge in this sense, every function call is answered the same in each execution.
Indeed, calls to CheckZ are answered the same (by the definition of divergence) and calls of the
form Z(x), Z−1(y) are also answered the same, being answered by pZ(x) and p−1

Z (y) (respectively)
in either game regardless of the state of PZ . Furthermore, while PZ may contain more defined
entries in G1 than in G2, CheckZ, Zand Z−1 are the only functions to use PZ in either game, so
the differences in PZ don’t propagate to elsewhere, as we have just seen that CheckZ, Z and Z−1

answer function calls the same.
Next, to upper bound the probability of divergence, we start by observing that divergence is

well-defined for an execution of G2 on its own. Indeed we can say that an execution of G2 “diverges”
if CheckZ is ever called with a pair (x,y) such that pZ(x) = y and PZ(x) = ⊥; then G2 “diverges”
on a given set of random tapes if and only if the concurrent executions of G1 and G2 “diverge” in
the sense above on the same set of random tapes. We can therefore focus on the probability that
an execution of G2 diverges, without reference to G1.

To upper bound the probability of divergence in G2 note that if CheckZ is called on arguments
(x,y) such that PZ(x) = ⊥ then pZ(x) hasn’t been read yet. Indeed pZ(x) is only read in Z and Z−1,
at which point PZ is updated with the read value. Hence, the value pZ(x) comes uniformly at random



from a set of size at least Nw−q−α(q) by Lemma 25. (A subtlety here is that we are not assuming
that divergence hasn’t already occurred. Indeed such an assumption would skew the conditional
distribution of the unread values in pZ , as the truth of this assumption depends on unread values.
Instead we are simply doing a union bound over all calls to CheckZ.) As CheckZ is called with at
most β(q)(q+α(q))w distinct arguments pairs during a G2-execution by Lemma 23, the probability
of divergence in G2 (and hence between G1 and G2) is at most β(q)(q+α(q))w/(Nw−q−α(q)). ⊓⊔

Lemma 41. Let D be as described above. Then ∆D(G2,G5) ≤ ∆D(G3,G5).

Proof. Since G5 never aborts we can assume that D outputs 1 when the environment aborts.
However the only difference between G2 and G3 is that more abort conditions are added in G3

(specifically, two executions with the same random tapes will unfold exactly the same in G2 and G3

except for the eventuality that G3 might abort while G2 does not) so D’s probability of outputting
1 is at least as large as D’s probability of outputting 1 in G1, which proves the claim. ⊓⊔

To upper bound∆D(G3,G5) we upper bound∆D(G3,G4) and∆D(G4,G5) separately and apply
the triangle inequality. The crucial transition is the transition from G3 to G4, for which we apply
a randomness mapping argument. This requires some extra definitions.

Given an execution of G3 the footprint of that execution is that subset of the random tapes
actually read during that execution. More precisely, identify a permutation p : {0, 1}n → {0, 1}n
with the set of pairs (x, y) ∈ {0, 1}n×{0, 1}n such that p(x) = y. A partial permutation is obtained
by dropping pairs from p. Then the footprint of an execution of G3 (with our fixed distinguisher
D) on random tapes pZ , pA1

, . . . , pLw is the set of partial permutations p̃Z , p̃A1
, . . . , p̃Lw where

p̃Z ⊆ pZ , p̃A1
⊆ pA1

, . . . , p̃Lw ⊆ pLw

and where p̃Z and p̃Tj
contain only those entries of respectively pZ and pTj

that were actually read
from (respectively again) pZ and pTj

during the execution. (Here an entry (x, y) is “read” from p
if and only if either p(x) or p−1(y) was accessed during the execution. In G3 such reads occur only
in the function ReadTape.)

Note that since D is deterministic, a footprint contains all the information necessary to re-create
a particular execution (and in particular D’s output). In particular if we run D on a footprint
p̃Z , p̃A1

, . . . , p̃Lw then (i) the execution will never “leave” that footprint (i.e., request values from
the random tables that are outside the footprint), and (ii) all values included in the footprint
will be read at some point during the execution. Also note that two distinct footprints are always
incompatible in the sense that they don’t have a common extension pZ , pA1

, . . . , pLw . This follows
by points (i) and (ii) just mentioned. We also emphasize that the set of possible footprints is a
function of D.

We say that a footprint is accepting for G3 if D outputs 1 for the execution corresponding to
that footprint. Moreover we say that a footprint is non-aborting for G3 if the corresponding G3

execution doesn’t abort.
Letting |p̃| denote the number of input-output pairs in the partial permutation p̃, the probability

of obtaining a given footprint p̃Z , p̃A1
, . . . , p̃Lw , taken over the random choice of pZ , pA1

, . . . , pLw ,
is obviously





|p̃Z |−1
∏

ℓ=0

1

Nw − ℓ









∏

T

w
∏

j=1

|p̃Tj |−1
∏

ℓ=0

1

N − ℓ



 (22)

since this is the probability that a randomly chosen pZ , pA1
, . . . , pLw is an extension of p̃Z , p̃A1

, . . .,
p̃Lw . (Of course, this presumes that p̃Z , p̃A1

, . . . , p̃Lw is a real footprint and not just some set of



arbitrarily restricted permutations.) In particular, for instance, the probability that D accepts is
the sum of (22) taken over all accepting footprints.

We likewise define the footprint of an execution in G4 with respect to the random tapes
qA1

, . . . , qLw as the set of entries read from those tapes. Thus a footprint in G4 is again a set
of partially defined permutations. The probability of obtaining a given footprint q̃A1

, . . . , q̃Lw in G4

is

∏

T

w
∏

j=1

|q̃Tj |−1
∏

ℓ=0

1

N − ℓ
. (23)

since this is the probability that randomly chosen tapes qA1
, . . . , qLw are an extension of q̃A1

, . . . , q̃Lw .
We likewise talk of accepting and non-aborting footprints in G4.

For i = 3, 4 let FPi denote the set of all Gi footprints and FP⋆
i ⊆ FPi the set of all non-aborting

Gi footprints. We write

Pr
Gi

[ω]

for the probability of obtaining a given footprint ω ∈ FPi, i = 3, 4 (cf. (22), (23)), and

Pr
Gi

[A] =
∑

ω∈A

Pr
Gi

[ω]

for any A ⊆ FPi. Note that PrGi
[FPi\FP⋆

i ] is the probability of abortion in game Gi for i = 3, 4
since FP⋆

i is the set of non-aborting footprints.

We also let Ai ⊆ FPi be the set of accepting footprints in game Gi and let A⋆
i = Ai∩FP⋆

i be the
set of accepting footprints that are also non-aborting. Note that FPi\FP⋆

i ⊆ Ai by our assumption
that D accepts whenever the game aborts and, by the same token, FPi\FP⋆

i = Ai\A⋆
i . (In other

words, the set of non-good accepting footprints is also the set of all non-good footprints.)

The key to the randomness mapping argument is an injection ζ : FP⋆
3 ← FP⋆

4 such that ω ∈ FP⋆
3

is accepting if and only if ζ(ω) ∈ FP⋆
4 is accepting and such that

Pr
G4

[ζ(ω)] ≥ Pr
G3

[ω] (1− 1/Nw) (24)

for all ω = (p̃Z , p̃A1
, . . . , p̃Lw) ∈ FP⋆

3. Then

∆D(G3,G4) = Pr[DG3 ← 1]− Pr[DG4 ← 1]

= Pr
G3

[A3]− Pr
G4

[A4],

= Pr
G3

[A3\A⋆
3] + Pr

G3

[A⋆
3]− Pr

G4

[A4\A⋆
4]− Pr

G4

[A⋆
4]

= Pr
G3

[FP3\FP⋆
3] + Pr

G3

[A⋆
3]− Pr

G4

[FP4\FP⋆
4]− Pr

G4

[A⋆
4]

≤ Pr
G3

[FP3\FP⋆
3] +

1

Nw
− Pr

G4

[FP4\FP⋆
4]

(25)

where the inequality holds by (24) (recall that (24) holds for all ω ∈ A⋆
3 and that ζ : A⋆

3 ← A⋆
4 is

injective—see Lemma 47 below for more details).

The definition of ζ : FP⋆
3 → FP⋆

4 is fairly simple: for ω = (p̃Z , p̃A1
, . . . , p̃Lw) ∈ FP⋆

3 we define
ζ(ω) = (q̃A1

, . . . , q̃Lw) by

q̃Tj
= {(x, y) ∈ {0, 1}n × {0, 1}n : Tj(x) = y}



where Tj refers to the table Tj as it stands at the end of the G3-execution. (In a nutshell, thus,
q̃Tj

= Tj.)

The map ζ is obviously well-defined because ω is a footprint. But, to recapitulate, the following
properties of ζ must still be proved:

- that ζ(ω) ∈ FP⋆
4 for all ω ∈ FP⋆

3 (i.e., that the image of a good footprint is a good footprint)

- that ζ is injective

- that ζ(ω) is accepting in G4 if and only if ω is accepting for G3

- that PrG4
[ζ(ω)] ≥ PrG3

[ω](1− 1/Nw) for all ω ∈ FP⋆
3

We build up to these four points in a series of lemmas. We recall the terminology of T -columns,
matching columns and completed paths from Section 4. We note that Lemma 1 implies that both
completed paths and T -columns are “persistent”: once a column or completed path appears, it
remains unchanged until the end of the execution. Moreover, because the elements of π are permu-
tations, each column is part of at most one completed path, and matching columns are in the same
(if any) completed path.

Lemma 42. At the end of each non-aborted query cycle in G3 (and, in particular, and the end of
each non-aborted G3-execution) every pair of matching B- and C-columns is part of a completed
path if XtraMiddleRnd is on, every A-column is part of a completed path if XtraMiddleRnd is off.

Proof. This is a corollary of Lemma 16. ⊓⊔

Lemma 43. At the end of each non-aborted execution of G3 there exists a completed path with
endpoints (x,y) for each pair (x,y) such that either of the calls Z(x) ← y or Z−1(y) ← x has
occurred at some point in the execution.

Proof. For calls to Z, Z−1 made by the simulator this follows from the fact that the simulator only
calls Z or Z−1 when it has already decided to complete a path in G3 (cf. RequestG, RequestU−1

and AdaptLeft, AdaptRight). For calls to Z, Z−1 made by the distinguisher this follows from the
assumption that the distinguisher completes all paths and from Lemma 42 (since the “path” built
by the distinguisher will in particular go through the middle detect zone and hence, by Lemma 42,
have endpoints that are compatible with Z). ⊓⊔

Lemma 44. Let the map ζ be defined on FP⋆
3 as above. Then ζ(ω) ∈ FP⋆

4 for each footprint ω ∈ FP⋆
3

and ζ(ω) is accepting for G4 if and only if ω is accepting for G3. Finally, ζ is injective.

Proof. Let ω = (p̃Z , p̃A1
, . . . , p̃Lw) ∈ FP⋆

3 and let ζ(ω) = (q̃A1
, . . . , q̃Lw).

For syntactical convenience, let λ = (qA1
, . . . , qLw) be some extension of ζ(ω); we will first prove

that executing G4 on random tape λ gives a non-aborting execution, and then argue that this
execution’s footprint is in fact ζ(ω).

Consider concurrent executions of G3 and G4 with random tapes ω and λ respectively. (Note
that ω is a partial random tape for G3 whereas λ is a complete random tape G4, but since ω is a
G3-footprint by assumption this poses no problem.)

Note that only two differences occur between G3 and G4: (i) the internals of the functions Z,
Z−1; (ii) the fact that G4 reads from the random tapes qA1

, . . . , qLw , whereas G3 reads from the
tapes pZ , pA1

, . . . , pFw . Moreover, while calls to Z/Z−1 affect the table PZ—and only this table—
PZ is not actually used anywhere outside of Z, Z−1. Consequently we say that the two executions
diverge if (a) there either occurs a call Z to Z−1 that is not answered the same in either game
(where the call could be made by the simulator or by the distinguisher either) or if (b) a call to
ReadTape(Tj , x, pTj

) or ReadTape(T−1
j , y, p−1

Tj
) occurs in G3 such that, respectively, p̃Tj

(x) 6= qTj
(x)



or p̃−1
Tj

(y) 6= q−1
Tj

(y). Thus if divergence doesn’t occur in this technical sense, the two executions

proceed identically up to the internals of Z, Z−1.

Firstly divergence of type (b) cannot occur because every time a value is read from pTj
in G3

this value ends up in Tj and hence, by definition of ζ, in q̃Tj
(which is a subset of qTj

). Secondly
divergence of type (a) cannot occur by Lemma 43. Indeed this lemma implies that for each call
Z(x)→ y or Z−1(y)→ x occurring in G3 there eventually exists a completed path with endpoints
(x,y) in the tables Tj ; by definition of ζ the relevant entries of Tj appear in q̃Tj

.

Since the two executions don’t diverge it follows that G4 does not abort on λ (as G3 doesn’t
abort on ω), and that G4 accepts if and only if G3 accepts.

We next show that ζ(ω) is a G4-footprint. To see that G4 never reads values outside of ζ(ω)
note that all values read by G4 in the tables qTj

were either: (i) simultaneously read by G3 in pTj

or (ii) read as part of a call to Z or Z−1; by Lemma 42 it follows that the correponding entry was
in Tj at the end of the G3-execution. Hence, G4 never reads outside of ζ(ω) when executed on a
random tape λ. Then to see that G4 reads every value in ζ(ω) note that each entry entered into a
Tj table in G3 is either entered by a call to ReadTape (in which case the same entry is read from
ζ(ω) in G4, as the two executions don’t diverge) or else, in the case of Dj and Ej , placed there
while completing a path. But each completed path is completed only after a corresponding call to
Z/Z−1, and the matching entry from qDj

or qEj
will be read during the corresponding call to Z/Z−1

that occurs in G4.

Finally we show that ζ is injective. For this we build an inverse map. Given ζ(ω) ∈ FP⋆
4, we

define a footprint ω′ for G3 like so: we run G3 with “blank” random tapes concurrently to G4 with
random tape ζ(ω); when a call ReadTape(T±

j , ·, ·) occurs we set the corresponding entry of pTj

according to the same entry in q̃Tj
, and when a call to Z or Z−1 occurs such that PZ is undefined at

that point, we set the corresponding entry of pZ according to the answer of that call in G4. Since
the execution of G4 is “the same” as when G4 and G3 were executed concurrently with random
tapes λ and ω respectively, it’s easy to see that the partial random tape obtained for G3 by this
inverse map must be compatible19 with ω and hence must be ω (since two distinct footprints are
never compatible), and hence that ζ is injective. ⊓⊔

Lemma 45. Let ω = (p̃Z , p̃A1
, . . . , p̃Lw) ∈ FP⋆

3 and let ζ(ω) = (q̃A1
, . . . , q̃Lw) ∈ FP⋆

4. Then |q̃Tj
| =

|p̃Tj
| for T 6∈ {D,E} and there exist nonnegative integers a, b such that a+ b = |p̃Z | and such that

|q̃Dj
| = |p̃Dj

|+ a, |q̃Ej
| = |p̃Ej

|+ b for 1 ≤ j ≤ w.

Proof. Recall that |q̃Tj
| = |Tj | where |Tj | is the number of entries in Tj at the end of the G3-

execution on tape (or footprint) ω. Thus, the fact that |q̃Tj
| = |p̃Tj

| for T 6∈ {D,E} follows from
the fact that SetTable(Tj , ·, ·) is never called for T 6∈ {D,E} and, hence, that the number of entries
in Tj is the same as the number of calls to ReadTape(T±1

j , ·, ·) for T 6∈ {D,E}.
To prove the second part of the claim let a be the number of times that a pair (xG,yU ) is added

to ToBeAdaptedD in RequestU−1 and let b be the number of times that a pair (xV ,yH ) is added
to ToBeAdaptedE in RequestV, in the G3-execution on random tape ω. Note there is a bijection
between the final set of completed paths and the entries in pZ (in more detail, each A-column
or each matching pair of B- and C-columns causes the simulator to complete a path in which it
calls Z or Z−1, and each call to Z or Z−1 has an associated completed path (containing a unique
A-column or a unique matching pair of B- and C-columns) because the distinguisher completes all
paths). Moreover, as noted in the proof of Lemma 42, there is a bijection between all A-columns
(if XtraMiddleRnd is off) or all matching pairs of B- and C-columns (if XtraMiddleRnd is on) and

19 Two partial random random tapes are “compatible” if they have a common extension.



the set of all pairs (xG,yU ) or (xV ,yH) added respectively to ToBeAdaptedD and ToBeAdaptedE ;
hence a+ b = |pZ |. But a is also the number of times SetTable(Dj , ·, ·) is called for each 1 ≤ j ≤ w,
while b is the number of times SetTable(Ej , ·, ·) is called for each 1 ≤ j ≤ w. Since SetTable and
ReadTape both abort rather than overwrite an entry, this completes the proof. ⊓⊔

Lemma 46. We have PrG4
[ω] ≥ PrG3

[ζ(ω)](1− 1/Nw) for every ω ∈ FP⋆
3.

Proof. Let a and b be as in Lemma 45. Then by (22), (23), and keeping other notations of Lemma
45,

Pr
G4

[ζ(ω)]/Pr
G3

[ω] =
w
∏

j=0

(

a−1
∏

h=0

1

N − |p̃Dj
| − h

·
b−1
∏

h=0

1

N − |p̃Ej
| − h

)/

a+b−1
∏

ℓ=0

1

Nw − ℓ

≥
w
∏

j=0

(

a−1
∏

h=0

1

N − h
·
b−1
∏

h=0

1

N − h

)/

a+b−1
∏

ℓ=0

1

Nw − ℓ

=

a−1
∏

h=0

Nw

(N − h)w
·
b−1
∏

h=0

Nw

(N − h)w
·
a+b−1
∏

ℓ=0

Nw − ℓ

Nw
(26)

As a+ b = |pZ |, we have
a+ b ≤ q + α(q) ≤ Nw−1

by Lemma 25, where the second inequality holds without loss of generality. (Indeed, the security
bound of Theorem 1 is void otherwise.) Thus

(N − 1)w = Nw(1− 1/N)w ≤ Nw(1− 1/N) = Nw −Nw−1 ≤ N − a− b

and, more generally,

(N − 1)w ≤ N − ℓ (27)

for all 0 ≤ ℓ ≤ a+ b. In particular, we can assume a, b > 0 since if a = 0 or b = 0 we have that (26)
is lower bounded by 1, by (27). Thus, continuing from (26),

Pr
G4

[ζ(ω)]/Pr
G3

[ω] ≥ Nw − 1

Nw
·
a−1
∏

h=1

Nw

(N − h)w
·
b−1
∏

h=1

Nw

(N − h)w
·
a+b−1
∏

ℓ=2

Nw − ℓ

Nw

≥ Nw − 1

Nw
·
a−1
∏

h=1

Nw

(N − h)w
·
b−1
∏

h=1

Nw

(N − h)w
·
a+b−1
∏

ℓ=2

(N − 1)w

Nw

=
Nw − 1

Nw

a−1
∏

h=1

(N − 1)w

(N − h)w
·
b−1
∏

h=1

(N − 1)w

(N − h)w

≥ Nw − 1

Nw
= 1− 1/Nw (28)

as claimed. ⊓⊔

Lemma 47. We have

Pr
G3

[A⋆
3]− Pr

G4

[A⋆
4] ≤

1

Nw

where A⋆
i ⊆ FP⋆

i denotes the set of accepting, non-aborting footprints in Gi.



Proof. This follows directly by Lemma 46 since ζ maps elements of A⋆
3 to elements of A⋆

4, and is
injective (Lemma 44). More precisely, the fact that

Pr
G4

[A⋆
4] ≥ Pr

G3

[A⋆
3]

(

1− 1

Nw

)

implies

Pr
G3

[A⋆
3]− Pr

G4

[A⋆
4] ≤

1

Nw
Pr
G3

[A⋆
3] ≤

1

Nw
.

⊓⊔

Lemma 48. We have

∆D(G3,G4) ≤ Pr
G3

[FP3\FP⋆
3] +

1

Nw
− Pr

G4

[FP4\FP⋆
4]

for any q-query distinguisher D that completes all paths.

Proof. This was shown in (25), above, where we used the fact that PrG3
[A⋆

3]− PrG4
[A⋆

4] ≤ 1
Nw , as

shown in Lemma 47. ⊓⊔

Lemma 49. We have

∆D(G4,G5) ≤ Pr
G4

[FP4\FP⋆
4]

for any q-query distinguisher D that completes all paths.

Proof. Consider a non-aborting execution of G4. In such an execution queries to Z/Z−1 are answered
entirely according to the random tapes qA1

, . . . , qLw , as in G5. Also, since entries in Tj for T 6∈
{D,E} are never adapted, queries to T± are answered according to the random tapes qTj

. Lastly
we argue that queries to D±(·, j) and E±(·, j) are answered according to the tables qDj

and qEj
.

This is equivalent to showing that entries written in Dj and Ej always agree with qDj
and qEj

,
respectively. We argue the latter by induction (on the number of entries added to Dj and Ej). For
entries in Dj, Ej that are directly read from the random tapes the claim is obvious. For an entry in
(say) Dj that is adapted, the claim follows from the fact that every adapted value in Dj is part of
a completed path, from the induction hypothesis, from the fact that queries to Z/Z−1 are answered
according to the random tapes qTj

, and from the fact that when the Dj query is adapted all queries
in columns T 6= D from the completed path are already made.

It follows that queries in both G4 and G5 are answered according the tables qTj
, with the only

difference that G4 might abort. So ∆D(G4,G5) ≤ Pr[FP4\FP⋆
4]. ⊓⊔

(One can, in fact, argue that ∆D(G4,G5) = Pr[FP4\FP⋆
4] from the fact that D outputs 1 if abort

occurs. But we only need the inequality.)



Lemma 50. We have

∆D(G1,G5)

≤ β(q)(q + α(q))w

Nw − q − α(q)
+

1

Nw

+
w(q + α(q))2

N − q − α(q)
+

(q + wα(q))(q + α(q))

N − q − α(q)
+

2wα(q)(q + α(q))

N − q − α(q)

+
4wq · aboCondτ (2q)

N − 2q
if XtraMiddleRnd is on

+
2w(q + α(q))

(

aboCondν(q + α(q))
)

N − q − α(q)
if XtraOuterRnd is on

+
2wα(q)(q + α(q)) ·MaxPreim(π)

N − q − α(q)
+

2wα(q)2 ·MaxCoPr(π)

N − q − α(q)
if XtraUntglRnds is off

+
(4wα(q)(q + α(q)) + 2wα(q)2) ·MaxPreim(π)

N − q − α(q)
if XtraUntglRnds is on

for any q-query distinguisher D that complete all paths.

Proof. We have, using lemmas 40, 41, 48 and 49,

∆D(G1,G5) = ∆D(G1,G2) +∆D(G2,G5)

≤ ∆D(G1,G2) +∆D(G3,G5)

= ∆D(G1,G2) +∆D(G3,G4) +∆D(G4,G5)

≤ β(q)(q + α(q))w

Nw − q − α(q)
+

(

Pr
G3

[FP3\FP⋆
3] +

1

Nw
− Pr

G4

[FP4\FP⋆
4]

)

+ Pr
G4

[FP4\FP⋆
4]

=
β(q)(q + α(q))w

Nw − q − α(q)
+ Pr

G3

[FP3\FP⋆
3] +

1

Nw
.

The bound then follows by Lemma 39, since PrG3
[FP3\FP⋆

3] is the probability of abortion in G3. ⊓⊔

5.5 Leftovers

The security bound in Theorem 1 is easily seen to be the bound of Lemma 50 modulo some
simplifications to make the bound more compact. In order to prove Theorem 1 it remains to argue
the simulator’s query complexity and running time.

Lemma 51. The simulator described in game G1 of Figs. 2–6 can be implemented in running time
O(w(q + α(q))w).

Proof. Once glaring inefficiencies are removed from the simulator (many of which are caused by
our efforts to avert nested loops), one can see that the simulator’s running time is dominated by
steps in which it “mix-and-matches” all queries within a given column, either to check for abort
conditions or (more crucially) for path completion triggers.

A little more precisely, such “mix-and-matching” can be arranged to always take place such
that at least one query of the column is fixed (being in fact the last query created for that column);
this means that each mix-and-match enumeration takes time O((q + α(q))w−1) in the worst case
by Lemma 20. Moreover there will be at most 5w(q + α(q)) mix-and-match enumerations over the
whole course of the experiment, given that at most 5 columns (F, G, B, C and H) trigger mix-and-
match enumerations. This leads to the stated bound. ⊓⊔



Lemma 52. The simulator described in game G1 of Figs. 2–6 can be implemented to have query
complexity at most β(q).

Proof. Note the simulator in game G1 of Figs. 2–6 queries Z/Z−1 without checking to see if it
possibly knows the answers to these queries from its previous queries to Z/Z−1. For the following
argument, we imagine that the simulator maintains a global table of its queries to Z, together with
their inverses, such as to never make a redundant query to Z. (This obviously does not change
anything from the distinguisher’s perspective, nor for the simulator, except for the change itself.)

Each query to Z or Z−1 either occurs in CheckZ or else because the simulator is completing
a middle-triggered path. In either case, the query can thus uniquely be associated with a set of
matching queries in the left-hand outer detect zone. But there are at most β(q) such matching
query sets by Lemma 20. ⊓⊔

Further remarks. Space complexity of the simulator. The table mentioned in the proof of Lemma
52 is in fact our simulator’s dominating space requirement; the space complexity of our simulator
is thus

O(β(q))

if we assume that some efficient data structure is used to implement the table. (We omit a factor
of nw for simplicity.)

If we remove the table, the space complexity drops down to O(q) (factor of nwr omittted), i.e.,
the space needed to store the S-box permutation tables. On the other hand one can check that the
query complexity climbs to

2(β(q) + (2q)w) (29)

because one can establish a 2-to-1 surjection from the set of queries to the union of (i) matching
query sets in the left-hand detect zone and (ii) matching query sets in the right-hand detect zone.
(The factor of 2 occurs because the same query can occur once in RequestF and once in RequestU−1,
during a left-hand query cycle, or once in RequestG−1 and once in RequestV, during a right-hand
query cycle.)

However, if we change the design of the network by keeping the left- and right-hand detect
zones symmetric the term (2q)w in (29) is replaced by β(q), making the query complexity

4β(q)

instead of 2(β(q) + (2q)w).
In summary, one can make potentially significant savings in space complexity (from O(β(q)) to

O(q)) at the cost of only moderately worse query complexity (from β(q) to 4β(q)) by maintaining
symmetry between the two left- and right-hand outer detect zones. On the other hand, maintaining
symmetry does not improve the security of our simulator (and obviously, costs an extra round).

6 An Attack on Two-round Confusion-Diffusion Networks

In this section we outline a simple distinguishing attack that shows confusion-diffusion networks of
two rounds or less cannot be indifferentiable from a random permutation. Unfortunately we could
not find a similarly general attack for networks with three rounds, which leaves open the possibility
that 3- or 4-round confusion-diffusion network might already be indifferentiable.

The attack on 2-round networks requires w ≥ 2, which is indeed a trivial requirement since if
w = 1 then a 1-round network is already indifferentiable from a random permutation.



For concreteness we sketch the attack with w = 2. The confusion-diffusion network then has
four S-boxes labeled Pi,j for (i, j) ∈ [2]× [2] and one diffusion permutation π : {0, 1}2n → {0, 1}2n.
The S-boxes in the first round are P1,j, j ∈ [2], the S-boxes in the second round are P2,j , j ∈ [2].

We will say the distinguisher “rejects” if it believes that it is in the simulated world; “accepts”
if it believes it is in the real world.

The distinguishing attack is as follows:

1. The distinguisher randomly chooses x ∈ {0, 1}2n and queries Z(x), where Z : {0, 1}2n →
{0, 1}2n is the random permutation, obtaining y ∈ {0, 1}2n as answer.

2. The distinguisher make the two S-box queries P1,1(x[1]) and P−1
2,1 (y[1]) receiving answers a ∈

{0, 1}n and b ∈ {0, 1}n respectively.

3. If there exists no pair of values (c, d) such that π(a‖c) = (b‖d), the distinguisher rejects.

4. If there exists a pair of values (c, d) such that π(a‖c) = (b‖d), the distinguisher chooses any
such pair, queries P−1

1,2 (c) obtaining answer t, and accepts if and only if Z(x[1]‖t)[1] = y[1].

It is clear that the distinguisher always accepts in the real world. We now argue that the simulator
has negligible chance of making the distinguisher accept.

It is helpful to picture the simulator as knowing the distinguisher’s attack. Moreover, we can
be generous to the simulator and give both x[1] and y[1] to the simulator before requesting the
answers a and b from the simulator.

By choosing a and b, the simulator knows which of options 3 and 4 the distinguisher will execute,
so the simulator is essentially choosing between these options when it chooses a and b.

Obviously, case 3 is no good for the simulator; moreover, the simulator has no further information
on x and y besides x[1] and y[1], from which it is computationally infeasible, if Z is a random
permutation, to locate a value t such that Z(x[1]‖t)[1] = y[1], and which rules out case 4. The
simulator is therefore doomed.

7 Extensions and Future Work

In this section we make some speculative remarks about possible extensions of our work. In so
doing, moreover, we will outline a broader perspective for understanding our simulator.

A network segment consists of an alternation of D-boxes and of S-box rounds, starting either
with a D-box or with an S-box round and ending either with a D-box or with an S-box round.
(Thus a standalone D-box is a “network segment”, just like a standalone round of S-boxes is a
“network segment”.) The network segment is even if it starts and ends with S-box rounds; it is odd
if starts and ends with D-box rounds.

For example, the untangle zones in our simulator are odd network segments regardless of
XtraUntglRnds; all other zones (considering the left outer detect and right outer detect zones as
separate zones) are even.

One of the main ingredients of the present “broader perspective” is the fact that all combinato-
rial properties of D-boxes that we have defined—conductance, all-but-one conductance, randomized
preimage resistance, randomized collision resistance—are special cases of more general definitions
that apply to network segments.

We will start by describing these generalized definitions. Formally, each property we define is
a predicate of a sequence of D-boxes π = (π1, . . . , πt). Each definition either targets even or odd
network segments. In the case of an even network segment the case t = 0 is allowed, corresponding
to a network segment that consists of a single S-box round.



For definitions that apply to even network segments we view π as part of a (t + 1)-round
confusion-difusion network P [P, π] where P = {Pi,j : i ∈ [t+1], j ∈ [w]} and where πi is the D-box
between the S-box rounds {Pi,j : j ∈ [w]} and {Pi+1,j : j ∈ [w]}. For definitions that apply to odd
network segments we view π as part of a (t − 1)-round confusion-diffusion network P [P, π] where
P = {Pi,j : i ∈ {2, . . . , t}, j ∈ [w]}, where πi is again the D-box between rounds {Pi,j : j ∈ [w]}
and {Pi+1,j : j ∈ [w]}. In either case the permutations Pi,j ∈ P will be modeled as a set of random
independent permutations accessible as oracles to an adversary.

Conductance. The generalized conductance Cond∗π of π = (π1, . . . , πt) is defined with respect to
even network segments. Formally Cond∗π is a function

Cond∗π : Z× Z→ [0, 1]

defined by the following game. Let q and Q be integers. Let P = {Pi,j : i ∈ [t + 1], j ∈ [w]} be
the array of random permutation oracles for the even network, as described above. We give an
adversary q queries (forward or backward) to each of the oracles in P. We the adversary is done,
we count the number of completed paths that can be assembled from these queries (i.e., inputs
x ∈ {0, 1}wn to P [P, π] that can be evaluated to outputs using only the adversary’s queries). We
say the adversary “wins” if this number of paths is more than Q. We let

Cond∗π(q,Q)

be the supremum20 of the probability of winning this game, taken over all possible adversaries.

Relation to “ordinary” conductance. If t = 1, i.e., π = (π1), then Cond∗π is characterized by Condπ1

in the sense that

Cond∗π(q,Q) =

{

0 if Q > Condπ1
(q),

1 if Q ≤ Condπ1
(q).

This is easy to see from the definitions. (Indeed, the number of paths assembled is easily seen to
be purely a function of the sets Uj := {y : P−1

1,j (y) 6= ⊥}, 1 ≤ j ≤ w, and Vj := {x : P2,j(x) 6= ⊥},
1 ≤ j ≤ w, where we write P−1

1,j (y) 6= ⊥ to mean that the adversary either made the query P−1
1,j (y)

or made a query P1,j(x) whose answer resulted in y. Hence, the best possible adversary will simply
choose the sets U1, . . . , Vw beforehand, and make the relevant inverse queries in the first round and
the relevant forward queries in the second round.)

Moreover when t = 0 then π = () where () denotes an empty sequence of S-boxes, and one has

Cond∗π(q,Q) =

{

0 if Q > qw,

1 if Q ≤ qw.

Thus one can observe that α(q), as defined in our main proof, is simply the threshold Q at which
the generalized conductance Cond∗π(2q, ·) of the middle round goes from 1 to 0, whether or not
XtraMiddleRnd is on.

Likewise, β(q) is the same threshold, only with respect to the generalized conductance Cond∗π(q+
α(q), . . .) and with respect to the sequence of D-boxes π in the outer left detect zone.

All-but-one conductance. The generalized all-but-one conductance aboCond∗π of π is also defined
with respect to even network segments. Formally, aboCond∗π is a function

aboCond∗π : Z→ [0, 1]

20 Given the finite amount of randomness involved, it is easy to easy to see that the supremum is achieved by some
adversary. Hence we might also say maximum.



defined with respect to the following game. Let q be an integer. An adversary is given q queries to
each of the permutations in P = {Pi,j : i ∈ [t+ 1], j ∈ [w]}. We say that a given adversarial query
is internal if it has the form Pi,j(x) with i < t+ 1 or P−1

i,j (y) with i > 1. Moreover we assume that
the adversary does not make redundant queries. Then the adversary wins if, at any point, it makes
an internal query such that a completed path can be assembled using (the result of) this internal
query together with queries that were made prior to this internal query. We let

aboCond∗π(q)

be the maximum probability of an adversary winning this game, taken over all adversaries.

Relation to “ordinary” all-but-one conductance. If t = 1 then one can verify that

aboCond∗π(q) ≤
2wq · aboCondπ1

(q)

N − q

by a straightforward union bound. On the other hand if t = 0 then one can verify that

aboCond∗π(q) = 0

regardless of q, since there is no such thing as an internal query in this case.

Entry-wise randomized preimage resistance. The generalized entry-wise randomized preimage
resistance MaxPreim∗

π of π is defined with respect to odd network segments. Formally MaxPreim∗
π

is a function
MaxPreim∗

π : Z→ [0, 1]

defined by the following game. Let q be an integer. An adversary is allowed q queries to each of the
permutations in P = {Pi,j : i ∈ {2, . . . , t}, j ∈ [w]} in the odd network. After making its queries,
the adversary names an index j ∈ [w] and a set of values {xj′ : j′ 6= j} as well as an index h ∈ [w]
and a value yh ∈ {0, 1}n. A value xj is sampled uniformly at random from {0, 1}n and the (odd)
network is evaluated on the input vector x = (x1, . . . , xw), making additional queries to the Pi,j ’s
if necessary, until an output vector y is obtained. (Thus x is the input to the first D-box, y is the
output of the last D-box.) The adversary wins if y[h] = yh. We define

MaxPreim∗
π(q)

to be the maximum probability of an adversary winning this game, taken over all adversaries.

Relation to “ordinary” entry-wise randomized preimage resistance. If t = 1 then there are no S-
boxes to query, so the value q is immaterial, and it is easily verified that

MaxPreim∗
π(q) =

MaxPreim(π1)

N
.

If t = 2 one can also check that

MaxPreim∗
π(q) ≤

q ·MaxPreim(π1)

N
+

q

N
+

MaxPreim(π2)

N

by using an argument somewhat similar to the case XtraUntglRnds = true of Lemma 38 in Section
5.3. (A factor w is missing from the first fraction due to the fact that it is only necessary for, say,
the query P2,1(π1(x)[1]) to be “fresh”, among all the queries P2,j(π1(x)[j]), 1 ≤ j ≤ w. The fraction
q/N accounts for the difference between sampling uniformly at random from {0, 1}n and sampling



uniformly at random from a subset of {0, 1}n of size N − q; specifically, the latter kind of sampling
can be implemented by sampling uniformly at random, and giving the adversary a win if the sample
falls in the forbidden subset of q elements.)

Entry-wise randomized collision resistance. The generalized entry-wise randomized preimage
resistance MaxColl∗π(q) of π is also defined with respect to odd network segments. Formally

MaxColl∗π : Z→ [0, 1]

is a function defined via the following game. Let q be an integer. An adversary is allowed q queries
to each of the odd network permutations P = {Pi,j : i ∈ {2, . . . , t}, j ∈ [w]}. After making its
queries, the adversary names an index j ∈ [w] and two set of values {xj′ : j′ 6= j}, {x′j′ : j′ 6= j}
such that xj′ 6= x′j′ for at least one j′ 6= j. A uniform random value xj ∈ {0, 1}n is revealed, and
the network is evaluated (requiring new queries if necessary) on the inputs x = (x1, . . . , xw) and
x′ = (x′1, . . . , x

′
w) where x′j := xj, resulting in outputs y and y′. The adversary wins if y[h] = y′[h]

for some h ∈ [w]. We define

MaxColl∗π(q)

to be the maximum probability of an adversary winning this game, taken over all adversaries.

Relation to “ordinary” entry-wise randomized collision resistance. If t = 1 then q is extraneous and
it is easy to see that

MaxColl∗π(q) =
wMaxColl(π1)

N

whereas if t = 2 then one can see that

MaxColl∗π(q) ≤
wq ·MaxPreim(π1)

N
+

q + 1

N
+

w ·MaxPreim(π2)

N
. (30)

similarly to the argument in the case XtraUntglRnds = true proof of Lemma 38, Section 5.3.

A more general theorem. One can easily state a more general version of our main theorem.
The parameters of the network would be sequences of D-boxes ν, πI , πJ , τ , πK and πL that appear
in respectively the left outer detect zone, the first untangle zone, the second untangle zone, the
middle detect zone, the third untangle zone and the fourth untangle zone. Since the untangle zones
are implemented by odd network segments, each of πI , πJ , πK and πL contain at least one D-box
each.

To state such a generalized theorem, let η = (ν, πI , πJ , τ , πK , πL) (a sequence-of-sequences, not
a concatenation of sequences) and let

MaxPreim∗
η(q) := max(MaxPreim∗

πI
(q),MaxPreim∗

π−
J

(q),MaxPreim∗
πK

(q),MaxPreim∗
π−
L

(q))

MaxColl∗η(q) := max(MaxColl∗πI
(q),MaxColl∗

π−
J

(q),MaxColl∗πK
(q),MaxColl∗

π−
L

(q))

where π− stands for the sequence of inverses of permutations in π, in reverse order than π. Moreover
let |π| be the length (number of sequences) in π, and let

rν = |ν|+ 1, rI = |πI | − 1, rJ = |πJ | − 1, rτ = |τ |+ 1, rK = |πK | − 1, rL = |πL| − 1

be the number of (S-box) rounds in the outer left detect zone, etc, and let

r = rν + rI + rJ + rτ + rK + rL + 3.



be the total number of rounds in the network. (The ‘3’ accounts for rounds D, E and H in our
original nomenclature.) Finally let

η = ν‖πI‖πJ‖τ‖πK‖πL

be the concatenation of the D-boxes sequences ν, . . . , πL into a single sequence, and let Q = {Pi,j :
i ∈ [r], j ∈ [w]} denote a set of random permutations.

Then we have the following result (stated without proof):

Theorem 2. For all integers Qν and Qτ , the confusion-diffusion network P [Q, η] achieves (tS , qS , ε)-
indifferentiability from a random permutation Z : {0, 1}wn → {0, 1}wn, for ε equal to

Cond∗τ (2q,Qτ ) + Cond∗ν(q +Qτ , Qν) (31)

+
w(q +Qτ )

2

N − q −Qτ
+

(q + wQτ )(q +Qτ )

N − q −Qτ
+

2w(q +Qτ )Qτ

N − q −Qτ
(32)

+ aboCond∗τ (2q) + aboCond∗π(q +Qτ ) (33)

+ 2wQτ

[

(q +Qτ ) ·MaxPreim∗
η(q +Qτ ) + (q +Qτ )/N

]

(34)

+ 2Qτ

[

Qτ ·MaxColl∗η(q +Qτ ) + (q +Qτ )/N
]

(35)

+
Qν(q +Qτ )

w

Nw − q −Qτ
+

1

Nw
(36)

and for qS = Qτ , tS = O(w(q+Qτ )
w). Here q = q0(1+ rw) where r is the number of S-box rounds.

In this statement, Qτ is the (expected) maximum number of matching query sets for the middle
detect zone, given 2q queries to each S-box in that detect zone; Qν is the (expected) maximum
number of matching query sets for the outer left detect zone, given q + Qτ queries to each S-box
in that zone. The first two terms in the security bounds account for the distinguisher’s probability
of beating these “expected” conductances, and Qτ , Qν should be set high enough to make the first
two terms negligible.

The remainder of the security bound affords the following term-by-term interpretation (we
slightly abusively refer to “game G3”, having the natural extrapolation of our previous proof in
mind):

- the first term of line (32) upper bounds the probability that a fresh query to Z or Z−1 in game
G3 accidentally hits a predefined value in one of the S-boxes of the last or first round, respectively
(compare with Lemma 26)

- the second term of line (32) upper bounds the probability that a forward query in the last
round or a backward query in the first round causes abort in game G3 by “hitting” (the coordinate
of) a pre-existing query to Z or Z−1 (compare with Lemma 28)

- the third term of line (32) upper bounds the probability that procedures D/D−1 or E/E−1

abort in game G3 (compare with Lemma 31)

- the first term of line (33) upper bounds the probability that a middle path completion is ever
triggered in game G3 by a query that is neither a forward query to the last round of the middle
detect zone nor a backward query in the first round of the middle detect zone (compare with Lemma
34)

- the second term of line (33) is similar, but for the left outer detect zone (compare with Lemma
29)

- line (34) upper bounds the probability that LeftAdapt or RightAdapt ever abort in game G3

because an input or output to D (respectively E) hits a predefined value in D (respectively E);



the extra additive term (q +Qτ )/N inside the square brackets accounts for the difference between
uniform sampling and lazy sampling

- line (35) upper bounds the probability that LeftAdapt or RightAdapt ever abort in game G3

because inputs or outputs to D (respectively E) for two different adapted paths collide; the extra
additive term (q + Qτ )/N again accounts for the difference between uniform sampling and lazy
sampling

- the first term of line (36) upper bounds the probability that a fresh query to Z or Z−1 by the
simulator in game G1 (or G2 or G3) accidentally hits a column of defined queries (compare with
Lemma 40)

- the second term of line (36) is incurred by probability ratios in the randomness map from G3

to G4, cf. Lemma 46
One can observe that MaxPreim∗

η and MaxColl∗η appear with the same arguments and with
essentially the same coefficients. Hence it makes sense to define

MaxCoPr∗π(q) := max(MaxPreim∗
π(q),MaxColl∗π(q))

and to characterize the quality of an untangle zone by the single function MaxCoPr∗(·). Typically
we expect MaxCoPr∗π = MaxColl∗π, though it is possible to devise pathological examples for which
MaxPreim∗

π ≫ MaxColl∗π.

Making it Fast. Given these general observations, a basic class of questions that can be pursued
is the following:

how can one build fast networks21 with low conductance/randomized preimage
resistance/randomized collision resistance?

As a special case of this question, we have:

how can one build fast diffusion permutations with low conductance/randomized preimage
resistance/randomized collision resistance?

As seen by the form of our main theorem (or equivalently, as evidenced by (30)), the second question
can also potentially serve as a building block for the first.

Importantly, one should not necessarily equate efficiency with the smallest possible number of
rounds. For example, a GF(2n)-linear diffusion permutation whose matrix has no zero entries has
low randomized preimage resistance on its own. But arbitrary field operations are slow, and one
could easily imagine there might exist a sequence π = (π1, π2) with good randomized preimage
resistance that outperforms—that is, even taking into account the S-box round between π1 and
π2—a standalone linear diffusion permutation. The question is whether the use of an extra round
makes it possible to sufficiently simplify the diffusion permutations.

Similarly, a network zone with low conductance might be more quickly achieved by using three
S-box rounds and two “cheap” diffusion permutations than by using one S-box round and one
“expensive” diffusion permutation that controls conductance on its own.

As a concrete idea, consider the D-boxes ⊕↑ : {0, 1}wn → {0, 1}wn, ⊕↓ : {0, 1}wn → {0, 1}wn

defined by

⊕↑(x)[j] =
⊕

1≤h≤j

x[h],

⊕↓(x)[j] =
⊕

j≤h≤w

x[h].

21 By “networks” we mean “network segments” or, even more precisely, “D-box sequence”. In this discussion we write
conductance instead of generalized conductance, etc.



Then ⊕↑ and ⊕↓ can be efficiently implemented in software or in hardware. While ⊕↑, ⊕↓ both
have worst-possible randomized preimage and collision resistance on their own, one can check that

MaxPreim∗
(⊕↓,⊕↑)

(q) ≤ q

N
+

1

N − q

and moreover that

MaxPreim∗
(⊕↓,⊕↑,⊕↓,⊕↑)

(q) ≤ q

N
+

2q

N − q
+

1

N − q

MaxColl∗(⊕↓,⊕↑,⊕↓,⊕↑)
(q) ≤ q

N
+

2q

N − q
+

w

N − q

which suggests that the sequence ⊕4 := (⊕↓,⊕↑,⊕↓,⊕↑) could serve as a very efficient22 untangle
zone. A confusion-diffusion network that used this untangle zone four times over23 and that used,
say, two S-box rounds for each of the outer left and middle detect zones would have 2·2+4·3+2+1 =
19 rounds. The main “takeaway lesson” being that by targeting “the right combinatorial property
at the right time” one can potentially arrive at sequences of very simple D-boxes.

Tantalizingly, however—and as far as we know!—the above upper bounds on MaxPreim∗
⊕4

,
MaxColl∗⊕4

crucially require the S-boxes in each round to be independent. Another potential research
direction, therefore, would be to devise D-box sequences that are “S-box reuse resistant”, or more
precisely, that preserve low randomized preimage and collision resistance even when the S-boxes in
a column are all the same, or even when all the S-boxes in the network segment are the same.

In parallel, one could envision extending Theorem 1 or Theorem 2 to cover the possibility of
non-independent S-boxes. (Within each round, within each zone, or—most ambitiously but also
most messily—within the entire network.)

Of course, and even with extensions to cover the case of non-independent S-boxes, one should
bear in mind that security guarantees of the form qO(1)/N are meaningless for, say, N = 28, not to
mention the fact that our results are obtained with respect to an ideal model, while S-boxes must be
concretely implemented. Still, we tend to believe that indifferentiability represents a nontrivial and
potentially important “sanity check” for the high-level design of a confusion-diffusion network, and
which has been absent so far. It could therefore be worthwhile to pursue more concrete instantiations
(accompanied by “real” cryptanalysis) for constructions that fall under the umbrella of Theorem
2, or some even more general extension thereof.
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A Probabilistic constructions of low-conductance permutations

In this section we show the probabilistic construction of permutations τ : {0, 1}wn → {0, 1}wn with
low conductance and low all-but-one conductance.

Let U1, . . . , Uw, V1, . . . , Vw ⊆ {0, 1}n such that |Uj| = |Vj | = q, 1 ≤ j ≤ w. Let a ∈ N. We
start by upper bounding the probability that when a permutation τ : {0, 1}wn → {0, 1}wn is chosen
uniformly at random,

|{x ∈ U1 × · · · × Uw : τ(x) ∈ V1 × · · · × Vw}| ≥ a. (37)

We assume that qw ≤ Nw/2 (where N = 2n as usual), which means that q cannot be too close to
N . (In our applications we have q ≤

√
N , which is much smaller.)

Let x1, . . . ,xqw be an enumeration of the elements in U1 × · · · × Uw. If τ : {0, 1}wn → {0, 1}wn

is a random permutation and the values τ(x1), . . . , τ(xℓ) have already been revealed, then the
probability that τ(xℓ+1) ∈ V1 × · · · × Vw is at most

qw

Nw − ℓ
≤ qw

Nw − qw
≤ 2qw

Nw

by the assumption qw ≤ Nw/2. That is,

Pr
τ
[τ(xℓ+1) ∈ V1 × · · · × Vw | τ(x1), . . . , τ(xℓ)] ≤

2qw

Nw

for any values of τ(x1), . . . , τ(xℓ), ℓ ≤ qw − 1.

Now the probability that (37) occurs is upper bounded by

(

qw

a

)(

2qw

Nw

)a

≤ qwa

(

2qw

Nw

)a

=

(

2q2w

Nw

)a

.

By a union bound, then, the probability (taken over the choice of a random τ) that there exist
U1, . . . , Uw, V1, . . . , Vw such that (37) occurs is upper bounded by

(

N

q

)2w (2q2w

Nw

)a

≤ N2qw

(

2q2w

Nw

)a

. (38)

This probability is less than 1, thus, as long as q2w ≤ Nw/4 (which essentially translates to q <
√
N)

and as long as a > 2nqw. We have thus proved:

Theorem 3. Let q, n,w ∈ N be such that q2w ≤ Nw/4, N = 2n. Then there exists a permutation
τ : {0, 1}wn → {0, 1}wn such that

Cond(τ) ≤ 2nqw + 1.



The conductance of the permutation τ constructed by Theorem 3 is thus quite close to q, being
only a factor 2nw = O(log(Nw)) away from q. One can also that observe that (38) does not deliver
much better conductance even for q2w ≪ Nw, since

N2qw

(

2q2w

Nw

)a

≥ N2qw · 1

Nwa

means that we at least need a > 2q in order to strictly upper bound the union bound by 1.

All-but-one conductance. For the case of all-but-one-conductance, start by fixing sets U1, . . . , Uw,
V2, . . . , Vw ⊆ {0, 1}n and a value a ∈ N. This time we focus on the probability (over random choice
of τ) that

|{x ∈ U1 × · · · × Uw : τ(x) ∈ {0, 1}n × V2 × · · · × Vw}| ≥ a (39)

occurs.
As before let x1, . . . ,xqw be an enumeration of U1× · · · ×Uw. Then for 0 ≤ ℓ ≤ qw − 1, we have

Pr [τ(xℓ+1) ∈ {0, 1}n × V2 × · · · × Vw | τ(x1), . . . , τ(xℓ)] ≤
Nqw−1

N − qw
≤ Nqw−1

Nw/2
=

2qw−1

Nw−1

for any values of τ(x1), . . . , τ(xℓ).
The probability that (39) occurs is thus upper bounded by

(

qw

a

)(

2qw−1

Nw−1

)a

≤ qwa

(

2qw−1

Nw−1

)a

=

(

2q2w−1

Nw−1

)a

.

By a union bound, the probability that there exist sets U1, . . . , Uw, V2, . . . , Vw such that (39)
occurs is at most

(

N

q

)2w−1(2q2w−1

Nw−1

)a

≤ N q(2w−1)

(

2q2w−1

Nw−1

)a

.

Unfortunately, for this bound to give a non-void result we need

2q2w−1

Nw−1
< 1

which is too constraining to be useful, since in our setting we need to let q approach N1/2. Hence,
a different approach is needed.

Multiplicative Chernoff bound. As above, start by fixing sets U1, . . . , Uw, V2, . . . , Vw and let
x1, . . . ,xqw be an enumeration of U1× · · · ×Uw. Also assume that q ≤

√
N , since this is the regime

which interests us. Let Xi be the indicator random variable for the event τ(xi) ∈ {0, 1}n × V2 ×
· · · × Vw, 1 ≤ i ≤ qw. Then

Pr[Xi = 1 |X1 . . . Xi−1] ≤
Nqw−1

Nw − qw
≤ 2Nqw−1

Nw
=

2qw−1

Nw−1
(40)

for all outcomes X1 . . . Xi−1. Let Y1, . . . , Yqw be independent indicator random variables such that

Pr[Yi = 1] =
2qw

Nw

for all i. Let X =
∑

iXi, Y =
∑

i Yi. An easy coupling argument shows that

Pr[X > t] ≤ Pr[Y > t]



for all t > 0, by (40).
Let µ = E[Y ] = qw(2qw−1/Nw−1) = 2q2w−1/Nw−1. Since N ≥ q2 we have

µ ≤ 2q2w−1/(q2)w−1 = 2q ≤ qw ln(N) (41)

(using w ≥ 2) and we also have

µ ≤ 2qw ln(N)/(e2 + 1) (42)

and

µ ≤ qw ln(N)− 1

2
ln(2w) (43)

for sufficiently large n (e.g., n ≥ 3, which implies ln(N) ≥ 2). These inequalities will play a role
later.

A well-known multiplicative Chernoff bound states that

Pr[Y > (1 + δ)µ] <

(

eδ

(1 + δ)1+δ

)µ

for all δ > 0, since the Yi’s are independent. As

(

eδ

(1 + δ)1+δ

)µ

≤
(

eδ

δδ

)µ

= e(1−ln(δ))δµ ≤ e−δµ

for δ ≥ e2, we thus have
Pr[X > (1 + δ)µ] < e−δµ

for all δ ≥ e2.
Thus

N2qw Pr[X > (1 + δ)µ] < e2qw ln(N)−2δµ

for δ ≥ e2. Note that

2qw ln(N)− 2δµ < 0

⇐⇒ δµ > qw ln(N)

⇐= (1 + δ)µ ≥ 2qw ln(N)

where the last implication uses (41). Thus letting

δ = 2qw ln(N)/µ − 1 ≥ 2qw ln(N)− 1

we have δ ≥ e2 by (42) and

N2qw Pr[X > 2qw ln(N)] = N2qw Pr[X > (1 + δ)µ] < 1

which implies, by a union bound over all

(

N

q

)2w

≤ N2qw

possible choices of U1, . . . , Uw, V2, . . . , Vw the existence of a permutation τ : {0, 1}wn → {0, 1}wn

such that
Cond1,+(τ, q) ≤ 2qw ln(N).



In fact, moreover, a quick revisitation of the computations above shows that our choice of δ not
only gives

2qw ln(N)− 2δµ < 0

but more strongly gives (using (43))

2qw ln(N)− 2δµ < − ln(2w)

which thus implies

N2qw Pr[X > 2qw ln(N)] = N2qw Pr[X > (1 + δ)µ] <
1

2w

and, by an additional union bound over h ∈ [w] and in σ ∈ {+,−}, the existence of a permutation
τ : {0, 1}wn → {0, 1}wn such that

Condh,σ(τ, q) ≤ 2qw ln(N)

for all h ∈ [w], σ ∈ {+,−}, i.e., such that

aboCond(τ, q) ≤ 2qw ln(N).

We have proved:

Theorem 4. Let q, n,w ∈ N be such that n ≥ 3, q ≤
√
N . Then there exists a permutation

τ : {0, 1}wn → {0, 1}wn such that

aboCond(τ) ≤ 2qw ln(N).

B Lower Bounds on the Conductance of Linear Permutations

In this section we show that linear permutations cannot achieve conductance as low as random
permutations. Specifically, we show that

Condτ (q) ≥ Ω(q2−
1

2w−1 )

for a “generic” F-linear transformation τ : Fw → F
w, where F is a finite field. This lower bound

is valid for any q = o(|F|), and hides a constant factor dependent on w. (The constant factor is
roughly 2−w3

.) The linear permutation is “generic” in the sense that our lower bound holds with
probability24 1− o(1) over the choice of a random matrix A ∈ F

w×w. We conjecture that our lower
bound should carry over to non-generic (i.e., arbitrary) linear permutations as well, but our analysis
does not cover this case.

We start by describing the result for w = 2, as the general case is a bit unwieldy. When w = 2
the linear transformation τ takes the form of a 2× 2 matrix

A =

(

a11 a12
a21 a22

)

where τ(x) = Ax. Or, if x = (x1, x1), τ(x) = y = (y1, y2),

a11x1 + a12x2 = y1,

a21x1 + a22x2 = y2.

24 The underlying asymptotic parameter is |F|. I.e., the result has the form “for all functions q(|F|) = o(|F|), ...”.



The object is to build sets U1, U2, V1, V2 ⊆ F such that τ(x) ∈ V1 × V2 for many x ∈ U1 × U2.
To begin with, define

U∗
1 = {ia12 + ja22 : 1 ≤ i, j ≤ q1/3},

U∗
2 = {ka11 + ha21 : 1 ≤ k, h ≤ q1/3}.

(These sets only have size q2/3, but later we will extend them to sets of size q.) Note that if

ia12 + ja22 = i′a12 + j′a22

has a nontrivial solution for some coefficients i, j, i′, j′ between 1 and q1/3 then

ia12 + ja22 = 0

has a nontrivial solution for some i and j between −q1/3 and q1/3. When a12 and a22 are chosen
randomly, the probability of such a solution occurring is upper bounded by 4q2/3/|F| ≪ 1, since
q = o(|F|). Hence the “syntactically distinct” elements of U∗

1 are also distinct elements of F with
high probability (and likewise for U∗

2 ) with high probability over the choice of a random matrix A.
Note that

{a11x1 + a12x2 : x ∈ U∗
1 × U∗

2 }
= {a11a12(i+ k) + a11a22j + a12a21h : 1 ≤ i, j, k, h ≤ q1/3}
⊇ {a11a12i+ a11a22j + a12a21h : 1 ≤ i, j, h ≤ q1/3}.

Likewise

{a21x1 + a22x2 : x ∈ U1 ∗ ×U∗
2 }

= {a21a22(j + h) + a21a12i+ a11a22k : 1 ≤ i, j, k, h ≤ q1/3}
⊇ {a21a22j + a21a12i+ a11a22k : 1 ≤ i, j, k ≤ q1/3}.

This motivates defining

V1 = {a11a12i+ a11a22j + a12a21h : 1 ≤ i, j, h ≤ q1/3},
V2 = {a21a22j + a21a12i+ a11a22k : 1 ≤ i, j, k ≤ q1/3}.

Then if x1 = ia12 + ja22 ∈ U∗
1 , x2 = ka11 + ha21 ∈ U∗

2 , we have

(a11x1 + a12x2, a21x1 + a22x2) ∈ V1 × V2

if i+ k ≤ q1/3 and j + h ≤ q1/3. The latter conditions are both implied if i, j, k, h ≤ (q1/3)/2, so

|{x ∈ U∗
1 × U∗

2 : τ(x) ∈ V1 × V2}| ≥ (q1/3/2)4 = Ω(q
4

3 ).

I.e., Condτ (q) ≥ Ω(q
4

3 ).
As already pointed out, however, this construction has |U∗

1 | = |U∗
2 | = q2/3 ≪ q, which suggests

that even higher conductance could conceivably be shown. For this, our idea is to replace U∗
1 and

U∗
2 by sets of the form U∗

1 + R, U∗
2 + S where R and S are arithmetic progressions of length q1/3.

The step sizes for R and S will be different. Details follow.
Let b = (b1, b2) be the first column of A’s inverse. In other words

a11b1 + a12b2 = 1,

a21b1 + a22b2 = 0.



We let

U1 = {rb1a11a22 + ia12 + ja22 : 1 ≤ r, i, j ≤ q1/3},
U2 = {rb2a11a22 + ka11 + ha21 : 1 ≤ r, k, h ≤ q1/3}.

A similar argument as above shows (using q = o(|F|)) that syntactically distinct elements of Ui are
also distinct as field elements with high probability over the choice of A.

Let
r, i, j, k, h

be arbitrary values between 1 and (q1/3)/2 and set

x1 = rb1a11a22 + ia12 + ja22

x2 = rb2a11a22 + ia11 + ka21

so that x = (x1, x2) ∈ U1 × U2. (Note that we are using the “same r” for both x1 and x2; hence,
only a negligible fraction of vectors in U1 × U2 have this form.)

If we let τ(x) = y = (y1, y2) then it is easy to see from the fact that b is the first column of A’s
inverse that

y1 = a11a12(i+ k) + a11a22(j + r) + a12a21h,

y2 = a21a22(j + h) + a21a12i+ a11a22k.

Hence y ∈ V1 × V2 (the definition of the sets V1, V2 hasn’t changed), by our stipulation that
1 ≤ r, i, j, k, h ≤ (q1/3)/2. Hence

Condτ (q) ≥ ((q1/3)/2)5 = Ω(q5/3) = Ω(q2−1/(2w−1))

as claimed.
We note that the constant a11a22, appearing in the definition of U1, U2, is somewhat arbitrary

and could be replaced with a12a21 or even a11a12 or a21a22 without (much) damaging the bound.
(In more detail, choosing a11a12 or a21a22 means that r, i, j, k, h should be restricted to be less than
(q1/3)/3 instead of (q1/3)/2, which is obviously a small loss.)

In the general case, the constant a11a22 is replaced by a collection of constants each of the
form a1jaxy with x 6= 1 and y 6= j, with the arithmetic progression {rbia11a22 : 1 ≤ r ≤ q1/3}
being replaced by a higher-dimensional arithmetic progression, with each such constant used for
one dimension of the arithmetic progression.

General case. Let τ(x) = Ax where A ∈ F
w×w is a w × w matrix with entries in F, and let aij

be the (i, j)-th entry of A.
Let m = w(w − 1)2 + w(w − 1)/2. Let B1, . . . , Bw be subsets of [w]\{1} × [w] such that Bj ⊆

[w]\{1} × [w]\{j} for each 1 ≤ j ≤ w and such that
∑

j

|Bj| = m− w(w − 1) = w(w − 1)2 − w(w − 1)/2.

We write xy ∈ Bj as a shorthand for (x, y) ∈ Bj . [For w = 2 we had B1 = (2, 2), B2 = ∅.]
Let b = (b1, . . . , bw) be the first column of A’s inverse.
We define

Ui = {
∑

j

∑

xy∈Bj

rjxybia1jaxy +
∑

i′

∑

j 6=i

hi′jai′j : 1 ≤ rjxy ≤ q1/m, 1 ≤ hi′j ≤ q1/m}



for 1 ≤ i ≤ w. Then |Ui| ≤ q. To argue distinctness of elements in Ui, note that the equation

∑

j

∑

xy∈Bj

rjxybia1jaxy +
∑

i′

∑

j 6=i

hi′jai′j =
∑

j

∑

xy∈Bj

r∗jxybia1jaxy +
∑

i′

∑

j 6=i

h∗i′jai′j

has a nontrivial solution with coefficients rjxy, r
∗
jxy, hi′j, h

∗
i′j between 1 and q1/m if and only if the

equation
∑

j

∑

xy∈Bj

rjxybia1jaxy +
∑

i′

∑

j 6=i

hi′,jai′j = 0

has a nontrivial solution with coefficients between −q1/m and q1/m. By a union bound, the probabil-
ity of such a solution existing for a randomly chosen matrixA is at most (2q1/m)(m−w(w−1))+w(w−1)/|F| =
2mq/|F| = o(1) if q = o(|F|). Hence |Ui| = q for all i with high probability over A.

We also define

Vi = {
∑

j<j′

gjj′aijaij′ +
∑

i′ 6=i

∑

j 6=j′

hi′jj′aijai′j′ : 1 ≤ gjj′ , hi′jj′ ≤ q1/m}.

Since the number of distinct choices for the gjj′ ’s is (q
1/m)w(w−1)/2 and the number of distinct choices

for the hi′jj′ ’s is (q
1/m)(w−1)w(w−1), we have |Vi| ≤ q by the fact that m = w(w− 1)/2+w(w− 1)2.

Let
{rzxy : xy ∈ Bz}, {hii′j : j 6= i}

be values such that 1 ≤ rzxy ≤ (q1/m)/2 for all z, x, y such that xy ∈ Bz and such that 1 ≤ hii′j ≤
(q1/m)/2 for all i, i′, j such that j 6= i. We note there are

(q1/m/2)m−w(w−1) · (q1/m/2)w
2(w−1) = Ω(1) · q[m−w(w−1)+w2(w−1)]/m

= Ω(1) · q1+w(w−1)2/m

= Ω(1) · q1+[m−(m−w(w−1)2)]/m

= Ω(1) · q2−w(w−1)/2m

= Ω(1) · q2−1/(2w−1)

such tuples. Moreover, each such tuple naturally corresponds to a distinct element x in the direct
product U1 × · · · × Uw, which is namely the vector x such that

x[i] =
∑

z

∑

xy∈Bz

rzxybia1zaxy +
∑

i′

∑

j 6=i

hii′jai′j .

Then

τ(x)[i] = (Ax)[i] =
∑

k

aikx[k]

=
∑

k

aik





∑

z

∑

xy∈Bz

rzxybka1zaxy +
∑

i′

∑

j 6=k

hki′jai′j





=
∑

z

∑

xy∈Bz

rzxya1zaxy
∑

k

aikbk +
∑

i′

∑

j 6=k

hki′jaikai′j

(Note the symbol
∑

j 6=k in the second line does not mean the same as the symbol
∑

j 6=k in the third
line, since in the former sum k is already quantified, and the sum only takes place over j, whereas



in the latter sum summation takes place over both j and k.) Here one can note that for each z,
xy ∈ Bz,

rzxya1zaxy
∑

k

aikbk =

{

rzxya1zaxy if i = 1

0 otherwise

since b = (b1, . . . , bw) is the first column of A’s inverse. Thus we can write τ(x)[i] as a sum

τ(x)[i] =
∑

i′ 6=i

∑

j 6=k

ciji′kaikai′j +
∑

k<j

cikjaikaij

for some coefficients ciki′j , i
′ 6= i, j 6= k, as well as some coefficients cikj, k < j. More precisely, one

has

cikj = hkij + hjik

for all k < j, and

ciki′j =











hki′j if i 6= 1

hki′j if i = 1, i′j /∈ Bk

hki′j + rki′j if i = 1, i′j ∈ Bk

for all i′ 6= i and all j 6= k.

Since all the indices rzxy and hii′j are between 1 and (q1/m)/2, we thus find that all the co-

efficients ciki′j as well as cikj are between 1 and q1/m, and hence that τ(x)[i] ∈ Vi and that
τ(x) ∈ V1 × · · · × Vw. The claim on the conductance of τ then follows from the fact (argued
above) that there are Ω(1) · q2−1/(2w−1) such x’s.

All-but-one conductance. In the same vein, we could also show that all-but-one conductance is
at least q2+(w−2)/(w−1)(2w−3) for generic linear permutations. For the sake of brevity, however, and
since all-but-one conductance does not seem as intrinsically interesting as conductance, we skip this
construction.

C Explicit constructions of permutations with low values of MaxColl

In this appendix we show an explicit construction of a permutation with small entry-wise random
collision resistance of O(w). Moreover we show this is essentially tight by proving entry-wise random
collision resistance cannot is at least Ω(w) for any permutation π. (For the latter see Theorem 7
below.)

More specifically, our construction consists of an explicit permutation π : Fw → F
w such that

MaxColl(π) ≤ 2w, for a sufficiently large finite field F. (The “sufficiently large” is needed in order
for a matrix with certain generic features to exist. In fact a field of size O(w2) is already sufficient.)
Note that if π : Fw → F

w is a linear permutation whose associated matrix has no zero entries, then
MaxPreim(π) = 1, which is optimal. Hence, achieving small entry-wise random preimage resistance
is trivial. Nonetheless, since we are generally interested in permutations that simultaneously achieve
small entry-wise random preimage resistance and small entry-wise random collision resistance, we
provide an analysis of the entry-wise random preimage resistance as well.

The Construction. Let A be a w×w invertible matrix over a finite field F such that A has no zero
entries and such that such that A−1 has no zero entries in its first column. By Cramer’s rule for



the computation of the inverse, the latter condition is equivalent to det(A1k) 6= 0 for all k ∈ [w],
where A1k denote the (w− 1)× (w− 1) matrix obtained by deleting the first row and j-th column
of A. Clearly a random w×w matrix A over F satisfies these requirements with high probability if
F is sufficiently large.

We also let
D = (d2, . . . , dw)

be an increasing sequence of positive integers, none of which is divisible by the characteristic p of
F, and such that d2 ≥ 2. (E.g., (d2, . . . , dw) = (3, 5, . . . , 2w − 1) if p = 2.) The matrix A and the
sequence D will be the parameters of the construction.25

Let σ : Fw → F
w be defined by

σ(x) = Ax

for x = (x1, . . . , xw) ∈ F
w. Also let η : F2 → F

w be the Feistel-round-like transformation given by

η(x)[i] =

{

xi +
∑w

j=2 x
dj
j if i = 1,

xi if i 6= 1.

We note that η has a straightforward inverse:

η−1(x)[i] =

{

xi −
∑w

j=2 x
dj
j if i = 1,

xi if i 6= 1.

We define the permutation π[A,D] : Fw → F
w as

π[A,D] = σ−1 ◦ η ◦ σ

with inverse
π[A,D]−1 = σ−1 ◦ η−1 ◦ σ.

Let

z(x) =
w
∑

j=2

x
dj
j

be the polynomial appearing in the definition of η, and let Z : Fw → F
w be defined by

Z(x) = η(x)− x.

Then Z(x)[1] = z(x) and Z(x)[i] = 0 for i ≥ 2. Moreover we can write η(x) as Z(x) + x. Thus

(η ◦ σ)(x) = Ax+ Z(Ax).

Thus if aTi denotes the i-th row of A and bT
i denotes the i-th row of A−1, we have

(σ−1 ◦ η ◦ σ)(x)[i] = (A−1Ax)[i] +A−1Z(Ax)[i]

= xi + bT
i Z(Ax)

= xi + bi[1]z(Ax)

= xi + bi[1]

w
∑

j=2

(aTj x)
dj

25 We believe that the restriction d2 ≥ 2 can be replaced with d2 ≥ 1 with some extra technical (but annoying)
legwork. If this restriction were lifted one could use (d2, . . . , dw) = (1, 3, . . . , 2w − 3) for p = 2.



for all 1 ≤ i ≤ w.

The analysis. We start with entry-wise random collision resistance (the more interesting of the two
properties), and follow with entry-wise random preimage resistance.

Theorem 5. MaxCollπ[A,D] ≤ dw for A, D and π[A,D] as described above.

Proof. Fix values k, ℓ ∈ [w]. Let

x′ = (x′1, . . . , x
′
k−1, x

′
k+1, . . . x

′
k)

x′′ = (x′′1, . . . , x
′′
k−1, x

′′
k+1, . . . , x

′′
k)

be two arbitrary (w − 1)-dimensional vectors such that x′ 6= x′′. We will also let x, x′ stand for
functions from F to F

w by setting

x′(xk) = (x′1, . . . , x
′
k−1, xk, x

′
k+1, . . . x

′
k)

x′′(xk) = (x′′1 , . . . , x
′′
k−1, xk, x

′′
k+1, . . . x

′′
k)

for xk ∈ F. Then

P (xk) := (σ−1 ◦ η ◦ σ)(x′(xk))[ℓ]− (σ−1 ◦ η ◦ σ)(x′′(xk))[ℓ]

=

{

x′ℓ − x′′ℓ + bℓ[1](z(Ax
′(xk))− z(Ax′′(xk))) if ℓ 6= k

bℓ[1](z(Ax
′(xk))− z(Ax′′(xk))) if ℓ = k

is a polynomial of degree (at most) dw in xk.
We assume next by contradiction that P (xk) = 0 is the zero polynomial. We consider the cases

ℓ = k and ℓ 6= k separately.
For ℓ 6= k we have

P (xk) = x′ℓ − x′′ℓ + bℓ[1]





w
∑

j=2

(aTj x
′(xk))

dj −
w
∑

j=2

(aTj x
′′(xk))

dj



 .

We recall that bi[1] 6= 0 for all i by our initial assumptions on A. Writing aTj\k for the j-th row of
A with the k-th entry removed we can write

P (xk) = x′ℓ − x′′ℓ + bℓ[1]





w
∑

j=2

(aTj\kx
′ + aj [k]xk)

dj −
w
∑

j=2

(aTj\kx
′′ + aj[k]xk)

dj



 .

Since P (xk) = 0 by assumption, the coefficient of xdw−1
k in P (xk) must be zero, i.e.,

dw(a
T
w\kx

′)aw[k]
dw−1 = dw(a

T
w\kx

′′)aw[k]
dw−1.

Since the characteristic of F doesn’t divide dw, and since aw[k] 6= 0, this implies

aTw\kx
′ = aTw\kx

′′

whence

P (xk) = x′ℓ − x′′ℓ + bℓ[1]





w−1
∑

j=2

(aTj\kx
′ + aj [k]xk)

dj −
w−1
∑

j=2

(aTj\kx
′′ + aj [k]xk)

dj



 .



Since the coefficient of x
dw−1−1
k in P (xk) must also be zero, we then find

dw−1(a
T
w−1\kx

′)aw−1[k]
dw−1−1 = dw−1(a

T
w−1\kx

′′)aw−1[k]
dw−1−1

and (since p 6 | dw−1, aw−1[k] 6= 0)
aTw−1\kx

′ = aTw−1\kx
′′

whence

P (xk) = x′ℓ − x′′ℓ + bℓ[1]





w−2
∑

j=2

(aTj\kx
′ + aj [k]xk)

dj −
w−2
∑

j=2

(aTj\kx
′′ + aj [k]xk)

dj



 .

Continuing like this, we eventually find that

P (xk) = x′ℓ − x′′ℓ + b1[ℓ]
(

(aT2\kx
′ + a2[k]xk)

d2 − (aT2\kx
′′ + a2[k]xk)

d2
)

and that
aT2\kx

′ = aT2\kx
′′

by considering the term xd2−1
k in P (xk). (Here we use the fact that d2 > 1.) Hence

aTj\kx
′ = aTj\kx

′′ (44)

for all 2 ≤ j ≤ w, i.e.,
A1kx

′ = A1kx
′′,

but this implies x′ = x′′, a contradiction, since det(A1k) 6= 0.
To establish a contradiction for the case ℓ = k one can reason analogously. In fact this case

is simpler, since the only thing that changes is that P (xk) doesn’t contain the term x′ℓ − x′′ℓ . (As
a technical comment, one can observe that for the case ℓ = k it suffices to have d2 ≥ 1 instead
of d2 ≥ 2. For in the absence of the constant term x′ℓ − x′′ℓ one arrives at equation (44) even if
d2 − 1 = 0.)

Having obtained a contradiction in both cases (being ℓ = k and ℓ 6= k), we can conclude that
P (xk) is a nonzero polynomial. Since P (xk) has degree at most dw, however, this implies that

(σ−1 ◦ η ◦ σ)(x′(xk)) = (σ−1 ◦ η ◦ σ)(x′′(xk))

for at most dw values of xk ∈ F. This precisely implies that MaxCollπ[A,D] ≤ dw since k, ℓ as well
as x′ and x′′ were arbitrary. ⊓⊔
Theorem 6. MaxPreimπ[A,D] ≤ dw for A, D and π[A,D] as described above.

Proof. Fix values k, ℓ ∈ [w] as well as a vector

x′ = (x′1, . . . , x
′
k−1, x

′
k+1, . . . , x

′
w) ∈ F

w−1.

We also set
x′(xk) = (x′1, . . . , x

′
k−1, xk, x

′
k+1, . . . , x

′
w) ∈ F

w−1

as in the proof of Theorem 5. Then

π[A,D](x′(xk))[ℓ] =

{

x′ℓ + bℓ[1]z(Ax
′(xk)) if ℓ 6= k,

xk + bk[1]z(Ax
′(xk)) if ℓ = k.

In either case (whether ℓ = k or ℓ 6= k) π[A,D](x′(xk))[ℓ] is a nonzero polynomial in xk of degree dw.
(The nonzeroness can be seen by focusing on the term of degree dw, which has nonzero coefficient
of aTw[k]

dw .) Hence the probability that π[A,D](x′(xk)) equals any particular value, over random
choice of xk, is at most dw. ⊓⊔



Optimality. We can also prove that every permutation π has MaxColl(π) = Ω(w). Specifically, we
can prove the following theorem:

Theorem 7. For all sufficiently large |F|, any permutation π : |F|w → |F|w has MaxColl(π) ≥
(w − 1)/2.

For this universal lower bound, the algebraic structure of F obviously doesn’t matter. Here F can
be considered as a placeholder for an arbitrary finite set.

In fact we will prove something a bit stronger than Theorem 7, being namely that

MaxCollj,h(π) ≥ (w − 1)/2

for all j, h ∈ [w] (and sufficiently large |F|), where

MaxCollj,h(π) := max
x,x′

∣

∣{x ∈ F : πx

j,h(x) = πx
′

j,h(x)}
∣

∣

where πx

j,h(x) is as defined in Section 2. We can obviously assume that j = h = 1.
Let q = |F|. We will analyze the family of functions {πx

1,1 : x ∈ F
w,x[1] = 0}. This family is

indexed by qw−1 different x’s, which we will denote x1, . . . ,xqw−1 .
Each function πxi

1,1 : F→ F can be encoded as a q × q 0-1 matrix βi by setting

βi[x, y] =

{

1 if πxi
1,1(x) = y,

0 otherwise.

Then MaxColl1,1(π) can be equivalently defined as the maximum dot product (over R) between
any two (distinct) βi’s. Thus, Theorem 7 will follow by the following proposition (which further
relaxes26 the problem by removing the requirement that the βi’s encode functions):

Proposition 1. Let B = {β1, . . . , βqw−1} be distinct 0-1 matrices of size q × q. Then if q is suf-
ficiently large compared to w there exists some i 6= i′ such that 〈βi, βi′〉 ≥ (w − 1)/2 where 〈x, y〉
denotes the real-valued dot product of x and y.

Proof. A family B that minimizes the maximum value of 〈βi, βj〉, i 6= j can obviously be chosen
such that deleting any entry of ‘1’ from any vector βi produces another vector in B (or else replace
βi with the new vector). We will thus assume that B has this form. Then

max
i 6=j
〈βi, βj〉 ≥ max

i
‖βi‖1 − 1

where ‖ · ‖1 denotes the 1-norm. (In fact this inequality holds with equality, but we only need the
inequality.)

Let d = maxi ‖βi‖1. Each element in B can then be specified by a sequence of d choices, where
each choice has arity q2 + 1 (where to put the next ‘1’, and if it should be a ‘1’ at all), so

qw−1 = |B| ≤ (1 + q2)d

which obviously implies that d ≥ (w − 1)/2 for sufficiently large q, for fixed w. ⊓⊔

26 Well, not quite: Proposition 1 introduces the new requirement that βi’s be distinct, but this is obviously without
loss of generality since otherwise MaxColl1,1(π) = MaxColl(π) = |F|.



Game G1 G2, G3

random tapes: pA1
, . . . , pLw , pZ

global static: XtraOuterRnd, XtraMiddleRnd, XtraUntglRnds

if Table(x) 6= ⊥ then abort

if Table−1(y) 6= ⊥ then abort

Table(x)← y
Table−1(y)← x

private procedure ReadTape(Table, x, p)
y ← p(x)
SetTable(Table, x, y)
return y

public procedure Z(x)
if PZ(x) = ⊥ then

y← ReadTape(PZ ,x, pZ)
if ∃j, Y −1

j (y[j]) 6= ⊥ then abort // G3

return PZ(x)

public procedure Z−1(y)
if P−1

Z (y) = ⊥ then

x← ReadTape(P−1

Z ,y, p−1

J )
if ∃j,Xj(x[j]) 6= ⊥ then abort // G3

return P−1

Z (y)

private procedure CheckZ(x,y)
return PZ(x) = y // G2, G3

return Z(x) = y

private procedure BlockDefined(T, z, σ)
forall k ∈ {1, . . . , w} do

if (T σ
k (z[k]) = ⊥ ∧
z[k] /∈ ToBeAssignedσ

Tk
) return false

return true

public procedure D(j, x)
if Dj(x) = ⊥ then ReadTape(Dj , x, pDj

)
return Dj(x)

public procedure D−1(j, y)
if D−1

j (y) = ⊥ then ReadTape(D−1

j , y, p−1

Dj
)

return D−1

j (y)

public procedure E(j, x)
if Ej(x) = ⊥ then ReadTape(Ej , x, pEj

)
return Ej(x)

public procedure E−1(j, y)
if E−1

j (y) = ⊥ then ReadTape(E−1

j , y, p−1

Ej
)

return E−1

j (y)

public procedure I(j, x)
if Ij(x) = ⊥ then ReadTape(Ij , x, pIj )
return Ij(x)

public procedure I−1(j, y)
if I−1

j (y) = ⊥ then ReadTape(I−1

j , y, p−1

Ij
)

return I−1

j (y)

public procedure J(j, x)
if Jj(x) = ⊥ then ReadTape(Jj , x, pJj

)
return Jj(x)

public procedure J−1(j, y)
if J−1

j (y) = ⊥ then ReadTape(J−1

j , y, p−1

Jj
)

return J−1

j (y)

public procedure K(j, x)
if Kj(x) = ⊥ then ReadTape(Kj , x, pKj

)
return Kj(x)

public procedure K−1(j, y)
if K−1

j (y) = ⊥ then ReadTape(K−1

j , y, p−1

Kj
)

return K−1

j (y)

public procedure L(j, x)
if Lj(x) = ⊥ then ReadTape(Lj , x, pLj

)
return Lj(x)

public procedure L−1(j, y)
if L−1

j (y) = ⊥ then ReadTape(L−1

j , y, p−1

Lj
)

return L−1

j (y)

Fig. 2. Games G1 through G3, first set of procedures. Statements commented by // G2 or // G2, G3 (in red) appear
only in G2 or in G2 and G3, respectively. The simulator is implemented by game G1, excepted procedures Z and Z−1

(to which the simulator only has oracle access).



private procedure BackwardOutside(T, j, y)
x← ReadTape(T−1

j , y, p−1

Tj
)

if (∃x s.t. x[j] = x ∧
PZ(x) 6= ⊥) then abort // G3

public procedure F−1(j, y)
if F−1

j (y) = ⊥ then

BackwardOutside(F, j, y)
return F−1

j (y)

public procedure F(j, x)
if Fj(x) = ⊥ then

y ← ReadTape(Fj , x, pFj
)

if (∃y s.t. y[j] = y ∧
BlockDefined(F,y,−) ∧
BlockDefined(G, ν(y),+)) then abort

return Fj(x)

public procedure G−1(j, y)
if G−1

j (y) = ⊥ then

if XtraOuterRnd then

x← ReadTape(G−1

j , y, p−1

Gj
)

if (∃x s.t. x[j] = x ∧
BlockDefined(G,x,+) ∧
BlockDefined(F, ν−(x),−)
) then abort

else

BackwardOutside(G, j, y)
return G−1

j (y)

public procedure G(j, x)
RequestG(j, x)
AdaptLeft()
return Gj(x)

public procedure B(j, x)
if Bj(x) = ⊥ then

y ← ReadTape(Bj , x, pBj
)

if (∃y s.t. y[j] = y ∧
BlockDefined(B,y,−) ∧
BlockDefined(C, τ (y),+)) then abort

return Bj(x)

public procedure B−1(j, y)
RequestU−1(j, y)
AdaptLeft()
return B−1

j (y)

public procedure A−1(j, y)
RequestU−1(j, y)
AdaptLeft()
return A−1

j (y)

private procedure ForwardOutside(T, j, x)
y ← ReadTape(Tj , x, pTj

)
if (∃y s.t. y[j] = y ∧

P−1

Z (y) 6= ⊥) then abort // G3

private procedure M(j, x)
if Mj(x) = ⊥ then

ForwardOutside(M, j, x)
return Mj(x)

private procedure M−1(j, y)
if M−1

j (y) = ⊥ then

x← ReadTape(M−1

j , y, p−1

Mj
)

if (∃x s.t. x[j] = x ∧
BlockDefined(M,x,+) ∧
BlockDefined(H, τ−1

M (x),−)) then abort

return M−1

j (y)

public procedure H(j, x)
if H(x) = ⊥ then

ForwardOutside(H, j, x)
return Hj(x)

if XtraOuterRnd then

y ← ReadTape(Hj , x, pHj
)

if (∃y s.t. y[j] = y ∧
BlockDefined(H,y,−) ∧
BlockDefined(M, τM (y),+)
) then abort

else

public procedure H−1(j, y)
RequestH−1(j, y)
AdaptRight()
return H−1

j (y)

public procedure C−1(j, y)
if C−1

j (y) = ⊥ then

x← ReadTape(C−1

j , y, p−1

Cj
)

if (∃x s.t. x[j] = x ∧
BlockDefined(C,x,+) ∧
BlockDefined(B, τ−(x),−)) then abort

return C−1

j (y)

public procedure C(j, x)
RequestV(j, x)
AdaptRight()
return Cj(x)

public procedure A(j, x)
RequestV(j, x)
AdaptRight()
return Aj(x)

Fig. 3. Games G1 through G3, second set of procedures.



private procedure RequestG(j, x)
if Gj(x) 6= ⊥ then return

if x ∈ ToBeAssignedGj
then return

ToBeAssignedGj
← ToBeAssignedGj

∪ {x}

NewYUs ← ∅ // local var
forall xG, yH s.t. xG[j] = x do

if ∃yU s.t. (xG,yU ) ∈ ToBeAdaptedD continue

if (BlockDefined(G,xG,+) = false) continue
if (BlockDefined(H,yH ,−) = false) continue
if XtraOuterRnd then

yF ← ν−(xG)
if (BlockDefined(F,yF ,−) = false) continue
xX ←BlockF−1(yF )

else

xX ← xG

if (CheckZ(xX ,yH) = false) continue
if (++NumOuter ≥ q + 1) then abort

yU ← RightToMiddle(yH)
NewYUs ← NewYUs ∪ yU

forall yU ∈ NewYUs do
BlockRequestU−1(yU )

private procedure RequestU−1(j, y)
if U−1

j (y) 6= ⊥ then return

if y ∈ ToBeAssigned−
Uj

then return

ToBeAssigned−
Uj
← ToBeAssigned−

Uj
∪ {y}

forall yU s.t. yU [j] = y do

if (BlockDefined(U,yU ,−) = false) continue
if XtraMiddleRnd then

if (BlockDefined(C, τ (yU ),+) = false) continue
yH ← MiddleToRight(yU )
xG ← xX ← Z−1(yH)
if XtraOuterRnd then

xG ← ν(BlockF(xX))
ToBeAdaptedD ← ToBeAdaptedD ∪ (xG,yU )

forall (xG,yU ) ∈ ToBeAdaptedD do

BlockRequestG(xG)

private procedure RightToMiddle(yH)
xH ← BlockH−1(yH)
if XtraUntglRnds then

xE ← BlockE−1(π−
L (BlockL−1(π−

H(xH)))))
yV ← π−

C (BlockK−1(π−1

K (xE)))
else

yV ← π−
C (BlockE−1(π−

H(xH)))
if XtraMiddleRnd then

return τ−(BlockC−1(yV ))
else

return yV

private procedure RequestH−1(j, y)
if H−1

j (y) 6= ⊥ then return

if y ∈ ToBeAssigned−
Hj

then return

ToBeAssigned−
Hj
← ToBeAssigned−

Hj
∪ {y}

NewXVs ← ∅ // local var
forall yH , xG s.t. yH [j] = y do

if ∃xV s.t. (xV ,yH) ∈ ToBeAdaptedE continue

if (BlockDefined(H,yH ,−) = false) continue
if (BlockDefined(G,xG,+) = false) continue
if XtraOuterRnd then

yF ← ν−(xG)
if (BlockDefined(F,yF ,−) = false) continue
xX ←BlockF−1(yF )

else

xX ← xG

if (CheckZ(xX ,yH) = false) continue
if (++NumOuter ≥ q + 1) then abort

xV ← LeftToMiddle(xX)
NewXVs ← NewXVs ∪ xV

forall xV ∈ NewXVs do
BlockRequestV(xV )

private procedure RequestV(j, x)
if Vj(x) 6= ⊥ then return

if x ∈ ToBeAssignedVj
then return

ToBeAssignedVj
← ToBeAssignedVj

∪ {x}

forall xV s.t. xV [j] = x do

if (BlockDefined(V,yV ,+) = false) continue
if XtraMiddleRnd then

if (BlockDefined(B, τ−(xV ),−) = false) continue
xX ← MiddleToLeft(xV )
yH ← Z(xX)
ToBeAdaptedE ← ToBeAdaptedE ∪ (xV ,yH)

forall (xV ,yH) ∈ ToBeAdaptedE do

BlockRequestH−1(yH)

private procedure LeftToMiddle(xX )
if XtraOuterRnd then

yG ← BlockG(ν(BlockF(xX )))
else

yG ← BlockG(xX)
if XtraUntglRnds then

yD ← BlockD(πI(BlockI(πG(y
G)))))

xU ← πB(BlockJ(πJ (y
D)))

else

xU ← πC(BlockE(πG(y
G)))

if XtraMiddleRnd then

return τ (BlockB(xU ))
else

return xU

Fig. 4. Games G1 through G3, third set of procedures.



private procedure MiddleToRight(yU )
if XtraMiddleRnd then

yV ← BlockV(τ (yU ))
else

yV ← yU

if XtraUntglRnds then

yE ← BlockE(πK(BlockK(πC(y
V ))))

xH ← πH(BlockL(πL(y
E)))

else

xH ← πH(BlockE(πC (yV ))
return BlockH(xH)

private procedure AdaptLeft()
forall j ∈ {1, . . . , w} do

forall x ∈ ToBeAssignedGj
do

ReadTape(Gj , x, pGj
)

forall y ∈ ToBeAssigned−
Uj

do

ReadTape(U−1

j , y, p−Uj
)

ToBeAssignedGj
← ∅

ToBeAssigned−
Uj
← ∅

forall (xG,yU ) ∈ ToBeAdaptedD

if XtraUntglRnds then

xD ← πI(BlockI(πG(BlockG(xG))))
yD ← π−

J (BlockJ−1(π−
B(BlockU−1(yU ))))

else

xD ← πG(BlockG(xG))
yD ← π−

B(BlockU−1(yU ))
forall j ∈ {1, . . . , w} do

SetTable(Dj ,x
D[j], yD[j])

ToBeAdaptedD ← ∅

private procedure BlockU−1(y)
forall j ∈ {1, . . . , w} do

if U−1

j (y[j]) = ⊥ abort

x[j]← U−1

j (y[j])
return x

private procedure BlockG(x)
forall j ∈ {1, . . . , w} do

if Gj(x[j]) = ⊥ abort

y[j]← Gj(x[j])
return y

private procedure BlockRequestG(x)
forall j ∈ {1, . . . , w} do

RequestG(x[j], j)

private procedure BlockRequestU−1(x)
forall j ∈ {1, . . . , w} do

RequestU−1(x[j], j)

private procedure MiddleToLeft(xV )
if XtraMiddleRnd then

xU ← BlockU−1(τ−(xV ))
else

xU ← xV

if XtraUntglRnds then

xD ← BlockD−1(π−
J (BlockJ−1(π−

B(xU))))
yG ← π−

G(BlockI−1(π−
I (xD)))

else

yG ← π−
G(BlockD(π−

B(xU ))
if XtraOuterRnd then

return BlockF−1(ν−(BlockH−1(yG)))
else

return BlockH−1(yG)

private procedure AdaptRight()
forall j ∈ {1, . . . , w} do

forall y ∈ ToBeAssigned−
Hj

do

ReadTape(H−1

j , y, p−Hj
)

forall x ∈ ToBeAssignedVj
do

ReadTape(Vj , x, pVj
)

ToBeAssigned−
Hj
← ∅

ToBeAssignedVj
← ∅

forall (xV ,yH) ∈ ToBeAdaptedE

if XtraUntglRnds then

yE ← π−
L (BlockL−1(π−

H(BlockH−1(yH))))
xE ← πK(BlockK(πC(BlockV(xV ))))

else

yE ← π−
H(BlockH−1(yH))

xE ← πC(BlockV(xV ))
forall j ∈ {1, . . . , w} do

SetTable(Ej ,x
E [j],yE [j])

ToBeAdaptedE ← ∅

private procedure BlockV(x)
forall j ∈ {1, . . . , w} do

if Vj(x[j]) = ⊥ abort

y[j]← V −1

j (x[j])
return y

private procedure BlockH−1(y)
forall j ∈ {1, . . . , w} do

if H−1

j (y[j]) = ⊥ abort

x[j]← H−1

j (y[j])
return x

private procedure BlockRequestH−1(y)
forall j ∈ {1, . . . , w} do

RequestH−1(x[j], j)

private procedure BlockRequestV(y)
forall j ∈ {1, . . . , w} do

RequestV(x[j], j)

Fig. 5. Games G1 through G3, fourth set of procedures.



private procedure BlockB(x)
forall j ∈ {1, . . . , w} do

y[j]← B(x[j], j)
return y

private procedure BlockG−1(y)
forall j ∈ {1, . . . , w} do

x[j]← G−1(y[j], j)
return x

private procedure BlockD(x)
forall j ∈ {1, . . . , w} do

y[j]← D(x[j], j)
return y

private procedure BlockD−1(y)
forall j ∈ {1, . . . , w} do

x[j]← D−1(y[j], j)
return x

private procedure BlockF(x)
forall j ∈ {1, . . . , w} do

y[j]← F(x[j], j)
return y

private procedure BlockF−1(y)
forall j ∈ {1, . . . , w} do

x[j]← F−1(y[j], j)
return x

private procedure BlockI(x)
forall j ∈ {1, . . . , w} do

y[j]← I(x[j], j)
return y

private procedure BlockI−1(y)
forall j ∈ {1, . . . , w} do

x[j]← I−1(y[j], j)
return x

private procedure BlockI(x)
forall j ∈ {1, . . . , w} do

y[j]← I(x[j], j)
return y

private procedure BlockI−1(y)
forall j ∈ {1, . . . , w} do

x[j]← I−1(y[j], j)
return x

private procedure BlockC−1(y)
forall j ∈ {1, . . . , w} do

x[j]← C−1(y[j], j)
return x

private procedure BlockH(x)
forall j ∈ {1, . . . , w} do

y[j]← H(x[j], j)
return y

private procedure BlockE(x)
forall j ∈ {1, . . . , w} do

y[j]← E(x[j], j)
return y

private procedure BlockE−1(y)
forall j ∈ {1, . . . , w} do

x[j]← E−1(y[j], j)
return x

private procedure BlockM(x)
forall j ∈ {1, . . . , w} do

y[j]← M(x[j], j)
return y

private procedure BlockM−1(y)
forall j ∈ {1, . . . , w} do

x[j]← M−1(y[j], j)
return x

private procedure BlockK(x)
forall j ∈ {1, . . . , w} do

y[j]← K(x[j], j)
return y

private procedure BlockK−1(y)
forall j ∈ {1, . . . , w} do

x[j]← K−1(y[j], j)
return x

private procedure BlockL(x)
forall j ∈ {1, . . . , w} do

y[j]← L(x[j], j)
return y

private procedure BlockL−1(y)
forall j ∈ {1, . . . , w} do

x[j]← L−1(y[j], j)
return x

Fig. 6. Games G1, G2, G3, continuation and end.



Game G4

random tapes: qA1
, . . . , qLw

global static: XtraOuterRnd, XtraMiddleRnd, XtraUntglRnds

private procedure Fwd(T,x)
forall j ∈ {1, . . . , w} do

y[j]← qTj
(x[j])

return y

private procedure EvaluateForward(xX )
if XtraOuterRnd then

yG ← Fwd(G, ν(Fwd(F,xX)))
else

yG ← Fwd(xX)
if XtraUntglRnds then

yD ← Fwd(D, πI(Fwd(I, πG(y
G)))))

xU ← πB(Fwd(I, πI(y
D)))

else

xU ← πC(Fwd(E, πG(y
G)))

if XtraMiddleRnd then

yV ← Fwd(C, τ (Fwd(B,xU )))
else

yV ← Fwd(A,xU )
if XtraUntglRnds

yE ← Fwd(E, πK(Fwd(K,πC(y
V ))))

xH ← πH(Fwd(L, πL(y
E)))

else

xH ← πH(Fwd(E, πC(y
V ))

return Fwd(H,xH)

public procedure Z(x)
if PZ(x) = ⊥ then

y← EvaluateForward(x)
SetTable(PZ ,x,y)
if ∃j,H−1

j (y[j]) 6= ⊥ then abort

return PZ(x)

Game G4

random tapes: qA1
, . . . , qLw

global static: XtraOuterRnd, XtraMiddleRnd, XtraUntglRnds

private procedure Bwd(T,y)
forall j ∈ {1, . . . , w} do

x[j]← q−Tj
(y[j])

return x

private procedure EvaluateBackward(yH )
xH ← Bwd(H,yH)
if XtraUntglRnds then

xE ← Bwd(E, π−
L (Bwd(L, π−

H(xH)))))
yV ← π−

C (Bwd(K, π−
K(xE)))

else

yV ← π−
C (Bwd(E, π−

H(xH)))
if XtraMiddleRnd then

xU ← Bwd(B, τ−(Bwd(C,yV )))
else

xU ← Bwd(A,yU )
if XtraUntglRnds

xD ← Bwd(D, π−
I (Bwd(I, π−

B(xU ))))
yG ← π−

G(Bwd(I, π−
I (xD)))

else

yG ← π−
G(Bwd(E, π−

B(xU ))
if XtraOuterRnd then

return Bwd(F, ν−(Bwd(G,yG)))
else

return Bwd(G,yG)

public procedure Z−1(y)
if P−1

Z (y) = ⊥ then

x← EvaluateBackward(y)
SetTable(PZ ,x,y)
if ∃j, Xj(x[j]) 6= ⊥ then abort

return P−1

Z (y)

Fig. 7. Game G4 with random tapes and public procedures Z, Z−1. Other public procedures are implemented as in
G3, substituting G4’s random tape qTj

for G3’s random tape pTj
, T ∈ {A,B, . . . , L, L}.



Game G5

random tapes: qA1
, . . . , qMw

global static: XtraOuterRnd, XtraMiddleRnd, XtraUntglRnds

private procedure Fwd(T,x)
forall j ∈ {1, . . . , w} do

y[j]← qTj
(x[j])

return y

private procedure EvaluateForward(xX )
if XtraOuterRnd then

yG ← Fwd(G, ν(Fwd(F,xX)))
else

yG ← Fwd(xX)
if XtraUntglRnds then

yD ← Fwd(D, πI(Fwd(I, πG(y
G)))))

xU ← πB(Fwd(I, πI(y
D)))

else

xU ← πC(Fwd(E, πG(y
G)))

if XtraMiddleRnd then

yV ← Fwd(C, τ (Fwd(B,xU )))
else

yV ← Fwd(A,xU )
if XtraUntglRnds

yE ← Fwd(E, πK(Fwd(K,πC(y
V ))))

xH ← πH(Fwd(L, πL(y
E)))

else

xH ← πH(Fwd(E, πC(y
V ))

return Fwd(H,xH)

public procedure Z(x)
return EvaluateForward(x)

public procedure T(x, j)
return qTj

(x)

Game G5

random tapes: qA1
, . . . , qMw

global static: XtraOuterRnd, XtraMiddleRnd, XtraUntglRnds

private procedure Bwd(T,y)
forall j ∈ {1, . . . , w} do

x[j]← q−Tj
(y[j])

return x

private procedure EvaluateBackward(yH )
xH ← Bwd(H,yH)
if XtraUntglRnds then

xE ← Bwd(E, π−
L (Bwd(L, π−

H(xH)))))
yV ← π−

C (Bwd(K, π−
K(xE)))

else

yV ← π−
C (Bwd(E, π−

H(xH)))
if XtraMiddleRnd then

xU ← Bwd(B, τ−(Bwd(C,yV )))
else

xU ← Bwd(A,yU )
if XtraUntglRnds

xD ← Bwd(D, π−
I (Bwd(I, π−

B(xU ))))
yG ← π−

G(Bwd(I, π−
I (xD)))

else

yG ← π−
G(Bwd(E, π−

B(xU ))
if XtraOuterRnd then

return Bwd(F, ν−(Bwd(G,yG)))
else

return Bwd(G,yG)

public procedure Z−1(y)
return EvaluateBackward(y)

public procedure T−1(y, j)
return q−Tj

(y)

Fig. 8. Game G5. The procedures EvaluateForward and EvaluateBackward are as in game G4. The procedures T
and T−1 in G5 are templates, to be instantiated with each T ∈ {A,B, . . . ,K, L}.


