
10-Round Feistel is Indifferentiable from
an Ideal Cipher?

Dana Dachman-Soled??, Jonathan Katz? ? ?, and Aishwarya Thiruvengadam∗∗∗

University of Maryland
danadach@ece.umd.edu,{jkatz,aish}@cs.umd.edu

Abstract. We revisit the question of constructing an ideal cipher from a
random oracle. Coron et al. (Journal of Cryptology, 2014) proved that a
14-round Feistel network using random, independent, keyed round func-
tions is indifferentiable from an ideal cipher, thus demonstrating the
feasibility of such a transformation. Left unresolved is the number of
rounds of a Feistel network that are needed in order for indifferentiabil-
ity to hold. We improve upon the result of Coron et al. and show that
10 rounds suffice.

1 Introduction

The security of practical block ciphers—i.e., pseudorandom permutations—is
not currently known to reduce to well-studied, easily formulated, computational
problems. Nevertheless, modern block-cipher constructions are far from ad-hoc,
and a strong theory for their construction has been developed. An important
area of research is to understand the provable security guarantees offered by
these classical paradigms.

One of the well-known approaches for building practical block ciphers is to
use a Feistel network [9], an iterated structure in which key-dependent, “random-
looking” round functions on {0, 1}n are applied in a sequence of rounds to yield
a permutation on {0, 1}2n. In analyzing the security that Feistel networks pro-
vide, it is useful to consider an information-theoretic setting in which the round
functions are instantiated by truly random and independent (keyed) functions.
The purpose of such an analysis is to validate the structural robustness of the
approach. Luby and Rackoff [12] proved that when independent, random round
functions are used, a three-round Feistel network is indistinguishable from a
random permutation under chosen-plaintext attacks, and a four-round Feistel
network is indistinguishable from a random permutation under chosen plain-
text/ciphertext attacks.

? This work was performed under financial assistance award 70NANB15H328 from the
U.S. Department of Commerce, National Institute of Standards and Technology.

?? Work supported in part by NSF CAREER award #1453045. This work was done in
part while the author was visiting the Simons Institute for the Theory of Computing,
supported by the Simons Foundation and by the DIMACS/Simons Collaboration in
Cryptography through NSF grant #1523467.

? ? ? Work supported in part by NSF award #1223623.



In the Luby-Rackoff result, the round functions are secretly keyed and the
adversary does not have direct access to them; the security notion considered—
namely, indistinguishability—is one in which the key of the overall Feistel net-
work is also unknown to the adversary. A stronger notion of security, called
indifferentiability [14], applies even when the round functions are public, and
aims to show that a block cipher behaves like an ideal cipher, i.e., an oracle for
which each key defines an independent, random permutation. Proving indiffer-
entiability is more complex than proving indistinguishability: to prove indiffer-
entiability of a block-cipher construction BC (that relies on an ideal primitive
O) from an ideal cipher IC, one must exhibit a simulator S such that the view
of any distinguisher interacting with (BCO,O) is indistinguishable from its view
when interacting with (IC,SIC). For Feistel networks, it is known (see [1, 11])
that one can simplify the problem, and focus on indifferentiability of the Feistel
network when using random and independent unkeyed round functions from a
public random permutation; an ideal cipher is then obtained by keying the round
functions.

In a recent result building on [2, 16, 11], Coron et al. [1] proved that when
using independent, random round functions, a 14-round Feistel network is in-
differentiable from a public random permutation. The main question left open
by the work of Coron et al. is: precisely how many rounds of a Feistel network
are needed for indifferentiability to hold? It is known from prior work [1] that
5 rounds are not sufficient, while (as we have just noted) 14 rounds are. In this
work, we narrow the gap and show that 10 rounds suffice.1

We provide an overview of our proof, and the differences from that of Coron
et al., in Section 2.

Concurrent work. In concurrent and independent work, Dai and Steinberger [4]
have also shown indifferentiability of a 10-round Feistel network from an ideal
cipher. We provide a brief comparison between our work and theirs in Section 2.3.

Subsequent work. Dai and Steinberger [5] have more recently improved their
analysis and shown that an 8-round Feistel network is indifferentiable from an
ideal cipher. The true number of rounds needed remains open.

1.1 Other Related Work

Coron et al. [2] claimed that a 6-round Feistel network is indifferentiable from
an ideal cipher. Their proof of indifferentiability introduced the partial chain
detection technique that we also rely on here. Seurin [16] gave a simpler proof
of indifferentiability for a 10-round Feistel network, and introduced a clever
technique for bounding the simulator complexity. Holenstein et al. [11] later
showed that there was a distinguishing attack against the simulator of Coron et
al. [2], and a gap in the proof of the 10-round simulator by Seurin [16]; however,

1 Seurin previously claimed that a 10-round Feistel network is indifferentiable from a
random permutation [16], but this claim was later retracted by the author [17].

2



they prove that a 14-round Feistel network is indifferentiable from an ideal cipher
by building on prior work as well as incorporating several new techniques.

Ramzan and Reyzin [15] proved that a 4-round Feistel network remains in-
distinguishable from a random permutation even if the adversary is given access
to the middle two round functions. Gentry and Ramzan [10] showed that a 4-
round Feistel network can be used to instantiate the random permutation in
the Even-Mansour cipher [8], and proved that such a construction is a pseu-
dorandom permutation even if the round functions of the Feistel network are
publicly accessible. Dodis and Puniya [7] studied security of the Feistel network
in a scenario where the adversary learns intermediate values when the Feistel
network is evaluated, and/or when the round functions are unpredictable but
not (pseudo)random.

Various relaxations of indifferentiability, such as public indifferentiability [7,
18] or honest-but-curious indifferentiability [6], have also been considered. Dodis
and Puniya [6] proved that a Feistel network with super-logarithmic number of
rounds is indifferentiable from an ideal cipher in the honest-but-curious setting.
Mandal et al. [13] proved that the 6-round Feistel network is publicly indifferen-
tiable from an ideal cipher.

1.2 Organization of the Paper

In Section 2 we provide a high-level overview of our proof, and how it differs from
the proof of indifferentiability of the 14-round Feistel network [1, 11]. After some
brief background in Section 3, we jump into the technical details, describing our
simulator in Section 4 and giving the proof of indifferentiability in Section 5.
Additional discussion and proofs that have been omitted here are available in
the full version of this work [3].

2 Overview of Our Proof

We first describe the proof structure used for the proof of indifferentiability of
the 14-round Feistel network from an ideal cipher [1, 11], and then describe how
our proof differs.

2.1 Techniques for the 14-Round Simulator

Consider a naive simulator for an r-round Feistel construction, which responds
to distinguisher queries to each of the round functions F1, . . . ,Fr, by always
returning a uniform value. Unfortunately, there is a simple distinguisher who
can distinguish oracle access to (FeistelFr ,F) from oracle access to (P,SP): The
distinguisher queries (x0, x1) to the first oracle, receiving (xr, xr+1) in return,
and uses oracle access to the second oracle to evaluate the r-round Feistel and
compute (x′r, x

′
r+1) on its own, creating a chain of queries (x1, . . . , x

′
r). Note that

in the first case (xr, xr+1) = (x′r, x
′
r+1) with probability 1, while in the second

case the probability that (xr, xr+1) = (x′r, x
′
r+1) is negligible.

3



An approach to addressing the above attack, which essentially gives the high-
level intuition for how a successful simulator works, is as follows: If the simulator
learns the value of P(x0, x1) = (xr, xr+1) before the distinguisher queries the
entire chain, then the simulator assigns values for the remaining queries Fi(xi),
conditioned on the restriction FeistelFr (x0, x1) = (xr, xr+1). More specifically, if
there are two consecutive rounds (i, i+ 1), where i ∈ {1, . . . , r − 1}, which have
not yet been queried, the simulator adapts its assignments to Fi(xi), Fi+1(xi+1)
to be consistent with P(x0, x1) = (xr, xr+1). When the simulator adapts the
assignment of Fi(xi) to be consistent with a constraint P(x0, x1) = (xr, xr+1),
we say that this value of Fi(xi) has been assigned via a ForceVal assignment.
Further details of the 14-round simulator are discussed below.

Partial chain detection and preemptive completion. To allow the simula-
tor to preemptively discover P(x0, x1) = (xr, xr+1), the authors fix two “detect
zones” which are sets of consecutive rounds {1, 2, 13, 14}, {7, 8}. Each time the
simulator assigns a value to Fi(xi), it also checks whether there exists a tuple of
the form (x1, x2, x13, x14) such that (1) F1(x1), F2(x2), F13(x13), and F14(x14)
have all been assigned and (2) P(F1(x1) ⊕ x2, x1) = (x14,F13(x13) ⊕ x14); or
whether there exists a tuple of the form (x7, x8) such that F7(x7) and F8(x8)
have both been assigned. A pair of consecutive round values (xk, xk+1) is re-
ferred to as a “partial chain,” and when a new partial chain is detected in the
detect zones described above, it is “enqueued for completion” and will later be
dequeued and preemptively completed. When a partial chain is detected due to
a detect zone that includes both x1 and xr, we say it is a “wraparound” chain.
Note that preemptive completion of a chain can cause new chains to be detected
and these will then be enqueued for completion. This means that in order to
prove indifferentiability, it is necessary to argue that for xi that fall on multiple
completed chains, all restrictions on the assignment of Fi(xi) can be simulta-
neously satisfied. In particular the “bad case” will be when some assignment
Fi(xi) must be adapted via a ForceVal assignment, but an assignment to Fi(xi)
has previously been made. If such a case occurs, we say the value at an adapt
position has been “overwritten.” It turns out that to prove indifferentiability, it
is sufficient to prove that this occurs with negligible probability.

4-Round buffer zone. In order to ensure that overwrites do not occur, the no-
tion of a 4-round buffer zone is introduced in [1, 11]. Their simulator has two 4-
round buffer zones, corresponding to rounds {3, 4, 5, 6} or {9, 10, 11, 12}. Within
the buffer zones, positions {3, 6} (respectively, {9, 12}) are known as the set
uniform positions, and positions {4, 5} (respectively, {10, 11}) are known as the
adapt positions. They prove the following property (which we call henceforth the
strong set uniform property): At the moment a chain is about to be completed,
the set uniform positions of the buffer zone are always unassigned. This means
that the simulator will always assign uniform values to F3(x3) and F6(x6) (re-
spectively, F9(x9) and F12(x12)) immediately before assigning values to F4(x4)
and F5(x5) (respectively, F10(x10) and F11(x11)) using ForceVal. This ensures
that ForceVal overwrites with negligible probability, because x4 = x2 ⊕ F3(x3)
is only determined at the moment F3(x3) is assigned and so the probability that

4



F4(x4) has already been assigned is negligible (a similar argument holds for the
other adapt positions).

Rigid structure. The rigid structure of [1, 11] helps their proof in two ways:
First, since all assignments across all completed chains are uniform except in the
fixed adapt positions {4, 5} and {10, 11}, it is easier to argue about “bad events”
occurring. In particular, since the 4-round buffer of one chain ({3, 4, 5, 6} or
{9, 10, 11, 12}) cannot overlap with the detect zone of another chain ({1, 2, 13, 14}
or {7, 8}), they are able to argue that if a “bad event” occurs while detecting a
chain C, then either an equivalent chain was already enqueued or it must have
been caused by a uniform setting of Fi(xi).

Bounding the simulator’s runtime. The approach of [1, 11] (originally intro-
duced in [2]) is to bound the total number of partial chains that get completed
by the simulator. In order to create a partial chain of the form (x1, x2, x13, x14),
it must be the case that P(F1(x1)⊕x2, x1) = (x14,F13(x13)⊕x14) and so, intu-
itively, the distinguisher had to query either P or P−1 in order to achieve this.
Thus, the number of partial chains of the form (x1, x2, x13, x14) (i.e. wraparound
chains) that get detected and completed by the simulator is at most the total
number of queries made by the distinguisher. Since there is only a single middle
detect zone {7, 8}, once we have a bound on the number of wraparound chains
that are completed, we can also bound the number of completed partial chains
of the form (x7, x8).

2.2 Our Techniques

We next briefly discuss how our techniques differ from those of the 14-round
simulator [1, 11], focusing on the four areas discussed above.

Separating detection from completion for wrap-around chains. When
the distinguisher makes a query Fi(xi) to the simulator, our simulator proceeds
in two phases: In the first phase, the simulator does not make any queries,
but enqueues for completion all partial chains which it predicts will require
completion. In the second phase, the simulator actually completes the chains and
detects and enqueues only on the middle detect zone (which in our construction
corresponds to rounds {5, 6}). This simplifies our proof since it means that after
the set of chains has been detected in the first phase, the simulator can complete
the chains in a manner that minimizes “bad interactions” between partial chains.
In particular, in the second phase, the simulator first completes chains C with
the property that one of the set uniform positions is “known” and hence could
already have been assigned (in the completion of another chain D) before the
chain C gets dequeued for completion. (Although this violates the strong set
uniform property of [1, 11], in our proof we are able to avoid this requirement.
See the discussion of the weak set uniform property below for further details.)
The simulator then proceeds to complete (and detect and enqueue) other chains.
This allows us to reduce the complexity of our analysis.

5



Relaxed properties for the 4-round buffer zone. When a partial chain C
is about to be completed, we allow one of the set uniform positions, say x`−1, to
already be assigned, as long as the adapt position x` adjacent to this set uniform
position has not yet been assigned. Chains that exhibit the property where one
of the set uniform positions is already assigned before the completion of the
chain are said to exhibit the weak set uniform property. In Claim 36, we prove
that for chains exhibiting the weak set uniform property, the adapt position is
not assigned till the chain is dequeued for completion.

Relaxed structure. Requiring only the weak set uniform property allows us
to consider a more relaxed structure for detect zones and 4-round buffer zones.
Instead of requiring that for every chain that gets completed the 4 round buffer
positions (i.e., {3, 4, 5, 6} or {9, 10, 11, 12} in [1, 11] are always unassigned, we
allow more flexibility in the position of the 4-round buffer. For example, depend-
ing on whether the detected chain is of the form (x1, x2, x10), (x1, x9, x10), or
(x5, x6), our 4-round buffer will be one of: {3, 4, 5, 6} or {6, 7, 8, 9}, {2, 3, 4, 5}
or {5, 6, 7, 8}, {1, 2, 3, 4} or {7, 8, 9, 10}, respectively. This flexibility allows us to
reduce the number of rounds. Now, however, the adapt zone of one chain may
coincide with the detect zone of another chain. Since there are no dedicated
roles for fixed positions, and since partial chains in the middle detect zone are
detected during the completion of other chains, we define additional bad events
BadlyHitFV and BadlyCollideFV and argue that they occur with low probabil-
ity. Intuitively, BadlyHitFV captures the event where a ForceVal assignment
occurs at x` such that it forms a valid Feistel sub-sequence x`−1, x` and x`+1

where x`−1 and x`+1 refer to adjacent positions to x` that they have already
been assigned. This is analogous to the bad event BadlyHit defined in [1, 11] with
the difference being that BadlyHit refers to a uniform assignment and Badly-
HitFV refers to a ForceVal assignment. Similarly, BadlyCollideFV captures the
event where a ForceVal assignment occurs at x` such that it causes two chains
to “collide” at some position. This is analogous to the bad event BadlyCollide
defined in [1, 11] with the difference being that BadlyCollide refers to a uniform
assignment and BadlyCollideFV refers to a ForceVal assignment. Furthermore,
in order to prove that a new wraparound chain does not get created during the
completion of other chains we introduce and bound the probability of a new
bad event BadlyCollideP. Intuitively, BadlyCollideP captures the event where a
query to the random permutation returns a value (x0, x1) such that two chains
“collide” on x1 or returns a value (x10, x11) such that two chains collide on x10.

Balancing detection with the simulator’s runtime. There is a clear trade-
off between the achieved security bound and the running time of the simulator.
If the simulator is too “aggressive” and detects too many chains too early, then
we may perhaps achieve better security at the cost of extremely high simulator
complexity. In comparison to the construction of [1, 11], our construction has
more detect zones and, moreover, for wraparound chains, we detect on partial
chains consisting of three consecutive queries instead of four consecutive queries.
Nevertheless, at a high-level, our proof that the simulator runtime is polynomial
follows very similarly to the proof in [1, 11]. As there, we first bound the number

6



of completed partial chains of the form (x1, x2, x10) and (x1, x9, x10) (such chains
are wraparound chains since they contain both x1 and x10). Once we have done
this, we again have only a single non-wraparound detect zone and so we can
follow the argument of [1, 11] to bound the number of completed partial chains
of the form (x5, x6). Once we have a bound on the number of completed partial
chains, it is fairly straightforward to bound the simulator complexity.

2.3 Comparison with Concurrent Work

As noted previously, Dai and Steinberger [4] have independently announced the
same result we claim here. The starting point of their work is the 10-round sim-
ulator proposed by Seurin [16]. They use only two adapt zones (namely, {3, 4}
and {7, 8}) and allow the distinguisher to learn the values at both positions sur-
rounding the adapt zones. In contrast, our simulator allows the distinguisher to
learn the value at only one of the two positions2 surrounding the adapt zones;
due to our flexible 4-round buffer zone, our adapt zones can be any pair of con-
secutive rounds except {1, 2}, {5, 6}, and {9, 10}. Additionally, our proof follows
the same high-level structure as in [1], whereas Dai and Steinberger present a
new proof inspired by changes made to Seurin’s simulator [16]. (Their subsequent
improvement [5] showing indifferentiability of an 8-round Feistel network from
an ideal cipher relies on the observation that detection on wrap-around chains
can span only three rounds, rather than four.)

With regard to concrete security, our results are incomparable. Say q is the
number of queries made by the distinguisher, and let n be the input/output
length of the round functions. Dai and Steinberger [4] show indifferentiability
ε = O(q8/2n) using a simulator running in time T = O(q10); we show indif-
ferentiability ε = O(q12/2n) using a simulator that runs in time T = O(q6).
It is interesting to observe that both works achieve the same tradeoff for the
product ε · T .

3 Background

We use the definition of indifferentiability used by the work on 14-round Feistel
network [1, 11], based on the definition of Maurer, Renner, and Holenstein [14].

Definition 1. Let C be a construction that, for any n, accesses functions F =
(F1, . . . ,Fr) over {0, 1}n and implements an invertible permutation over {0, 1}2n.
(We stress that C allows evaluation of both the forward and inverse directions of
the permutation.) We say that C is indifferentiable from a random permutation if
there exists a simulator S and a polynomial t such that for all distinguishers D
making at most q = poly(n) queries, S runs in time t(q) and

|Pr[DCF,F(1n) = 1]− Pr[DP,SP

(1n) = 1]|
2 We refer to that position as the “bad” set uniform position.

7



is negligible, where F are random, independent functions over {0, 1}n and P is
a random permutation over {0, 1}2n. (We stress that P can be evaluated in both
the forward and inverse directions.)

The r-round Feistel construction, given access to F = (F1, . . . ,Fr), is defined
as follows. Let (Li−1, Ri−1) be the input to the i-th round, with (L0, R0) denoting
the initial input. Then, the output (Li, Ri) of the i-th round of the construction
is given by Li := Ri−1 and Ri := Li−1 ⊕ Fi(Ri−1). So, for a r-round Feistel, if
the 2n-bit input is (L0, R0), then the output is given by (Lr, Rr).

4 Our Simulator

4.1 Informal Description of the Simulator

The queries to F1, . . . ,F10 are answered by the simulator through the public
procedure S.F(i, x) for i = 1, . . . , 10. When the distinguisher asks a query F(i, x),
the simulator checks to see if the query has already been set. The queries that
are already set are held in tables G1, . . . , G10 as pairs (x, y) such that if F(i, x)
is queried, and if x ∈ Gi, then y is returned as the answer to query F(i, x).
If the query has not already been set, then the simulator adds x to the set
Aji where j indicates the jth query of the distinguisher. The simulator then
checks if i ∈ {1, 2, 5, 6, 9, 10} (where these positions mark the endpoints of the
detect zones) and, if so, checks to see if any new partial chains of the form
(x9, x10, 9), (x1, x2, 1), or (x5, x6, 5) need to be enqueued. If no new partial chains
are detected, the simulator just sets the value of Gi(x) uniformly and returns
that value. If new partial chains are detected and enqueued in Qenq, then the
simulator evaluates these partial chains “forward” and “backward” as much as
possible (without setting any new values of Gm(·)) for all m ∈ {1, . . . , 10}. Say
the evaluation stopped with xm /∈ Gm. Then, the simulator adds xm to Ajm and
checks if m ∈ {1, 2, 5, 6, 9, 10} and if so, detects any additional partial chains that
form with (xm,m) and enqueues them for completion if necessary and repeats
the process again until no more partial chains are detected.

The chains enqueued for completion during this process are enqueued in
queues Q1,Q5,Q6,Q10 and Qall. Any chain that has been enqueued in Qenq is also
enqueued in Qall. Chains enqueued in Qb for b ∈ {1, 5, 6, 10} are those that may
exhibit the weak set uniform property. Specifically, say C = (xk, xk+1, k, `, g, b)
is a chain that is enqueued to be adapted at position ` i.e. the “adapt” positions
for C are at `, ` + 1 and the “set uniform” positions are at ` − 1, ` + 2 with
the “set uniform” position that is adjacent to the query that caused C to be
enqueued being at “good” set uniform position g and the other “set uniform”
position at b. If, at the time of enqueueing, the chain C can be evaluated up to
the “bad” set uniform position b and the value of chain C at b, say xb, is such
that xb /∈ Gb, then C is enqueued in Qb. (Note that there are chains that exhibit
this property but are not enqueued for completion. These are the chains that
belong to the set SimPChains. This is only to simplify the analysis for the bound
of the complexity of the simulator. We will later show that ignoring these chains

8



does not affect the simulation and in fact, these chains belong to CompChains at
the end of the simulator’s run while answering D’s jth query.)

The completion of enqueued chains starts with the completion of the chains
enqueued in Qb for b ∈ {1, 5, 6, 10}. A chain C is dequeued from Qb and if
C /∈ CompChains, the simulator “completes” the chain. This process proceeds
similarly to the completion process in [1]. The simulator evaluates the chain
forward/backward upto the 4-round buffer setting Gi(xi) values uniformly for
any xi /∈ Gi that comes up while evaluating forward/backward. In the 4-round
buffer consisting of the “set uniform” positions and the “adapt” positions, the
simulator sets the values of C at the set uniform positions uniformly (if they
have not already been set) and forces the values at the adapt positions such
that evaluation of the Feistel is consistent with the random permutation. (Note
that this could possibly lead to a value in Gi(·) getting overwritten. A major
technical part of the proof is to show that this happens with negligible proba-
bility.) After this process, the simulator places C in the set CompChains along
with “equivalent” chains obtained by evaluating C on the detect zone positions
i.e. chains of the form (xk, xk+1, k) for k = 1, 5, 9.

Once the simulator completes the chains enqueued inQb for all b ∈ {1, 5, 6, 10},
the simulator completes the remaining chains enqueued in Qall. The completion
process for the remaining chains enqueued in Qall is the same as the comple-
tion process described above except that the simulator detects additional partial
chains of the form (x5, x6, 5) during the completion and enqueues them in the
queue Qmid i.e. during the completion of a chain C in Qall, if an assignment oc-
curs such that xk ∈ Gk for some k ∈ {5, 6} due to the assignment and xk /∈ Gk
before the assignment, then the simulator enqueues the partial chain (x5, x6, 5)
in Qmid for all xk′ ∈ Gk′ such that k′ ∈ {5, 6} and k 6= k′. (Note that the
assignment could be a ForceVal assignment as well.) Finally, the simulator
completes all the chains in Qmid that are not already in CompChains. The com-
pletion process again is the same as the process described for chains enqueued
in Qb. The simulator then returns the answer Gi(x) to the query F(i, x).

4.2 Formal Description of the Simulator

The simulator S internally uses hashtables G1, . . . , G10 to store the function
values. Additionally, it uses sets Aj1, . . . , A

j
10 for the jth distinguisher query to

detect partial chains that need to be completed; these sets store values that
would be added to Gi in the future. A queue Qenq to detect partial chains that
need to be completed and stores a copy of Qenq in a queue Qall that is used
during completion. Queues Q1,Q5,Q6,Q10 are used to store the chains in Qenq

whose “bad” set uniform position is known at the time of detection. Queue Qmid

is used to store new chains of the form (x5, x6, 5) that are enqueued during the
completion of chains from Qall. A set CompChains is used to remember the chains
that have been completed already. Finally, a set SimPChains is used to hold chains
of the form (x1, x2, 1) and (x9, x10, 9) that are detected due to P/P−1 queries
made by the simulator. This set is needed only for the purpose of analyzing the
complexity of the simulator.

9



The variables used below are: QueuesQenq, Qall, Q1, Q5, Q6, Q10, Qmid; Hashta-

bles G1, . . . , G10; Sets Aji := ∅ for i = 1, . . . , 10 and j = 1, . . . , q where q is the
maximum number of queries made by the distinguisher, Sets CompChains:= ∅
and SimPChains := ∅. Initialize j := 0. The procedure F(i, x) provides the inter-
face to a distinguisher.

1 procedure F(i, x):
2 j := j + 1
3 for i ∈ {1, . . . , 10} do
4 Aj

i := ∅
5 FENQ(i, x)
6 while ¬Qenq.Empty() do
7 (xk, xk+1, k, `, g, b) := Qenq.Dequeue()
8 if (xk, xk+1, k) /∈ CompChains then
9 (xr, xr+1, r) := EvFwdEnq(xk, xk+1, k, `− 2)

10 if r + 1 = b ∧ xr+1 /∈ Gr+1 then
11 Qb.Enqueue(xk, xk+1, k, `, g, b)

12 (xr, xr+1, r) := EvBwdEnq(xk, xk+1, k, ` + 2)
13 if r = b ∧ xr /∈ Gr then
14 Qb.Enqueue(xk, xk+1, k, `, g, b)

15 for each Q ∈ 〈Q1, Q5, Q6, Q10, Qall, Qmid〉 do . processed in that order
16 while ¬Q.Empty() do
17 (xk, xk+1, k, `, g, b) := Q.Dequeue()
18 if (xk, xk+1, k) /∈ CompChains then
19 (x`−2, x`−1) := EvFwdComp(Q, xk, xk+1, k, `− 2)
20 (x`+2, x`+3) := EvBwdComp(Q, xk, xk+1, k, ` + 2)
21 Adapt(Q, x`−2, x`−1, x`+2, x`+3, `, g, b)
22 (x1, x2) := EvBwdComp(⊥, xk, xk+1, k, 1)
23 (x5, x6) := EvFwdComp(⊥, x1, x2, 1, 5)
24 (x9, x10) := EvFwdComp(⊥, x1, x2, 1, 9)
25 CompChains := CompChains ∪ {(x1, x2, 1), (x5, x6, 5), (x9, x10, 9)}
26 FCOMP(⊥, i, x)
27 return Gi(x)

28 procedure EvFwdEnq(xk, xk+1, k,m):
29 if k = 5 then
30 flagMid:= 1

31 while (k 6= m) ∧ ((k = 10) ∨
FENQ(k+1, xk+1) 6=⊥)
do

32 if k = 10 then
33 (x0, x1) := P−1(x10, x11)
34 k := 0
35 else
36 if k = 9∧flagMid = 1 then
37 SimPChains :=

SimPChains∪ {(xk, xk+1, k)}
38 xk+2 := xk⊕G(k+1, xk+1)

39 k := k + 1

40 flagMid:= 0
41 return (xk, xk+1, k)

42 procedure EvBwdEnq(xk, xk+1, k,m):
43 if k = 5 then
44 flagMid:= 1

45 while (k 6= m) ∧ ((k = 0) ∨
FENQ(k, xk) 6=⊥)
do

46 if k = 0 then
47 (x10, x11) := P(x0, x1)
48 k := 10
49 else

10



50 if k = 1∧flagMid = 1 then
51 SimPChains :=

SimPChains∪ {(xk, xk+1, k)}
52 xk−1 := xk+1 ⊕G(k, xk)

53 k := k − 1

54 flagMid:= 0
55 return (xk, xk+1, k)

56 procedure FENQ(i, x):
57 if x ∈ Gi then
58 return Gi(x)
59 else if x ∈ Aj

i then
60 return ⊥
61 else
62 Aj

i := {x} ∪Aj
i

63 if i ∈ {1, 2, 5, 6, 9, 10} then
64 EnqNewChains(i, x)

65 return ⊥

66 procedure ChkFwd(x0, x1, x10):
67 (x′10, x

′
11) := P(x0, x1)

68 return x′10
?
= x10

69 procedure ChkBwd(x10, x11, x1):
70 (x′0, x

′
1) := P−1(x10, x11)

71 return x′1
?
= x1

72 procedure ForceVal(x, y, `):
73 G`(x) := y

74 procedure EvFwdComp(
Q, xk, xk+1, k,m):

75 while k 6= m do
76 if k = 10 then
77 (x0, x1) := P−1(x10, x11)
78 k := 0
79 else
80 xk+2 := xk⊕

FCOMP(Q, k + 1, xk+1)
81 k := k + 1

82 return (xm, xm+1)

83 procedure EvBwdComp(
Q, xk, xk+1, k,m):

84 while k 6= m do
85 if k = 0 then
86 (x10, x11) := P(x0, x1)
87 k := 10
88 else
89 xk−1 := xk+1⊕

FCOMP(Q, k, xk)
90 k := k − 1

91 return (xm, xm+1)

92 procedure FCOMP(Q, i, x):
93 if x /∈ Gi then
94 Gi(x)← {0, 1}n
95 if Q 6=⊥ ∧Q = Qall∧ i ∈ {5, 6}

then
96 EnqNewMidChains(i, x)

97 return Gi(x)

98 procedure EnqNewMidChains(i, x):
99 if i = 5 then

100 for all (x5, x6) ∈ {x} ×G6 do
101 Qmid.Enqueue(x5, x6, 5, 2, 4, 1)

102 if i = 6 then
103 for all (x5, x6) ∈ G5 × {x} do
104 Qmid.Enqueue(x5, x6, 5, 8, 7, 10)

105 procedure EnqNewChains(i, x):
106 if i = 1 then
107 for all (x9, x10, x1) ∈ (G9 ∪Aj

9)×G10 × {x} do
108 if ChkBwd(x10, G10(x10)⊕ x9, x1) then
109 if (x9, x10, 9) /∈ SimPChains then
110 Qenq.Enqueue(x9, x10, 9, 3, 2, 5)
111 Qall.Enqueue(x9, x10, 9, 3, 2, 5)

112 if i = 2 then
113 for all (x10, x1, x2) ∈ (G10 ∪Aj

10)×G1 × {x} do

11



114 if ChkFwd(x2 ⊕G1(x1), x1, x10) then
115 if (x1, x2, 1) /∈ SimPChains then
116 Qenq.Enqueue(x1, x2, 1, 4, 3, 6)
117 Qall.Enqueue(x1, x2, 1, 4, 3, 6)

118 if i = 5 then
119 for all (x5, x6) ∈ {x} × (G6 ∪Aj

6) do
120 Qenq.Enqueue(x5, x6, 5, 2, 4, 1)
121 Qall.Enqueue(x5, x6, 5, 2, 4, 1)

122 if i = 6 then
123 for all (x5, x6) ∈ (G5 ∪Aj

5)× {x} do
124 Qenq.Enqueue(x5, x6, 5, 8, 7, 10)
125 Qall.Enqueue(x5, x6, 5, 8, 7, 10)

126 if i = 9 then
127 for all (x9, x10, x1) ∈ {x} ×G10 × (G1 ∪Aj

1) do
128 if ChkBwd(x10, G10(x10)⊕ x9, x1) then
129 if (x9, x10, 9) /∈ SimPChains then
130 Qenq.Enqueue(x9, x10, 9, 6, 8, 5)
131 Qall.Enqueue(x9, x10, 9, 6, 8, 5)

132 if i = 10 then
133 for all (x10, x1, x2) ∈ {x} ×G1 × (G2 ∪Aj

2) do
134 if ChkFwd(x2 ⊕G1(x1), x1, x10) then
135 if (x1, x2, 1) /∈ SimPChains then
136 Qenq.Enqueue(x1, x2, 1, 7, 9, 6)
137 Qall.Enqueue(x1, x2, 1, 7, 9, 6)

138 procedure Adapt(Q, x`−2, x`−1, x`+2, x`+3, `, g, b):
139 flagMidAdapt0 := 0
140 flagMidAdapt1 := 0
141 FCOMP(Q, `− 1, x`−1)
142 x` := x`−2 ⊕G`−1(x`−1)
143 if (Q = Qall) ∧ (` = 5 ∨ ` = 6) ∧ (x` /∈ G`) then
144 flagMidAdapt0 := 1

145 FCOMP(Q, ` + 2, x`+2)
146 x`+1 := x`+3 ⊕G`+2(x`+2)
147 if (Q = Qall) ∧ (` + 1 = 5 ∨ ` + 1 = 6) ∧ (x`+1 /∈ G`+1) then
148 flagMidAdapt1 := 1

149 ForceVal(x`, x`+1 ⊕ x`−1, `)
150 if flagMidAdapt0 = 1 then
151 EnqNewMidChains(`, x`)

152 ForceVal(x`+1, x` ⊕ x`+2, ` + 1)
153 if flagMidAdapt1 = 1 then
154 EnqNewMidChains(` + 1, x`+1)

12



5 Proof of Indifferentiability

Let Feistel denote the 10-round Feistel construction, let F be 10 independent
random functions with domain and range {0, 1}n, and let P denote a random
permutation on {0, 1}2n. Let S denote the simulator from the previous section.
We prove:

Theorem 2. The probability that a distinguisher D making at most q queries
outputs 1 in an interaction with (P,SP) and the probability that it outputs 1 in
an interaction with (FeistelF,F) differ by at most O(q12/2n). Moreover, S runs
in time O(q6) except with probability O(q12/2n).

For the rest of the paper, fix a distinguisher D making at most q queries.

5.1 Proof Overview

Our proof structure utilizes four hybrid experiments H1, . . . ,H4 as in the proof
of indifferentiability of the 14-round Feistel network [1, 11]. Hybrid H1 denotes
the scenario in which D interacts with (P,SP), and H4 denotes the scenario in
which D interacts with (FeistelF,F). To prove indifferentiability, we show that
the difference between the probability D outputs 1 in H1 and the probability D
outputs 1 in H4 is at most poly(q)/2n.

In H2, the random permutation P is replaced with a two-sided random func-
tion R. Following [1, 11], we first bound the simulator complexity in hybrid H2

and use that to bound the simulator’s complexity in H1.

Next, we define certain “bad events” that can occur in an execution ofH2, and
show that these events occur with low probability. We then show that as long as
these events do not occur in an execution of H2, then certain “good” properties
hold; in particular, we can prove that for every call to ForceVal(x, ·, j) that
occurs in the execution, we have x /∈ Gj before the call. If this is true, we say
that “ForceVal does not overwrite.” This is the main technical part of the
proof and can be found in Section 5.3.2.

In H3, the two-sided random function R is replaced with the 10-round Feistel
construction. The distinguisher interacts with (Feistel, ŜFeistel+) where Feistel+

is the Feistel construction with additional procedures ChkFwd and ChkBwd.
Given the “good” properties that were proven in Section 5.3.2, we prove that H2

and H3 are indistinguishable. The proof follows exactly along the lines of the
proof in [1, 11].

Finally, in H4, the distinguisher interacts with (FeistelF,F) and hence ac-
cesses the random functions F directly instead of through the simulator. We
prove that H3 and H4 are indistinguishable similar to the proof of [1, 11].

Due to space constraints, we omit some of the proofs in the following sections.
The omitted proofs can be found in the full version [3].

13



5.2 Indistinguishability of the First and Second Experiments

In H2, we replace the random permutation with the two-sided random func-
tion R, and D interacts with (R, ŜR). The simulator Ŝ in H2 is exactly the
same as the simulator S described in Section 4.2 except that it implements pro-
cedures Ŝ.ChkFwd and Ŝ.ChkBwd by calling the procedures R.ChkFwd and
R.ChkBwd that are provided by R (described below).

The two-sided function R maintains a hashtable P containing elements of
the form (↓, x0, x1) and (↑, x10, x11). Whenever R.P(x0, x1) is queried, R checks
if (↓, x0, x1) ∈ P and if so, answers accordingly. Otherwise, an independent uni-
form output (x10, x11) is picked and (↓, x0, x1) as well as (↑, x10, x11) are added to
P , mapping to each other. In addition to P and P−1, R contains the procedures
ChkFwd(x0, x1, x10) and ChkBwd(x10, x11, x1).3 ChkFwd(x0, x1, x10) works
as follows: If (↓, x0, x1) ∈ P , it returns true if (↓, x0, x1) maps to (x10, x11) for
some value of x11 ∈ {0, 1}n and false otherwise. Procedure ChkBwd(x10, x11, x1)
works as follows: If (↑, x10, x11) ∈ P , it returns true if (↑, x10, x11) maps to
(x0, x1) for some value of x0 ∈ {0, 1}n and false otherwise. The pseudocode for
the two-sided random function R, using hashtable P , is as follows:

1 procedure P(x0, x1):
2 if (↓, x0, x1) /∈ P then

3 (x10, x11)
$← {0, 1}2n

4 P (↓, x0, x1) := (x10, x11)
5 P (↑, x10, x11) := (x0, x1)

6 return P (↓, x0, x1)

7 procedure ChkFwd(x0, x1, x10):
8 if (↓, x0, x1) ∈ P then
9 (x′10, x

′
11) := P (↓, x0, x1)

10 return x′10
?
= x10

11 return false

12 procedure P−1(x10, x11):
13 if (↑, x10, x11) /∈ P then

14 (x0, x1)
$← {0, 1}2n

15 P (↑, x10, x11) := (x0, x1)
16 P (↓, x0, x1) := (x10, x11)

17 return P (↑, x10, x11)

18 procedure ChkBwd(x10, x11, x1):
19 if (↑, x10, x11) ∈ P then
20 (x′0, x

′
1) := P (↑, x10, x11)

21 return x′1
?
= x1

22 return false

Fig. 1: Random Two-sided Function R.

The proof of indistinguishability of H1 and H2 can be found in the full
version [3]. In particular, we prove the following statements regarding the the
indistinguishability of H1 and H2 and the simulator complexity.

Lemma 3. The probability that D outputs 1 in H1 differs from the probability

that it outputs 1 in H2 by at most 2·1015q12
2n ·

Lemma 4. In H1, the simulator runs for at most O(q6) steps and makes at

most 3.2× (10q)
6

queries except with probability at most 1015q12

2n ·

We will prove some properties of H2 in the following section that will be
useful to prove the indistinguishability of the second and third experiments.

3 This is similar to the check procedure in [1, 11].

14



5.3 Properties of H2

We introduce some definitions and establish some properties of executions in H2.
The definitions here follow closely along the lines of the definitions in [1, 11]. A
partial chain is a triple (xk, xk+1, k) ∈ {0, 1}n × {0, 1}n × {0, . . . , 10}. If C =
(xk, xk+1, k) is a partial chain, we let C[1] = xk, C[2] = xk+1, and C[3] = k.

Definition 5. Fix tables G = Ŝ.G and P = R.P in an execution of H2, and let
C = (xk, xk+1, k) be a partial chain. We define functions next, prev, val+, val−,
and val as follows:

1 procedure next(xk, xk+1, k):
2 if k < 10 then
3 if xk+1 /∈ Gk+1 then
4 return ⊥
5 xk+2 := xk ⊕Gk+1(xk+1)
6 return (xk+1, xk+2, k + 1)
7 else if k = 10 then
8 if (↑, x10, x11) /∈ P then
9 return ⊥

10 (x0, x1) := P (↑, x10, x11)
11 return (x0, x1, 0)

12 procedure prev(xk, xk+1, k):
13 if k > 0 then
14 if xk /∈ Gk then
15 return ⊥
16 xk−1 := xk+1 ⊕Gk(xk)
17 return (xk−1, xk, k − 1)
18 else if k = 0 then
19 if (↓, x0, x1) /∈ P then
20 return ⊥
21 (x10, x11) := P (↓, x0, x1)
22 return (x10, x11, 10)

1 procedure val+i (C):
2 while (C 6=⊥)∧ (C[3] /∈ {i− 1, i})

do
3 C := next(C)

4 if C =⊥ then return ⊥
5 if C[3] = i then return C[1]
6 else return C[2]

7 procedure val−i (C):
8 while (C 6=⊥)∧ (C[3] /∈ {i− 1, i})

do
9 C := prev(C)

10 if C =⊥ then return ⊥
11 if C[3] = i then return C[1]
12 else return C[2]

1 procedure vali(C):
2 if val+i (C) 6=⊥ then return val+i (C)
3 else return val−i (C)

We say that⊥/∈ Gi for i ∈ {1, . . . , 10}. So, if vali(C) /∈ Gi, then either vali(C) =⊥
or vali(C) 6=⊥ and vali(C) /∈ Gi.

Definition 6. For a given set of tables G,P , two partial chains C,D are equiv-
alent (denoted C ≡ D) if they are in the reflexive, transitive closure of the
relations given by next and prev.

So, two chains C and D are equivalent if C = D, or if D can be obtained by
applying next and prev finitely many times to C.

Definition 7. The set of table-defined chains contains all chains C for which
next(C) 6=⊥ and prev(C) 6=⊥.

15



Definition 8. A chain C = (xk, xk+1, k, `, g, b) is called an enqueued chain if
C is enqueued for completion. For such an enqueued chain, we define next(C)
as the procedure next applied to the partial chain (xk, xk+1, k) i.e. next(C) :=
next(xk, xk+1, k). The procedures prev, val+, val− and val on an enqueued chain
C are defined in a similar manner.

Definition 9. The set Q∗all contains chains that are enqueued in Qall but not in
Q1, Q5, Q6, Q10.

Definition 10. We say a uniform assignment to Gk(xk) occurs when the simu-
lator sets Gk(xk) through an assignment Gk(xk)← {0, 1}n, i.e., a uniform value
is chosen from the set of n-bit strings and Gk(xk) is assigned that value.

A uniform assignment toGk(xk) occurs in line 94 of the simulator’s execution.
In particular, if Gk(xk) is set through a ForceVal(xk, ·, k) call, then it is not
a uniform assignment.

Definition 11. We say a uniform assignment to P occurs in a call to R.P(x0, x1)
if (↓, x0, x1) /∈ P when the call is made and P (↓, x0, x1) is set through the as-
signment P (↓, x0, x1) := (x10, x11) where (x10, x11) is chosen uniformly from the
set of 2n-bit strings.

Similarly, it occurs in a call to R.P−1(x10, x11) if (↑, x10, x11) /∈ P when the
call is made and P (↑, x10, x11) is set through the assignment P (↑, x10, x11) :=
(x0, x1) where (x0, x1) is chosen uniformly from the set of 2n-bit strings.

A uniform assignment to P (↓, x0, x1) occurs in line 4 of R in Figure 7 and a
uniform assignment to P (↑, x10, x11) occurs in line 15 of R in Figure 7.

In the following section, we define a set of “bad” events, and show that these
occur with negligible probability. Following that, we analyze execution of the
experiment assuming that none of these bad events occur.

In the remainder of the section, we let T = O(q2) be an upper bound on the
sizes of Gi and P as well as the upper bound on the number of enqueued chains
and hence, the number of calls to the Adapt procedure in an execution of H2.
The derivation of the bound on T and the proof of the lemmas below can be
found in the full version [3].

5.3.1 Bad Executions

Definition 12. We say that event BadP occurs in H2 if either:

– Immediately after choosing (x10, x11) in a call to R.P(·, ·), either (↑, x10, x11) ∈
P or x10 ∈ G10.

– Immediately after choosing (x0, x1) in a call to R.P−1(·, ·), either (↓, x0, x1) ∈
P or x1 ∈ G1.

Lemma 13. The probability of event BadP in H2 is at most 2T 2/2n.

16



A partial chain C = (xk, xk+1, k) that has been enqueued by our simulator
may not get table-defined till it is completed since it is possible that xk ∈ Gk
while xk+1 ∈ Ajk+1 for some j but not inGk+1. Hence, we augment the definitions
of BadlyHit and BadlyCollide given in [1, 11] to refer to interactions with enqueued
chains and refer to the augmented definitions as BadlyHit+ and BadlyCollide+.

Definition 14. We say that event BadlyHit+ occurs in H2 if either:

– Immediately after a uniform assignment to Gk(xk), there is a partial chain
(xk, xk+1, k) such that prev(prev(xk, xk+1, k)) 6=⊥.

– Immediately after a uniform assignment to Gk(xk), there is a partial chain
(xk−1, xk, k − 1) such that next(next(xk−1, xk, k − 1)) 6=⊥.

and the relevant partial chain is either table-defined or an enqueued chain in
Qall.

Lemma 15. The probability of event BadlyHit+ in H2 is at most 40T 3/2n.

Definition 16. We say that event BadlyCollide+ occurs in H2 if a uniform as-
signment to Gi(xi) is such that there exist two partial chains C and D such that
for some ` ∈ {0, . . . , 11} and σ, ρ ∈ {+,−} all of the following are true:

– Immediately before the assignment, C and D are not equivalent.
– Immediately before the assignment, valσ` (C) =⊥ or valρ` (D) =⊥.
– Immediately after the assignment, valσ` (C) = valρ` (D) 6=⊥.

and one of the following is true:

– Immediately after the assignment, C and D are table-defined.
– Immediately after the assignment, C is table-defined and D is a chain en-

queued in Qall.
– C and D are chains enqueued in Qall.

Lemma 17. The probability of event (BadlyCollide+ ∧ ¬BadlyHit+ ∧ ¬BadP) in
H2 is at most 21160T 5/2n.

Definition 18. We say that event BadlyCollideP occurs in H2 if either:

– A uniform assignment P (↓, x0, x1) := (x10, x11) is such that there exist par-
tial chains C,D such that for some σ, ρ ∈ {+,−} the following are all true:
• Immediately before the assignment, C and D are not equivalent.
• Immediately before the assignment, valσ10(C) =⊥ or valρ10(D) =⊥.
• Immediately after the assignment, valσ10(C) = valρ10(D) = x10 6=⊥.

and one of the following conditions hold:
• Before the assignment, C and D are chains in Q∗all.
• Immediately after the assignment, C and D are table-defined.
• Before the assignment, C is a chain enqueued in Qall and immediately

after the assignment, D is table-defined.
– A uniform assignment P (↑, x10, x11) := (x0, x1) is such that there exist par-

tial chains C,D such that for some σ, ρ ∈ {+,−} the following are all true:

17



• Immediately before the assignment, C and D are not equivalent.
• Immediately before the assignment, valσ1 (C) =⊥ or valρ1(D) =⊥.
• Immediately after the assignment, valσ1 (C) = valρ1(D) = x1 6=⊥.

and one of the following conditions hold:
• Before the assignment, C and D are chains in Q∗all.
• Immediately after the assignment, C and D are table-defined.
• Before the assignment, C is a chain enqueued in Qall and immediately

after the assignment, D is table-defined.

Lemma 19. The probability of event BadlyCollideP in H2 is at most 314T 5/2n.

Proof. Consider the case that after a uniform choice of (x0, x1) leading to an
assignment P (↑, x10, x11) := (x0, x1), event BadlyCollideP occurs. The value
val−1 (C) for a chain C does not change due to the assignment since it is a
P (↑, x10, x11) assignment and val−1 (C) can change only due to a P (↓, x0, x1)
assignment by definition of val−(·).

Suppose that val+1 (C) =⊥ and val−1 (D) 6=⊥ before the assignment and after
the assignment val+1 (C) = val−1 (D) = x1. The value val−1 (D) does not change
due to the assignment as mentioned above. So, the probability that val+1 (C) =
val−1 (D) = x1 is 2−n.

Suppose that val+1 (C) = val+1 (D) =⊥ before the assignment and after the
assignment val+1 (C) = val+1 (D) = x1. For this to happen, val10(C) = val10(D) =
x10 and val11(C) = val11(D) = x11 implying that C and D are equivalent chains.
So, the probability of this event is 0.

Suppose that val+1 (C) =⊥ and val+1 (D) 6=⊥ before the assignment and af-
ter the assignment val+1 (C) = val+1 (D) = x1. Now, the value of val+1 (D) stays
the same after the assignment (even if BadP occurs). So, the probability that
val+1 (C) = val+1 (D) = x1 is 2−n.

The analysis for the other case follows similarly. There are at most T as-
signments of the form P (↑, x10, x11) or P (↓, x0, x1). There are at most 11T 2

possibilities for a chain to be table-defined before the assignment and T possibil-
ities for a chain to be table-defined after the assignment but not before. There
are at most T chains enqueued for completion in Qall. So, the probability of event

BadlyCollideP is at most
(
T · ((11T 2 + T )

2
+ T 2 + T · (11T 2 + T )) · 2

)
· 2−n.

Definition 20. We say event BadlyHitFV occurs in H2 if a uniform assignment
to Gs(xs) that occurs in a call Adapt(Q, x`−2, x`−1, x`+2, x`+3, `, g, b), for some
s ∈ {g, b} one of the following happens (where we let C = (x`−2, x`−1, `− 2)):

– s = `+ 2 and the following holds:
• Immediately before the assignment, val−`+1(C) =⊥.

• Immediately after the assignment, val−`+1(C) 6=⊥.

• Immediately after the assignment, y := val`−1(C) ⊕ val−`+1(C) is such
that x′`+1 ⊕ x′`−1 = y for some x′`+1 ∈ G`+1 and x′`−1 ∈ G`−1.

– s = `− 1 and the following holds:
• Immediately before the assignment, val+` (C) =⊥.

18



• Immediately after the assignment, val+` (C) 6=⊥.
• Immediately after the assignment, y := val`+2(C)⊕ val+` (C) is such that
x′`+2 ⊕ x′` = y for some x′`+2 ∈ G`+2 and x′` ∈ G`.

Lemma 21. The probability of event BadlyHitFV in H2 is at most 2T 3/2n.

Proof. Consider the first case where s = ` + 2. Note that for a chain C with
s = `+2 the “value” at the adapt position `+1 is set as val`+1(C) := val`+3(C)⊕
Gs(vals(C)) where val`+3(C) 6=⊥ is one of the arguments to Adapt. Since the
assignment to Gs(xs) happens inside the Adapt call, val−`+1(C) =⊥ until the

assignment and val−`+1(C) 6=⊥ immediately after the assignment.

Now, y := val`−1(C)⊕ val−`+1(C). Note that val`−1(C) 6=⊥ since val`−1(C) =
x`−1 is one of the arguments of the Adapt procedure. So, for y := val`−1(C)⊕
val`+3(C)⊕Gs(vals(C)) to be such that y = x′`−1⊕x′`+1 where x′`−1 ∈ G`−1 and
x′`+1 ∈ G`+1, y needs to take one of T 2/2n values. Note that there are at most
T such calls to Adapt by assumption. So, the probability of the first case is at
most T 3/2n. The analysis for the second case is analogous.

Definition 22. We say that event BadlyCollideFV occurs in H2 if a uniform as-
signment to Gs(xs) that occurs in a call to Adapt(Q, x`−2, x`−1, x`+2, x`+3, `, g, b),
for some s ∈ {g, b} the following happens (where we let C = (x`−2, x`−1, ` − 2)
and D is a chain in Q∗all):

– s = `+ 2, and for some (k, k′) ∈ {(`− 1, `+ 1), (`+ 1, `− 1)} the following
holds:
• Immediately before the assignment, val−`+1(C) =⊥ and valk(D) 6=⊥.

• Immediately after the assignment, val−`+1(C) 6=⊥.

• Immediately after the assignment, y := val`−1(C) ⊕ val−`+1(C) is such
that x⊕ y = valk(D) for some x ∈ Gk′ .

– s = `− 1, and for some (k, k′) ∈ {(`, `+ 2), (`+ 2, `)} the following holds:
• Immediately before the assignment, val+` (C) =⊥ and valk(D) 6=⊥.
• Immediately after the assignment, val+` (C) 6=⊥.
• Immediately after the assignment, y := val`+2(C)⊕ val+` (C) is such that
x⊕ y = valk(D) for some x ∈ Gk′ .

Lemma 23. The probability of event BadlyCollideFV in H2 is at most 4T 3/2n.

Proof. Consider the first case where s = ` + 2. Note that during the Adapt
call the “value” at the adapt position ` + 1 is set as val`+1(C) := val`+3(C) ⊕
Gs(vals(C)) where val`+3(C) 6=⊥ is one of the arguments to Adapt. Since the
assignment to Gs(xs) happens inside the Adapt call, val−`+1(C) =⊥ until the

assignment and val−`+1(C) 6=⊥ immediately after the assignment.

Now, y := val`−1(C) ⊕ val−`+1(C). Note that val`−1(C) 6=⊥ since it is one of
the arguments of Adapt. Also note that if valk(D) 6=⊥ before the assignment,
then valk(D) does not change due to the assignment. Say k = `−1 and k′ = `+1.
So, for y := val`−1(C) ⊕ val`+3(C) ⊕ Gs(xs) to be such that y = x ⊕ val`−1(D)
where x ∈ G`+1, the value y would have to take one of T 2/2n values. (This

19



is because T is the upper bound on the number of chains enqueued in Qall by
assumption and on the size of G`+1.) Similarly for the case where k = `+ 1 and
k′ = ` − 1. So, for a single call to Adapt where s = ` + 2, we have that the
probability that the event occurs is 2T 2/2n. There are at most T calls to Adapt
by assumption and hence, the probability of the first case is at most 2T 3/2n.

The analysis for the second case is analogous.

We say an execution of H2 is good if none of BadP, BadlyHit+, BadlyCollide+,
BadlyCollideP, BadlyHitFV, or BadlyCollideFV occur. Lemmas 13–23 imply:

Lemma 24. The probability that an execution of H2 is good is 1−O(T 5)/2n.

5.3.2 Properties of Good Executions

Notation. For a chain C = (xk, xk+1, k, `, g, b) that is enqueued for completion,
the “adapt positions” are at `, `+1. These positions are those where the simulator
uses ForceVal(·, ·, `) and ForceVal(·, ·, `+ 1) to force the values at G`(·) and
G`+1(·). Also, for the chain C, the “set uniform” positions are at ` − 1, ` + 2.
(These are the buffer zones that surround the adapt positions.) One of these “set
uniform” positions is adjacent to the query that caused the chain to be enqueued
and this position is denoted by g and referred to as the “good” set uniform
position. The other “set uniform” position is referred to as the “bad” set uniform
position. Note that g, b ∈ {` − 1, ` + 2} and g 6= b; Let a be the adapt position
that is adjacent to “bad” set uniform position. So, if b = `− 1, then a = `; Else,
if b = ` + 2, a = ` + 1. Consider a call Adapt(x`−2, x`−1, x`+2, x`+3, `, g, b), if
b = `− 1 define xa = x` as x` := x`−2 ⊕G`−1(x`−1) if x`−1 ∈ G`−1, and x` =⊥
otherwise. Analogously, if b = ` + 2, define xa = x`+1 := x`+3 ⊕ G`+2(x`+2) if
x`+2 /∈ G`+2 and x`+1 =⊥ otherwise.

Also, for a chain C enqueued in Qb we say adapting is safe if just before
the call to Adapt for C, we have xg /∈ Gg and xa /∈ Ga. Analogously, for
a chain C in Q∗all or Qmid we say adapting is safe if just before the call to
Adapt for C, we have x`−1 /∈ G`−1 and x`+2 /∈ G`+2. Also, we loosely use
the statement C ∈ CompChains where C = (xk, xk+1, k, `, g, b) to mean that
(xk, xk+1, k) ∈ CompChains.

High-level overview. The aim of this section is to prove that during a good
execution of H2, every call to ForceVal(x, ·, a) is such that x /∈ Ga, i.e., to
prove that a ForceVal call does not “overwrite.”

To prove that ForceVal does not “overwrite,” we prove that for every call
to Adapt that occurs during the completion of a chain C = (xk, xk+1, k, `, g, b),
we have valg(C) /∈ Gg before the call and if C is enqueued in Qb, vala(C) /∈ Ga
before the call; else, valb(C) /∈ Gb before the call i.e. every call to Adapt is “safe”.
In order to prove the above statements, we will prove that at the time a chain
C is enqueued in Qall, valg(C) =⊥ and if C is a chain enqueued in Qb for some
b ∈ {1, 5, 6, 10}, then valb(C) /∈ Gb; else, valb(C) =⊥ when C was enqueued.
Similarly, if a chain C is enqueued in Qmid, then just before the assignment

20



that precedes C being enqueued occurs, we will prove that valg(C) =⊥ and
valb(C) =⊥. We also need to prove properties of equivalent chains in order to
prove that if a chain equivalent to C has been completed before C, then C ∈
CompChains when it is dequeued. All of this put together will help us prove that
ForceVal does not “overwrite” (Theorem 39). While the structure explained
above is similar to the structure of the proof in [1, 11], the major difference is
in how we prove the properties of chains at the time they are enqueued. This is
due to the fact that we separate enqueueing from completion in our simulation.

Due to space constraints, we state some lemmas without proofs, and refer to
the full version of our work for details [3].

Properties of Equivalent Chains

Lemma 25. Consider a good execution of H2. Suppose that at some point in
the execution, two partial chains C and D are equivalent. Then there exists a
sequence of partial chains C1, . . . , Cr such that

– C = C1 and D = Cr, or else D = C1 and C = Cr,
– for r ≥ 2, Ci = next(Ci−1) and Ci−1 = prev(Ci) for all i ∈ {2, . . . , r},
– for r ≥ 3, C2, . . . , Cr−1 is table-defined,
– D = (valρj (C), valρj+1(C), j) where valρj (C) 6=⊥ and valρj+1(C) 6=⊥ for some
ρ ∈ {+,−},

– C = (valσk(D), valσk+1(D), k) where valσk(D) 6=⊥ and valσk+1(D) 6=⊥ for some
σ ∈ {+,−}.

Lemma 26. Consider some point in a good execution of H2 and assume that
x 6∈ Gj before every call to ForceVal(x, ·, j) prior to this point in the ex-
ecution. Then, if the partial chains C = (xk, xk+1, k) with k ∈ {1, 5, 9} and
D = (x′m, x

′
m+1,m) with m ∈ {1, 5, 9} are equivalent at this point in the execu-

tion, then C ∈ CompChains if and only if D ∈ CompChains.

Properties of Enqueued Chains

Recall that {1, 5, 6, 10} are “bad” set uniform positions.

Lemma 27. Say a chain C = (xk, xk+1, k, `, g, b) is enqueued to be completed
in Qb. Then at the time C is enqueued, valg(C) =⊥ and valb(C) /∈ Gb.

Effects of a Call to ForceVal

For the following lemmas, note that g, b ∈ {`− 1, `+ 2} and g 6= b.

Lemma 28. In a good execution of H2, let x`−1 /∈ G`−1 (respectively x`+2 /∈
G`+2) immediately before a call Adapt(Q, x`−2, x`−1, x`+2, x`+3, `, g, b). Then,
before the call to ForceVal(x`, ·, `) (respectively ForceVal(x`+1, ·, ` + 1)) in
that Adapt call, we have x` /∈ G` (respectively x`+1 /∈ G`+1).

21



The lemma above immediately gives us the following corollary.

Corollary 29. Consider a call Adapt(Q, x`−2, x`−1, x`+2, x`+3, `, g, b) in a good
execution of H2 and assume that adapting was safe for all chains C that were
dequeued before this Adapt call. Then, before the call to ForceVal(x`, ·, `) and
ForceVal(x`+1, ·, `+ 1) that occurs in Adapt(Q, x`−2, x`−1, x`+2, x`+3, `, g, b),
we have x` /∈ G` and x`+1 /∈ G`+1 respectively.

Lemma 30. Suppose that x`−1 /∈ G`−1 (respectively x`+2 /∈ G`+2) immedi-
ately before a call Adapt(Q, x`−2, x`−1, x`+2, x`+3, `, g, b) in a good execution
of H2. Then, if C is a table-defined chain before the call to Adapt, vali(C) for
i ∈ {1, . . . , 10} stays constant during the call to ForceVal(x`, ·, `) (respectively
ForceVal(x`+1, ·, `+ 1)).

Lemma 31. Suppose that x`−1 /∈ G`−1 (respectively x`+2 /∈ G`+2) immediately
before a call Adapt(Q, x`−2, x`−1, x`+2, x`+3, `, g, b) in a good execution of H2.
Then, if C is a chain enqueued in Qall, vali(C) for i ∈ {1, . . . , 10} stays constant
during the call to ForceVal(x`, ·, `) (respectively ForceVal(x`+1, ·, `+1)) that
occurs in the Adapt call.

Lemma 32. Consider a call to Adapt(Q, x`−2, x`−1, x`+2, x`+3, `, g, b) in a good
execution of H2 for some Q ∈ {Q1, Q5, Q6, Q10}. Assume that adapting was
safe for all chains C that were dequeued from Q1,Q5,Q6,Q10 before this Adapt
call. If xa /∈ Ga and xg /∈ Gg (where a is the adapt position adjacent to the
“bad” set uniform position) before the Adapt call, then if C is a chain en-
queued in Qall, vali(C) for i ∈ {1, . . . , 10} stays constant during the call to
ForceVal(xa, ·, a) that occurs in the Adapt call.

Additional Properties of Enqueued Chains

For the following lemma, if a chain C = (xk, xk+1, k, `, g, b) is enqueued in Qmid,
then the assignment Gi(xi) that precedes C being enqueued happens either in
lines 94, 149 or 152 of the simulator’s execution.

Lemma 33. Suppose that a chain C = (xk, xk+1, k, `, g, b) is enqueued in Qmid

during a good execution of H2 such that no chain equivalent to C has been
enqueued for completion so far. Suppose also that adapting has been safe for
every chain dequeued from Q1,Q5,Q6,Q10 or Q∗all so far. Then valg(C) =⊥ and
valb(C) =⊥ just before the assignment Gi(xi) that precedes C being enqueued.
Also, val9(C) = val2(C) =⊥ just before the assignment Gi(xi) that precedes C
being enqueued.

Proof. Say a chain C = (x5, x6, 5, 2, 4, 1) is enqueued in Qmid with g = 4 and
b = 1. Then, the assignment G5(x5) that precedes the enqueueing of C is such
that x5 /∈ G5 before the assignment, by construction of the simulator. Otherwise,
EnqNewMidChains(5, x5) is not called. Hence, val−4 (C) =⊥ just before the
assignment G5(x5) that precedes C being enqueued. Also, since val−4 (C) =⊥, we
have val−1 (C) =⊥.

22



Before we prove val+4 (C) =⊥ and val+1 (C) =⊥ (and hence, val4(C) =⊥ and
val1(C) =⊥), we make the following observation. If a partial chain (x5, x6, 5) is
enqueued in Qmid such that no equivalent chain has been enqueued previously, by
construction of the simulator, either (1) val5(D) = x5 for a chain D belonging to
Q∗all where val5(D) =⊥ when D was enqueued or (2) val6(E) = x6 for a chain E
enqueued in Q∗all where val6(E) =⊥ when E was enqueued or (3) both. In other
words, either x5 /∈ G5 ∪At5 or x6 /∈ G6 ∪At6 or both when Qenq.Empty() = true
in line 6 of the simulator’s execution after D’s tth query.

Consider a chain C = (x5, x6, 5, 2, 4, 1) which was enqueued in Qmid such that
no chain equivalent to C was enqueued previously. Such a chain C is enqueued
in Qmid, when x6 ∈ G6, val5(C) = val5(D) = x5 and x5 ∈ G5 right before C was
enqueued (and not earlier) where D is a chain belonging to Q∗all and x5 ∈ G5

due to the completion of D.

For val1(C) 6=⊥ at the time of the assignment that precedes the enqueueing
of C, we need val+1 (C) 6=⊥. Then, in particular, we have that x7 := val7(C) ∈ G7

and x8 := val8(C) ∈ G8 (otherwise, val+9 (C) =⊥ implying that val+1 (C) =⊥).

Consider the partial chains C = (x5, x6, 5), C1 = (x6, x7, 6) and C2 =
(x7, x8, 7). For val+9 (C) 6=⊥ just before the assignment that precedes the en-
queueing of C, we need (1) C1 = next(C), C2 = next(C1) (and hence, x6 ∈ G6

and x7 ∈ G7) and (2) x5 = val5(D) for a chain D in Q∗all and (3) x8 ∈ G8 or
x8 = val8(E) of a chain E enqueued in Qall. Note that this condition is not true
at the time the simulator finished enqueueing chains in Qall since we have either
x5 /∈ G5 ∪ At5 or x6 /∈ G6 ∪ At6 or both. Hence, the conditions must have been
met during the completion of chains in Qall. Consider the last assignment that
was made before all the above conditions were met.

Consider the case that when the last assignment (such that all the conditions
listed above were met immediately after this assignment) happened, the chain
C1 was already table-defined. Now, if the assignment was a P/P−1 assignment,
then BadP occurred. It cannot be a ForceVal assignment since ForceVal
does not change the value of a chain enqueued in Qall by Lemmas 31 and 32. If
it were a uniform assignment to Gi(xi), then, BadlyCollide+ occurred.

Consider the case that when the last assignment (such that all the conditions
listed above were met immediately after this assignment) happened, the chain
C1 was not table-defined before the assignment but table-defined immediately
after. Recall that if C1 = (x6, x7, 6) is table-defined then x6 ∈ G6 and x7 ∈ G7.
So, the assignment was either to G6(x6) or G7(x7).

Consider the case that it set G7(x7). If this were a uniform assignment to
G7(x7), then BadlyCollide+ occurred since C1(≡ C) and E are not equivalent as
no chain equivalent to C has been enqueued previously. If this were a ForceVal
assignment, then BadlyCollideFV occurred. This is because 7 is an adapt position
only for partial chains that are either of the form (a) X = (x9, x10, 9) such that
(x9, x10, 9, 6, 8, 5) belongs to Q∗all. By assumption for chains in Q∗all, we have
val5(X) /∈ G5 before the Adapt call for such a chain or, (b) Y = (x1, x2, 1) such
that (x1, x2, 1, 7, 9, 6) is enqueued in Q6. In this case, the adapt position 7 is
adjacent to the “bad” set uniform position 6. By assumption for chains enqueued

23



in Q6, we have val9(Y ) /∈ G9 before the Adapt call for such a chain. Hence,
BadlyCollideFV occurred due to the assignment G5(val5(X)) or G9(val9(Y )) that
occurs in the Adapt call. The analysis for the case when G6(x6) is set is similar.
So, the above conditions are not met for a chain C to be enqueued inQmid. Hence,
for such a chain C = (x5, x6, 5, 2, 4, 1), val+9 (C) =⊥ just before the assignment
that caused C to be enqueued. Since val+9 (C) =⊥ and val−4 (C) =⊥ before the
assignment, we have val4(C) =⊥, val9(C) =⊥ and val1(C) =⊥ just before the
assignment that precedes C being enqueued. The analysis for the case where
C = (x5, x6, 5, 8, 7, 10) is analogous.

Lemma 34. Consider a good execution of H2. Just before the execution of
line 27 during the simulator’s execution, if adapting was safe for every chain
dequeued from Q1,Q5,Q6,Q10, Q∗all or Qmid so far, then it holds that:

i. if x9 ∈ G9, x10 ∈ G10, x1 ∈ G1 such that R.ChkBwd(x10, x9⊕G10(x10), x1) =
true, then (x9, x10, 9) ∈ CompChains.

ii. if x1 ∈ G1, x2 ∈ G2, x10 ∈ G10 such that R.ChkFwd(x2⊕G1(x1), x1, x10) =
true, then (x1, x2, 1) ∈ CompChains.

iii. if x5 ∈ G5, x6 ∈ G6, then (x5, x6, 5) ∈ CompChains.

Proof. We start by proving (i). For a triple (x9, x10, x1), we say that “condi-
tion holds” if (x9, x10, x1) is such that x9 ∈ G9, x10 ∈ G10, x1 ∈ G1 and
R.ChkBwd(x10, x9 ⊕ G10(x10), x1) = true. Also, we refer to the partial chain
(x9, x10, 9) as the partial chain associated with the triple (x9, x10, x1). So, our
aim is to prove that for every triple (x9, x10, x1) such that condition holds, the
associated partial chain (x9, x10, 9) ∈ CompChains. Assume that the lemma has
held right before (and hence immediately after) line 27 of the simulator’s ex-
ecution while answering the distinguisher’s (t − 1)th query to F(·, ·). Let the
distinguisher ask its tth query F(k, x). The aim is to prove that at line 27 of the
simulator’s execution while answering the distinguisher’s tth query to F(·, ·), if
a triple T ∗ = (x9, x10, x1) is such that condition holds, then the partial chain
C∗ = (x9, x10, 9) associated with the triple is such that C∗ ∈ CompChains. Note
that the distinguisher could have made queries to P/P−1 between the (t− 1)th

and tth queries to F(·, ·); but if those queries resulted in condition being true,
then BadP occurred.

Suppose that there exists a triple T ∗ such that condition holds at line 27
of the simulator’s execution while answering the distinguisher’s tth query. If
condition held at the end of simulator’s execution while answering the previous
distinguisher query, then by assumption that the lemma has held so far, the
partial chain C∗ associated with the triple T ∗ is such that C∗ ∈ CompChains.
If condition held at the end of the simulator’s execution of the current query
t (and not at the end of the previous query), we differentiate cases where the
associated partial chain C∗ was enqueued for completion during the simulator’s
execution while answering the tth query and when it’s not.

Consider the case where a chain equivalent to C∗ was enqueued in Qall dur-
ing the simulator’s execution while answering the distinguisher’s current query.

24



If C∗ = (x9, x10, 9) was enqueued during the tth query, then (x9, x10, 9) ∈
CompChains by construction of the simulator. Note also that chains in SimPChains
are not enqueued for completion by the simulator. By definition of the set
SimPChains, these chains are such that they are equivalent to a chain of the
form (x5, x6, 5) that has been enqueued for completion. Since BadP does not oc-
cur and ForceVal does not overwrite, the equivalence holds when (x5, x6, 5) ∈
CompChains and hence, by Lemma 26, such a chain in SimPChains is placed in
CompChains as well. By the same argument, if a chain equivalent to C∗ has
been enqueued for completion, then too C∗ ∈ CompChains by the end of the
simulator’s execution of the current query. So, if a chain equivalent to C∗ was
enqueued for completion or was in SimPChains during the simulator’s execution
while answering the current query t, then C∗ ∈ CompChains.

Consider the case where no chain equivalent to C∗ was enqueued in Qall

and C∗ /∈ SimPChains during the simulator’s execution while answering the
distinguisher’s current query. We differentiate between the cases where (1) C =
next(C∗) 6=⊥, next(C) 6=⊥ when Qenq.Empty() = true in line 6 of the simulator’s
execution when answering the distinguisher’s tth query and (2) when it’s not.

Consider the case when C = next(C∗) 6=⊥ and next(C) 6=⊥ at the time
the simulator stops enqueueing chains in Qall i.e. when Qenq.Empty() = true
in line 6 of the simulator’s execution when answering the distinguisher’s tth

query. This implies that x10 ∈ G10 and (↑, x10, x11) ∈ P where x11 := x9 ⊕
G10(x10) and hence, C = (x10, x11, 10) is table-defined at the time the simulator
stops enqueueing chains in Qall. Since the triple T ∗ is such that the associated
partial chain C∗ = (x9, x10, 9) was not enqueued for completion and not in
SimPChains, we have that either (a) x9 /∈ G9 ∪ At9 or (b) x1 /∈ G1 ∪ At1 when
Qenq.Empty() = true in line 6. For the condition to be true, we need x1 ∈ G1

and x9 ∈ G9 and hence, we have that condition does not hold for the triple T ∗

when Qenq.Empty() = true in line 6. Consider the case where x1 /∈ G1 ∪ At1.
For x1 ∈ G1 to be true by the end of the simulator’s execution while answering
the distinguisher’s tth query, it must be the case that val1(D) = val1(C) = x1
at some point for a chain D that has been enqueued in Qall or Qmid. Before
analyzing the case that val1(D) = val1(C) = x1 occurs, we make the following
observations. Firstly, C and D are not equivalent as C ≡ C∗ and no chain
equivalent to C∗ (including itself) has been enqueued. Secondly, for all chains
D that have been enqueued in Qall, val1(D) 6= x1 when enqueued since x1 /∈
G1 ∪ At1. Now, if val1(D) 6= x1 and val1(D) 6=⊥, it cannot be that val1(D) =
x1 at a later point since ForceVal does not overwrite and BadP does not
occur. Hence, if val1(D) = x1 at a later point, then val1(D) =⊥ when enqueued.
Similarly, for all chains D that have been enqueued in Qmid val1(D) =⊥ just
before the assignment that precedes the enqueueing of D by Lemma 33. Since
BadlyHit+ and BadlyHitFV do not occur, val1(D) =⊥ at the time D is enqueued.
Now, if val1(D) = val1(C) = x1, then this is during the completion of some
chain E during the simulator’s execution while answering the distinguisher’s
tth query. Consider the last assignment before val1(D) = val1(C) = x1 was
true. This cannot be a uniform assignment to Gi(xi) since then BadlyCollide+

25



occurred. This cannot be due to a uniform assignment to P since then BadP
or BadlyCollideP occurred. This cannot be a ForceVal assignment since that
would contradict Lemmas 30, 31 or 32. The analysis for the case where x9 /∈
G9 ∪At9 when the simulator stops enqueueing chains in Qall is analogous. So, if
C was table-defined when the simulator stops enqueueing chains in Qall, then
condition does not hold for the triple T ∗ at the end of the simulator’s execution
of the current query.

Consider the case when either next(C∗) =⊥ or C = next(C∗) 6=⊥ and
next(C) =⊥ at the time the simulator stops enqueueing chains in Qall i.e. when
Qenq.Empty() = true in line 6 of the simulator’s execution when answering
the distinguisher’s tth query. Now if the triple T ∗ = (x9, x10, x1) is such that
condition holds by the end of the simulator’s execution of the current query,
then it must be the case that next(C∗) 6=⊥ and next(next(C∗)) 6=⊥ by the
end of the simulator’s execution. In particular, it means that the partial chain
next(C∗) = C = (x10, x11, 10) where x11 := x9 ⊕G10(x10) is table-defined (with
val1(C) = x1) by the end of the simulator’s execution. Note that at the moment
that C becomes table-defined either x1 /∈ G1 or x9 /∈ G9 as otherwise either
BadP or BadlyHit+ occurred. Furthermore, immediately before the assignment
that causes C to be table-defined we have either val1(C) =⊥ or val9(C) =⊥
and immediately after the assignment, we have val9(C) 6=⊥ and val1(C) 6=⊥ by
definition. Say val1(C) =⊥ immediately before the assignment that caused C to
be table-defined and val1(C)(= x1) 6=⊥ immediately after. For x1 ∈ G1 to be
true by the end of the simulator’s execution while answering the distinguisher’s
tth query, it must be the case that val1(D) = val1(C) = x1 at some point for a
chain D that has been enqueued in Qall or Qmid. Consider the last assignment
before val1(D) = val1(C) = x1 was true. The rest of the analysis proceeds simi-
larly to the analysis above. The case when val9(C) =⊥ immediately before the
assignment that caused C to be table-defined and val9(C)(= x9) 6=⊥ immedi-
ately after follows in a similar fashion. So, if next(C∗) =⊥ or if next(C∗) 6=⊥
and next(next(C∗)) =⊥ when the simulator stops enqueueing chains in Qall, then
too the condition does not hold for the triple T ∗ at the end of the simulator’s
execution of the current query. Summarizing, if a chain equivalent to C∗ was not
enqueued in Qall and C∗ /∈ SimPChains during the simulator’s execution while
answering the distinguisher’s current query, then condition does not hold for the
triple T ∗ at the end of the simulator’s execution of the current query.

The proof of (ii) follows exactly along the lines of the proof of (i) given above.

The proof of (iii) is as follows. Let D ask its tth query F(k, x). Just before
the simulator returns Gk(x) in line 27, let the lemma be false and let this be
the first time that the lemma does not hold implying that there exists x5 ∈ G5,
x6 ∈ G6 such that (x5, x6, 5) /∈ CompChains.

If the lemma has held so far, in particular it has held right before (and
immediately after) line 27 of the simulator’s execution while answering D’s (t−
1)th query to F(·, ·). Note that the distinguisher could have made queries to
P/P−1 between the (t− 1)th and tth queries to F(·, ·); but those queries cannot
result in x5 ∈ G5 or x6 ∈ G6.

26



So, x5 ∈ G5, x6 ∈ G6 such that (x5, x6, 5) /∈ CompChains happened during
the simulator’s execution while answering D’s tth query. Now, if (x5, x6, 5) were
enqueued for completion during the tth query then (x5, x6, 5) ∈ CompChains. If a
chain equivalent to (x5, x6, 5) were enqueued for completion during the tth query,
then (x5, x6, 5) ∈ CompChains. This is because equivalent chains are placed in
CompChains simultaneously since BadP does not occur and ForceVal does not
overwrite. So, for x5 ∈ G5, x6 ∈ G6 such that (x5, x6, 5) /∈ CompChains to be
true, the simulator did not enqueue this partial chain. (Note that chains of the
type (x5, x6, 5) are not added to SimPChains.)

Let x6 ∈ G6, and say an assignment occurs such that before the assignment
x5 /∈ G5, but after the assignment x5 ∈ G5 leading to the creation of a partial
chain of the form (x5, x6, 5) with x5 ∈ G5, x6 ∈ G6. (The analysis for the other
case is analogous.) Such an assignment can happen only by completion of a chain
in Q1, Q5, Q6, Q10 or completion of a chain in Q∗all. We analyze these next.

Case 1: An assignment happens to G5(x5) during the completion of a chain C
enqueued in Qb where b ∈ {1, 5, 6, 10} and x6 ∈ G6 before this assignment. Now,
if x6 ∈ G6 before assignment causing x5 ∈ G5, then either x6 ∈ G6 before D’s t-
th query or x6 ∈ G6 due to the completion of a chain D enqueued in Q1, Q5, Q6,
Q10 and dequeued before C. Again, by construction of the simulator, chains C
that are enqueued in Qb are such that either val5(C) ∈ At5 or val5(C) ∈ G5 at the
time C was enqueued and similarly, chains D that are enqueued in Qb are such
that either val6(D) ∈ At6 or val6(D) ∈ G6 at the time D was enqueued. Since
BadP does not occur and ForceVal does not overwrite, val5(C) = x5 ∈ At5
(since x5 /∈ G5 before this assignment) and val6(D) = x6 ∈ G6 ∪ At6. And so,
(x5, x6, 5) is enqueued for completion by construction of simulator.

Case 2: An assignment happens to G5(x5) during the completion of a chain C in
Q∗all and x6 ∈ G6 before this assignment. If x6 ∈ G6 ∪At6 and x5 ∈ At5 when the
simulator enqueues chains in Qall, then (x5, x6, 5) is enqueued for completion in
Qall. Else, (x5, x6, 5) is enqueued for completion in Qmid.

This completes the proof.

Lemma 35. Consider a good execution of H2. If a chain C = (xk, xk+1, k, `, g, b)
belongs to Q∗all such that at the time C is enqueued, adapting was safe for every
chain dequeued from Q1,Q5,Q6,Q10, Q∗all or Qmid so far, then valb(C) =⊥ and
valg(C) =⊥ at the time C is enqueued.

Proof. Say C = (x9, x10, 9, 3, 2, 5) is enqueued where the query preceding the
chain’s enqueueing is G1(x1) where val1(C) = x1. Then, by definition of simula-
tor, x1 /∈ G1 as otherwise, EnqNewChains(1, x1) is not called. So, val+2 (C) =⊥.
Now, we claim that val−5 (C) /∈ G5. This is because if val−5 (C) ∈ G5, then
val−6 (C) ∈ G6 since otherwise, val−5 (C) =⊥. This implies that the partial chain
(x5, x6, 5) where x5 = val−5 (C) and x6 = val−6 (C) is such that x5 ∈ G5 and
x6 ∈ G6. Hence, by Lemma 34, we have that (x5, x6, 5) ∈ CompChains since
no new Gi assignments have been issued between the moment the simulator
returned the answer (line 27 of its execution) and the moment when a chain

27



C is enqueued in Qall. However, since BadP does not occur, this means that
x1 ∈ G1 contradicting the first statement. Thus, we have that val−5 (C) /∈ G5.
Now, val+5 (C) =⊥ since val+2 (C) =⊥. So, val5(C) /∈ G5.

Since C is not enqueued in Q1,Q5,Q6,Q10, we have val5(C) =⊥ when C is
enqueued. So val2(C) =⊥ and val5(C) =⊥, where g = 2 and b = 5. The other
cases are analogous.

ForceVal(x, ·, j) does not Overwrite Gj(x)

Lemma 36. Let C = (xk, xk+1, k, `, g, b) be a partial chain enqueued in Q1,Q5,
Q6 or Q10 during a good execution of H2. At the moment C = (xk, xk+1, k, `, g, b)
is dequeued, assume that adapting was safe for every chain C ′ in Q∗all or Qmid

dequeued so far. Then,

– At the moment C = (xk, xk+1, k, `, g, b) is dequeued, C ∈ CompChains, or
– Just before the call to Adapt for C, valg(C) /∈ Gg and vala(C) /∈ Ga (where
a is the adapt position adjacent to the “bad” set uniform position b).

Proof. Assume that the lemma has held until the moment that a chain C =
(xk, xk+1, k, `, g, b) is dequeued. Note that if the lemma has held until now we
have that for every call to ForceVal(x, ·, j) so far, x /∈ Gj by Corollary 29.

Consider the case that at the moment C was dequeued there is a chain D
equivalent to C that was dequeued before C. Now, if D was dequeued before C,
thenD ∈ CompChains by construction of the simulator. If C andD are equivalent
chains such that D ∈ CompChains, then C ∈ CompChains by Lemma 26.

Let us consider the case where no chain equivalent to C was dequeued before
C was dequeued. Say C /∈ CompChains when dequeued. Note that if we prove
valg(C) /∈ Gg and vala(C) /∈ Ga at the time C was dequeued, we have that
valg(C) /∈ Gg and vala(C) /∈ Ga just before the call to Adapt for C since
otherwise BadP or BadlyHit+ occurred.

By Lemma 27, we have that valg(C) =⊥ at the time C was enqueued. If
valg(C) ∈ Gg at the time C was dequeued, then this was due to the completion
of a chain D which was enqueued in Qb′ where b′ ∈ {1, 5, 6, 10} due to the
same distinguisher query as C and dequeued(and completed) before C such that
valg(C) = valg(D) 6=⊥.

Consider the last assignment that was made before valg(C) = valg(D) 6=⊥
was true. This cannot have been a uniform assignment to Gi(xi) since that im-
plies that BadlyCollide+ occurred. This is because C and D are not equivalent(by
assumption) and C and D are both enqueued for completion in Qall and either
valg(C) =⊥ or valg(D) =⊥ before the assignment(otherwise this is not the last
assignment before valg(C) = valg(D) 6=⊥) and valg(C) = valg(D) 6=⊥ after the
assignment.

The assignment cannot have been of the form P (↓, x0, x1) = (x10, x11) or
P (↑, x10, x11) = (x0, x1) since then BadP occurred. The assignment cannot
have been a ForceVal query. This is because from Lemmas 32 and 31 we
have that ForceVal does not change vali(C) for a chain C enqueued in Qall

28



(including those enqueued in Q1, Q5, Q6, Q10) during completion of chains in
Q1, Q5, Q6, Q10.

Now, consider the argument for vala(C) /∈ Ga when C is dequeued. By
Lemma 27, we have that valb(C) /∈ Gb and valg(C) =⊥ at the time C was
enqueued, implying that vala(C) =⊥ when C was enqueued (where a is the
adapt position adjacent to “bad” set uniform position). The argument for this
case follows similar to the one above for valg(C).

Lemma 37. Consider a good execution of H2. Let C = (xk, xk+1, k, `, g, b) be a
partial chain in Q∗all. At the moment C = (xk, xk+1, k, `, g, b) is dequeued, assume
that adapting was safe for every chain C ′ in Qmid dequeued so far. Then,

– At the moment C is dequeued, C ∈ CompChains or,
– Just before the call to Adapt for C, val`−1(C) /∈ G`−1 and val`+2(C) /∈
G`+2.

Lemma 38. Consider a good execution of H2. Let C = (xk, xk+1, k, `, g, b) be a
partial chain enqueued in Qmid. Then,

– At the moment C is dequeued, C ∈ CompChains, or
– Just before the call to Adapt for C, val`−1(C) /∈ G`−1 and val`+2(C) /∈
G`+2.

Theorem 39 (No overwrites). In a good execution of H2, for any call to
ForceVal(x, ·, j) we have x /∈ Gj before the call.

Proof. Combining the result of Lemmas 36, 37 and 38 with Corollary 29, we
have that for every call to ForceVal(x, ·, j), x /∈ Gj before the call.

5.4 Indistinguishability of H2 and H4

Relying on the properties of good executions of H2 from the previous section,
we prove that H2 and H4 are indistinguishable.

Lemma 40. The probability that a distinguisher D outputs 1 in H2 differs at
most by O(q10)/2n from the probability that it outputs 1 in H3.

Lemma 41. The probability that a distinguisher outputs 1 in H3 differs by at
most by O(q10)/2n from the probability that it outputs 1 in H4.

This concludes the proof.

Acknowledgments

We thank Vanishree Rao for collaboration during the early stages of this work.

29



References

1. Coron, J.S., Holenstein, T., Künzler, R., Jacques Patarin, Y.S., Tessaro, S.: How
to build an ideal cipher: The indifferentiability of the Feistel construction. Journal
of Cryptology (2014)

2. Coron, J.S., Patarin, J., Seurin, Y.: The random oracle model and the ideal cipher
model are equivalent. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
1–20. Springer (2008)

3. Dachman-Soled, D., Katz, J., Thiruvengadam, A.: 10-round Feistel is indifferen-
tiable from an ideal cipher (2015), available at http://eprint.iacr.org/2015/876

4. Dai, Y., Steinberger, J.P.: Indifferentiability of 10-round Feistel networks (2015),
available at http://eprint.iacr.org/2015/874

5. Dai, Y., Steinberger, J.P.: Indifferentiability of 8-round Feistel networks (2015),
available at http://eprint.iacr.org/2015/1069

6. Dodis, Y., Puniya, P.: On the relation between the ideal cipher and the random
oracle models. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp.
184–206. Springer (Mar 2006)

7. Dodis, Y., Puniya, P.: Feistel networks made public, and applications. In: Naor,
M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 534–554. Springer (May 2007)

8. Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom
permutation. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASIACRYPT’91.
LNCS, vol. 739, pp. 210–224. Springer (Nov 1993)

9. Feistel, H.: Cryptography and computer privacy. Scientific American 228(5), 15–23
(1973)

10. Gentry, C., Ramzan, Z.: Eliminating random permutation oracles in the Even-
Mansour cipher. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 32–47.
Springer (Dec 2004)

11. Holenstein, T., Künzler, R., Tessaro, S.: The equivalence of the random oracle
model and the ideal cipher model, revisited. In: Fortnow, L., Vadhan, S.P. (eds.)
43rd ACM STOC. pp. 89–98. ACM Press (Jun 2011)

12. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseu-
dorandom functions. SIAM Journal on Computing 17(2), 373–386 (1988)

13. Mandal, A., Patarin, J., Seurin, Y.: On the public indifferentiability and correlation
intractability of the 6-round Feistel construction. In: Cramer, R. (ed.) TCC 2012.
LNCS, vol. 7194, pp. 285–302. Springer (Mar 2012)

14. Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, impossibility results
on reductions, and applications to the random oracle methodology. In: Naor, M.
(ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer (Feb 2004)

15. Ramzan, Z., Reyzin, L.: On the round security of symmetric-key cryptographic
primitives. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 376–393.
Springer (2000)

16. Seurin, Y.: Primitives et Protocoles Cryptographiques à Sécurité Prouvée. Ph.D.
thesis, Versailles University (2009)

17. Seurin, Y.: A note on the indifferentiability of the 10-round Feistel construction
(2011), available at http://eprint.iacr.org/2015/903

18. Yoneyama, K., Miyagawa, S., Ohta, K.: Leaky random oracle. In: Baek, J., Bao,
F., Chen, K., Lai, X. (eds.) ProvSec 2008. LNCS, vol. 5324, pp. 226–240. Springer
(2008)

30


