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Abstract. We propose a new way to obfuscate programs, via composite-
order multilinear maps. Our construction operates directly on straight-
line programs (arithmetic circuits), rather than converting them to ma-
trix branching programs as in other known approaches. This yields con-
siderable efficiency improvements. For an NC1 circuit of size s and depth
d, with n inputs, we require only O(d2s2 + n2) multilinear map opera-
tions to evaluate the obfuscated circuit—as compared with other known
approaches, for which the number of operations is exponential in d. We
prove virtual black-box (VBB) security for our construction in a generic
model of multilinear maps of hidden composite order, extending previous
models for the prime-order setting.

Our scheme works either with “noisy” multilinear maps, which can only
evaluate expressions of degree λc for pre-specified constant c; or with
“clean” multilinear maps, which can evaluate arbitrary expressions. With
“noisy” maps, our new obfuscator applies only to NC1 circuits, requiring
the additional assumption of FHE in order to bootstrap to P/poly (as in
other obfuscation constructions). From “clean” multilinear maps, on the
other hand (whose existence is still open), we present the first approach
that would achieve obfuscation for P/poly directly, without FHE.

Our construction is efficient enough that if “clean” multilinear maps
were known, then general-purpose program obfuscation could become
implementable in practice. Our results demonstrate that the question
of “clean” multilinear maps is not a technicality, but a central open
problem.

1 Introduction

Program obfuscation is the task of making code “unintelligible”, so that the ob-
fuscated code reveals nothing about the implementation beyond its functionality.
Obfuscation has many practical applications, such as intellectual property pro-
tection and software watermarking, as well as applications to basic cryptographic
primitives [DH76, BGI+01].

The theoretical study of obfuscation was initiated by Barak, Goldreich, Im-
pagliazzo, Rudich, Sahai, Vadhan, and Yang [BGI+01]. In that work, the au-
thors also showed that general-purpose program obfuscation could not achieve
the natural definition of virtual black-box security (VBB), which led many
to suspect that a useful general-purpose obfuscator was impossible. This view
changed with the work of Garg, Gentry, Halevi, Raykova, Sahai, and Waters
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[GGH+13b], who proposed a general-purpose obfuscator based on the power-
ful primitive of multilinear maps [BS03], as constructed by Garg, Gentry, and
Halevi [GGH13a], Coron, Lepoint, and Tibouchi [CLT13], and Gentry, Gor-
bunov, and Halevi [GGH14].

For their general-purpose obfuscator, Garg et al. [GGH+13b] proved the
weaker notion of indistinguishability obfuscation (iO) [BGI+01] in a generic
model of encoded matrices. Subsequently it has been shown that in a generic
model of multilinear maps, general-purpose obfuscation can even achieve VBB
security [BR14, BGK+14], and that iO can be based on a single, instance-
independent security assumption [GLSW14]. Sahai and Waters have also shown
that even the weaker notion of iO has many cryptographic applications, via the
technique of “punctured programs” [SW14]. Since then, obfuscation has become
an extremely active area of study, and many other applications and complexity-
theoretic implications have been explored; see [AGIS14] for an overview.

Even with known constructions and applications, however, general-purpose
obfuscation is currently not feasible to implement in practice. The works of
Ananth et al. [AGIS14] and Sahai and Zhandry [SZ14] investigate the question
of optimizing obfuscation, and obtain significant improvements for some specific
cases, but much work remains to be done. One major source of inefficiency is
that in all previously known constructions, including those of [AGIS14, SZ14],
obfuscation requires converting the input circuit to a matrix branching program,
which incurs a considerable cost in performance.

1.1 Our Results

In this work, we propose a new way to construct obfuscation, which operates
directly on straight-line programs (i.e., arithmetic circuits, Section 2.3), without
converting them to matrix branching programs. The evaluation of an obfuscated
circuit mirrors the structure of the original circuit.

Our construction is based on asymmetric composite-order multilinear maps
[BS03, GGH13a, CLT13, GGH14]. It can operate either with “noisy” multi-
linear maps (such as the CLT construction), or with “clean” maps, for which
there is still no known candidate. In the case of “noisy” multilinear maps, our
construction (like others) is limited to NC1, and requires FHE to bootstrap to
P/poly. With “clean” multilinear maps, on the other hand, we show that we
would be able to obfuscate P/poly directly, without the prohibitively expensive
bootstrapping step via FHE. Indeed, if we knew how to construct “clean” mul-
tilinear maps, then our results in this work would immediately yield obfuscation
for P/poly, with parameters that could be feasible in practice.

In addition to qualitatively new results, our techniques yield considerable
performance improvements even for “noisy” multilinear maps. For instance, for
circuits of size s and depth d with n inputs, we require only O(d2s2+n2) multilin-
ear map elements and operations. All other known approaches require a number
exponential in the circuit’s depth, since every sub-circuit with fanout greater
than 1 must be duplicated before converting the circuit to a matrix branching
program.
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Remark 1.1 (Cryptanalysis of CLT). For some time, it was believed that the
CLT construction [CLT13], together with the modifications of [GLW14, App. B],
provided a secure instantiation of a composite-order multilinear map. The ob-
fuscation construction we develop in this work depends fundamentally on the
composite-order setting, for which CLT has been the natural candidate instan-
tiation.

However, subsequent to this work, there has been significant progress in the
cryptanalysis of the CLT multilinear map. Generalizing the “zeroizing” attack
of [GGH13a], Cheon, Han, Lee, Ryu, and Stehlé [CHL+14] have shown that given
public encodings of a certain form, it is possible to factor the CLT modulus and
thereby break the scheme. Further cryptanalysis showed that it does not help
to rule out encodings of this particular form; variants of the Cheon et al. attack
can be executed under much weaker hypotheses [GHMS14, BWZ14, CLT14].

In light of these attacks, it is not clear that composite-order multilinear
maps can currently be instantiated. We are optimistic that new candidates
will be discovered in the future, perhaps as variants of other known construc-
tions [GGH13a, GGH14], and we await the development of suitable multilinear
maps.

Perspective: towards implementable obfuscation. Currently, general-purpose ob-
fuscation is not feasible to implement in practice. There have been two main
obstacles to its implementation. The first is that, in known (“noisy”) multilinear
maps such as the GGH and CLT schemes, the noise—and hence the parameters—
grow with the degree of the polynomial being computed over encoded elements;
this limits us to NC1 circuits, because the degree of a circuit may increase ex-
ponentially with its depth. The second obstacle is that, prior to this work, ob-
fuscation required converting the input circuit to a matrix branching program,
whose size in general is also exponential in the depth of the original circuit.

This work removes the second obstacle. In our construction, the number
of multilinear map operations is polynomial in the circuit size; it is only the
degree of multilinearity (and hence the noise growth in “noisy” multilinear maps)
that restricts our construction to NC1. If we could construct “clean” multilinear
maps, then our results would immediately yield obfuscation for P/poly, with
parameters that could be feasible in practice. In our view, our results indicate
that constructing “clean” multilinear maps is one of the most fundamental open
problems in cryptography.

Succinctness and keyed circuits. Our new approach is particularly effective for
obfuscating keyed circuit families (C(·,y))y∈{0,1}m (Section 2.4), in which the
circuit’s structure C is public, and one only needs to hide a short secret key
y ∈ {0, 1}m embedded in the circuit—as is common in many cryptographic
applications. For example, for a keyed circuit C : {0, 1}n × {0, 1}m → {0, 1} of
size s and depth d (with n inputs and key length m), our obfuscation consists
of only O(m+n2) ring elements in the multilinear map, and evaluation requires
O(s+ n2) ring operations, with multilinearity degree O(2d + n2).
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Degree of
multilinearity

Obfuscation size
(# ring elements)

Evaluation time
(# ring operations)

Via Barrington
[BR14, BGK+14]

O(4dn+ n2) O(4dn+ n2) O(4dn+ n2)

[AGIS14] O(2dn+ n2) O(8dn+ n2) O(8dn+ n2)

[AGIS14] + [Gie01] O(2(1+ε)dn+ n2) O(2(1+ε)d42/εn+ n2) O(2(1+ε)d42/εn+ n2)

This work O(2dn+ n2) O(d2s2 + n2) O(d2s2 + n2)

Table 1. Performance for general (unkeyed) circuits of input length n, size s, and
depth d. We always have n, s < O(2d), since the gates have fanin two; and in most
applications we have n, s� 2d. For moderately “narrow” circuits with s < O(dn) and
d > 2 lgn, for example, we have O(d2s2 + n2) = O(d4n2) = o(2dn). We present the
cost here in terms of ring elements and ring operations. The concrete cost in bits and
bit operations depends on the multilinear map (Section 2.8). For “clean” maps (whose
existence is still open), the cost is just poly(λ). For “noisy” maps, the cost depends
on the instantiation; e.g., for the CLT map [CLT13], the reader should multiply each

row’s obfuscation size and evaluation time by O(deg2+ε′) · poly(λ), where deg is the
corresponding multilinearity degree from the first column, and ε′ is a small constant
determined by the choice of the Θ parameter in composite-order CLT [GLW14, App. B].

For keyed circuits, we also define succinct obfuscation (Section 2.10), in which
the obfuscation overhead size depends only on the input length n and the se-
cret key length m, and is independent of the circuit size. Using our new tech-
niques, along with the assumption that factoring is hard on average, we show
that “clean” multilinear maps would imply succinct obfuscation for all of P/poly.

Of course, we can regard every circuit family as keyed, by viewing the original
circuit as the secret key input to the universal circuit. In this case, succinctness
means that the obfuscation overhead size depends only on the size of the part
of the original circuit that the obfuscation needs to hide (as well as on the input
length). However, the keyed model is especially natural, and we expect that in
most applications it will find more use than general-purpose obfuscation.

New design spaces. When the obfuscator converts every circuit C to a matrix
branching program, as in previously known approaches, it usually does not help
to optimize the design of C itself. The depth of C determines the size of the
resulting branching program,1 but apart from that, every design strategy results
in the same procedure to evaluate the obfuscated circuit O(C), and the same
performance—namely, a series of matrix multiplications of encoded elements in
the multilinear map.

By contrast, with our new techniques, the obfuscated program’s evaluation
mirrors the structure of the original arithmetic circuit. If these circuits are natu-
rally keyed, as in most cryptographic applications, then the performance changes
considerably with the design strategy, and we expose a rich new design space. The

1 In some cases, for Boolean formulas, the size of the branching program may depend
on the formula’s size [AGIS14].
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execution of any machine—say, a Turing machine or RAM—can be converted
to a circuit with overhead at most polylogarithmic,2 as long as the machine is
already oblivious (Section 2.2)—i.e., its control flow does not depend on its input
data. This means that any tools for designing efficient oblivious algorithms now
apply to program obfuscation.

For example, to specialize our new construction to Boolean formulas, we
use an efficient oblivious stack [HS66, PF79, MZ14] to evaluate the formulas in
postfix order, and we rely on the Fast Fourier Transform (FFT) to reduce the
degree of the resulting computation (see the full version [Zim14] for details). We
believe that these applications are only the beginning, and we hope that this work
will encourage further study of obfuscating specific, keyed circuit families. This
goal is closely related to the design of efficient oblivious algorithms for specific
problems, which is of independent interest in secure multi-party computation
and other areas of cryptography. More broadly, while the existence of general-
purpose obfuscation is an important theoretical result, we believe that its role
in applications is actually quite limited; it is analogous to running all of our
programs on a universal Turing machine.

VBB security in the generic model. Since obfuscation is such a powerful prim-
itive, historically it has been difficult to prove constructions secure based on
simple, falsifiable assumptions. In the first candidate construction for general-
purpose obfuscation [GGH+13b], Garg et al. prove indistinguishability obfusca-
tion (iO) based on a meta-assumption which roughly asserts that the scheme
is secure, which they validate in a generic model of generic (encoded) matrices.
Brakerski and Rothblum [BR14] and Barak et al. [BGK+14] develop these re-
sults further, showing how to extend the obfuscation paradigm of [GGH+13b] to
achieve the much stronger definition of virtual black-box (VBB) security in a very
natural generic model of multilinear maps, similar to the generic group model
[Sho97]. In this work, we also prove VBB security, in a generic model similar to
that of [BR14, BGK+14], adapted to the setting of (hidden) composite order.

As observed by Brakerski and Rothblum [BR14], it is not clear how we should
interpret a proof of VBB in a generic model, since we know that VBB security
in the standard model is impossible for general circuit families [BGI+01]. How-
ever, as far as we know, it may be possible to achieve VBB obfuscation for
many specific classes of circuits, even if not for the pathological examples in the
negative results of [BGI+01]. We also do not know any (unconditional) nega-
tive results for iO, and a proof of VBB in the generic model also implies iO
in the generic model. Thus, it is plausible that our construction achieves iO
for all circuits (or some intermediate definition, such as differing-inputs obfus-
cation [BGI+01, ABG+13, BCP14]), and a generic-model VBB proof serves as
evidence of this as well.

More generally, a generic-model VBB proof shows that a scheme resists a
wide class of “algebraic” attacks, and that any attack that breaks VBB security

2 For instance, in some models there is overhead involved in decomposing word oper-
ations into bits.
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must exploit some property of the concrete instantiation of multilinear maps.3

As in the random oracle model, we know that no real primitive can actually
instantiate the generic model in all cases [CGH98], and we view the negative
result for VBB as another example of that paradigm. In this work, as in other
works that rely on generic models [GGH+13b, BR14, BGK+14], we believe that
a generic-model proof provides strong heuristic evidence that the corresponding
(meta-)assumptions usually hold in the standard model. Of course, it would
be even better to prove our construction secure based on a single (instance-
independent) falsifiable assumption, as in the work of Gentry et al. [GLW14,
GLSW14, GGHZ14]. We leave this as an important open problem for future
work.

Extensions. We observe that our techniques can be naturally extended to func-
tional encryption [O’N10, BSW11] (as well as its generalization, multi-input
functional encryption [GGG+14]), enabling direct constructions that do not re-
quire the full machinery of obfuscation and NIZK proofs, and hence avoid their
considerable performance cost. We now outline one approach to this extension;
we leave the full development for future work. First we note that in our obfus-
cation construction, we give out an obfuscated keyed circuit, O(C(·,y)), which
acts much like the functional decryption key fC(·,y) in a functional encryption
scheme. The evaluator can select arbitrary inputs x ∈ {0, 1}n of her choice, and
use the obfuscated circuit to learn C(x,y). In functional encryption, however,
the evaluator has an additional ability: she can “defer” the evaluation of C(x,y),
by running ctx ← Enc(pk,x); then, roughly speaking, an adversary who obtains
the value ctx learns nothing about x, except those outputs C(x,y) for which the
adversary has the corresponding keys fC(·,y). So, to generalize our obfuscation
construction to functional encryption, we need to enable the evaluator to “defer”
an input x in this fashion. Since our construction already represents each input
bit x1, . . . , xn ∈ x as an encoded element in the multilinear map, this amounts
to generating poly(λ) additional encoded elements, of which we can use a subset
to “blind” an encoded input x, constructing the ciphertext for the functional
encryption scheme.

Another natural extension of our construction is to obfuscate circuits with
multi-bit output,4 C : {0, 1}n × {0, 1}m → {0, 1}` for ` > 1. We defer the full
details of this extension to the full version [Zim14]. At a high level, since our
evaluation of an obfuscated circuit follows the structure of the original circuit,
we can also reuse intermediate results for gates with fanout > 1, and we need
not repeat the entire computation for each bit of the output (as we would in
approaches based on Barrington’s theorem). We remark that this extension is
especially apt for algorithms such as block ciphers, which maintain and update

3 Indeed, the negative result of [BGI+01] for VBB in the standard model is based on
an attack in which an obfuscated circuit is evaluated on its own bit representation,
which of course depends fundamentally on the concrete instantiation of multilinear
maps.

4 For simplicity, we restrict our discussion here to keyed circuit families (Section 2.4),
as discussed above.
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a small “working state” and read off a (multi-bit) output from that state at the
end of the computation.

1.2 Our Techniques

We now give an overview of our techniques, and explain how they relate to other
known approaches. To keep the presentation simple, we describe our techniques
in terms of keyed arithmetic circuit families C : {0, 1}n × {0, 1}m → {0, 1}, as
described in Section 2.4. (We note that we can obtain keyed circuit families
from various other machine models, including general Boolean circuits, by stan-
dard universal-program transformations; we defer the formal details to the full
version [Zim14].)

Known approaches. All known constructions of general program obfuscation
(including this work) are based on multilinear maps [BS03, GGH13a, CLT13,
GGH14]. Multilinear maps, also known as graded multilinear maps or graded
encodings [GGH13a, CLT13, GGH14], are a generalization of bilinear maps such
as pairings over elliptic curves [Mil04, MOV93, Jou00, BF01]. Roughly speaking,
a multilinear map lets us take a scalar x and produce an encoded version, x̂ =
[x]S , where S ⊆ U is a multi-set, called an index set, that indicates the level of the
encoding x̂ in a given hierarchy (namely, the subsets of U ordered by inclusion).5

Elements can be added within the same index set, [x]S + [y]S = [x + y]S ; and
elements can be multiplied, [x]S · [y]T = [xy]ST , as long as the resulting index
set ST is still contained in U . Finally, elements encoded at U itself can be zero-
tested, to determine whether they encode the scalar 0.

Intuitively, multilinear maps seem like a perfect fit for program obfuscation. If
we give out encoded versions of the secret key input y ∈ {0, 1}m, then the evalu-
ator can encode x ∈ {0, 1}m himself, use the multilinear map’s arithmetic opera-
tions to evaluate C on the encoded elements, and zero-test the result to determine
the output C(x,y) ∈ {0, 1}. Unfortunately, unless we are extremely careful, the
adversary can also evaluate other circuits C ′(x,y) 6= C(x,y) on the encoded
inputs—such as the circuit C ′ that ignores the input x and leaks a bit of the se-
cret key y. Previously known approaches [GGH+13b, BR14, BGK+14, AGIS14,
GLSW14] solve this problem by “garbling” the program C(·,y), converting it to
a randomized matrix branching program via Kilian’s protocol [Kil88].

Structure of our scheme. In our construction, we do not convert the circuit
C(·,y) to a matrix branching program. Rather, evaluation of the obfuscated
circuit O(C(·,y)) follows the structure of the original circuit C, perfoming C’s
operations on encoded versions of x,y in the multilinear map (as depicted in
Figure 1). To make sure the adversary evaluates the correct circuit, we make es-
sential use of composite-order multilinear maps such as the CLT scheme [CLT13].
We encode scalars in ZN for a composite modulus N = NevNchk, and we view

5 We describe here the case of asymmetric multilinear maps, since this is the one
relevant to our constructions in this work.
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ZN as a direct product of the two rings ZNev
,ZNchk

, defined by the Chinese Re-
mainder Theorem. To emphasize this intuition, we write [x1, x2]S to refer to an
encoding, at index set S of the value x ∈ ZN such that x ≡ x1 (mod Nev) and
x ≡ x2 (mod Nchk). Evidently the multilinear map operations (+,×) operate
componentwise on these pairs, and a value is zero only if both components are
zero.

Now, in our construction, the second component of the direct product (ZNchk
)

serves as a kind of “checksum” for the adversary’s evaluation. When the adver-
sary aims to learn the value of some other circuit C ′(x1, . . . , xn, y1, . . . , ym), he
will be forced to evaluate the same polynomial in parallel (in the second com-
ponent), on the uniformly random values α1, . . . , αn, β1, . . . , βm, as depicted in
Figure 1. At the end of this procedure, we also provide a “check” encoding Ĉ∗,
whose ZNchk

component is the precomputed value C(α1, . . . , αn, β1, . . . , βm). The
structure of our scheme ensures (roughly speaking) that the adversary can only
perform a zero-test by subtracting off a multiple of this encoding Ĉ∗. (For more
details, we refer the reader to Construction 1.)

This design ensures that the adversary will learn nothing from evaluating
the wrong circuit. Regardless of the inputs x,y, if the adversary evaluates an
incorrect expression C ′ 6≡ C, the result will not match our precomputed value
C(α1, . . . , αn, β1, . . . , βm) modulo Nchk, and hence the final subtraction will pro-
duce a nonzero value modulo N = NevNchk (so that the multilinear map’s
zero-test operation always returns “nonzero”). In essence, we have forced the
adversary to run the Schwartz-Zippel identity-testing algorithm on his own cho-
sen expression C ′, in parallel (componentwise) with its actual evaluation on
x1, . . . , xn, y1, . . . , ym.

Enforcing consistency: index sets with multiplicity. In addition to making sure
the adversary cannot evaluate the wrong circuit C ′ 6= C, we must also defend
against “mix-and-match” attacks, in which the adversary evaluates the correct
circuit C, but uses inconsistent values of input bits at different points in the
evaluation. Since we do not convert every circuit to a branching program, it is
not clear how to solve this problem with the index set constraint techniques
of [BR14, BGK+14]. In our model, the adversary must be allowed plenty of
flexibility in constructing his chosen query (since the honest evaluation follows
the structure of the original circuit C, which is arbitrary), and yet the adversary
must be able to complete all (and only) the consistent evaluations to the top-level
index set U .

Instead, we propose the following approach, depicted in Figure 1. We encode
each input bit (x̂1,0, x̂1,1, x̂2,0, x̂2,1, . . .) at its own singleton index set (X1,0, X1,1,
X2,0, X2,1, . . .). The adversary can evaluate whatever expressions he chooses, and
the associated index sets will track the degree of the expression in each variable.

Then, we give out “interlocking” elements ẑi,b whose index sets contain X
deg(xi)
i,1−b

for each bit choice b ∈ {0, 1} (where deg(xi) is the degree of the variable xi in the
actual circuit C). By design of the index sets (Section 3), the adversary is forced
to incorporate these elements ẑi,b into any monomial that reaches the top level
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Eval: O(C)(x1 = 0,x2 = 1, . . . , xn, y1, . . . , ym)

[C(x1, . . . , xn, y1, . . . , ym), C(α1, . . . , αn, β1, . . . , βm)]
Y deg(y)

∏
i X

deg(xi)
i,xi

x̂1,0 = [0, α1]X1,0

û1,0 = [1, 1]X1,0

x̂1,1 = [1, α1]X1,1

û1,1 = [1, 1]X1,1

x̂2,0 = [0, α2]X2,0

û2,0 = [1, 1]X2,0

x̂2,1 = [1, α2]X2,1

û2,1 = [1, 1]X2,1

. . .
ŷ1 = [y1, β1]Y ŷm = [ym, βm]Y

v̂ = [1, 1]Y

. . .

[1, α1 + α2]X1,0X2,1 [y1, α2β1]X2,1Y

.

.

.

O(+):

x̂1,0û2,1 + x̂2,1û1,0

O(×):
x̂2,1 · ŷ1

Fig. 1. The first step of our evaluation procedure, for an obfuscated (keyed) arithmetic
circuit. First, we use the bits of the input string x (e.g., x1 = 1, x2 = 0, . . ., xn) to select
the relevant input encodings x̂1,1, x̂2,0, . . . , x̂n. We then run C directly on the encodings
x̂1,1, x̂2,0, . . . , ŷ1, . . . , ŷm, implementing C’s arithmetic operations via the multilinear
map, and multiplying by encodings of 1 to make index sets match. (Here deg(xi) is the
degree of C, as a multivariate polynomial, in the variable xi; and similarly deg(y) is
the total degree of C in the variables y1, . . . , ym.)
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U ; but their index sets prevent the adversary from making any input-inconsistent
choices within a given monomial.

Enforcing separability: componentwise blinding factors. Our “interlocking” ele-
ments ẑi,b also contain additional blinding factors: δi,b, in the evaluation compo-
nent; and γi,b, in the “check” component (see Section 3 for details). Intuitively, we
need the factors γi,b to make sure that even if the adversary submits a “mixed”
query that refers to more than one input string x, the parts of the adversary’s
query that refer to different input strings are separated, each scaling a different γ
monomial, so that they cannot cancel each other and thus the simulator can an-
swer the zero-test query by addressing each consistent input independently.6 The
values δi,b are needed in the general case of arithmetic circuits (rather than just
Boolean circuits), since there we may have integer outputs C(x,y) 6= C(x′,y)
such that neither C(x,y) nor C(x′,y) is zero, and the adversary still should
not be allowed to learn whether some specific linear combination of C(x,y) and
C(x′,y) is zero. Together with the design of the index sets described above,
these blinding factors let us decompose the adversary’s queries into independent
subqueries each consistent with one input string x ∈ {0, 1}n, which is essential
for the construction of an efficient simulator in the VBB security proof.

Enforcing sequentiality: straddling sets and commitments. In order to achieve
virtual black-box (VBB) security (in the generic model), our construction must
also address the following subtle issue, raised in [BR14, BGK+14]. Roughly
speaking, an efficient simulator in the generic model must examine the arith-
metic expression z that the adversary evaluates via the multilinear map opera-
tions, and determine whether z would evaluate to zero in the real scheme. The
simulator must make this decision based only on the information it receives from
its own oracle C(·,y), which means that if the expression z includes terms from
superpolynomially many possible inputs x, then the simulator cannot necessarily
answer the query efficiently.

We solve this problem by adapting an elegant technique of Barak et al.
[BGK+14]. In that work, the authors describe a tool called straddling sets. A
straddling set system consists of two partitions S0,S1 of the set [n], each consist-
ing of O(n) subsets. The subsets are arranged so that once we choose a set from
(say) the partition S0, we have committed to S0, and we cannot complete this
set to form a full partition of [n] except by adding all (and only) the remaining
sets in the partition S0. The construction of [BGK+14] associates a straddling
set system to each input bit i ∈ {1, . . . , n}, for a total of O(n2) sets among all
n partitions, and the index set of each encoded matrix includes a set from each
of two different straddling set systems, indicating which of the corresponding
two input bits the matrix selects (in the matrix branching program). Our use of
straddling sets in this work is similar to their use in [BGK+14], with some adap-
tations to restrict which of our terms induce which straddling-set dependencies.
We defer the full details to Section 3.
6 In this respect, the γ values in our construction play the same role as the scalar

blinding factors in some other obfuscators (e.g., the α factors in [BGK+14]).
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1.3 Related Work

As discussed above, our work builds on earlier constructions of program ob-
fuscation [GGH+13b, CV13, BR14, BGK+14, AGIS14, GLSW14], but our new
techniques differ in multiple ways—most notably, we obfuscate circuits directly,
without converting them to branching programs.

The work of Gentry et al. [GLSW14] constructs indistinguishability obfusca-
tion (iO) from composite-order multilinear maps. In that work, extending the
techniques of [GLW14], the authors show that iO can be based on a single,
falsifiable assumption, independent of the particular circuit to be obfuscated.
Previously it was only known how to prove iO in generic models of multilinear
maps [GGH+13b, BR14, BGK+14], or from meta-assumptions that quantify over
many circuits [PST14]. In [GLSW14], the emphasis is on the new assumption;
the main construction is based on the standard paradigm of converting circuits to
branching programs, as in [GGH+13b, BR14, BGK+14]. By contrast, our work
proposes a new kind of construction, which avoids branching programs entirely;
while our security proof is given in a generic model similar to that of [BGK+14].
Thus, our work is largely orthogonal to that of [GLSW14]. As discussed above,
we believe it may be possible to adapt our construction to base security on a
single falsifiable assumption, as in [GLSW14], and we leave this as an important
open problem for future work.

Our work is also complementary to that of Ananth et al. [AGIS14]. In that
work, the authors give an obfuscation construction that is still based on matrix
branching programs, as in [GGH+13b, BR14, BGK+14], but constructs those
branching programs much more efficiently when the programs to be obfuscated
are given as Boolean formulas. A key observation in [AGIS14] is that in order to
evaluate a Boolean formula φ efficiently, we can simply test whether two specific
vertices are connected in a directed graph related to φ. As the authors observe,
this graph connectivity computation can be written as matrix multiplication,
and thus it is well-suited to known approaches via matrix branching programs.
More broadly, however, the graph connectivity computation is well-suited to
program obfuscation in general—because the structure of matrix multiplication
is independent of the input data (Section 2.2), and because it has relatively
low degree as an arithmetic circuit. Indeed, the new obfuscator we develop in
this work could also be run on the connectivity algorithms of [AGIS14]; and,
as we show in the full version [Zim14, §4], for some parameter settings this
would yield even better performance than running our obfuscator on a program
that evaluates the formula φ directly (i.e., without converting it to a graph
connectivity problem). The techniques we develop in this work expose a rich
space of design choices for the computations that are input to the obfuscator,
and the connectivity computation of [AGIS14] is an interesting example of one
such design.

In concurrent and independent work, Applebaum and Brakerski [AB15] de-
scribe an obfuscator that is very similar to the simplified iO version of our con-
struction [Zim14, Appendix A]. The construction of Applebaum and Brakerski
only achieves the weaker notion of (generic-model) iO, rather than (generic-
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model) VBB security as we achieve in our main construction [Zim14, §3]. Ap-
plebaum and Brakerski also give an extension that provides robustness in the
stronger setting of low-level zero-test operations (see Remark 2.6 below), at the
cost of n additional components in the composite-order encodings. We note that
our construction in this work can also be extended to be robust in this stronger
setting, at the cost of only 2 additional components, via the generic transfor-
mation of [BWZ14]. (Indeed, the zero-immunizing transformation of [BWZ14]
applies to any scheme secure in the generic model of composite-order multilinear
maps, and thus also improves the construction of Applebaum and Brakerski.)

2 Preliminaries

2.1 Conventions

For integers n, a, b, we denote by [n] the set {1, . . . , n}, and by [a, b] the set
{a, . . . , b}. For a finite set S, we write Uniform(S) to mean the probability dis-
tribution that is uniform over the elements of S. For integers a, b, we write
Primes[a, b] to mean the set of all prime numbers in [a, b], and we overload this
notation to refer to the distribution Uniform(Primes[a, b]). Following standard
conventions of cryptography, we also define a variable λ, called the security pa-
rameter. We define a negligible function to be a function ε(λ) that is o(1/λc) for
every c > 0, and we write negl(λ) to denote a negligible function of λ.

2.2 Oblivious Computation and the “Mux” Operation

A program is considered data-oblivious, or oblivious, if the sequence of primitive
operations performed, as well as the identities of their operands (e.g., registers
or memory locations in a RAM) is a deterministic function solely of the input
length, and does not depend on the input. To make a program oblivious, there
are many standard techniques. We now describe one such technique, known as
“arithmetization” or “multiplexing” (abbreviated “mux”), which is involved in
various compiler optimizations and static analyses of programs. The idea is very
simple: whenever a program would call for input-dependent control flow, such as
“ if x then y ← z; else y ← w; ”, we remove the conditional, and replace every
assignment statement in both branches with an arithmetized version: “ y ←
x · z + (1− x) · w ”, also denoted “ y ← mux(x, z, w) ”.

2.3 Straight-Line Programs (Arithmetic Circuits)

In our obfuscation construction, we will find it natural to work with the compu-
tational model of straight-line programs over the integers. We say a straight-line
program P : Zn → Z computes a Boolean function f : {0, 1}n → {0, 1} if for all
x ∈ {0, 1}n, we have f(x) = 1⇔ P (x) 6= 0. When the context is clear, we abuse
notation to write P (x) : {0, 1}n → {0, 1} to denote the Boolean function f that
P computes. We note that straight-line programs are naturally identified with
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arithmetic circuits (fanin two, unbounded fanout). In this work, we will view
straight-line programs and arithmetic circuits interchangeably.

The model of straight-line programs is extremely general. The execution of
any machine—say, a Turing machine or RAM—can be expressed as a straight-
line program over Z, with overhead at most polylogarithmic,7 provided that
the machine is oblivious (Section 2.2). We also note that an arithmetic circuit
C : {0, 1}n → {0, 1} can be expressed as a formal multivariate polynomial
in Z[x1, . . . , xn] (perhaps after duplicating gates to account for fanout), and
we will identify circuits with their corresponding polynomials. Although the
multivariate polynomial for a given circuit C may be of exponential size, it can
still be evaluated efficiently, and we can perform algebraic substitutions on it.
We define the degree of an arithmetic circuit C in each input variable as the
degree of its corresponding polynomial in that variable, and similarly for the
total degree. Given a Boolean circuit C, evidently we can convert it into an
arithmetic circuit C ′ that computes the same function, with at most a constant
factor overhead both in size and in depth. For the formal details, we refer the
reader to the full version [Zim14].

2.4 Keyed Programs

In many cryptographic applications of obfuscation, we do not depend on hiding
the entire structure of the obfuscated program from the adversary, but rather
only need to hide a short secret key embedded in the program. We can formalize
this notion as follows.

Definition 2.1 (Keyed Circuit Family). Let C : {0, 1}n × {0, 1}m → {0, 1}
be an arithmetic circuit of size s and depth d, and for each y ∈ {0, 1}m, define
the function fy(x) = C(x,y) for all inputs x ∈ {0, 1}n. If (Cy)y∈{0,1}m is a
family of arithmetic circuits such that each Cy computes fy, then we say that
(Cy)y∈{0,1}m is a keyed circuit family, of size s and depth d, corresponding to
the universal circuit C.

The model of “keyed” programs is especially natural for obfuscation, and
we expect that in most cryptographic applications, it will find more use than
general-purpose obfuscation. For theoretical purposes, however, we would still
like to construct general-purpose obfuscation for large classes of circuits such as
NC1 or P/poly, for which the obfuscation must hide everything except the size
of the circuit to be obfuscated. Thus, we make use of standard transformations
from general circuit families to keyed circuit families, in which the secret key
is the entire circuit to be obfuscated, and C is a universal circuit; we defer the
formal details to the full version [Zim14]. We emphasize that these universal-
circuit transformations are mainly for theoretical purposes. In practice, a much
better approach would be to design, for each desired cryptographic application
of obfuscation, a family of circuits that is already keyed with respect to the
particular secret that needs to be hidden.

7 For instance, in some models there is overhead involved in decomposing word oper-
ations into bits.
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2.5 Composite-Order Multilinear Maps

Multilinear maps [BS03], also known as graded multilinear maps or graded en-
codings [GGH13a, CLT13, GGH14], are a generalization of bilinear maps such as
pairings over elliptic curves [Mil04, MOV93, Jou00, BF01]. Intuitively, a multi-
linear map lets us take scalars x, y and produce corresponding encodings x̂, ŷ at
any level of a given hierarchy, so that we can still perform arithmetic operations
(e.g., x+ y, xy) on the encoded representations, and yet it is hard to recover the
original scalars x, y from encodings x̂, ŷ. For example, in a symmetric bilinear
map e : G×G→ GT (where g generates G, and e(g, g) generates GT ), a scalar
x ∈ Z can be encoded in G as gx, or encoded in GT as e(g, g)x. The levels of the
hierarchy here are G and GT , and the hierarchy’s structure enforces constraints
on the arithmetic operations that we can perform. For instance, via the group
operation we can compute gx+y (an encoding of x+y) from gx and gy (encodings
of x and y), but to obtain an encoding of xy, we must increase the level in the
hierarchy from G to GT , by computing the pairing e(gx, gy) = e(g, g)xy.

In the case of symmetric bilinear maps, this hierarchical structure can be
identified with the integers 0, 1, 2 as indices, where the index 0 represents scalars,
1 represents elements of G, and 2 represents elements of GT . Elements at the
same index can be added together, while elements at arbitrary indices can be
multiplied, but their indices add. For asymmetric bilinear maps, the more natural
analogy is that of a subset lattice: specifically, a map e : G1 × G2 → GT is
identified with the subset lattice ∅ ⊆ {A},{B} ⊆ {A,B}, where ∅ corresponds
to scalars, {A} to G1, {B} to G2, and {A,B} to GT .

More generally, in the case of asymmetric multilinear maps, it is standard
to work with general subset lattices, where the sets may contain elements with
multiplicity. By convention, we will say that these sets are made up of formal
symbols, denoted by capital letters (A,B,C), which serve the same role as formal
variables in polynomials. Formally, we state the following definitions.

Definition 2.2 (Formal Symbol). A formal symbol is a bit string in {0, 1}∗,
and distinct variables denote distinct bit strings. A fresh formal symbol is any bit
string in {0, 1}∗ that has not already been assigned to another formal symbol.

Definition 2.3 (Index Sets). An index set is a multi-set of formal symbols
called indices. The multiplicity of each index is written in binary, and so the de-
gree of an set may be up to exponential in the size of its representation. By con-
vention, for index sets we use set notation and product notation interchangeably,
so that A3BC2 represents {A,A,A,B,C,C}, and A3BC2 ∪ABC = A4B2C3.

Definition 2.4 (Composite-Order Multilinear Map ([BS03, GGH13a,
CLT13, GLW14], adapted)). A composite-order multilinear map supports the
following operations. Each operation (CM.Setup, CM.Add, CM.Mult, CM.ZeroTest,
CM.Encode) is implemented by an efficient randomized algorithm.

– The setup procedure receives as input an index set U (Definition 2.3), which
we refer to as the “top-level index set”, as well as the security parameter λ (in
unary), and an integer k indicating the number of components to generate
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for the modulus. It produces public parameters pp, secret parameters sp, and
integers N1, . . . , Nk as follows:

CM.Setup(U , 1λ, k) → (pp, sp, N1, . . . , Nk)

Each integer N1, . . . , Nk is a product of poly(λ) primes, and each of these
k · poly(λ) primes is drawn independently from Primes[2λ, 2λ+1]. We also
define N =

∏
i∈[k]Ni, the overall modulus.8

– For each index set S ⊆ U , and each scalar x ∈ ZN , there is a set of strings
[x]S ⊆ {0, 1}∗, i.e., the set of all valid encodings of x at index set S. 9 From
here on, we will abuse notation to write [x]S to stand for any element of [x]S
(i.e., any valid encoding of x at the index set S).

– Elements at the same index set S ⊆ U can be added, with the result also
encoded at S:

CM.Add(pp, [x]S , [y]S) → [x+ y]S

– Elements at two index sets S1,S2 can be multiplied, with the result encoded
at the union of the two sets, as long as their union is still contained in U :

CM.Mult(pp, [x]S1 , [y]S2) →

{
[xy]S1∪S2 if S1 ∪ S2 ⊆ U
⊥ otherwise

– Elements at the top level U can be zero-tested:

CM.ZeroTest(pp, [x]S) →

{
“zero” if S = U and x = 0 ∈ ZN
“nonzero” otherwise

– Using the secret parameters, one can generate a representation of a given
scalar x ∈ Z at any index set S ⊆ U :

CM.Encode(sp, x, S) → [x]S

– For the trivial index set S = ∅, we specify that the valid encodings [x]∅ are
just the integers congruent to x modulo N . (So, for instance, we can perform
subtraction via CM.Add, by scalar multiplication with −1.)

By convention (and by analogy to the setting of symmetric multilinear maps),
we refer to the total degree of U as the degree of multilinearity of the map.
When the context is clear, we also abuse notation to write, for encodings â, b̂,
the expression â + b̂ to mean CM.Add(CM.pp, â, b̂); the expression âb̂ to mean

CM.Mult(CM.pp, â, b̂); and likewise for other arithmetic expressions.

8 We remark here that our construction does not rely on the individual moduli
N1, . . . , Nk being composite, but we present the model in this full generality since it
may be required in the chosen concrete instantiation, such as in the CLT multilinear
map [CLT13].

9 To be precise, we define [x]S = {χ ∈ {0, 1}∗ : CM.IsEncoding(pp, χ, x,S)}, where the
predicate CM.IsEncoding is specified by the concrete instantiation of the multilinear
map. The predicate CM.IsEncoding need not be efficiently decidable—and indeed,
for the security of the multilinear map, it should not be.
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Features of composite order. By analogy to composite-order bilinear groups
[BGN05], we would expect that composite-order multilinear maps would be sig-
nificantly more powerful than their traditional prime-order analogs. Intuitively,
this power is due to the fact that by encoding integers in ZN for composite
N = N1 · · ·Nk, we implicitly encode a direct product, ZN1

× . . . × ZNk
, as de-

fined by the Chinese Remainder Theorem. Each of the k components can be
used to store useful information, on which the ring operations act component-
wise, and a value will pass the multilinear map’s zero-test only if it encodes zero
in every component (i.e., modulo every Ni). Without knowing the factorization,
however, the adversary cannot easily eliminate one component of an encoded
value without eliminating them all. To better express this intuitive view, we
introduce the following notation.

Remark 2.5 (Notation for Encodings of Direct Products). We use the notation
[x1, x2, . . . , xk]S to refer to an encoding, at index set S, of the value x ∈ ZN such
that x ≡ xi (mod Ni) for each i ∈ [k] (as determined by the Chinese Remainder
Theorem).

2.6 The Generic Multilinear Map Model

To define security for composite-order multilinear maps, we will operate in
a generic model of composite-order multilinear maps, which generalizes exist-
ing generic models for the prime-order case [GGH+13b, BR14, BGK+14]. This
generic model is similar to the generic group model [Sho97]: intuitively, in the
generic model, the only thing an adversary can do with ring elements is to apply
the multilinear map operations.

More precisely, we say a scheme that uses multilinear maps is “secure in the
generic model” if, for any concrete adversary breaking the real scheme, there is a
generic adversary breaking a modified scheme in which the encoded ring elements
are replaced by “handles” (concretely, fresh nonces), which the generic-model
adversary can supply to a stateful oracleM (which performs the corresponding
ring operations and zero-tests internally). For the complete exposition and formal
definitions, we refer the reader to the full version [Zim14].

Remark 2.6 (Unique Encodings and Zero-Testing). In this work, as in [BGK+14],
our generic model allows the adversary to zero-test only at the top-level index
set U . In candidate multilinear maps based on noisy encodings (e.g., [GGH13a,
GGH14]), no weaknesses are known that would permit zero-testing outside U .
However, if in the future we discover multilinear maps for which this operation is
possible—for instance, if elements have unique encodings—then our obfuscation
construction would need to be modified for this setting. For such a modification,
we refer the reader to the work of Boneh, Wu, and Zimmerman [BWZ14, §3], in
which the authors show a generic transformation for composite-order multilinear
maps that prevents the adversary from constructing nontrivial encodings of zero
outside the top-level index set U .
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2.7 “Noisy” and “Clean” Multilinear Maps

The abstract definition of multilinear maps (Definition 2.4) is very natural, but
we still do not know whether it can be instantiated. The breakthrough work
of Garg et al. [GGH13a] showed the first candidate construction of an approx-
imate or “noisy” variant of multilinear maps, in which the representation of
each encoded ring element includes a random error term. When ring elements
are added or multiplied, the resulting error term increases; eventually, the noise
overwhelms the signal, and the zero-testing procedure no longer recovers the cor-
rect answer. Thus, unlike the “clean” multilinear maps of Definition 2.4, known
“noisy” multilinear maps include an a priori restriction of the number and types
of operations that can be performed.

In known multilinear map constructions [GGH13a, CLT13, GGH14], the
noise restriction behaves as follows. Each encoded ring element carries a noise
bound. The result of a fresh encoding operation (via CM.Encode) has a noise
bound of 2f(λ) (for some polynomial f pre-specified at setup); CM.Add results
in a noise bound that grows with the sum of the bounds of its operands; and
CM.Mult results in a noise bound that grows with the product. When the noise
bound reaches 2g(λ) (again for a pre-specified polynomial g), the zero-test oper-
ation always outputs ⊥.

For our purposes in this work, we will model the noise restriction as stating
that the multilinear map can only compute arithmetic expressions of polyno-
mial degree (for a polynomial fixed at setup time)—or, equivalently, that the
multiplicities of indices in the top-level index set U are presented in unary.

Definition 2.7 (“Noisy” Composite-Order Multilinear Map). A noisy
composite-order multilinear map is defined as in Definition 2.4, except that the
top-level index set U has its multiplicities presented in unary.

We note that Definition 2.7 considers only the noise growth due to multipli-
cation operations, and disregards that of addition operations.10 Technically, in
order to instantiate this definition with the CLT multilinear map [CLT13], we
would also need to specify that the ring operations may fail for computations
with many additions and very few multiplications. However, our main theorems
are unaffected by this restriction. In a broader sense, we also find that this simple
definition in terms of multilinearity degree is more natural, and is better suited
to other potential approaches to multilinear maps that may not incorporate noise
terms in the same way as the approaches currently known.

10 More precisely, fix an arithmetic expression C of depth d and total degree r, and
suppose we evaluate C on freshly encoded ring elements. The number of monomials in
the expansion of C is at most 2dr, so the noise bound of the resulting term is at most
2dr · (2f(λ))r, and we will remain under the noise limit as long as (d+ f(λ))r < g(λ).
In most cases of interest, we have d� r—in fact, if a constant fraction of the layers
of C consist of multiplication gates, then d = O(lg r)—and thus we can approximate
the noise bound simply in terms of the degree.
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2.8 Instantiation of Composite-Order Multilinear Maps

As discussed above in Remark 1.1, until very recently it was believed that the
CLT scheme [CLT13] provided a secure instantiation of “noisy” composite-order
multilinear maps. For completeness, we now briefly recount the structure of the
CLT scheme. Fix a top-level index set U = Au1

1 · · ·A
u`

` , where A1, . . . , A` are
formal symbols. The CLT scheme generates an “inner” modulus N = p1 . . . ps
and an “outer” modulus Nouter = P1 . . . , Ps (for s = poly (λ,

∑
i ui)), where

p1, . . . , ps, P1, . . . , Ps are primes of bit-length poly (λ,
∑
i ui), and each Pi is much

larger than pi. For a more comprehensive exposition, we refer the reader to the
full version [Zim14].

In order to use the CLT scheme as a composite-order multilinear map with
inner modulus N = N1 · · ·Nk, setting the parameters requires some care, since
the scheme must remain secure even when the adversary sees encodings that
are zero in one or more of the subrings (ZN1 , . . . ,ZNk

). Gentry et al. [GLW14]
investigate this question, and conclude that if each modulus N1, . . . , Nk is a
product of many (i.e., poly(λ)) of the primes among p1, . . . , ps, then the scheme
resists obvious attacks along these lines. For the full analysis, we refer the reader
to [GLW14, Appendix B].

Possible approaches for clean maps. While we know of some candidate strate-
gies to instantiate “noisy” multilinear maps, instantiation of “clean” multi-
linear maps remains a central open problem. Current techniques for “noisy”
maps [GGH13a, CLT13, GGH14] depend crucially on the noise to hide the en-
coded elements. Even if it is possible to extend these techniques, and thereby
reduce the noise below quadratic in the multilinearity degree, it seems very un-
likely that the noise can be made only polylogarithmic in the degree, as would
be required for “clean” maps. However, the current approach via encodings with
random noise is not necessarily the only possible route. The theory of bilinear
maps [Mil04, MOV93, Jou00, BF01] does not incorporate noise terms at all, but
rather relies on algebraic properties of pairings over elliptic curves. We believe
that the most promising route to constructing “clean” multilinear maps is via
structures that generalize these properties, such as abelian varieties. Some con-
ditional negative results were presented by Boneh and Silverberg [BS03], but in
general, the problem remains wide open.

2.9 Program Obfuscation

Our definition of VBB obfuscation is similar to the one studied in [BGK+14]. It
is stronger than the original definition [BGI+01], in that we allow the adversary
to output a string of arbitrary length, rather than just a single bit. In addition,
the definition is parameterized over an ideal functionality (represented by a
stateful oracleM), to which both the obfuscator and the adversary have access.
If M were the empty oracle, we would recover the usual definition of (strong)
VBB obfuscation. In our setting, however, as in that of [BGK+14], the oracle
M corresponds to our generic model of composite-order multilinear maps.
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Definition 2.8 (Virtual Black-Box Obfuscation in an Idealized Model
([BGI+01, BGK+14])). Let C = (Cλ)λ∈N be a family of Boolean circuits, and
letM be a stateful oracle (possibly randomized). We say that a PPT machine O
is a virtual black-box obfuscator for C in the M-idealized model, if the following
conditions are satisfied.

– Correctness: There is a negligible function ε such that for all λ ∈ N, every
circuit C ∈ Cλ, every input x to C, and all possible random coins forM, we
have

Pr[(OM(1λ, C))(x) 6= C(x)] < ε(λ) .

– Virtual Black-Box: For every PPT adversary A, there is a PPT simulator
S such that for every PPT distinguisher D, there is a negligible function ε
such that for all C ∈ Cλ, we have∣∣∣Pr[D(AM(OM(1λ, C))) = 1]− Pr[D(SC(1λ, 1|C|)) = 1]

∣∣∣ < ε(λ) ,

where the probability is over the coins of D,A,S,O, and M.

We extend Definition 2.8 in the standard way to entire circuit classes such as
NC1 and P/poly; we defer the formal details to the full version [Zim14]. We also
note that since we require the obfuscator O to be efficient, the output of O is a
circuit of size poly(λ), and thus the polynomial slowdown property of [BGI+01]
is immediate from the definition.

2.10 Keyed and Succinct Obfuscation

As discussed in Section 2.4, the model of “keyed” programs is especially natural
for program obfuscation. We now state a modified definition of VBB obfuscation,
suited to this setting.

Definition 2.9 (Keyed Virtual Black-Box Obfuscation). Fix a family of
arithmetic circuits C = (Cλ)λ∈N (Section 2.3). For a stateful oracleM (possibly
randomized), we say a pair of PPT algorithms (O, O.Eval) is a keyed virtual
black-box obfuscator for C in the M-idealized model, if the following conditions
are satisfied.

– Correctness: There is a negligible function ε such that the following holds. Fix
λ ∈ N and an arithmetic circuit C ∈ Cλ, where C : {0, 1}n×{0, 1}m → {0, 1}.
Then for every input x ∈ {0, 1}n and key y ∈ {0, 1}m, and all possible
random coins for M, we have

Pr[C̃y ← OM(C,y) ; O.EvalM(C̃y, C,x) 6= C(x,y)] < ε(λ) ,

where the probability is over the coins of O.
– Virtual Black-Box: For every PPT adversary A, there is a PPT simulator S

such that for all PPT distinguishers D, and all (C, n,m) ∈ C, we have∣∣∣Pr[D(AM(OM(C,y)) = 1]− Pr[D(SC(·,y)(C)) = 1]
∣∣∣ < negl(|C|) ,

where the probability is over the coins of D,A,S,O, and M.
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Intuitively, the definition of keyed program obfuscation separates the question
of the public (“universal”) circuit parameters from the size of the secret part of
the circuit, which is to be obfuscated. It now makes sense to discuss succinct
program obfuscation, in which the obfuscation size is independent of the public
part of the circuit, and depends only on the secret key (and on the security
parameter).

Definition 2.10 (Succinct Virtual Black-Box Obfuscation). The defini-
tion is the same as Definition 2.9, with the following additional requirement.

– Succinctness: There exists a polynomial f such that for all (C, n,m) ∈ C and
all y ∈ {0, 1}m, we have |OM(C,y)| ≤ f(n,m, λ).

We also extend Definition 2.10 in the standard way to the classes P/poly and
NC1, just as in Definition 2.8.

2.11 Straddling Sets

Our obfuscator uses the multilinear map’s index sets to enforce constraints on
the adversary’s evaluation. This requires careful design of the indices for each
element. To simplify the presentation of our design, we now discuss some simple
combinatorial properties that we use in our security proof.

An important building block is the notion of straddling sets, as described by
Barak et al. [BGK+14]. Roughly speaking, an n-straddling set system consists
of two partitions S0,S1 of the set {1, . . . , n}, such that once we choose a set from
(say) S0, we have committed to S0, and we cannot complete this set to form a
full partition of {1, . . . , n} except by adding all (and only) the remaining sets in
the partition S0. In fact, we require the following slightly stronger property.

Definition 2.11 (Straddling Set Systems ([BGK+14], adapted)). For
n ∈ N, an n-straddling set system over a set S consists of two partitions of
S, S0 = (S0,1, . . . , S0,n) and S1 = (S1,1, . . . , S1,n) with the following property.
Fix T ⊆ S, and let T0, T1 be subsequences of S0,1, . . . , S0,n, S1,1, . . . , S1,n such
that each of T0, T1 is a partition of T , and T0 6= T1 (i.e., they are not the same
subsequence). Then each of T0, T1 is one of the original partitions S0,S1, and
T = S.

We note that the simple construction of straddling sets in [BGK+14] already
satisfies our stronger definition. We defer the details to the full version [Zim14].

3 Construction

We now present our main obfuscation construction (Construction 1), which acts
on keyed circuits (Section 2.4) as depicted in Figure 1. (We note that we can ob-
tain keyed circuit families from various other machine models, including general
Boolean circuits, by the transformations of Section 2.4.)
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Construction 1 (Construction of Virtual Black-Box Obfuscation). Let
CM = (CM.Setup, CM.Add, CM.Mult, CM.ZeroTest, CM.Encode) be a composite-
order multilinear map (Definition 2.4). Fix an input (C,y), where y ∈ {0, 1}m,
and C : {0, 1}n × {0, 1}m → {0, 1} is an arithmetic circuit (representing the
keyed circuit Cy, as in Section 2.4). Let d be the depth of the circuit C; let
deg(y) be the total degree of C in all of the variables y1, . . . , ym; and for each
i ∈ [n] let deg(xi) be the degree of C in the variable xi. For a security parameter
λ ∈ N (represented in unary), the obfuscation procedure O(1λ, C,y) operates as
follows.

O(1λ, C,y):

1. For each i ∈ [n], let (Si,b,1, . . . , Si,b,n)b∈{0,1} be an n-straddling set sys-
tem (Definition 2.11) over a set Si of (2n−1) fresh formal symbols. For each
b ∈ {0, 1} and i ∈ [n], define BitCommiti,b = Si,b,i. For each b1, b2 ∈ {0, 1}
and i1, i2 ∈ [n] such that i1 < i2, define BitFilli1,i2,b1,b2 = Si1,b1,i2Si2,b2,i1 .

2. Construct the following index set of fresh formal symbols as the top-level
index set:

U = Y deg(y)
∏
i∈[n]

(Xi,0Xi,1)deg(xi)ZiWiSi

3. Run (CM.pp,CM.sp, Nev, Nchk) ← CM.Setup(U , 1d+λ, 2), indicating a secu-
rity parameter of d+λ for the multilinear map, and a modulus that decom-
poses into two factors N = NevNchk.

4. For each i ∈ [n], generate uniformly random values αi, γi,0, γi,1 ← Z∗Nchk

and δi,0, δi,1 ← Z∗Nev
. For each j ∈ [m], generate a uniformly random value

βj ← Z∗Nchk
.

5. Compute the check value C∗ = C(α1, . . . , αn, β1, . . . , βm) ∈ ZNchk
.

6. Using CM.Encode(CM.sp, ·), for i ∈ [n], j ∈ [m], and b ∈ {0, 1}, generate the
following encoded ring elements (using the notation of Remark 2.5):

x̂i,b = [b, αi]Xi,b
ûi,b = [1, 1]Xi,b

ŷj = [yj , βj ]Y v̂ = [1, 1]Y

ẑi,b = [δi,b, γi,b]Xdeg(xi)

i,1−b ZiWi BitCommiti,b
ŵi,b = [0, γi,b]Wi BitCommiti,b

Ĉ∗ = [0, C∗]Y deg(y)
∏

i∈[n](Xi,0Xi,1)deg(xi)Zi

For b1, b2 ∈ {0, 1} and each i1, i2 ∈ [n] such that i1 < i2, generate the
following encoded ring elements (using the notation of Remark 2.5):

ŝi1,i2,b1,b2 = [1, 1]BitFilli1,i2,b1,b2

For notational convenience, for each i2 < i1 ∈ [n], we also define ŝi2,i1,b2,b1 =
ŝi1,i2,b1,b2 . We refer to the elements ûi,b, v̂, ŝi1,i2,b1,b2 as unit encodings, since
they each encode 1 ∈ ZN , and they are incorporated solely for their effect
on the index sets.



22 Joe Zimmerman

7. Output the values above, along with the public parameters of the multilinear
map:

O(1λ, C,y) =
(
CM.pp, (x̂i,b, ûi,b, ẑi,b, ŵi,b)i,b, (ŷj)j , v̂, Ĉ

∗,

(ŝi1,i2,b1,b2)i1<i2∈[n],b1,b2

)
To evaluate the obfuscated program C̃y = O(1λ, C,y) on an input x = x1 · · ·xn ∈
{0, 1}n, the evaluation procedure O.Eval(C̃y, C,x) operates as follows.

O.Eval(C̃y, C,x):

1. Using the procedures CM.Add(CM.pp, ·, ·) and CM.Mult(CM.pp, ·, ·), along
with the unit encodings (ûi,xi

, v̂), evaluate the circuit C on the encoded in-
puts x̂1,x1

, . . . , x̂n,xn
, ŷ1, . . . , ŷm. In other words, substitute the values x̂1,x1

,
. . . , ŷm for the corresponding input wires x1,x1

, . . . , ym; and, for each gate
in the circuit, substitute one of the following operations:
– For a multiplication gate, on operands [a]S , [b]T , output CM.Mult(CM.pp,

[a]S , [b]T ) = [ab]ST .
– For an addition gate, we cannot substitute an invocation of CM.Add

(since the index sets of the encoded operands need not match), so instead
we substitute the following procedure (Figure 1, box “O(+)”). Suppose
the input values to the addition gate are the encoded elements [a]S , [b]T
for index sets S, T ⊆ U . Using CM.Mult, multiply each term [a]S , [b]T
by the powers of unit encodings (ûi,xi , v̂) that are minimally necessary
to raise the index set to S ∪ T for both resulting elements. Then, using
CM.Add, output the sum of the two elements.

We note that the result of this procedure, for each sub-circuit of C, will be an
encoding whose index set consists of factors corresponding to each input vari-
able (Xi,b, Y , resp., for x̂i,b, ŷj), raised to the power of the degree of the given
sub-circuit in those variables. Thus in particular, at the end of the evalua-

tion, the final term will be encoded at the index set Y deg(y)
∏
i∈[n]X

deg(xi)
i,xi

.

We denote this final term Ĉ as follows:

Ĉ = [C(x1, . . . , xn, y1, . . . , ym), C(α1, . . . , αn, β1, . . . , βm)]
Y deg(y)

∏
iX

deg(xi)

i,xi

(We remark that while we present simple algorithms here for clarity, there
are many natural optimizations; for details, we refer the reader to the full
version [Zim14, §4].)

2. Using the procedures CM.Add, CM.Mult, compute the unit encoding σ̂ =∏
i1<i2∈[n] ŝi1,i2,xi1

,xi2
, and compute the following encoded element:

z =

Ĉ ∏
i∈[n]

ẑi,xi
− Ĉ∗

∏
i∈[n]

ŵi,xi

 · σ̂
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3. Run CM.ZeroTest(CM.pp, z). If it outputs “zero”, output 0; if “nonzero”,
output 1.

The correctness of Construction 1 is straightforward from the definitions of
the multilinear map operations, and we defer the proof to the full version [Zim14].

Succinctness. In Construction 1, we instantiate the multilinear map with a se-
curity parameter of d+λ, rather than λ. As detailed in the full version [Zim14],
this term reflects the bound from the Schwartz-Zippel identity testing algorithm.
This is somewhat unsatisfying, since it prevents us from constructing succinct
obfuscation (Definition 2.10), and intuitively it does not seem necessary to prove
security. Indeed, it turns out that if we assume the hardness of factoring, then we
can eliminate the extra term, by using a computational analog of the Schwartz-
Zippel lemma (generalizing an elegant result of Boneh and Lipton [BL96]). We
defer the details of this modification and its proof to the full version [Zim14];
here we just state the modified (“succinct”) version of the construction.

Construction 2 (Virtual Black-Box Obfuscation (Succinct Version)).
Proceed as in Construction 1, except in step 3, provide 1λ as the security pa-
rameter to CM.Setup, rather than 1d+λ.

Remark 3.1 (Indistinguishability Obfuscation). Our main result shows that Con-
struction 1 achieves VBB obfuscation in the generic model of composite-order
multilinear maps. However, we note that if we only need the weaker notion of
indistinguishability obfuscation [BGI+01], then we can obtain better parameters
by eliminating some of the encodings; notably, we avoid the O(n2) cost of the
straddling-set encodings. For continuity, we defer the details of this modification
to the full version [Zim14, Appendix A].

3.1 Main Theorems

We now state our main theorems, which show that our construction achieves
VBB obfuscation in a generic model of composite-order multilinear maps. For
space reasons, we defer the proofs of the main theorems to the full version [Zim14].

Our construction can be based either on “noisy” or on “clean” multilinear
maps. Since we operate on circuits directly, unlike previous approaches which
first convert them to branching programs, there is no inherent reason that our
construction cannot be applied directly to all polynomial-size circuits. Indeed,
assuming “clean” maps, we are able to prove VBB obfuscation for P/poly (in
the generic model) directly, without the additional assumption of FHE as in
the work of Garg et al. [GGH+13b]. Moreover, under the additional assumption
that factoring integers is hard on average, we are also able to show that our
construction (in its succinct variant, Construction 2) achieves succinct VBB
obfuscation (Definition 2.10) for P/poly.

Theorem 3.2. Suppose that factoring is hard on average. Then Construction 2
achieves succinct virtual black-box obfuscation for P/poly in the generic model
of clean composite-order multilinear maps.
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For completeness, we also prove the non-succinct version of Theorem 3.2,
since there we do not assume the hardness of factoring.11

Theorem 3.3. Construction 1 (composed with a universal circuit simulation)
achieves virtual black-box obfuscation for P/poly in the generic model of clean
composite-order multilinear maps.

Of course, it is still unknown how one might construct “clean” multilinear
maps, and thus we prove separately that we achieve obfuscation for NC1 given
only “noisy” maps. As usual, we are unable to construct obfuscation for poly-size
circuits directly from “noisy” maps, since the noise growth still increases with the
degree (which is potentially exponential in the circuit depth). Still, we note that
our construction is somewhat more general than the theorem suggests: even with
“noisy” maps, our construction also works for arithmetic circuits whose depth is
superlogarithmic but whose degree remains polynomial.

Theorem 3.4. Construction 1 (composed with a universal circuit simulation)
achieves virtual black-box obfuscation for NC1 in the generic model of noisy
composite-order multilinear maps.

In the “noisy” case, we do not prove the corresponding theorem for succinct
obfuscation, since in our definition (and in all known instantiations), the rep-
resentation size of a ring element in a “noisy” multilinear map grows with the
degree of multilinearity required. However, we remark that the analogous theo-
rem would hold in the case of “noisy” multilinear maps whose representation size
was nevertheless independent of the noise bound—the existence of such maps is
also unknown.

4 Performance Analysis

We now discuss the asymptotic efficiency of our main construction. We give only
a very brief summary here; for more details, we encourage the reader to follow
the exposition in the full version [Zim14, §4].

First, we establish the basic performance parameters. It turns out that the
time to evaluate an obfuscated circuit is dominated by the “raising” operations
for addition gates, in which we multiply elements by unit encodings in order
to make the index sets match. This fact dictates the overall optimization strat-
egy; in the full version [Zim14] we give the details of two approaches (“cross-
multiplication” and “pre-mixing”), which reduce this evaluation cost with differ-
ent tradeoffs. Using the “cross-multiplication” optimization, for a keyed arith-
metic circuit C : {0, 1}n × {0, 1}m → {0, 1} of size s and depth d, we find that
the multilinearity degree required is O(2d + n2), the (keyed) obfuscation size is

11 We remark that this distinction is nontrivial: as far as we know, the existence of
composite-order multilinear maps does not necessitate the hardness of factoring, even
though the concrete instantiation via the CLT scheme [CLT13] would be trivially
broken if factoring were easy.
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O(m+n2) ring elements, and the evaluation time is O(s+n2) ring operations.12

In particular, the number of ring elements depends only on the secret part of
the circuit, i.e., the key y ∈ {0, 1}m. Moreover, excluding the O(n2) operations
that arise from straddling sets, the number of ring operations is proportional
to the circuit size—reflecting the fact that our evaluation algorithm follows C’s
structure directly.

We also specialize our performance analysis to standard settings (both keyed
and unkeyed), to provide a more direct comparison with other known approaches.
For instance, for balanced Boolean formulas (unkeyed NC1 circuits of depth d,
with input length n bits), the multilinearity degree is only Θ(2dn + n2), and
we require only Θ(2dn + n2) ring elements and operations—as compared with
the standard approach via Barrington’s theorem [GGH+13b, BR14, BGK+14],
for which all three metrics are Θ(4dn + n2); or the parameterized approach
of [AGIS14, Gie01], for which the degree is Θ(2(1+ε)dn+ n2) and the other two
parameters are Θ(2(1+ε)d42/εn+ n2).

More generally, since our new obfuscator’s evaluation mirrors the struc-
ture of the original circuit, we find that our techniques expose a rich new de-
sign space of algorithms that can be input to the obfuscator. For example, to
specialize our construction to Boolean formulas, we use an efficient oblivious
stack [HS66, PF79, MZ14] to evaluate the formulas in postfix order, and we rely
on the Fast Fourier Transform (FFT) to reduce the degree of the resulting com-
putation (as detailed in the full version [Zim14]). We feel that these applications
are only the beginning, and we hope that this work will encourage further study
of obfuscating specific, keyed circuit families.

5 Conclusions and Open Problems

We have proposed a new way to obfuscate programs, using composite-order
multilinear maps. Our construction operates directly on straight-line programs
(arithmetic circuits), rather than converting them to matrix branching programs,
and thereby achieves considerable improvements in efficiency, as well as exposing
a rich new design space of oblivious algorithms to serve as input to the obfusca-
tor. Our results also yield the first known obfuscator (for keyed circuit families)
in which the number of ring elements depends only on the lengths of the input
and of the secret key.

Our results in this work highlight a number of open problems for further
study. For one, our construction relies on the fact that the multilinear map has

12 We present the cost here in terms of ring elements and ring operations. The concrete
cost in bits and bit operations depends on the multilinear map (Section 2.8). For
“clean” maps (whose existence is still open), the cost is just poly(λ). For “noisy”
maps, the cost depends on the instantiation; e.g., for the CLT map [CLT13], the

reader should multiply every obfuscation size and evaluation time by O(deg2+ε′) ·
poly(λ), where deg is the multilinearity degree required, and ε′ is a small constant
determined by the choice of the Θ parameter in composite-order CLT [GLW14,
App. B].
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(hidden) composite order, in order to implement encodings of direct products
via the Chinese Remainder Theorem. It is natural to wonder whether this prop-
erty can be emulated using standard prime-order multilinear maps [GGH13a],
via composite-to-prime-order transformations. While such transformations are
known in some settings [GLW14, HHH+14], we are not aware of any transforma-
tions for asymmetric multilinear maps, in which we use index sets from arbitrary
subset lattices with multiplicity (Section 2.5). We leave this as an interesting
open problem for future work.

Another compelling line of research concerns the security assumptions and
the applicability of the generic model. As Brakerski and Rothblum observe [BR14],
no multilinear map can possibly instantiate the generic model perfectly, since we
are able to use the generic model to construct VBB obfuscation, which we know
is impossible for general circuit families [BGI+01]. Moreover, our results in this
work highlight the fact that there are simple concrete examples of differences be-
tween the generic model and its instantiation via the CLT scheme—for instance,
in one optimization based on the Fast Fourier Transform (detailed in the full
version [Zim14, §4]), our computation is valid for CLT encodings but cannot be
implemented in the generic model. While this particular difference is fortuitous,
we are led to consider whether there are other algebraic properties that hold in
the CLT scheme—and may, in fact, be compatible with concrete security assump-
tions, such as that of [GLW14]—yet which may indicate fundamental weaknesses
in the generic model as it is used here and in [GGH+13b, BR14, BGK+14]. On
the positive side, it would also be useful to avoid relying on the generic model
entirely, instead proving iO for our construction based on concrete, instance-
independent assumptions [GLW14, GLSW14]. We leave this as another impor-
tant problem for future work.

The central open problem: “clean” multilinear maps. This work eliminates a key
obstacle to implementing obfuscation in practice. Since we no longer depend on
converting circuits to branching programs, our construction is efficient enough
that if “clean” multilinear maps were known, then general-purpose obfuscation
could become implementable in practice. Our results demonstrate that the ques-
tion of “clean” multilinear maps is not a technicality, but a fundamental open
problem.
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