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Abstract. In this paper, we study the problem of automatically veri-
fying higher-order masking countermeasures. This problem is important
in practice, since weaknesses have been discovered in schemes that were
thought secure, but is inherently exponential: for t-order masking, it in-
volves proving that every subset of t intermediate variables is distributed
independently of the secrets. Some tools have been proposed to help cryp-
tographers check their proofs, but are often limited in scope.
We propose a new method, based on program verification techniques,
to check the independence of sets of intermediate variables from some
secrets. Our new language-based characterization of the problem also
allows us to design and implement several algorithms that greatly reduce
the number of sets of variables that need to be considered to prove this
independence property on all valid adversary observations. The result
of these algorithms is either a proof of security or a set of observations
on which the independence property cannot be proved. We focus on
AES implementations to check the validity of our algorithms. We also
confirm the tool’s ability to give useful information when proofs fail, by
rediscovering existing attacks and discovering new ones.
Keywords: Higher-Order Masking, Automatic tools, EasyCrypt

1 Introduction

Most widely used cryptographic algorithms are assumed to be secure in the
black-box model, that is when the adversary is only given access to the inputs
and outputs of the algorithm. However, this model does not fit the reality of
embedded devices. In practice, an attacker can observe the physical leakage
of a device in order to mount side-channel attacks. These attacks exploit the
dependence between secret values used in the computation and the physical
leakage inherent to the physical implementation and execution (for example,
timing, power consumption or electromagnetic radiations). Such attacks are very
efficient in practice, with a recent attack recovering a full AES key using a single



power trace [34]. Further, differential attacks can be mounted that exploit similar
dependencies between sensitive values, that depend on both secret inputs and
adversarially-controlled public inputs, to speed up the rate at which information
on the secrets is gathered. Differential Power Analysis [22] (DPA), in particular,
is a very effective class of attacks.

Masking. In order to thwart Differential Power Analysis, the community have
proposed many countermeasures but masking remains most widely used. Mask-
ing makes use of a secret-sharing scheme to split each secret or sensitive variable
into (t + 1) shares such that the joint distribution of any subset of at most t
shares is independent of the secret, but the knowledge of all (t+1) shares allows
for the efficient recovery of the secret. The computation itself is then masked as
well, replacing basic operations on, say, bytes with complex operations on (t+1)
bytes. Intuitively, an implementation that is split over (t + 1) shares should be
able to resist the leakage of t of its intermediate variables (t is then usually called
the masking order). Most of the implementations were then masked at order 1
to prevent an adversary from recovering secrets using a single observation. How-
ever, even higher-order attacks, where t is greater than 1 have been conducted in
practice [26,28] and need to be protected against. Many masked implementations
have been proposed to protect AES or its non-linear component, the S-box (for
example, [27,10,33,31,30]), among which some are also proved secure. Checking
first-order masking schemes is a relatively routine task since it is sufficient to
check that each intermediate variable carries a distribution that is independent
from the secret. However, manually checking higher-order masked implementa-
tions is a more difficult and error-prone task. As a consequence, many published
schemes were later shown to be insecure, such as those presented by [33] and [31],
which were later broken in [12] and [13]. In this paper, we address this issue by
developing automated methods to verify the security of algorithms masked at
higher orders.

Adversary Models. The first step towards formally reasoning about the security
of masked algorithms is to define a leakage model that formally captures the
information that is leaked to the adversary. For this purpose, Chari et al. [11]
perform the first formal security analysis of masking, by showing that the number
of queries needed to recover a sensitive bit in a noisy leakage model is at least
exponential in the masking order. In this model, the adversary gets leaked values
sampled according to a Gaussian distribution centered around the actual value
of the wire. This model is later extended by Prouff and Rivain [30] in several
respects. First, they consider more general distributions to sample noisy leakage
from, rather than just Gaussian [11] or Bernoulli leakage [18]. Moreover, they
remove the limitation to one-bit observations, allowing the adversary to observe
intermediate variables of any bitsize. Finally, they also extend the notion of
leakage to take computation, rather than data, into account, following the only
computation leaks information principle introduced by Micali and Reyzin [24].
They also offer the first proof of security for a masked algorithm in this model,
although it relies on leak-free components and a relatively weak adversary model.



In a different approach, Ishai, Sahai and Wagner [21] introduce the t-threshold
probing model, in which the adversary receives the exact value of at most t
internal variables (of his choice) in the computation. At the same time, they
describe a transformation that turns any boolean circuit C secure in the black-
box model into a circuit C ′ secure in the t-threshold probing model.

In practice, the noisy leakage model is often thought of as more realistic,
since experimental physical leakage is noisy [23]. In particular, although the t-
threshold probing model enables the adversary to observe exact values rather
than noisy ones, it is not more powerful than the noisy leakage model, since
the models also differ in the number of observations allowed to the adversary.
The relationship between the two models was recently clarified by Duc, Dziem-
bowski and Faust [14]. They advantageously recast the noisy leakage in the more
classic statistical security model and show that security in the extended noisy
leakage model of [30], fixed to capture chosen plaintext attacks, can be reduced
to security in the t-threshold probing model of [21], in which security proofs
are much more direct. In addition, the reduction does not rely on the existence
of leak-free components. Thus, proving the security of a cryptosystem in the t-
threshold probing model automatically ensures its security in the more realistic
noisy leakage model.

In both models, only the values of intermediate variables are usually con-
sidered when determining the security order of an implementation. However,
Balash et al. [2] show that this value-based leakage model does not fully capture
some real-world scenarios in which additional physical leaks can occur, namely
glitches or transition-based leakage, leaking information about more than one in-
termediate variable in a single observation. As a consequence, a perfectly masked
algorithm secure in the value-based model can succumb to first-order attacks in
these finer-grained leakage models.

Program Verification. Many tools aimed at proving the security of masked algo-
rithms in the t-threshold probing model have recently appeared [25,9,16,15,17].
Some [25,9] use type systems to propagate sensitivity marks along the programs,
but such approaches are not complete [16] and many programs are thus incor-
rectly typed as secure. Others take the underlying probability distributions into
account, but can only handle low masking orders (typically orders 1 and 2), even
on small programs.

Contributions. In this paper, we develop automated methods to prove the
security of masked implementations in the t-threshold probing model, both for
value-based and transition-based leakage. More specifically, our theoretical con-
tributions are three-fold: i. We provide a formal characterization of security in
the t-threshold probing model as a combination of variants of two well-known
properties in programming languages: t-non-interference and functional equiva-
lence; ii. We provide algorithms that construct bijections between an adversary
observation and a distribution that is trivially independent from the secret in-
puts, thereby proving that the adversary observation is independent from secret



inputs; iii. We provide algorithms that make use of the constructed bijections
to extend sets of observations with additional observations that do not give the
adversary any more information about the secrets, thereby reducing greatly the
number of non-interference proofs that need to be performed in order to prove
a whole program t-non-interfering. As a practical contribution, we implement
our algorithms and apply them to various masked implementations of AES,
and a masked implementation of MAC-Keccak. Pleasingly, our tools are able to
successfully analyze first-order masked implementations of AES (in a couple of
minutes), 2 rounds of second-order masked implementations of AES at level 2
(in around 22 minutes), and masked implementations of multiplication, up to
order 5 (in 45s). Our experiments allow us to rediscover several known attacks
([12,13]) on flawed implementations, to check that proposed fixes, when they
exist, are indeed secure, and finally to discover new attacks on flawed implemen-
tations ([33]). We also discuss how our approach and tool can easily be adapted
to deal with stronger leakage models capturing both transition-based leakage
and leakage due to glitches, and illustrate it by studying the security of variants
of secure field multiplication in the transition-based leakage model.

Putting our work in perspective, we deliberately focus on algorithmic meth-
ods that are able to cover large spaces of observation sets very efficiently, and
without any assumption on the program. Although our results demonstrate that
such methods can perform surprisingly well in practice, their inherent limitations
with respect to scalability remain. A common strategy to address scalability is-
sues is to develop compositional techniques. This could be done, for instance, in
the context of a masking compiler, whose proof of security proceeds by showing
that each gadget is secure, and that gadgets are combined securely. Assumptions
on the structure of the masked algorithm could also be made that would allow
such compositional reasoning. In this light, our algorithmic methods can be seen
as focusing primarily on proving that core gadgets are secure with respect to a
widely-used notion of security.

Outline. We first review previous uses of formal methods to prove similar prop-
erties (Section 2). In Sections 3 and 4, we describe our algorithms. In Section 5,
we evaluate the practicality of our approach by implementing our algorithms in
the framework provided by EasyCrypt [6], and testing the performance of our
implementation on representative examples from the literature.

2 Language-based techniques for threshold security in
the t-threshold probing model

In this paper, we rephrase security in the t-threshold probing model by defining
the notion of t-non interference, which is based on the notions of probabilistic
non-interference used for verifying information-flow properties in language-based
security. We first define a general notion of program equivalence. Two proba-
bilistic programs p1 and p2 are said to be (I,O)-equivalent, denoted p1 ∼OI p2,



whenever the probability distributions on O defined by p1 and p2, conditioned
by the assumptions on input variables encoded in I, are equal.

This notion of equivalence subsumes the two more specialized notions we
consider here: functional equivalence and t-non-interference. Two programs p
and p̄ are said to be functionally equivalent when they are (I,Z)-equivalent
with Z all output variables, and I all input variables. A program p̄ is said to
be t-non-interfering with respect to a set of secret input variables Isec and a
set of observations O when p̄(s0, ·) and p̄(s1, ·) are (Ipub,O)-equivalent (with
Ipub = I \ Isec the set of non-secret input variables) for any values s0 and s1 of
the secret input variables.

We now give an indistinguishability-based definition of the t-threshold prob-
ing model. In this model, the challenger randomly chooses two secret values s0
and s1 (representing for instance two different values of the secret key) and a
bit b according to which the leakage will be produced: the output computation
always uses secret s0, but the adversary observations are computed using sb.
The adversary A is allowed to query an oracle with chosen instances of public
arguments, along with a set of at most t intermediate variables (adaptively or
non-adaptively chosen); such queries reveal their output and the values of the
intermediate variables requested by the adversary. We say that A wins if he
guesses b.

We now state the central theorem to our approach, heavily inspired by Duc,
Dziembowski and Faust [14] and Ishai, Sahai and Wagner [21].

Theorem 1. Let p and p be two programs. If p and p are functionally equivalent
and p is t-non-interfering, then for every adversary A against p in the t-threshold
probing model, there exists an adversary S against p in the black-box model, such
that

∆(S
bb

� p,A
thr

� p) = 0

where ∆(· ; ·) denotes the statistical distance5.

Proof. Since p and p are functionally equivalent, we have ∆(S
bb

� p,S
bb

� p) = 0
for all black-box adversary S, and we only have to prove that there exists an

S such that ∆(S
bb

� p,A
thr

� p) = 0. We simply construct a simulator S ′ that
simulates the leakage for A, and build S by composing them. The simulator
receives as inputs the public variables that are used for the execution of p,
and the output of p, but not the t intermediate values corresponding to the
observation set O. Since p is t-non-interfering, the observations do not depend
on the secret variables that are used for the execution of p, and the simulator
can choose arbitrary values for the secret variables, run p on these values and
the public variables given as inputs, and output the requested observations. ut

5 The theorem can be lifted to the noisy leakage model using Corollary 1 from [14],
using a small bound on the statistical distance instead.



Following Theorem 1, we propose algorithms to prove functional equiva-
lence (details can be found in the long version of this document [3]) and t-non-
interference properties of probabilistic programs, thereby reducing the security
of masked implementations in the t-threshold probing model to the black-box
security of the algorithms they implement.

In the following, we provide an overview of language-based techniques that
could be used to verify the assumptions of Theorem 1, and to motivate the
need for more efficient techniques. First, we introduce mild variants of two stan-
dard problems in programming languages, namely information-flow checking and
equivalence checking, which formalize the assumptions of Theorem 1. Then, we
present three prominent methods to address these problems: type systems (which
are only applicable to information-flow checking), model counting, and relational
logics. Finally, we discuss efficiency issues and justify the need for efficient tech-
niques.

2.1 Problem statement and setting

The hypotheses of Theorem 1 can be seen as variants of two problems that have
been widely studied in the programming language setting: equivalence check-
ing and information-flow checking. Equivalence checking is a standard prob-
lem in program verification, although it is generally considered in the setting
of deterministic programs, whereas we consider probabilistic programs here.
Information-flow checking is a standard problem in language-based security, al-
though it usually considers flows from secret inputs to public outputs, whereas
we consider flows from secret inputs to intermediate values here.

Both problems can be construed as instances of relational verification. For
clarity, we formalize this view in the simple case of straightline probabilistic pro-
grams. Such programs are sequences of random assignments and deterministic
assignments, and have distinguished sets of input and output variables. Given
a program p, we let IVar(p), OVar(p), and PVar(p) denote the sets of input,
output, and intermediate variables of p. Without loss of generality, we assume
that programs are written in single static assignment (SSA) form, and in par-
ticular, that program variables appear exactly once on the left hand side of an
assignment, called their defining assignment—one can very easily transform an
arbitrary straightline program into an equivalent straightline program in SSA
form. Assuming that programs are in SSA form, we can partition PVar(p) into
two sets DVar(p) and RVar(p) of deterministic and probabilistic variables, where
a variable is probabilistic if it is defined by a probabilistic assignment, and is de-
terministic otherwise. Let V denote the set of program values (we ignore typing
issues). Each program p can be interpreted as a function:

JpK : D(Vκ)→ D(V`+`
′
)

where D(T ) denotes the set of discrete distributions over a set T , and κ, ` and
`′ respectively denote the sizes of IVar(p), PVar(p) and OVar(p). The function
JpK takes as input a joint distribution on input variables and returns a joint



distribution on all program variables, and is defined inductively in the expected
way. Furthermore, one can define for every subset O of PVar(p) of size m a
function:

JpKO : D(Vκ)→ D(Vm)

that computes, for each v ∈ Vκ, the marginal distributions of JpK(v) with respect
to O.

We can now define the information-flow checking problem formally: a pro-
gram p is non-interfering with respect to a partial equivalence relation Φ ⊆
D(Vκ) × D(Vκ) (in the following, we write Φ µ1 µ2 to mean (µ1, µ2) ∈ Φ), and
a set O ⊆ PVar(p), or (Φ,O)-non-interfering, iff JpKO(µ1) = JpKO(µ2) for every
µ1, µ2 ∈ D(Vκ) such that Φ µ1 µ2. In this case, we write NIΦ,O(p). Moreover,
let O be a set of subsets of PVar(p), that is O ⊆ P(PVar(p)); we say that p is
(Φ,O)-non-interfering, if it is (Φ,O)-non-interfering for every O ∈ O.

Before relating non-interference with security in the t-threshold probing mod-
els, we briefly comment on the nature of Φ. In the standard, deterministic, setting
for non-interference, variables are generally marked as secret or public—in the
general case, they can be drawn from a lattice of security levels, but this is not
required here. Moreover, Φ denotes low equivalence, where two tuples of values
v1 and v2 are low-equivalent if they coincide on public variables. The notion of
low-equivalence has a direct counterpart in the probabilistic setting: two distri-
butions µ1 and µ2 are low equivalent iff their marginal distributions with respect
to public variables are equal. However, non-interference of masked implementa-
tions is often conditioned by well-formedness conditions on inputs; for instance,
the inputs must consist of uniformly distributed, t-wise independent values. In
this case, Φ is defined in such a way that two distributions are related by Φ iff
they are well-formed and low equivalent.

There is a direct interpretation of t-threshold probing security as a non-
interference property. We say that a program p is (Φ, t)-non-interfering if it
is (Φ,O)-non-interfering for all subsets O of PVar(p) with size smaller than t
(we write O ∈ P≤t (PVar(p)) in the following). Then a program p is secure in
the t-threshold probing model (with respect to a relation Φ) iff it is (Φ, t)-non-
interfering.

In order to capture t-threshold probing security in the transition-based leak-
age model, we rely on a partial function next that maps program variables to
their successors. For programs that have been translated into SSA form, all pro-
gram variables are of the form xi, where x is a variable of the original program,
and i is an index—typically a program line number. The successor of such a
variable xi, when it exists, is a variable of the form xj where j is the smallest
index such that i < j and xj is a program variable. Then, we say that a program
p is (Φ, t)-non-interfering in the transition-based model, written NIΦ,t,succ(p), iff p
is (Φ,O ∪ next(O))-non-interfering for every subset of PVar(p) with size smaller
than t. Then a program p is secure in the transition-based t-threshold prob-



ing model (with respect to a relation Φ) iff it is (Φ, t)-non-interfering in the
transition-based model.6

We now turn to program equivalence. For the sake of simplicity, we consider
two programs p1 and p2 that have the same sets of input and output variables;
we let W denote the latter. We let JpKW denote the function that computes for
every initial distribution µ the marginal distribution of JpK(µ) with respect to
W. We say that p1 and p2 are equivalent with respect to a partial equivalence
relation Φ ⊆ D(Vκ) × D(Vκ), written p1 ∼Φ p2, iff Jp1KW(µ) = Jp2KW(µ) for
every distribution µ such that Φ µ µ.

For the sake of completeness, we point out that both notions are subsumed
by the notion of (Φ,O)-equivalence. Specifically, we say that programs p1 and
p2 are (Φ,O)-equivalent, written p1 ∼OΦ p2, iff Jp1KO(µ1) = Jp2KO(µ2) for every
two distributions µ1 and µ2 such that Φ µ1 µ2. Therefore, both equivalence
checking and information-flow checking can be implemented using as subroutine
any sound algorithm for verifying that p1 ∼OΦ p2.

2.2 Type-based approaches

Information-flow type systems are a class of type systems that enforce non-
interference by tracking dependencies between program variables and rejecting
programs containing illicit flows. There are multiple notions of non-interference
(termination-sensitive, termination-insensitive, or bisimulation-based) and forms
of information-flow type systems (for instance, flow-sensitive, or flow-insensitive);
we refer the reader to [32] for a survey. For the purpose of this paper, it is
sufficient to know that information-flow type systems for deterministic programs
assign to all program variables a level drawn from a lattice of security levels which
includes a level of public variables and secret variables. In the same vein, one can
develop information-flow type systems to enforce probabilistic non-interference;
broadly speaking, such type systems distinguish between public values, secret
values, and uniformly distributed values. Following these ideas, Moss et al. [25]
pioneer the application of information-flow type systems to masking. They use
the type system as a central part in a masking compiler that transforms an input
program into a functionally equivalent program that is resistant to first-order
DPA. Their technique can readily be extended to prove non-interference with
respect to a single observation set.

Because they are implemented with well-understood tools (such as data flow
analyses) and are able to handle large programs extremely fast, information-
flow type systems provide an appealing solution that one would like to use for
higher-order DPA. However, the semantic information carried by types is in-
herently attached to individual values, rather than tuples of values, and there

6 Similarly, glitches could be captured by considering that each observation leaks four
values: the values of the arguments, and the old and new values of the wire or reg-
ister. More fine-grained leakage models depending on implementation details and
combining value-based, transition-based and glitch-based leakage could also be con-
sidered.



is no immediately obvious way to devise an information-flow type system even
for second-order DPA. Notwithstanding, it is relatively easy to devise a sound
method for verifying resistance to higher-order DPA using an information-flow
type system in the style of [25]. The basic idea is to instrument the code of
the original program with assignments w := x1 ‖ . . . ‖ xt, where w is a fresh
program variable, x1 . . . xt are variables of the original program, and t is the
order for which resistance is sought; we let p′ denote the instrumented program.
Clearly, a program p is secure at order t iff for every initial values v1 and v2,
Jp′K{w}(v1) = Jp′K{w}(v2) where w ranges over the set of fresh variables that have
been introduced by the transformation. It is then possible to use an information-
flow type system in the spirit of [25] to verify that c′ satisfies non-interference
with respect to output set {w}. However, this transformational approach suf-
fers from two shortcomings: first, a more elaborate type system is required for
handling concatenation with sufficient accuracy; second, and more critically, the
transformation induces an exponential blow-up in the size of programs.

In a slightly different context, Pettai and Laud [29] use a type-system to
prove non-interference of a limited number of adversary observations imposed
by their adversary model in the multi-party computation scenario. They do so
by propagating information regarding linear dependencies on random variables
throughout their arithmetic circuits and progressively replacing subcircuits with
random gates. Because of the limited number of possible adversary observations
their model imposes, they do not run into the same scalability issues we deal
with in this paper. However, their techniques for dealing with active adversaries
may be useful for verifying masking-based countermeasures in the presence of
fault injection attacks.

2.3 SMT-based Methods

There have been a number of works that use SMT solvers to achieve more flexible
analysis of masked implementations.

Bayrak et al. [9] develop an SMT-based method for analyzing the sensitivity
of sequences of operations. Informally, the notion of sensitivity characterizes
whether a variable used to store an intermediate computation in the sequence
of operations depends on a secret and is statistically independent from random
variables. Their approach is specialized to first-order masking, and suffers from
some scalability issue—in particular, they report analysis of a single round of
AES.

Eldib, Wang and Schaumont develop an alternative tool, SCSniffer [16], that
is able to analyze masked implementations at orders 1 and 2. Their approach
is based on model counting [20]: to prove that a set of probabilistic expressions
is distributed independently from a set of secrets, model-counting-based tools
count the number of valuations of the secrets that yield each possible value of
the observed expressions and checks that that number is indeed independent
from the secret. This process in itself is inherently exponential in the size of
the observed expressions, even when only one such observation is considered. To
overcome this issue, SCSniffer implements an incremental approach for reducing



the size of such expressions when they contain randomness that is syntactically
independent from the rest of the program. This incremental approach is essen-
tial to analyzing some of their examples, but it is still insufficient for analyzing
complete implementations: for instance, SCSniffer can only analyze one round of
(MAC-)Keccak whereas our approach is able to analyze the full 24 rounds of the
permutation. The additional power of our tool is derived from our novel tech-
nique: instead of explicitly counting solutions to large boolean systems, our tool
simply constructs a bijection between two distributions, one of which is syntacti-
cally independent from the secrets. Although the complexity of this process still
depends on the size of expressions (and in particular in the number of randomly
sampled variables they contain), it is only polynomial in it, rather than exponen-
tial. In addition, the approach, as it is used in Sleuth and SCSniffer, is limited
to the study of boolean programs or circuits, where all variables are 1 bit in size.
This leads to unwieldy program descriptions and artificially increases the size of
expressions, thereby also artificially increasing the complexity of the problem.
Our approach bypasses this issue by considering abstract algebraic expressions
rather than specific types. This is only possible because we forego explicit solu-
tion counting. Moreover, SCSniffer requires to run the tool at all orders d ≤ t
to obtain security at level t. In contrast, we achieve the same guarantees in a
single run. This is due to the fact that the exclusive-or of observed variables
is used for model counting rather than their joint distribution. Our approach
yields proofs of t-non-interference directly by considering the joint distribution
of observed variables. Finally, we contribute a technique that helps reduce the
practical complexity of the problem by extending proofs of independence for a
given observation set into a proof of independence for many observation sets at
once. This process is made less costly by the fact that we can efficiently check
whether a proof of independence is still valid for an extended observation set,
but we believe it would apply to techniques based on model-counting given the
same ability.

All of these differences lead to our techniques greatly outperforming existing
approaches when it comes to practical examples. For example, even considering
only masking at order 1, where it takes SCSniffer 10 minutes to prove a masked
implementation of one round of Keccak (implemented bit-by-bit), it takes our
tool around 7 minutes to prove the full 24 rounds of the permutation (imple-
mented on 64-bit words as in reference implementations), and around 2 minutes
to verify a full implementation of AES (including its key schedule).

2.4 Relational verification

A more elaborate approach is to use program verification for proving non-
interference and equivalence of programs. Because these properties are inherently
relational—that is, they either consider two programs or two executions of the
same program—the natural verification framework to establish such properties
is relational program logic. Motivated by applications to cryptography, Barthe,
Grégoire and Zanella-Béguelin [8] introduce pRHL, a probabilistic Relational
Hoare Logic that is specifically tailored for the class of probabilistic programs



considered in this paper. Using pRHL, (φ,O)-non-interference a program p is
captured by the pRHL judgment:

{φ}p ∼ p{
∧
y∈O

y〈1〉 = y〈2〉}

which informally states that the joint distributions of the variables y ∈ O coin-
cide on any two executions (which is captured by the logical formula y〈1〉 = y〈2〉)
that start from initial memories related by Φ.

Barthe et al. [7] propose an automated method to verify the validity of
such judgments. For clarity of our exposition, we consider the case where p
is a straightline code program. The approach proceeds in three steps:

1. transform the program p into a semantically equivalent program which per-
forms a sequence of random assignments, and then a sequence of deter-
ministic assignments. The program transformation repeatedly applies eager
sampling to pull all probabilistic assignments upfront. At this stage, the
judgement is of the form

{φ}S;D ∼ S;D{
∧
y∈O

y〈1〉 = y〈2〉}

where S is a sequence of probabilistic assignments, and D is a sequence of
deterministic assignments;

2. apply a relational weakest precondition calculus to the deterministic se-
quence of assignments; at this point, the judgment is of the form

{φ}S ∼ S{
∧
y∈O

ey〈1〉 = ey〈2〉}

where ey is an expression that depends only on the variables sampled in S
and on the program inputs;

3. repeatedly apply the rule for random sampling to generate a verification
condition that can be discharged by SMT solvers. Informally, the rule for
random sampling requires finding a bijection between the domains of the
distribution from which values are drawn, and proving that a formula de-
rived from the post-condition is valid. We refer to [8] and [7] for a detailed
explanation of the rule for random sampling. For our purposes, it is sufficient
to consider a specialized logic for reasoning about the validity of judgments
of the form above. We describe such a logic in Section 3.1.

Note that there is a mismatch between the definition of (Φ, t)-non-interference
used to model security in the t-threshold probing model, and the notion of (φ,O)-
non-interference modelled by pRHL. In the former, Φ is a relation over distribu-
tions of memories, whereas in the latter φ is a relation over memories. There are
two possible approaches to address this problem: the first is to develop a variant
of pRHL that supports a richer language of assertions; while possible, the re-
sulting logic might not be amenable to automation. A more pragmatic solution,



which we adopt in our tool, is to transform the program p into a program i; p,
where i is some initialization step, such that p is (Φ,O) non-interfering iff i; p is
(φ,O) non-interfering for some pre-condition φ derived from Φ.

In particular, i includes code marked as non-observable that preshares any
input or state marked as secret,7 and fully observable code that simply shares
public inputs. The code for sharing and presharing, as well as a simple example
of this transformation are given in Appendix A.

3 A logic for probabilistic non-interference

In this section, we propose new verification-based techniques to prove probabilis-
tic non-interference statements. We first introduce a specialized logic to prove a
vector of probabilistic expressions independent from some secret variables. We
then explain how this logic specializes the general approach described in Sec-
tion 2.4 to a particular interesting case. Finally, we describe simple algorithms
that soundly construct derivations in our logic.

3.1 Our Logic

Our logic shares many similarities with the equational logic developed in [5]
to reason about equality of distributions. In particular, it considers equational
theories over multi-sorted signatures.

A multi-sorted signature is defined by a set of types and a set of operators.
Each operator has a signature σ1 × . . . × σn → τ , which determines the type
of its arguments, and the type of the result. We assume that some operators
are declared as invertible with respect to one or several of their arguments;
informally, a k-ary operator f is invertible with respect to its i-th argument, or i-
invertible for short, if, for any (xj)i 6=j the function f(x0, . . . , xi−1, ·, xi+1, . . . , xk)
is a bijection. If f is i-invertible, we say that its i-th argument is an invertible
argument of f .

Expressions are built inductively from two sets R and X of probabilis-
tic and deterministic variables respectively, and from operators. Expressions
are (strongly) typed. The set of deterministic (resp. probabilistic) variables of
a vector of expressions e is denoted as dvar(e) (resp. rvar(e)). We say that
an expression e is invertible in x whenever ∀i j, x /∈ rvar(eji ), we have e =
f1(. . . , e1i1−1, f2(. . . fn(. . . , enin−1, x, . . .) . . .), . . .), and each fj is ij-invertible.

We equip expressions with an equational theory E . An equational theory is a
set of equations, where an equation is a pair of expressions of the same type. Two
expressions e and e′ are provably equal with respect to an equational theory E ,
written e

.
=E e

′, if the equation e
.
=E e

′ can be derived from the standard rules
of multi-sorted equational logic: reflexivity, symmetry, transitivity, congruence,
and instantiation of axioms in E . Such axioms can be used, for example, to equip
types with particular algebraic structures.

7 This corresponds to Ishai, Sahai and Wagner’s input encoders [21].



Expressions have a probabilistic semantics. A valuation ρ is a function that
maps deterministic variables to values in the interpretation of their respective
types. The interpretation JeKρ of an expression is a discrete distribution over
the type of e; informally, JeKρ samples all random variables in e, and returns
the usual interpretation of e under an extended valuation ρ, ρ′ where ρ′ maps
each probabilistic variable to a value of its type. The definition of interpretation
is extended to tuples of expressions in the obvious way. Note that, contrary to
the deterministic setting, the distribution J(e1, . . . , ek)Kρ differs from the product
distribution Je1Kρ×. . .×JekKρ. We assume that the equational theory is consistent
with respect to the interpretation of expressions.

Judgments in our logic are of the form (xL,xH) ` e, where e is a set of
expressions and (xL,xH) partitions the deterministic variables of e into public
and private inputs, that is, dvar(e) ⊆ xL ] xH . A judgment (xL,xH) ` e is
valid iff the identity of distributions JeKρ1 = JeKρ2 holds for all valuations ρ1 and
ρ2 such that ρ1(x) = ρ2(x) for all x ∈ xL.

A proof system for deriving valid judgments is given in Figure 1. Rule (Indep)
states that a judgment is valid whenever all the deterministic variables in expres-
sions are public. Rule (Conv) states that one can replace expressions by other
expressions that are provably equivalent with respect to the equational theory E .
Rule (Opt) states that, whenever the only occurrences of a random variable r in
e are as the i-th argument of some fixed application of an i-invertible operator
f where f ’s other arguments are some (ej)i6=j , then it is sufficient to derive the
validity of the judgment where r is substituted for f(e0, . . . , ei−1, r, ei+1, . . . , ek)
in e. The soundness of rule (Opt) becomes clear by remarking that the distri-
butions Jf(e0, . . . , ei−1, r, ei+1, . . . , ek)K and JrK are equal, since f is i-invertible
and r is uniform random and does not appear in any of the ej . Although the
proof system can be extended with further rules (see, for example [5]), these
three rules are in fact sufficient for our purposes.

dvar(e) ∩ xH = ∅
(xL,xH) ` e

(Indep)
(xL,xH) ` e′ e

.
=E e′

(xL,xH) ` e
(Conv)

(xL,xH) ` e f is i-invertible r ∈ R r /∈ rvar(e0, . . . , ei−1, ei+1, . . . , ek)

(xL,xH) ` e[f(e0, . . . , ei−1, r, ei+1, . . . , ek)/r]
(Opt)

Fig. 1. Proof system for non-interference

3.2 From logical derivations to relational judgments

In Section 2.4, we have shown that the problem of proving that a program
is (Φ,O)-non-interfering could be reduced to proving relational judgements of
the form {φ}S ∼ S{

∧
y∈O ey〈1〉 = ey〈2〉} where S is a sequence of random



samplings, ey is an expression that depends only on the variables sampled in
S and on the program inputs, and φ is a precondition derived from Φ after
the initial sharing and presharing code is inserted, and exactly captures low-
equivalence on the program’s inputs. We now show that proving such judgments
can in fact be reduced to constructing a derivation in the logic from Section 3.1.
Indeed, since both sides of the equalities in the postcondition are equal, it is
in fact sufficient to prove that the (ey)y∈O are independent from secret inputs:
since public inputs are known to be equal and both programs are identical, the
postcondition then becomes trivially true. In particular, to prove the judgment
{
∧
x∈xL

x〈1〉 = x〈2〉}S ∼ S{
∧
y∈O ey〈1〉 = ey〈2〉}, it is in fact sufficient to find

a derivation of (xL,xH) ` (ey)y∈O, where xH is the complement of xL in the
set of all program inputs. An example detailing this reasoning step is discussed
in Appendix A.

3.3 Our Algorithms

We now describe two algorithms that soundly derive judgments in the logic.
Throughout this paper, we make use of unspecified choose algorithms that, given
a set X, return an x ∈ X or ⊥ if X = ∅. We discuss our chosen instantiations
where valuable.

Our simplest algorithm (Algorithm 1) works using only rules (Indep) and
(Opt) of the logic. Until (Indep) applies, Algorithm 1 tries to apply (Opt),
that is, to find (e′, e, r) such that r ∈ R and e is invertible in r and e = e′[e/r];
if it succeeds, it then performs a recursive call on e′ else it fails. Remark that the
conditions are sufficient to derive the validity of e from the validity of e′ using
successive applications of the (Opt) rule.

The result of the function (h) can be understood as a compact representa-
tion of the logical derivation. Such compact representations of derivations be-
come especially useful in Section 4, where we efficiently extend sets of observed
expressions, but can also be used, independently of performance, to construct
formal proof trees if desired.

Algorithm 1 Proving Probabilistic Non-Interference: A Simple Algorithm

1: function NIR,xH (e) . the joint distribution of e is independent from xH

2: if ∀x ∈ dvar(e). x /∈ xH then
3: return Indep
4: (e′, e, r)← choose({(e′, e, r) | e is invertible in r ∧ r ∈ R ∧ e = e′[e/r]})
5: if (e′, e, r) 6= ⊥ then
6: return Opt(e, r) : NIR,xH (e′)

7: return ⊥

This algorithm is sound, since it returns a derivation h constructed after
checking each rule’s side-conditions. However, it is incomplete and may fail to
construct valid derivations. In particular, it does not make use of rule (Conv).



Our second algorithm (Algorithm 2) is a slight improvement on Algorithm 1
that makes restricted use of the (Conv) rule: when we cannot find a suitable
(e′, e, r), we normalize algebraic expressions as described in [1], simplifying ex-
pressions and perhaps revealing potential applications of the (Opt) rule. We
use only algebraic normalization to avoid the need for user-provided hints, and
even then, only use this restricted version of the (Conv) rule as a last resort.
This is for two reasons: first, ring normalization may prevent the use of some
(e′, e, r) triples in later recursive calls (for example, the expression (a + r) · r′
gets normalized as a · r′ + r · r′, which prevents the substitution of a+ r by r);
second, the normalization can be costly and negatively impact performance.

Algorithm 2 Proving Probabilistic Non-Interference: A More Precise Algorithm

1: function NIR,xH (e, b) . the joint distribution of e is independent from xH

2: if ∀x ∈ dvar(e). x /∈ xH then
3: return Indep
4: (e′, e, r)← choose({(e′, e, r) | e is invertible in r ∧ r ∈ R ∧ e = e′[e/r]})
5: if (e′, e, r) 6= ⊥ then
6: return Opt(e, r) : NIR,xH (e′, b)
7: else if b then
8: e← ring simplify(e)
9: return Conv : NIR,xH (e, false)

10: return ⊥

In practice, we have found only one example where Algorithm 1 yields false
negatives, and we have not found any where Algorithm 2 fails to prove the
security of a secure implementation. In the following, we use NIR,xH (X) the
function from Algorithm 2 with b initially true. In particular, the implementation
described and evaluated in Section 5 relies on this algorithm.8

Discussion. We observe that Algorithm 2 can only be refined in this way be-
cause it works directly on program expressions. In particular, any abstraction, be
it type-based or otherwise, could prevent the equational theory from being used
to simplify observed expressions. Further refinements are theoretically possible
(in particular, we could also consider a complete proof system for the logic in
Section 3.1), although they may be too costly to make use of in practice.

4 Divide-and-conquer algorithms based on large sets

Even with efficient algorithms to prove that a program p is (R,O)-non-interfering
for some observation set O, proving that p is t-non-interfering remains a complex

8 Some of the longer-running experiments reported in Section 5 do make use of Al-
gorithm 1 since their running time makes it impractical to run them repeatedly
after algorithmic changes. However, Algorithm 2 only makes a difference when false
positives occur, which is not the case on our long-running tests.



task: indeed this involves proving NIR,O(p) for all O ∈ P≤t (PVar(p)). Simply
enumerating all possible observation sets quickly becomes intractable as p and
t grow. Our main idea to solve this problem is based on the following fact: if
NIR,O(p) then for every O′ ⊆ O we have NIR,O′(p). Therefore checking NIR,Oi(p)
for every i can be done in a single step by checking NIR,

⋃
iOi

(p).
Our goal is therefore to find fewer, larger observation sets O1, . . . ,Ok such

that NIR,Ok
(p) for all k and, for all O ∈ P≤t (PVar(p)), O is a subset of at

least one of the Oi. Since this last condition is the contraposite of the Hitting
Set problem [19], which is known to be NP-hard, we do not expect to find a
generally efficient solution, and focus on proposing algorithms that prove efficient
in practice.

We describe and implement several algorithms based on the observation that
the sequences of derivations constructed to prove the independence judgments in
Section 2 can be used to efficiently extend the observation sets with additional
observations whose joint distributions with the existing ones is still independent
from the secrets. We first present algorithms that perform such extensions, and
others that make use of observation sets extended in this way to find a family
O1, . . . ,Ok of observation sets that fulfill the condition above with k as small as
possible.

4.1 Extending Safe Observation Sets

The NIR,xH algorithm from Section 2 (Algorithm 2) allows us to identify sets X
of expressions whose joint distribution is independent from variables in xH . We
now want to extend such an X into a set X ′ that may contain more observable
expressions and such that the joint distribution of X ′ is still independent from
variables in xH .

First we define Algorithm 3, which rechecks that a derivation applies to
a given set of expressions using the compact representation of derivations re-
turned by algorithms 1 and 2: The algorithm simply checks that the consec-

Algorithm 3 Rechecking a derivation

function recheckR,xH (e,h) .
Check that the derivation represented by h can be
applied to e

if h = Indep then
return ∀x ∈ dvar(e). x /∈ xH

if h = Opt(e, r) : h′ then
(e′)← choose({e′ | e = e′[e/r]})
if e′ 6= bot then

return recheckR,xH (e′,h′)

if h = Conv : h′ then
e← ring simplify(e)
return recheckR,xH (e,h′)

utive rules encoded by h can be applied on e. A key observation is that if



NIR,xH (e) = h then recheckR,xH (e,h). Furthermore, if recheckR,xH (e,h) and
recheckR,xH (e′,h) then recheckR,xH (e ∪ e′,h).

Secondly, we consider (as Algorithm 4) an extension operation that only adds
expressions on which h can safely be applied as it is.

Algorithm 4 Extending the Observation using a Fixed Derivation

function extendR,xH (x, e,h) .
find x′ such that x ⊆ x′ ⊆ e and h(x′) is
syntactically independent from xH

e← choose(e)
if recheckR,xH (e,h) then

return extendR,xH ((x, e), e \ {e},h)
else

return extendR,xH (x, e \ {e},h)

We also considered an algorithm that extends a set x with elements in e
following h whilst also extending the derivation itself when needed. However, this
algorithm induces a loss of performance due to the low proportion of program
variables that can in fact be used to extend the observation set, wasting a lot of
effort on attempting to extend the derivation when it was not in fact possible.
Coming up with a good choose algorithm that prioritizes variables that are
likely to be successfully added to the observation set, and with conservative and
efficient tests to avoid attempting to extend the derivation for variables that are
clearly not independent from the secrets are interesting challenges that would
refine this algorithm, and thus improve the performance of the space splitting
algorithms we discuss next.

In the following, we use extendR,xH (x, e,h) to denote the function from Al-
gorithm 4, which is used to obtain all experimental results reported in Section 5.

4.2 Splitting the Space of Adversary Observations

Equipped with an efficient observation set extension algorithm, we can now
attempt to accelerate the coverage of all possible sets of adversary observations
to prove t-non-interference. The general idea of these coverage algorithms is to
choose a set X of t observations and prove that the program is non-interfering
with respect to X, then use the resulting derivation witness to efficiently extend
X into an X̂ that contains (hopefully many) more variables. This X̂, with respect
to which the program is known to be non-interfering, can then be used to split
the search space recursively. In this paper, we consider two splitting strategies to
accelerate the enumeration: the first (Algorithm 5) simply splits the observation

space into X̂ and its complement before covering observations that straddle the
two sets. The second (Algorithm 6) splits the space many-ways, considering all
possible combinations of the sub-spaces when merging the sets resulting from
recursive calls.



Pairwise Space-Splitting. Our first algorithm (Algorithm 5) uses its initial
tuple X to split the space into two disjoint sets of observations, recursively
descending into the one that does not supersede X and calling itself recursively
to merge the two sets once they are processed separately.

Algorithm 5 Pairwise Space-Splitting

1: function checkR,xH (x, d, e) . every x,y with y ∈ P≤d (e) is independent of xH

2: if d ≤ |E| then
3: y ← choose(P≤d (e))
4: hx,y ← NIR,xH ((x,y)) . if NIR,xH fails, raise error CannotProve (x,y)
5: ŷ ← extendR,xH (y, e \ y,hx,y) . if hx,y = >, use ŷ = y
6: checkR,xH (x, d, e \ ŷ)
7: for 0 < i < d do
8: for u ∈ P≤i (ŷ) do
9: checkR,xH ((x,u), d− i, e \ ŷ)

Theorem 2 (Soundness of Pairwise Space-Splitting). Given a set R of
random variables, a set xH of secret variables, a set of expressions e and an
integer t > 0, if checkR,xH (∅, t, e) succeeds then every x ∈ P≤t (e) is independent
from xH .

Proof. The proof is by generalizing on x and d and by strong induction on e. If
|e| < d, the theorem is vacuously true, and this base case is eventually reached
since ŷ contains at least d elements. Otherwise, by induction hypothesis, the
algorithm is sound for every e′ ( e. After line 5, we know that all t-tuples of
variables in ŷ are independent, jointly with x, from the secrets. By the induc-
tion hypothesis, after line 6, we know that all t-tuples of variables in e \ ŷ are
independent, jointly with x, from the secrets. It remains to prove the property
for t-tuples that have some elements in ŷ and some elements in e\ ŷ. The nested
for loops at lines 7-9 guarantee it using the induction hypothesis. ut

Worklist-Based Space-Splitting. Our second algorithm (Algorithm 6) splits
the space much more finely given an extended safe observation set. The algo-
rithm works with a worklist of pairs (d, e) (initially called with a single element
(t,P≤t (PVar(p)))). Unless otherwise specified, we lift algorithms seen so far to
work with vectors or sets of arguments by applying them element by element.
Note in particular, that the for loop at line 7 iterates over all vectors of n integers
such that each element ij is strictly between 0 and dj .

Theorem 3 (Soundness of Worklist-Based Space-Splitting). Given a set
R of random variables, a set xH of secret variables, a set of expressions e and an
integer t > 0, if checkR,xH ((t, e)) succeeds then every x ∈ P≤t (e) is independent
from xH .



Algorithm 6 Worklist-Based Space-Splitting

1: function checkR,xH ((dj , ej)0≤j<n) .
every x =

⋃
0≤j<n xj with xj ∈ P≤dj (ej)

is independent from xH

2: if ∀j, dj ≤ |ej | then
3: yj ← choose(P≤dj (ej))
4: h← NIR,xH (

⋃
0≤j<n yj) . if NIR,xH fails, raise error CannotProve (

⋃
yj)

5: ŷj ← extendR,xH (yj , ej \ yj ,h)
6: checkR,xH ((dj , ej \ ŷj)0≤j<n)
7: for j; 0 < ij < dj do
8: checkR,xH (ij , (ŷj , dj − ij , ej \ ŷj))

Proof. As in the proof of Theorem 2, we start by generalizing, and we prove that,
for all vector (dj , ej) with 0 < dj for all j, if checkR,xH ((dj , ej)) succeeds, then
every x =

⋃
0≤j<n xj with xj ∈ P≤dj (ej) is independent from xH . The proof

is again by strong induction on the vectors, using an element-wise lexicographic
order (using size order on the e) and lifting it to multisets as a bag order. If there
exists an index i for which |ei| < di, the theorem is vacuously true. Otherwise,
we unroll the algorithm in a manner similar to that in Theorem 2. After line 5,
we know that, for every j, every x ∈ P≤dj (ŷj) is independent from xH . After
line 6, by induction hypothesis (for all j, #ej \ ŷj < #ej since ŷj is of size at
least dj), we know that this is also the case for every x ∈ P≤dj (ŷj). Remains to
prove that every subset of ej of size dj that has some elements in ŷj and some
elements outside of it is also independent from xH . This is dealt with by the for
loop on lines 7-8, which covers all possible combinations to recombine yj and its
complement, in parallel for all j. ut

Comparison. Both algorithms lead to significant improvements in the verification
time compared to the naive method which enumerates all t-tuples of observations
for a given implementation. Further, our divide-and-conquer strategies make
feasible the verification of some masked programs on which enumeration is simply
unfeasible. To illustrate both these improvements and the differences between
our algorithms, we apply the three methods to the S-box of [13] (Algorithm 4)
protected at various orders. Table 1 shows the results, where column # tuples
contains the total number of tuples of program points to be considered, column
# sets contains the number of sets used by the splitting algorithms and the time
column shows the verification times when run on a headless VM with a dual
core9 64-bit processor clocked at 2GHz.

As can be seen, the worklist-based method is generally the most efficient one.
In the following, and in particular in Section 5, we use the check function from
Algorithm 6.

Discussion. Note that in both Algorithms 5 and 6, the worst execution time
occurs when the call to extend does not in fact increase the size of the observation

9 Only one core is used in the computation.



Table 1. Comparison of Algorithms 5 and 6 with naive enumeration and with each
other.

Method # tuples Security
Complexity

# sets time

First-Order Masking

naive 63 X 63 0.001s
pair 63 X 17 0.001s
list 63 X 17 0.001s

Second-Order Masking

naive 12,561 X 12,561 0.180s
pair 12,561 X 851 0.046s
list 12,561 X 619 0.029s

Third-Order Masking

naive 4,499,950 X 4,499,950 140.642s
pair 4,499,950 X 68,492 9.923s
list 4,499,950 X 33,075 3.894s

Fourth-Order Masking

naive 2,277,036,685 X - unpractical
pair 2,277,036,685 X 8,852,144 2959.770s
list 2,277,036,685 X 3,343,587 879.235s

set under study. In the unlikely event where this occurs in all recursive calls,
both algorithms degrade into an exhaustive enumeration of all tuples, which is
no worse than the naive implementation.

However, this observation makes it clear that it is important for the extend
function to extend observation sets as much as possible. It could be interesting,
and would definitely be valuable, to find a good balance between the complexity
and precision of the extend function.

5 Experiments

In this section, we aim to show on concrete examples the efficiency of the methods
we considered so far. This evaluation is performed using a prototype implementa-
tion of our algorithms that uses the EasyCrypt [6] tool’s internal representations
of programs and expressions, and relying on some of its low-level tactics for sub-
stitution and conversion. As such, the prototype is not designed for performance,
but rather for trust, and the time measurements given below could certainly be
improved. However, the numbers of sets each algorithm considers are fixed by
our choice of algorithm, and by the particular choose algorithms we decided to
use. We detail and discuss this particular implementation decision at the end of
this section.

Our choice of examples mainly focuses on higher-order masking schemes since
they are much more promising than the schemes dedicated to small orders. Aside
from the masking order itself, the most salient limiting factor for performance
is the size of the program considered, which is also (more or less) the number



of observations that need to be considered. Still, we analyze programs of sizes
ranging from simple multiplication algorithms to either round-reduced or full
AES, depending on the masking order.

We discuss our practical results depending on the leakage model considered:
we first discuss our prototype’s performance in the value-based leakage model,
then focus on results obtained in the transition-based leakage model.

5.1 Value-based Model

Table 2 lists the performance of our prototype on multiple examples, presenting
the total number of sets of observations to be considered (giving an indication
of each problem’s relative difficulty), as well as the number of sets used to cover
all tuples of observations by our prototype. We also list the verification time,
although these could certainly be improved independently of the algorithms
themselves. Each of our tests is identified by a reference and a function, with
additional information where relevant. The MAC-Keccak example is a simple im-
plementation of Keccak-f on 64-bit words, masked using a variant of Ishai, Sahai
and Wagner’s transformation [21,31] (noting that their SecMult algorithm can
be used to securely compute any associative and commutative binary operation
that distributes over field addition, including bitwise ANDs).

The two rows without checkmarks correspond to examples on which the tool
fails to prove t-non-interference. We now analyze them in more detail.

On Schramm and Paar’s table-based implementation of the AES Sbox, sup-
posed to be secure at order 4, our tool finds 98,176 third-order observations that
it cannot prove independent from the secrets. The time listed is the time needed
to cover all triples, and the first error is found in 0.221s. These errors in fact
correspond to four families of observations, which we now describe. Denoting by
X =

⊕
06i64 xi the S-box input and by Y =

⊕
06i64 yi its output, we can write

the four sets of flawed triples as follows:

1. (x0,Sbox(X ⊕ x0 ⊕ i)⊕ (Y ⊕ y0),Sbox(X ⊕ x0 ⊕ j)⊕ (Y ⊕ y0)) ,
∀i, j ∈ GF(28), i 6= j

2. (y0,Sbox(X ⊕ x0 ⊕ i)⊕ (Y ⊕ y0),Sbox(X ⊕ x0 ⊕ j)⊕ (Y ⊕ y0)) ,
∀i, j ∈ GF(28), i 6= j

3. (x0,Sbox(X ⊕ x0 ⊕ i)⊕ (Y ⊕ y0 ⊕ y4),Sbox(X ⊕ x0 ⊕ j)⊕ (Y ⊕ y0 ⊕ y4)) ,
∀i, j ∈ GF(28), i 6= j

4. (x0, y0,Sbox(X ⊕ x0 ⊕ i)⊕ (Y ⊕ y0)) , ∀i ∈ GF(28).

We recall that y0 is read as y0 = Sbox(x0), and prove that all four families of
observations in fact correspond to attacks.

The first family corresponds to the attack detailed by Coron, Prouff and
Rivain [12]). By summing the second and third variables, the attacker obtains
Sbox(X ⊕ x0 ⊕ i) ⊕ Sbox(X ⊕ x0 ⊕ j). The additional knowledge of x0 clearly
breaks the independence from X. To recover secrets from a second set’s triple
of observations, the attacker can sum the second and third variables to obtain
X⊕x0, from which he can learn Y ⊕y0 (by combining it with the second variable)



Table 2. Verification of state-of-the-art higher-order masking schemes with # tuples
the number t-uples of the algorithm at order t, # sets the number of sets built by our
prototype and time the verification time in seconds

Reference Target # tuples Result
Complexity

# sets time (s)

First-Order Masking

CHES10 [31] multiplication 13 secure X 7 ε
FSE13 [13] Sbox (4) 63 secure X 17 ε
FSE13 [13] full AES (4) 17,206 secure X 3,342 128

MAC-Keccak full Keccak-f 13,466 secure X 5,421 405

Second-Order Masking

RSA06 [33] Sbox 1,188,111 secure X 4,104 1.649
CHES10 [31] multiplication 435 secure X 92 0.001

1st-order flaws
CHES10 [31] Sbox 7,140

(2)
866 0.045

CHES10 [31] key schedule [13] 23,041,866 secure X 771,263 340,745
FSE13 [13] AES 2 rounds (4) 25,429,146 secure X 511,865 1,295
FSE13 [13] AES 4 rounds (4) 109,571,806 secure X 2,317,593 40,169

Third-Order Masking

CHES10 [31] multiplication 24,804 secure X 1,410 0.033
FSE13 [13] Sbox(4) 4,499,950 secure X 33,075 3.894
FSE13 [13] Sbox(5) 4,499,950 secure X 39,613 5.036

Fourth-Order Masking

3rd-order flaws
RSA06 [33] Sbox 4,874,429,560

(98, 176)
35,895,437 22,119

CHES10 [31] multiplication 2,024,785 secure X 33,322 1.138
FSE13 [13] Sbox (4) 2, 277, 036, 685 secure X 3,343,587 879

Fifth-Order Masking

CHES10 [31] multiplication 216,071,394 secure X 856,147 45



and then Y (by combining it with the first one). The third family is a variant of
the first: the S-box masks can be removed in both cases. Finally, when observing
three variables in the fourth family of observations, the knowledge of both x0
and y0 unmasks the third observed variable, making it dependent on X.

Our tool also finds two suspicious adversary observations on the S-box al-
gorithm proposed by Rivain and Prouff [31], that in fact correspond to the two
flaws revealed in [13]. However, by the soundness of our algorithm, and since our
implementation only reports these two flaws, we now know that these are the
only two observations that reveal any information on the secrets. We consider
several corrected versions of this S-box algorithm, listed in Table 3. Some of
these fixes focused on using a more secure mask refreshing function (borrowed
from [14]) or refreshing all modified variables that are reused later on (as sug-
gested by [30]). Others make use of specialized versions of the multiplication
algorithm [13] that allow the masked program to retain its performance whilst
gaining in security.

Table 3. Fixing RP-CHES10 [31] at the second order

Reference S-box # tuples Result
Complexity

# sets time

Second-Order Masking

RP-CHES10 [31] initially proposed 7,140 1st-order flaws (2) 840 0.070s
RP-CHES10 [31] different refreshMasks 7,875 secure X 949 0.164s
RP-CHES10 [31] more refreshMasks 8,646 secure X 902 0.180s

CPRR-FSE13 [13] use of x · g(x) (Algo 4) 12,561 secure X 619 0.073s
CPRR-FSE13 [13] use of tables (Algo 5) 12,561 secure X 955 0.196s

Although it is important to note that the algorithms appear to be “precise
enough” in practice, Table 2 also reveals that program size is not in fact the
only source of complexity. Indeed, proving the full key schedule at order 2 only
involves around 23 million pairs of observations, compared to the 109 million
that need to be considered to prove the security of 4 rounds of AES at the same
order; yet the latter takes less than an hour to complete compared to 4 days for
the full ten rounds of key schedule. We suspect that this is due to the shapes
of the two programs’ dependency graphs, with each variable in the key schedule
depending on a large proportion of the program’s input variables, whereas the
dependencies in full AES are sparser. Although properties of composition would
allow us to consider large programs masked at much higher orders, we leave
these investigations to further works.

Another important factor in the performance of our algorithm is the instan-
tiation of the various choice functions. We describe them here for the sake of
reproducibility. In Algorithms 1 and 2, when choosing a triple (e′, e, r) to use
with rule (Opt), our prototype first chooses r as the first (leftmost-first depth-
first) random variable that fulfills the required conditions, then chooses e as the
largest superterm of r that fulfills the required conditions (this fixes e′). When



choosing an expression to observe (in Algorithms 5 and 6) or to extend a set of
observation with (in Algorithm 4), we choose first the expression that has the
highest number of dependencies on random or input variables. These decisions
certainly may have a significant effect on our algorithm’s performance, and in-
vestigating these effects more deeply may help gather some insight on the core
problems related to masking. We leave this a future work.

5.2 Transition-based Model

The value-based leakage model may not always be the best fit to capture the
behaviour of hardware and software. In particular, when considering software
implementations, it is possible that writing a value into a register leaks both its
new and old contents. To illustrate the adaptability of our algorithms, we first
run some simple tests. We then illustrate another potential application of our
tool, whereby masked implementations that make use of t+1 masks per variable
can be proved secure in the transitions model at orders much higher than the
generic t/2, simply by reordering instructions and reallocating registers.

Table 4. Multiplication in the transition-based leakage model

Reference Multiplication # tuples Security
Complexity

# sets time

RP-CHES10 [31] initial scheme for order 4 3,570 order 2 161 0.008s
RP-CHES10 [31] with some instructions reordering 98,770 order 3 3,488 0.179s
RP-CHES10 [31] using more registers 2,024,785 order 4 17,319 1.235s

Table 4 describes the result of our experiments. Our first (naive) implemen-
tation is only secure at the second order in the transition-based leakage model
and uses 21 local registers (the number of registers needed for this and other
implementations to be secure could also be reduced further by zeroing out reg-
isters between independent uses). Our first improved implementation achieves
security at order 3 in the transition-based leakage model with only 6 local reg-
isters. Trying to provide the best possible security in this model, we also find a
third implementation that achieves security at order 4. This last implementation
is in fact the original implementation with additional registers. Note however,
that in spite of its maximal security order, this last implementation still reuses
registers (in fact, most are used at least twice).

The main point of these experiments is to show that the techniques and
tools we developed are helpful in building and verifying implementations in other
models. Concretely, our tools give countermeasure designers the chance to easily
check the security of their implementation in one or the other leakage model,
and identify problematic observations that would prevent the countermeasure
from operating properly against higher-order adversaries.



6 Conclusion

This paper initiates the study of relational verification techniques for checking
the security of masked implementations against t-order DPA attacks. Beyond
demonstrating the feasibility of this approach for masking orders higher than 2,
our work opens a number of interesting perspectives on automated DPA tools.

The most immediate direction for further work is to exhibit and prove compo-
sitional properties in order to achieve the verification of larger masked programs
at higher orders.

Another promising direction is to automatically synthesize efficient and se-
cure implementations by search-based optimization. Specifically, we envision a
2-step approach where one first uses an unoptimized but provably secure com-
piler to transform a program p into a program pt that is t-non-interfering, and
then applies relational synthesis methods, in the spirit of [4], to derive a more
efficient program p′ that is observationally equivalent to pt and equally secure—
the latter property being verified using pRHL.
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A Initial Transformations on Programs: An Example

To illustrate our algorithms, we consider the simple masked multiplication al-
gorithm defined in [31] and relying on Algorithm 7, which is secure against
2-threshold probing adversaries. In practice, the code we consider is in 3-address
form, with a single operation per line (operator application or table lookup). For
brevity, we use parentheses instead, unless relevant to the discussion. In the rest
of this paper, we write Line (n).i to denote the ith expression computed on line
n, using the convention that products are computed immediately before their
use. For example, Line (5).1 is the expression a0� b1, Line (5).2 is r0,1⊕ a0� b1
and Line (5).3 is a1 � b0.

When given a program whose inputs have been annotated as secret or pub-
lic, we transform it as described at the end of Section 2.4 to add some simple

http://eprint.iacr.org/2014/240


Algorithm 7 Secure Multiplication Algorithm (t = 2) from [31]

Input: a0, a1, a2 (resp. b0, b1, b2) such that a0 ⊕ a1 ⊕ a2 = a (resp. b0 ⊕ b1 ⊕ b2 = b)
Output: c0, c1, c2 such that c0 ⊕ c1 ⊕ c2 = a� b
1: function SecMult(Ja0, a1, a2K, Jb0, b1, b2K)
2: r0,1

$← F256

3: r0,2
$← F256

4: r1,2
$← F256

5: r1,0 ← (r0,1 ⊕ a0 � b1)⊕ a1 � b0
6: r2,0 ← (r0,2 ⊕ a0 � b2)⊕ a2 � b0
7: r2,1 ← (r1,2 ⊕ a1 � b2)⊕ a2 � b1
8: c0 ← (a0 � b0 ⊕ r0,1)⊕ r0,2
9: c1 ← (a1 � b1 ⊕ r1,0)⊕ r1,2

10: c2 ← (a2 � b2 ⊕ r2,0)⊕ r2,1
11: return Jc0, c1, c2K

initialization code that preshares secrets in a way that is not observable by the
adversary, and lets the adversary observe the initial sharing of public inputs.
This allows us to model, as part of the program, the assumption that shares of
the secret are initially uniformly distributed and that their sum is the secret.
The initialization code, as well as the transformed version of Algorithm 7 where
argument a is marked as secret and b is marked as public, are shown in Algo-
rithm 8. We use the square brackets on Line (4) of function PreShare to mean
that the intermediate results obtained during the computation of the bracketed
expression are not observable by the adversary: this is equivalent to the usual
assumption that secret inputs and state are shared before the adversary starts
performing measurements.

Once the program is in this form, it can be transformed to obtain: i. the set
of its random variables;10 ii. the set of expressions representing all of the possible
adversary observations; This final processing step on SecMult yields the set of
random variables R = {a0, a1, b0, b1, r0,1, r0,2, r1,2}, and the set of expressions
shown in Figure 2 (labelled with their extended line number). Recall that these
sets were obtained with a marked as secret and b marked as public.

A.1 Observable transitions

Figure 3 presents the observable transitions for Algorithm 7. It gives the old
value and the new value of the register modified by each program point. This is
done using a simple register allocation of Algorithm 7 (where we use the word
“register” loosely, to denote program variables, plus perhaps some additional
temporary registers if required) that uses a single temporary register that is
never cleared, and stores intermediate computations in the variable where their

10 In practice, since we consider programs in SSA form, it is not possible to assign a
non-random value to a variable that was initialized with a random.



Algorithm 8 Presharing, Sharing and Preprocessed multiplication (t = 2, a is
secret, b is public)

1: function PreShare(a)

2: a0
$← F256

3: a1
$← F256

4: a2 ← [a⊕ a0 ⊕ a1]
5: return Ja0, a1, a2K

1: function Share(a)

2: a0
$← F256

3: a1
$← F256

4: a2 ← (a⊕ a0)⊕ a1

5: return Ja0, a1, a2K

1: function SecMult(a, b)

2: a0
$← F256

3: a1
$← F256

4: a2 ← [a⊕ a0 ⊕ a1]

5: b0
$← F256

6: b1
$← F256

7: b2 ← (b⊕ b0)⊕ b1

8: r0,1
$← F256

9: r0,2
$← F256

10: r1,2
$← F256

11: r1,0 ← (r0,1 ⊕ a0 � b1)⊕ a1 � b0
12: r2,0 ← (r0,2 ⊕ a0 � b2)⊕ a2 � b0
13: r2,1 ← (r1,2 ⊕ a1 � b2)⊕ a2 � b1
14: c0 ← (a0 � b0 ⊕ r0,1)⊕ r0,2
15: c1 ← (a1 � b1 ⊕ r1,0)⊕ r1,2
16: c2 ← (a2 � b2 ⊕ r2,0)⊕ r2,1
17: return [c0 ⊕ c1 ⊕ c2]

Fig. 2. Possible wire observations for SecMult. (Note that, after Lines 4 and 7, we
keep a2 and b2 in expressions due to margin constraints.)

Line Observed Expression Line Observed Expression

(2) a0 (12).2 r0,2 ⊕ a0 � b2
(3) a1 (12).3 a2 � b0
(4) a2 := (a⊕ a0)⊕ a1 (12) (r0,2 ⊕ a0 � b2)⊕ a2 � b0
(5) b0 (13).1 a1 � b2
(6) b1 (13).2 r1,2 ⊕ a1 � b2
(7).1 b⊕ b0 (13).3 a2 � b1
(7) b2 := (b⊕ b0)⊕ b1 (13) (r1,2 ⊕ a1 � b2)⊕ a2 � b1
(8) r0,1 (14).1 a0 � b0
(9) r0,2 (14).2 a0 � b0 ⊕ r0,1
(10) r1,2 (14) (a0 � b0 ⊕ r0,1)⊕ r0,2
(11).1 a0 � b1 (15).1 a1 � b1
(11).2 r0,1 ⊕ a0 � b1 (15).2 a1 � b1 ⊕ ((r0,1 ⊕ a0 � b1)⊕ a1 � b0)
(11).3 a1 � b0 (15) (a1 � b1 ⊕ ((r0,1 ⊕ a0 � b1)⊕ a1 � b0))⊕ r1,2
(11) (r0,1 ⊕ a0 � b1)⊕ a1 � b0 (16).1 a2 � b2
(12).1 a0 � b2 (16).2 a2 � b2 ⊕ ((r0,2 ⊕ a0 � b2)⊕ a2 � b0)

(16) (16).2 ⊕((r1,2 ⊕ a1 � b2)⊕ a2 � b1)



end result is stored. For clarity, the register in which the intermediate result is
stored is also listed in the Figure.

Fig. 3. Possible transition observations for SecMult with a naive register allocation
(shown in the last column). ⊥ denotes an uninitialized register, whose content may
already be known to (and perhaps chosen by) the adversary.

Line Register Old Contents New Contents

(2) ⊥ a0

(3) ⊥ a1

(4) ⊥ a⊕ a0 ⊕ a1

(5) ⊥ b0
(6) ⊥ b1

(7).1 b2 ⊥ b⊕ b0
(7) b⊕ b0 b⊕ b0 ⊕ a1

(8) ⊥ r0,1
(9) ⊥ r0,2

(10) ⊥ r1,2
(11).1 r1,0 ⊥ a0 � b1
(11).2 r1,0 a0 � b1 r0,1 ⊕ a0 � b1
(11).3 t ⊥ a1 � b0

(11) r0,1 ⊕ a0 � b1 r0,1 ⊕ a0 � b1 ⊕ a1 � b0
(12).1 r2,0 ⊥ a0 � b2
(12).2 r2,0 a0 � b2 r0,2 ⊕ a0 � b2
(12).3 t a1 � b0 a2 � b0

(12) r0,2 ⊕ a0 � b2 r0,2 ⊕ a0 � b2 ⊕ a2 � b0
(13).1 r2,1 ⊥ a1 � b2
(13).2 r2,1 a1 � b2 r1,2 ⊕ a1 � b2
(13).3 t a2 � b0 a2 � b1

(13) r1,2 ⊕ a1 � b2 r1,2 ⊕ a1 � b2 ⊕ a2 � b1
(14).1 c0 ⊥ a0 � b0
(14).2 c0 a0 � b0 a0 � b0 ⊕ r0,1

(14) a0 � b0 ⊕ r0,1 a0 � b0 ⊕ r0,1 ⊕ r0,2
(15).1 c1 ⊥ a1 � b1
(15).2 c1 a1 � b1 a1 � b1 ⊕ r0,1 ⊕ a0 � b1 ⊕ a1 � b0

(15) a1 � b1 ⊕ r0,1 ⊕ a0 � b1 ⊕ a1 � b0 (15).2 ⊕r1,2
(16).1 c2 ⊥ a2 � b2
(16).2 c2 a2 � b2 a2 � b2 ⊕ r0,2 ⊕ a0 � b2 ⊕ a2 � b0

(16) a2 � b2 ⊕ r0,2 ⊕ a0 � b2 ⊕ a2 � b0 (16).2 ⊕r1,2 ⊕ a1 � b2 ⊕ a2 � b1
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