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Abstract. Structure-preserving signatures are schemes in which pub-
lic keys, messages, and signatures are all collections of source group
elements of some bilinear groups. In this paper, we introduce fully
structure-preserving signature schemes, with the additional requirement
that even secret keys should be group elements. This new type of structure-
preserving signatures allows for efficient non-interactive proofs of knowl-
edge of the secret key and is useful in designing cryptographic protocols
with strong security guarantees based on the simulation paradigm where
the simulator has to extract the secret keys on-line.
To gain efficiency, we construct shrinking structure-preserving trapdoor
commitments. This is by itself an important primitive and of independent
interest as it appears to contradict a known impossibility result. We
argue that a relaxed binding property lets us circumvent the impossibility
result while still retaining the usefulness of the primitive in important
applications as mentioned above.
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1 Introduction

In pairing-based cryptography, cryptographic primitives are often designed to
have algorithms in which messages and public materials consist only of source
group elements and correctness can be proved using pairing-product equations to
allow smooth coupling with other primitives. This interest in so called structure-
preserving primitives [3] led to the study of algebraic algorithms with many
positive but also negative results [4, 5, 18, 2, 34, 7, 1, 6, 11].

In structure-preserving signature schemes, all components but secret keys
are group elements. This raises a natural question: “Can secret keys consist
entirely of source group elements as well?” Having messages and signatures in the
same group prevents us from relying on the one-wayness of exponentiation (or of
the isomorphism from one source group to the other in the case of asymmetric
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bilinear groups) to blend messages into signatures, and it is a major difficulty in
designing structure-preserving signatures. In existing schemes, this is overcome
by having secret keys in the exponent. Thus, it is quite unclear how messages
and secret keys can blend into signatures if even secret keys are group elements.

Besides the above question being a fascinating fundamental question in its
own right, it is connected to practical protocol design since group secret keys
combined with the Groth-Sahai proof system [31] allow straight-line (i.e., no
rewinding) extraction of the secret keys when necessary. While there are solutions
in the random oracle model, e.g. [26, 19], secret key extraction without random
oracles is currently prohibitively expensive. Meiklejohn [35] demonstrates how to
extract a secret key in the exponent using the Groth-Sahai proofs. It requires
bit-by-bit decomposition of secret x, and the proof consists of 20 log2 x + 18
group elements. For instance, applying it to a structure-preserving signature
scheme [2] whose secret key consists of 4 + 2` scalar values for signing messages
of ` group elements, proving secret keys for signing 10 group elements at 128-bit
security, requires more than 61,000 group elements.

Our contribution. This paper contains one main result and one important by-
product that is of independent interest. First, we present a fully structure-
preserving signature (FSPS) scheme all of whose components, including secret
keys, consist of source group elements of bilinear groups. This result demonstrates
that the paradigm of structure-preserving cryptography can be extended to cover
private key material. The security against adaptive chosen message attacks is
proved based on static (i.e., not q-type) assumptions. Its secret key consists only
of four group elements, and a witness indistinguishable proof of knowledge about
the secret key consists of 18 group elements (see Section 5.3). These are huge
savings compared to the current solution mentioned above.

A price to pay is the signature size O(
√
`) for messages consisting of ` elements.

A precise performance analysis shows that this remains relatively practical for
short messages, e.g., a signature consists of 23 elements for messages of 9 elements
(see Table 1). We show a non-trivial trade-off between the size of verification
keys and signatures that implies that an order of

√
` elements in signatures is

inherent, at least for the type of modular constructions considered in this paper.
The investigation of efficient instantiations lead us to our second contribution:

a shrinking structure-preserving trapdoor commitment scheme (SPTC). We present
an SPTC scheme that produces constant-size commitments consisting of a single
group element regardless of the message size. In addition to being an important
primitive in itself, it is a remarkable construction in light of the well-known
impossibility result [8] stating that SPTC schemes that yield shorter commitments
than messages cannot be binding (or collision resistant, equivalently). We get
around the impossibility by making two exclusive relaxations in the requirements.
One is to weaken the security from collision resistance to what we call chosen-
message target collision resistance (CM-TCR). In the proof of impossibility in [8],
it is essential that the adversary finding a collision knows the randomness used
to create the commitment. In CMTCR, it is still the adversary who chooses the
messages to commit to, but it is the challenger who creates the target commitment
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from the given message. Therefore the random coins used for the target are hidden
from the adversary.

Despite the first relaxation, it is still not easy to achieve CMTCR security. As a
stepping stone we make the second relaxation and allow the commitment function
to take exponents as input while mapping it to group elements for verification.
The resulting scheme is no longer structure-preserving but does preserve the
group structure with respect to verification. As we require a bijection γ between
the message space for commitment and that for verification, we call such schemes
γ-binding commitments. Finding a concrete construction satisfying the shrinking
property is another challenge. There are commitment schemes whose messages
can be scalar values in a bilinear group setting, e.g. [38, 22, 3, 31, 33], but none
are γ-binding and shrinking. We present a concrete scheme whose commitment
consists of a single group element and achieves collision resistance. We then use
the shrinking γ-binding commitments to compress verification keys of a (not
necessarily fully) structure-preserving partially one-time signature scheme (POS),
and prove that it constitutes a shrinking SPTC with the CMTCR property.

Related work. At least one FSPS scheme already exists [2] but with constraints
on both security and usability. Namely, it only meets the weak security guarantee
(unforgeable against extended random message attacks), and the signing function
takes messages of the form (Gm, Fm, Um) that essentially requires knowledge
of m [32, 14]. Nevertheless, the UF-XRMA-secure FSPS scheme is a reasonable
starting point and we overcome its shortcomings by combining it with structure-
preserving trapdoor commitments or one-time structure-preserving signatures.

Regarding SPTC, the study by Abe et al.[8], is an important piece of context.
It presents a concrete attack against all shrinking SPTC schemes. In fact, all
existing SPTCs, e.g. [3], are rather expanding. The way we circumvent the
impossibility, namely the γ-binding property, resembles the F -unforgeability
notion [13] for signature schemes.

The use of trapdoor commitments and chameleon hashing has also been
explored in the construction of on-line off-line signatures [25, 21]. The work of
Even, Goldreich, and Micali already formed the basis for the generic construction
of SPS [2]. In addition, Catalano et al.[21], and Mohassel [37] observed an
interesting relationship between one-time signatures and chameleon hashing.

We discuss potential applications of FSPS in the context of efficient secret
key extraction from concrete to more high-level as follows.

Public-key infrastructure. On the very applied side, the question is connected
with the timely problem of public-key infrastructures. Few protocols have been
designed with the goal of being secure against adversarial keys, and few real-
world certificate authorities validate that registrees provide valid public keys or
prove knowledge of the corresponding secret keys. The availability of schemes
with efficient non-interactive proofs-of-knowledge of secret key possession can
only improve this situation. In the provable security literature, this knowledge
of secret key solution to rogue-key attacks appeared early on in the study of
multi-signatures by Micali et al. [36, Problem 4 and Fix 4].
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Protocol design in strong security model. More generally, these obstacles to secret
key extraction have hindered modular composable protocol design. Camenisch
et al. [19] developed a framework for practical universally composable (UC)
zero-knowledge proofs, in which they identify proofs-of-knowledge of exponents
as a major bottleneck. Dubovitskaya [24] constructed unlinkable redactable
signatures and anonymous credentials that are UC-secure. Their construction
requires proofs-of-knowledge of the signing key of a structure-preserving signature
scheme, which in turn, as studied by Chase et al. [23], is an instance of a
general transformation for making signature schemes simulatable [10]. Given
these examples, we conjecture that fully structure-preserving signature schemes
help build UC-secure privacy preserving protocols.

Strengthening privacy in group and ring signatures. In classical group and ring
signatures, e.g. [15, 30, 39, 17], the goal of the adversary against privacy is to
distinguish signatures from two honest members whose keys are actually generated
and registered by the challenger. The attack game aborts if either of the targets
is a corrupted member registered with an adversarially generated key. Instead of
excluding such corrupt members from the scope of security, stronger privacy in
the presence of adversarial keys can be guaranteed, if the challenger can extract
the secret key to create group or ring signatures on their behalf. Such a model is
meaningful when some keys are generated incorrectly, e.g., because of multiple
potentially flawed implementations, but their owners nevertheless use them with
the correct signing algorithm.

Other applications of FSPS are settings in which the signing keys need to
be verifiably encrypted, for instance when extending delegatable anonymous
credential systems [12, 27, 23] with all-or-nothing non-transferability [20].

Organization. After recalling preliminaries and existing building blocks in Sec-
tions 2 and 3 we give constructions of shrinking SPTC and FSPS schemes in
Sections 4 and 5. We refer to [9] for variations of our FSPS constructions obtained
by replacing some building blocks in our construction.

2 Preliminaries

2.1 Notations

By |X| we denote the size of X (in some implicit unit). In particular, if X consists
of group elements of some groups, it counts the number of elements in X. For
x representing an object, x denotes an ordered set of x and is understood as
x = (x1, . . . , xn) for some positive integer n that is limited by a polynomial in
the security parameter. The size n will be implicit if it is not very important
in the context. By y ← A(x), we denote that algorithm A takes x as input and
outputs y. When it is clear from the context, we abuse notation like y ← A(x)
to denote repetition of execution yi ← A(xi) for xi ∈ x and yi ∈ y.
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2.2 Bilinear Groups

Let G be a generator of bilinear groups that takes security parameter 1λ as input
and outputs Λ := (p,G1,G2,GT , e,G, G̃), where p is a λ-bit prime, G1,G2,GT are
groups of prime order p with efficiently computable group operations, membership
tests, and bilinear mapping e : G1 ×G2 → GT . Elements G and G̃ are default
random generators of G1, G2, and e(G, G̃) generates GT . We use the multiplicative
notation for group operations in G1, G2, and GT . The pairing operation e satisfies
that ∀A ∈ G1,

∀B ∈ G2,
∀x, y ∈ Z : e(Ax, By) = e(A,B)xy. An equation of the

form
∏
i

∏
j e(Ai, Bj)

aij = 1 for constants aij ∈ Zp, and constants or variables
Ai ∈ G1, Bj ∈ G2 is called a pairing product equation (PPE). By G∗1, we denote
G1 \ 1G1 , and similar for G∗2 and Z∗p.

Throughout the paper, we work over asymmetric bilinear groups (so-called
Type-III setting [28]) where no efficient isomorphisms exist between G1 and G2.
Some building blocks in our construction rely on the double pairing assumption [3].

Assumption 1 (Double Pairing Assumption: DBP). The double pairing
assumption holds in G2 relative to G if, for all probabilistic polynomial-time
algorithms A, probability

Pr

Λ← G(1λ);

G̃z ← G∗2;

(Z,R)← A(Λ, G̃z)

:
(Z,R) ∈ G∗1 ×G∗1,∧
1 = e(Z, G̃z) e(R, G̃)

 (1)

is negligible in security parameter λ.

The DBP assumption in G1 is defined by swapping G1 and G2 in the above
definition. Note that the DBP assumption (in G1 and G2) is implied by the
Decision Diffie-Hellman assumption (in G1 and G2, respectively) which is often
assumed in Type-III setting.

We also use a building block that requires more assumptions such as DDH2,
XDLIN1, and co-CDH that we refer to [2] for definitions.

2.3 Digital Signatures

In this section we recall definitions of digital signatures, one-time signatures
and their security notions. On top of the standard notions, we define structure-
preserving and fully structure-reserving signatures.

Definition 2 (Digital Signature Scheme). A digital signature scheme is a
set of algorithms {Setup,Key,Sign,Vrf}. Setup(1λ) → gk is a setup function
that, given a security parameter λ, generates common parameter gk, which defines
message space M. Key(gk)→ (vk, sk) is a key generation algorithm that takes
common parameter gk and generates a verification key vk and a signing key sk.
Sign(sk,m)→ σ is a signature generation algorithm that computes a signature
σ for input message m ∈M by using signing key sk. Vrf(vk,m, σ)→ 1/0 is a
verification algorithm that outputs 1 for acceptance or 0 for rejection according
to the input.
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For correctness, it must hold that, for any legitimately generated gk, vk, and
sk and for any message m ∈M, 1 = Vrf(vk,m,Sign(sk,m)). A key pair (vk, sk)
is correct if it is in the output distribution of the key generation function Key.

Definition 3 (Unforgeability against Adaptive Chosen-Message Attacks).
A signature scheme, SIG = {Setup,Key,Sign,Vrf}, is unforgeable against adap-
tive chosen message attacks (UF-CMA) if the following advantage function is
negligible against any polynomial-time adversary A.

Advuf-cma
SIG,A (λ) := Pr

 gk ← Setup(1λ),
(vk, sk)← Key(gk),
(σ†,m†)← AOsk (vk)

∣∣∣∣∣∣ m
† 6∈ Qm ∧

1 = Vrf(vk,m†, σ†)

 , (2)

where Osk is an oracle that, given m, executes σ ← Sign(sk,m), records m to
Qm, and returns σ.

A non-adaptive chosen message attack is defined by letting adversary A
commit to the messages to query before seeing vk. (A is given gk that defines the
message space.) Existential unforgeability against non-adaptive chosen message
attack is denoted by UF-NACMA.

A one-time signature scheme is a digital signature scheme with the limitation
that a verification key has to be used only once to retain security. Unforgeability
against one-time chosen message attacks is defined as in Definition 3 by restricting
the game to answer only a single signing oracle request.

Definition 4 (Structure-Preserving Signature Scheme). A digital signa-
ture scheme is called structure-preserving with respect to bilinear group generator
G if the following conditions are all satisfied. 1) Common parameter gk consists
of a group description Λ generated by G and constants aij in Zp. 2) Verification
key vk consists of group elements in G1 and G2 other than gk. 3) Messages and
signatures consist of group elements in G1 and G2. 4) Verification algorithm Vrf
consists only of evaluating membership in G1 and G2 and relations described by
paring product equations.

When messages consist of both source groups, G1 and G2, they are called
bilateral. They are unilateral, otherwise.

The notion of structure-preserving cryptography requires public components to
be group elements. We extend it so that private components consist of group
elements as well.

Definition 5 (Fully Structure-Preserving Signature Schemes). A structure-
preserving signature scheme is fully structure-preserving if the following additional
conditions are also satisfied. 5) Signing key sk (other than included vk) consists
of group elements in G1 and G2. 6) Correctness of sk with respect to vk can
be verified by evaluating membership in G1 and G2 and relations described by
pairing product equations.
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Once conditions 5 and 6 are satisfied, one can construct proof of knowledge
about the secret keys by using the Groth-Sahai proof system, which allows one
to extract a correct secret key corresponding to the verification key. It is however
important to note that there could exist more than one correct secret key for
a verification key and they may yield signatures in different distributions. One
might need stronger extractability that allows to extract the secret key for a
particular distribution of signatures. It is indeed the case for the group signature
application mentioned in Section 1.

3 Building Blocks

3.1 Common Setup Function

Building blocks in this paper are defined with individual setup functions. As
we work over bilinear groups, an output from a setup function should include a
description of bilinear groups Λ. Some random generators specific to the building
block may be included as well. Other parameters such as message spaces, are
also defined there.

The individual setup functions will be merged into a common setup function,
denoted as Setup, when the building blocks are used together in constructing
upper-level schemes. By gk ← Setup(1λ), we mean that Setup takes security
parameter λ and generates a common parameter gk. This formulation is useful to
share some domains in the building blocks. For instance, we require the message
space of a signature scheme to match the key spaces of another signature scheme.
Due to the interdependence between building blocks, it is inherent that Setup is
constructed from individual setup algorithms in a non-blackbox manner. Suppose
that two building blocks, say A and B, are used together. We say that A and B
have common setup function Setup if gk ← Setup(1λ) can be simulated whichever
of gkA ← A.Setup(1λ) or gkB ← B.Setup(1λ) is given, and both gkA and gkB can
be recovered from gk in polynomial time. In the rest of the paper, we abuse this
property and give common parameter gk to individual functions of A and B.

3.2 Partially One-time Signatures

When only a part of a verification key of one-time signatures must be updated
for every signing, i.e., the remaining part of the verification key can be used an
unbounded number of times, the scheme is called partially one-time [16, 2].

Definition 6 (Partially One-time Signature Scheme). A partially one-
time signature scheme is a set of algorithms POS = {Setup,Key,Ovk,Sign,Vrf}
that:

Setup(1λ)→ gk: A setup function that, given a security parameter λ, generates
common parameter gk, which defines message space M.

Key(gk)→ (vk, sk): A long-term key generation function that takes gk and
outputs a long-term key pair (vk, sk).



8 Authors Suppressed Due to Excessive Length

Ovk(gk)→ (ovk, osk): A one-time key generation function that takes gk and
outputs a one-time key pair (ovk, osk).

Sign(sk, osk,m)→ σ: A signing function that takes sk, osk and a message m
as inputs and issues a signature σ.

Vrf(vk, ovk,m, σ)→ 1/0: A verification function that outputs 1 or 0 according
to the validity of the input.

For any gk ← Setup(1λ), (vk, sk) ← Key(gk), m ∈ M, and (ovk, osk) ←
Ovk(gk), σ ← Sign(sk, osk,m), it must hold that 1← Vrf(vk, ovk,m, σ).

Definition 7 (One-time Chosen-Message Attack for POS). A partially
one-time signature scheme, POS = {Setup,Key,Ovk,Sign,Vrf}, is unforgeable
against non-adaptive partial one-time chosen message attacks (OT-NACMA), if
advantage function Advot-nacma

POS,A (λ) defined by probability

Pr

 gk ← Setup(1λ),
(vk, sk)← Key(gk),
(ovk†, σ†,m†)← AOsk (vk)

∣∣∣∣∣∣ ovk
† ∈ Qmv ∧ (ovk†,m†) 6∈ Qmv ∧

1 = Vrf(vk, ovk†,m†, σ†)

 (3)

is negligible against any polynomial-time adversary A. Here Osk is an oracle that,
given m ∈ M, executes (ovk, osk) ← Ovk(gk), σ ← Sign(sk, osk,m), records
(ovk,m) to Qmv, and returns (σ, ovk). When Osk allows A to separately access
Ovk and Sign, it is called an adaptive partial one-time chosen message attack
(OT-CMA).

Obviously, OT-CMA security implies OT-NACMA security. The following con-
struction taken from [2] with trivial modifications for optimality is OT-CMA
secure under the DBP assumption in G1.

[Partially One-time Signature Scheme: POS ]

Setup(1λ): Run gk := (p,G1,G2,GT , e,G, G̃)← G(1λ). Set message space M
to G`2 for preliminary-fixed positive integer `.

Key(gk): Take generators G and G̃ from gk. Choose wz randomly from Z∗p,
and compute Gz := Gwz . For i = 1, . . . , `, uniformly choose χi from Zp
and compute Gi := Gχi . Output vk := (Gz, G1, . . . , G`) ∈ G`+1

1 and sk :=
(χ1, . . . , χ` , wz).

Ovk(gk): Choose a← Zp and output ovk = A := Ga, and osk := a.

Sign(sk, osk,m): Parse m into (M̃1, · · · , M̃`) ∈ G`2. Take a and wz from osk
and sk, respectively. Choose ζ randomly from Z∗p and compute the signature

as (Z̃, R̃) where Z̃ = G̃ζ , R̃ = G̃a−ζ wz
∏`
i=1 M̃

−χi

i .

Vrf(vk, ovk,m, σ): Parse σ as (Z̃, R̃) ∈ G2
2, m as (M̃1, . . . , M̃`) ∈ G`2, and ovk

as A. Return 1, if e(A, G̃) = e(Gz, Z̃) e(G, R̃)
∏`
i=1 e(Gi, M̃i) holds. Return

0, otherwise.
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3.3 xRMA-secure Fully Structure-Preserving Signature Scheme

We follow the notion of extended random message attacks and take a concrete
scheme from [2].

Definition 8 (Unforgeability against Extended Random Message At-
tacks). A signature scheme, xSIG = {Setup,Key,Sign,Vrf}, is unforgeable against
extended random message attacks (UF-XRMA) with respect to message sampler
SampleM if probability

Advuf-xrma
xSIG,A(λ) := Pr


gk ← Setup(1λ),
(vk, sk)← Key(gk),
m← SampleM(gk;ω),
σ ← Sign(sk,m),
(σ†,m†)← A(vk,σ,m, ω)

∣∣∣∣∣∣∣∣∣∣
m† 6∈m∧
1 = Vrf(vk,m†, σ†)

 (4)

is negligible against any polynomial-time adversary A. Here ω is a uniformly
chosen randomness.

[xRMA-secure Signature Scheme: xSIG ]

Setup(1λ): Run (p,G1,G2,GT , e,G, G̃)← G(1λ). For some fixed ` ≥ 1, choose
u1, · · · , u` , %, δ randomly from Z∗p and compute F1 := G%, F2 := Gδ, F̃1 :=

G̃%, F̃2 := G̃δ, Ui := Gui , and Ũi := G̃ui . Output gk := (p,G1,G2,GT , e,G, G̃,
F1, F2, F̃1, F̃2, {Ui, Ũi}`i=1). This constitutes the message space M = {(M̃11,
M̃12, M̃13), . . . , (M̃`1, M̃`2, M̃`3) | ∀i,∃mi ∈ Zp s.t. (M̃i1, M̃i2, M̃i3) = (F̃mi

1 ,

F̃mi
2 , Ũmi

i )}.

Key(gk ): On input gk , choose τ1, τ2, τ3, ρ, a, b, α from Zp, and compute

Ṽ1 := G̃b, Ṽ2 := G̃a, Ṽ3 := G̃ba, Ṽ4 := G̃τ1+aτ2 ,

Ṽ5 := Ṽ b4 , Ṽ6 := G̃τ3 , V7 := Gρ, Ṽ8 := G̃αb/ρ, (5)

K1 := Gα, K2 := Gb, K3 := Gτ1 , K4 := Gτ2 .

(For completeness of description, pick Ṽ8 uniformly from G2 if ρ = 0.) Output
vk := (gk, Ṽ1, Ṽ2, Ṽ3, Ṽ4, Ṽ5, Ṽ6, V7, Ṽ8) and sk := (vk ,K1,K2,K3,K4).

Sign(sk ,M): Parse messageM into {(M̃11, M̃12, M̃13), · · · , (M̃`1, M̃`2, M̃`3)} ∈
M. Select r1, r2, z ← Zp, set r := r1 + r2, compute

S̃0 := (Ṽ6
∏̀
i=1

M̃i3)r1 , S1 := K1K3
r, S2 := K4

rG−z, (6)

S3 := K2
z, S4 := K2

r2 , and S5 := Gr1 .

Output σ := (S̃0, . . . , S5) ∈ G2 ×G5
1.
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Vrf(vk ,M, σ): Output 1 if the following relations hold:

e(S5, Ṽ6
∏̀
i=1

M̃i3) = e(G, S̃0),

e(S1, Ṽ1)e(S2, Ṽ3)e(S3, Ṽ2) = e(S4, Ṽ4)e(S5, Ṽ5)e(V7, Ṽ8), (7)

e(F1, M̃i3) = e(Ui, M̃i1), e(F2, M̃i3) = e(Ui, M̃i2) for i = 1, · · · , `.

Output 0, otherwise.

The above scheme comes with trivial modifications from the original in [2].
First it is extended to sign random messages consisting of ` ≥ 1 message blocks,
and second it takes randomness from Zp rather than Z∗p in the key generation.
Those changes do not essentially affect to the security that we recall below.

Theorem 9 ([2]). If the DDH2, XDLIN1, and co-CDH assumptions hold, then
the above xSIG is UF-XRMAwith respect to the message sampler that returns
aux = mi for every random message block (F̃mi

1 , F̃mi
2 , Ũmi

i ).

Theorem 10. The above xSIG is fully structure-preserving.

Proof. By inspection, it is clear that vk (modulo group description in gk), sk ,
M , and σ consist of source group elements, and xSIG.Vrf consists of evaluating
PPEs.

Next we show that the following PPEs are satisfied if and only if the verification
key and the secret key is in the correct distribution.

e(K2, G̃) = e(G, Ṽ1), e(G, Ṽ3) = e(K2, Ṽ2), e(K1, Ṽ1) = e(V7, Ṽ8),

e(K2, Ṽ4) = e(G, Ṽ5), e(K3, G̃) e(K4, Ṽ2) = e(G, Ṽ4).
(8)

Showing correctly generated keys satisfy the above relations is trivial. We argue
the other direction as follows. The independent variables that define a key pair
are a, b, α, τ1, τ2, τ3 and ρ. They are uniquely determined by Ṽ2, Ṽ1, K1,
K3, K4, Ṽ6, and V7, respectively. We verify that the remaining Ṽ3, Ṽ4, Ṽ5, Ṽ8,
and K2 are in the support of the correct distribution if the above relations
are satisfied. The first equation is e(K2, G̃) = e(G, G̃)b that defines K2 = Gb.
The second equation is e(G, Ṽ3) = e(G, G̃)ba that defines Ṽ3 = G̃ba. The third
equation is e(G, G̃)αb = e(G, Ṽ8)ρ that defines Ṽ8 = G̃αb/ρ for ρ 6= 0. If ρ = 0,
Ṽ8 can be an arbitrary value as prescribed in the key generation. The fourth
equation is e(G, Ṽ4)b = e(G, Ṽ5) that defines Ṽ5 = Ṽ b4 . The last equation is
e(G, G̃)τ1+aτ2 = e(G, Ṽ4) that defines Ṽ4 = G̃τ1+aτ2 as prescribed. ut

4 Trapdoor Commitment Schemes

4.1 Definitions

We adopt the following standard syntax for trapdoor commitment schemes.
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Definition 11 (Trapdoor Commitment Scheme). A trapdoor commitment
scheme TC is a tuple of polynomial-time algorithms TC = {Setup,Key,Com,Vrf,
SimCom,Equiv} that:

Setup(1λ)→ gk: A common-parameter generation algorithm that takes security
parameter λ and outputs a common parameter, gk. It determines the message
space M, the commitment space C, and opening space I.

Key(gk)→ (ck, tk): A key generation algorithm that takes gk as input and
outputs a commitment key, ck, and a trapdoor key, tk.

Com(ck,m)→ (com, open): A commitment algorithm that takes ck and mes-
sage m ∈M and outputs a commitment, com ∈ C, and an opening informa-
tion, open ∈ I.

Vrf(ck, com,m, open)→ 1/0: A verification algorithm that takes ck, com, m,
and open as input, and outputs 1 or 0 representing acceptance or rejection,
respectively.

SimCom(gk)→ (com, ek): A sampling algorithm that takes common parameter
gk and outputs commitment com and equivocation key ek.

Equiv(m, ek, tk)→ open: An algorithm that takes ck, ek, tk and m ∈ M as
input, and returns open.

It is correct if, for all λ ∈ N, gk ← Setup(1λ), (ck, tk) ← Key(gk), m ← M,
(com, open) ← Com(ck,m), it holds that 1 = Vrf(ck, com,m, open). Further-
more, it is statistical trapdoor if, for any gk ∈ Setup(1λ), (ck, tk) ∈ Key(gk),
m ∈ M, (com, open) ← Com(ck,m), (com′, ek) ← SimCom(gk); open′ ←
Equiv(m, ek, tk), two distributions (ck,m, com, open) and (ck,m, com′, open′) are
statistically close.

Definition 12 (Structure-Preserving Trapdoor Commitment Scheme).
A trapdoor commitment scheme is structure-preserving relative to group generator
G if its gk includes a description of bilinear groups generated by G and its
commitment keys, messages, commitments, and opening information consist only
of source group elements, and the verification function consists only of evaluating
group membership and relations described by pairing product equations.

We say that a commitment scheme is shrinking if |com| ≤ |m| where equality
holds only for the case of |m| = 1.

Trapdoor commitments should be hiding and binding. Since the hiding prop-
erty follows from the statistical trapdoor property and is not important for our
purpose, we focus on the binding property in the rest of this paper.

The standard binding property requires that it is infeasible for any polynomial-
time adversary to find two distinct messages and openings for a single commitment
value com. It is also referred to as collision resistance. A weaker notion known as
target collision resistance asks the adversary to find a collision on a given message.
We here introduce a weaker binding notion that lies between collision resistance
and target collision resistance. This new notion, which we call chosen-message
target collision resistance (CMTCR), allows the adversary to choose the message
but it is committed to by the challenger. Thus, the adversary does not know the
randomness used to create the target commitment.
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Definition 13 (Chosen-Message Target Collision Resistance). For a trap-
door commitment scheme, TC, let Ock denote an oracle that, given m ∈M, exe-
cutes (com, open)← Com(ck,m), records (com,m) to Q, and returns (com, open).
We say TC is chosen-message target collision resistant if advantage Advcmtcr

TC,A(λ)
defined by

Pr

 gk ← Setup(1λ),
(ck, tk)← Key(gk),
(com†,m†, open†)← AOck (ck)

∣∣∣∣∣∣ com
† ∈ Q ∧ (com†,m†) /∈ Q∧

1 = Vrf(ck, com†,m†, open†)

 (9)

is negligible in security parameter λ for any polynomial-time adversary A.

4.2 γ-Binding Commitment Scheme

This section presents a new primitive we call a γ-binding commitment scheme
(TCγ). It has a special property that the message space Mcom for creating
a commitment and the space Mver for verification differ and there exists an
efficiently computable bijection γ :Mcom →Mver that computes messages for
verification from those for committing. The formal definition is as follows.

Definition 14 (γ-Binding Commitment Scheme). A γ-binding commit-
ment scheme is a set of algorithms TCγ = {Setup,Key,Com,Vrf,SimCom,Equiv}
that:

Setup(1λ)→ gk: A setup function that, given a security parameter λ, generates
common parameter gk, which defines message spaces; Mcom for commitment
generation and Mver for verification, and an efficiently computable bijection
γ : Mcom → Mver. It also determines the commitment space C, and the
opening space I.

Key(gk)→ (ck, tk): A key generation algorithm that takes gk and outputs a
public commitment key, ck, and a trapdoor key, tk.

Com(ck,m)→ (com, open): A commitment algorithm that takes ck and mes-
sage m ∈ Mcom and outputs a commitment, com ∈ C, and an opening
information, open ∈ I.

Vrf(ck, com,M, open)→ 1/0: A verification algorithm that takes ck, com, M ∈
Mver, and open as inputs, and outputs 1 or 0 representing acceptance or
rejection, respectively.

SimCom(gk)→ (com, ek): A sampling algorithm that takes common parameter
gk and outputs commitment com and equivocation key ek.

Equiv(M, ek, tk)→ open: An algorithm that takes ck, ek, tk, and M ∈ Mver

as input and returns open.

Correctness, statistical trapdoor, and shrinking property are defined as well as
Definition 11.

We say that a γ-binding commitment scheme is structure-preserving with
respect to verification if ck, com, open, andMver consist of source group elements
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of bilinear groups and the verification function consists only of evaluating group
membership and pairing product equations.

Next we formally define the security notions, γ-target collision resistance
and γ-collision resistance. As well as ordinary notions of collision resistance,
γ-collision resistance implies γ-target collision resistance.

Definition 15 (γ-Target Collision Resistance). For a γ-binding commit-
ment scheme, TCγ, let com and open denote vectors of commitment and
openings produced by Com for uniformly sampled messages m. We say TCγ is
γ-target collision resistant if advantage function Advtcr

TCγ,A(λ) defined by

Pr

 gk ← Setup(1λ), (ck, tk)← Key(gk),
m←Mcom, (com,open)← Com(ck,m),
(com,M, open)← A(ck,m, com,open)

∣∣∣∣∣∣ com ∈ com ∧ M 6∈ γ(m)∧
1 = Vrf(ck, com,M, open)


is negligible in security parameter λ for any polynomial-time adversary A.

Definition 16 (γ-Collision Resistance). A γ-binding commitment scheme,
TCγ, is γ-collision resistant if advantage Advcr

TCγ,A(λ) defined by

Pr

gk ← Setup(1λ), (ck, tk)← Key(gk),
(com,M1, open1,M2, open2)← A(ck)

∣∣∣∣∣∣
M1 6= M2∧
1 = Vrf(ck, com,M1, open1)∧
1 = Vrf(ck, com,M2, open2)


is negligible in security parameter λ for any polynomial-time adversary A.

Now we present a concrete scheme for a structure-preserving γ-binding trap-
door commitment scheme for γ : Zp → G1. For our purpose, we only require
target collision resistance but the concrete construction satisfies the stronger
notion.

[γ-Binding Trapdoor Commitment Scheme: TCγ ]

Setup(1λ): Run G(1λ) and obtain gk := (p,G1,G2,GT , e,G, G̃). It defines
message spaces Mcom := Z`p, Mver := G`1 for fixed ` ≥ 1 and bijection

γ : Z`p → G`1 by γ(m1, . . . ,m`) = (Gm1 , . . . , Gm`). Output gk.

Key(gk): For i = 1, . . . , `, choose ρi ← Z∗p and compute X̃i := G̃ρi . Output

ck := (gk, X̃1, . . . , X̃`) and tk := (gk, ρ1, . . . , ρ`).

Com(ck,m): Parse m into (m1, · · · ,m`) ∈ Z`p. Choose ζ ← Z∗p and compute

G̃u := G̃ζ
∏`
i=1 X̃

mi
i and R := Gζ . Output com := G̃u and open := R.

Vrf(ck, com,M, open): Parse ck = (gk, X̃1, . . . , X̃`), open = R, M = (M1, . . . ,
M`) ∈ G`1, and com = G̃u, respectively. Take generators (G, G̃) from gk.
Return 1 if

e(G, G̃u) = e(R, G̃)
∏̀
i=1

e(Mi, X̃i) (10)

holds. Return 0, otherwise.
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SimCom(gk): Choose ωu ∈ Z∗p. Compute G̃u := G̃ωu and output com := G̃u
and ek := ωu.

Equiv(M, ek, tk): Parse tk = (gk, ρ1, . . . , ρ`), ek = ωu, and M = (M1, . . . ,M`).

Compute R := Gωu
∏`
i=1M

−ρi
i . Then output open := R.

Theorem 17. TCγ is correct, statistical trapdoor, and structure-preserving with
respect to verification. It is γ-collision resistant if the DBP assumption holds.

Proof. Correctness is verified as e(R, G̃)
∏`
i=1 e(Mi, X̃i) = e(Gζ , G̃)

∏`
i=1 e(G

mi ,

X̃i) = e(G, G̃ζ) e(G,
∏`
i=1 X̃

mi
i ) = e(G, G̃u). To see if it is statistically trapdoor,

observe that SimCom outputs G̃u uniformly over G∗2 whereas that from Com
distributes statistically close to uniform over G2. Then R from Equiv is the one
that is uniquely determined by the verification equation since it satisfies

e(R, G̃)
∏̀
i=1

e(Mi, X̃i) = e(Gωu

∏̀
i=1

M−xi
i , G̃)

∏̀
i=1

e(Mi, G̃
xi) = e(G, G̃u).

Finally, it is obviously structure-preserving with respect to verification due to
verification equation (10).

Next we prove the γ-collision resistance. Let A be an adversary that breaks the
CR security of TCγ. We show algorithm B that attacks the DBP with black-box
access to A. Given an instance (e,G1,G2, G, G̃, G̃z) of the DBP, algorithm B sets
up key ck as follows. Set gk := (p,G1,G2,GT , e,G, G̃). For i = 1, . . . , `, choose
ξi, ϕi ← (Z∗p)2 and set X̃i := (G̃z)

ξi G̃ϕi . Then give ck := (gk, X̃1, . . . , X̃`) to A.

Suppose that A outputs (G̃u, R1,M1, R2,M2) that passes the verification as
required. B then outputs (Z?, R?) where

R? :=
R1

R2

∏̀
i=1

(
M1i

M2i

)ϕi

, and Z? :=
∏̀
i=1

(
M1i

M2i

)ξi
, (11)

as the answer to the DBP. This completes the description of B.
We first verify that the simulated ck is correctly distributed. In the key

generation, gk is set legitimately to the given output of G. Each simulated X̃i

distributes uniformly over G2, whereas the real one distributes uniformly over
G∗2. Thus, the simulated ck is statistically close to the real one.

We then argue that the resulting (Z?, R?) is a valid answer to the given
instance of the DBP. Since the output from A satisfies the verification equation,
we have

1 = e

(
R1

R2
, G̃

) ∏̀
i=1

e

(
M1i

M2i
, (G̃z)

ξiG̃ϕi

)
(12)

= e

(∏̀
i=1

(
M1i

M2i

)ξi
, G̃?z

)
e

(
R1

R2

∏̀
i=1

(
M1i

M2i

)ϕi

, G̃

)
= e(Z?, G̃?z) e(R

?, G̃).

(13)
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Observe that every ξi is independent of the view of A as it is information
theoretically hidden into X̃i. Since a valid output from A satisfies M1 6= M2, there
exists index i? ∈ {1, . . . , `} that M1i? 6= M2i? . Thus Z? follows the distribution
of (M1i/M2i)

ξi at i = i?. Since M1i?/M2i? 6= 1 and ξi? is uniform over Z∗p, we
conclude that Z? = 1 occurs only with negligible probability.

Thus, B breaks the DBP assumption with almost the same probability and
running time of A breaking the γ-collision resistance of TCγ. ut

4.3 Structure-Preserving Shrinking Trapdoor Commitment Scheme

Let POS be a partially one-time signature scheme. LetMpos be the message space
of POS defined with respect to gk. We denote the key spaces as Kvkpos, Kskpos, Kovkpos ,

and Koskpos in a self-explanatory manner. Let γsk : Kskpos → Kvkpos and γosk : Koskpos →
Kovkpos be efficiently computable bijections. Let γ be γ = γsk × γ(1)osk × · · · × γ

(k)
osk.

Let TCγ be a γ-binding trapdoor commitment scheme for such γ. It is assumed
that POS and TCγ have a common setup function, Setup, that outputs gk based
on POS.Setup and TCγ.Setup, as mentioned in Section 3.1. (When instantiated
from POS in Section 3.2 and TCγ from Section 4.2, Setup is as simple as running
gk ← G(1λ)). Using these building blocks, we construct an SPTC scheme, TC,
achieving CMTCR security as follows.

[Trapdoor Commitment Scheme: TC ]

Setup(1λ): It the same as the common setup function for POS and TCγ.
The relevant message spaces are set as Mcom

gbc := Kskpos × (Koskpos )k, Mver
gbc :=

Kvkpos × (Kovkpos )k, and M := (Mpos)
k for some integer k > 0.

Key(gk): Run (ckgbc, tkgbc) ← TCγ.Key(gk). Output ck := ckgbc and tk :=
tkgbc. It is assumed that gk is included in ck. The message space for TC is
set to M := (Mpos)

k.

Com(ck,M): Parse ck := ckgbc and M := (M (1), · · · ,M (k)) ∈ (Mpos)
k. Take

gk from ck. Run (vkpos, skpos) ← POS.Key(gk). Execute (ovk
(i)
pos, osk

(i)
pos) ←

POS.Ovk(gk) and σ
(i)
pos := POS.Sign(skpos, osk

(i)
pos,M (i)) for i = 1, . . . , k. Then

run (comgbc, opengbc)← TCγ.Com(ckgbc, (skpos, osk
(1)
pos, · · · , osk(k)pos)). Output

com := comgbc and open := (opengbc, vkpos, ovk
(1)
pos, · · · , ovk(k)pos , σ

(1)
pos, · · · , σ(k)

pos).

Vrf(ck, com,M, open): Parse com = comgbc,M = (M (1), · · · ,M (k)) ∈ (Mpos)
k

and open = (opengbc, vkpos, ovk
(1)
pos, · · · , ovk(k)pos , σ

(1)
pos, · · · , σ(k)

pos). Execute b0 ←
TCγ.Vrf(ckgbc, comgbc, (vkpos, ovk

(1)
pos, · · · , ovk(k)pos), opengbc), and bi ← POS.Vrf

(vkpos, ovk
(i)
pos,M (i), σ

(i)
pos) for i = 1, . . . , k. Output 1 if bi = 1 for all i = 0, . . . , k.

Output 0, otherwise.

SimCom(gk): Take gkgbc from gk and run (comgbc, ekgbc)← TCγ.SimCom(gkgbc)
and output com := comgbc and ek := (comgbc, ekgbc).
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Equiv(M, ek, tk): The same as TC.Com except that, TCγ.Com is replaced by

opengbc ← TCγ.Equiv((vkpos, ovk
(1)
pos, · · · , ovk(k)pos), ekgbc, tkgbc) and comgbc in-

cluded in ek.

Theorem 18. The commitment scheme TC described above is CMTCR if POS
is OT-NACMA, and TCγ is γ-target collision resistant.

Proof. We follow the game transition framework. Let Game 0 be the CMTCR
game launched by adversary A. By com† = com†gbc, open

† = (open†gbc, vk
†
pos,

ovk†pos
(1)
, · · · , ovk†pos

(k)
, σ†pos

(1)
, · · · , σ†pos

(k)
) and M† = (M†

(1)
, · · · ,M†(k)), we

denote the collision A outputs.

In Game 1, abort if (vk†pos, ovk
†
pos

(1)
, · · · , ovk†pos

(k)
) differs from any of (vkpos,

ovk
(1)
pos, · · · , ovk(k)pos) observed by the signing oracle. We show that this occurs only

if TCγ is broken by constructing adversary B attacking the γ-target collision resis-
tance of TCγ. Adversary B is given ckgbc and qs reference commitments comgbc and

opening opengbc for random messages of the form (skpos, osk
(1)
pos, . . . , osk

(k)
pos). Each

message is uniquely mapped to (vkpos, ovk
(1)
pos, . . . , ovk

(k)
pos) by bijection γ. Adver-

sary B invokesA with ck := ckgbc as input. For every commitment query M , adver-

sary B takes a fresh sample (skpos, osk
(1)
pos, . . . , osk

(k)
pos) with its commitment comgbc

and opening opengbc, and compute σ
(j)
pos ← POS.Sign(skpos, osk

(j)
pos,M (j)) for

j = 1, . . . , k. It then returns com := comgbc and open := (opengbc, vkpos, ovk
(1)
pos,

· · · , ovk(k)pos , σ
(1)
pos, · · · , σ(k)

pos). IfA eventually outputs a collision, B outputs com?
gbc :=

com†gbc, open
?
gbc := open†gbc and M? := (vk†pos, ovk

†
pos

(1)
, · · · , ovk†pos

(k)
). This com-

pletes the description of B.
The simulated commitments and openings distribute the same as the real ones

since every osk
(j)
pos is sampled legitimately by the challenger and the commitment

generation procedure is the genuine one. Furthermore, the output of B is a valid
collision against TCγ since A must have chosen com†(= com†gbc) from once used
commitments and M? is fresh due to the condition of abort. Accordingly, we
have |Pr[Game 0]− Pr[Game 1]| ≤ Advtcr

TCγ,B(λ).
We then argue that A wins in Game 1 only if POS is broken. Let C be

an adversary attacking the OT-NACMA property of POS. Given vk?pos from

outside, C first flips a coin i† ← {1, . . . , qs}. It then takes gk from vk?pos and
executes (ckgbc, tkgbc) ← TCγ.Key(gk). Then it invokes A with input ck :=
ckgbc. Given j-th query for j 6= i†, C runs the legitimate procedure of TC.Com
and returns obtained (open, com). For the i†-th query M = (M (1), . . . ,M (k)),

C makes a query M (j) to the signing oracle of POS and obtains ovk
(j)
pos and

σ
(j)
pos for j = 1, . . . , k. C then computes (comgbc, ekgbc) ← TCγ.SimCom(gk) and

opengbc ← TCγ.Equiv((vk?pos, ovkpos
(1), · · · , ovkpos(k)), ekgbc, tkgbc) and outputs

com := comgbc and open := (opengbc, vk
?
pos, ovk

(1)
pos, · · · , ovk(k)pos , σ

(1)
pos, · · · , σ(k)

pos).

On receiving a collision from A, C aborts if vk†pos 6= vk?pos. Otherwise, find i?

that M†
(i?) 6= M (i?) (such an index must exist since M† differs from any queried
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messages) and outputs ovk?pos := ovk†pos
(i?)

and M? := M†
(i?)

. This completes
the description of C. The simulated signatures are statistically close to the real
ones due to the statistical trapdoor property of TCγ.SimCom and TCγ.Equiv.
Aborting event vk†pos 6= vk?pos does not occur with probability 1/qs. Thus, we

have 1
qs

Pr[Game 1]− εsim ≤ Advot-nacma
POS,C (λ), where εsim is the statistical loss by

TCγ.SimCom and TCγ.Equiv.
All in all, we have

Advcmtcr
TC,A(λ) ≤ Advtcr

TCγ,B(λ) + qs ·Advot-nacma
POS,C (λ) + εsim,

which proves the statement. ut

The following is immediate from the construction. In particular, Correctness
holds due to the correctness of TCγ and POS and the existence of a bijection
from the secret keys of POS to the verification keys.

Theorem 19. Above TC is a structure-preserving trapdoor commitment scheme
if TCγ is structure-preserving with respect to verification, and POS is structure-
preserving.

5 Fully Structure-Preserving Signatures

We argue that constructing an FSPS requires a different approach than those for
all known constructions of SPSs. The verification equations of existing structure-
preserving constant-size signatures on message vectors (Gm1 , . . . , Gmn) involve
pairings such as

∏
e(Gxi , Gmi), where Gxi is a public key element and Gmi is a

message element. The message is squashed into a signature element, say S, in
such a form that S := A ·

∏n
i=1G

mixi where xi is a signing key component and A
is computed from inputs other than the message. Such a structure requires either
mi or xi to be detected to the signing algorithm. In FSPS, however, neither is
given to the signing function.

Our starting point is the FSPS scheme in Section 3.3. The following sections
present constructions that upgrade the security to UF-CMA by incorporating
one-time signatures or trapdoor commitments.

5.1 Warm-Up: Based on One-Time Signatures

Our first approach is to take xi from randomness instead of the signing key. That
is, xi works as a random one-time key and Gxi is regarded as a one-time public
key, which is then authenticated by an FSPS that is secure against extended
random message attacks. This results in a combination of a weaker signature
scheme with OTS, which is well known as a method for upgrading the security
of the underlying signature scheme. This in fact can be seen as a special case of
the construction of SPS by Abe et al. [2]. We nevertheless work out the scheme
in detail to discuss our motivation for our main scheme and settle a basis for
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comparison. Let OTS and xSIG be a one-time and an ordinary signature scheme
that have common setup function Setup. We construct FSP1 as follows.

[Signature Scheme: FSP1 ]

Setup(1λ): It is the same as Setup for OTS and xSIG. It outputs gk ← Setup(1λ),
and sets Mxsig := Kvkots and M :=Mots.

Key(gk): Run (vk xsig, sk xsig)← xSIG.Key(gk). (It is assumed that gk is included
in vk xsig and sk xsig.) Output (vk, sk) := (vk xsig, sk xsig).

Sign(sk,M): Take sk xsig and gk from sk. Compute (ovkots, oskots)← OTS.Key(gk),
σxsig ← xSIG.Sign(sk xsig, ovkots), σots ← OTS.Sign(oskots,M). Output σ :=
(σxsig, σots, ovkots)

Vrf(vk,M, σ): : Take vk xsig and (σxsig, σots, ovkots) from the input. Output 1
if 1 = OTS.Vrf(vkots,M, σots) and 1 = xSIG.Vrf(vk xsig, vkots, σxsig). Output 0,
otherwise.

Theorem 20. If OTS is a UF-NACMA secure SPS and xSIG is a UF-XRMA
secure FSPS, then FSP1 is a UF-CMA secure FSPS scheme.

Proof. Since the syntactical consistency and correctness are trivial from the
construction, we only show that the scheme is fully structure-preserving. The
public component of FSP1 is (vk, σ,M) = (vk xsig, (σxsig, σots, ovkots),M), which
consists of public components of xSIG.Key and the OTS. Also, the signing key of
FSP1 consists of sk xsig. Thus, both public and private components of FSP1 consist
of group elements since xSIG is FSPS and the OTS is SPS. Furthermore, FSP1.Vrf
evaluates OTS.Vrf and xSIG.Vrf that evaluate PPEs. Thus, FSP1 is FSPS.

We next prove the UF-CMA security of FSP1 by following the standard
game transition technique. Let A be an adversary against FSP1. By Pr[Game i]
we denote probability that A eventually outputs a valid forgery as defined in
Definition 3. Let Game 0 be the UF-CMA game that A is playing. By definition,
Pr[Game 0] = Advuf-cma

FSP1,A(λ). Let (σ†,m†) be a forgery A outputs. Let σ† :=

(σ†xsig, σ
†
ots, vk

†
ots).

In Game 1, abort the game if (σ†,m†) is a valid forgery and vk†ots is never
used by the signing oracle. We show that this event occurs only if the UF-XRMA
security of xSIG is broken. Let B be an adversary against xSIG launching an XRMA

attack. B is given (vk xsig, (σ
(1)
xsig, vk

(1)
ots , ω

(1)), . . . , (σ
(qs)
xsig , vk

(qs)
ots , ω

(qs))) where ω(j) is

the randomness used to generate vk
(j)
ots with OTS.Key. B first obtains sk

(j)
ots from

ω(j) by executing OTS.Key by itself. Then it invokes A with input vk := vk xsig. On

receiving m(j) for signing, B computes σ
(j)
ots ← OTS.Sign(skots,m

(j)) and returns

σ(j) := (σ
(j)
xsig, σ

(j)
ots , vk

(j)
ots ). When A outputs forgery σ† := (σ†xsig, σ

†
ots, vk

†
ots), B

outputs σ?xsig := σ†xsig and m? := vk†ots. This is a valid forgery since vk†ots 6= vk
(j)
ots .

Thus, we have |Pr[Game 0]− Pr[Game 1]| ≤ Advuf-xrma
xSIG,B (λ).

Next we show that A wins Game 1 only if OTS is broken. Let C be an
adversary attacking OTS with NACMA. Given gk from outside, C first flips a
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coin i† ← {1, . . . , qs}. It then executes (vk, sk)← FSP1.Key(gk). Given m(j) for
j 6= i†, C runs σ(j) ← FSP1.Sign(sk,m(j)) and returns σ(j) to A. For j = i†, C
forwards m(i†) to the signing oracle of OTS and receive σ

(i†)
ots and vk

(i†)
ots . Then B

executes σ
(i†)
xsig ← xSIG.Sign(sk xsig, vk

(i†)
ots ) and returns σ(i†) := (σ

(i†)
xsig , σ

(i†)
ots , vk

(i†)
ots )

to A. When A outputs forgery σ† := (σ†xsig, σ
†
ots, vk

†
ots) and m†, C aborts if

vk†ots 6= vk
(i†)
ots . Otherwise, C outputs σ?xsig := σ†ots and m? := m†. This is a valid

forgery since m† 6= m(i†). Thus, we have 1
qs

Pr[Game 1] ≤ Advuf-nacma
OTS,C (λ).

In total, we have

Advuf-cma
FSP1,A(λ) ≤ Advuf-xrma

xSIG,B (λ) + qs ·Advuf-nacma
OTS,C (λ),

which proves the statement. ut

Though the above reduction involves a loss factor of qs, it will vanish if OTS
is based on a random-self reducible problem like SDP.

The above construction requires Kvkots to match Mxsig. When they are in-
stantiated with the concrete schemes from previous sections (using the POS in
Section 3.2 as OTS by swapping G1 and G2, and using xSIG in Section 3.3), the
space adjustment is done as follows.

Setup: It runs xSIG.Setup and sets (F1, F̃1) as default generators (G, G̃) for
OTS. It also provide extra generators (F2, U1, . . . , U`+2) to OTS for the
following procedures to work.

OTS.Key: It runs POS.Key and POS.Ovk in sequence and set vkots := (vkpos,
ovkpos). The key spaces are adjusted as follows.

– POS.Key On top of the legitimate procedure with G := F1 to obtain
(Gwz , Gχ1 , . . . , Gχ`), it computes the extended part as Gi2 := Fχi

2 Gi3 :=
Uχi

i for i = 1, . . . , `, and Gz2 := Fwz
2 , Gz3 := Uwz

`+1, and include all of
them to vkpos.

– POS.Ovk On top of legitimate procedure with G := F1 that computes
A := Ga, it computes extra parts A2 := F a2 and A3 := Ua`+2 and includes
them to ovkpos.

Then those extended vkpos and ovkpos constitute a message ((Gz, Gz2, Gz3), (G1,
G12, G13), . . . , (G`, G`2, G`3), (A,A2, A3)) given to xSIG to sign.
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Below, we present a summary of the resulting instantiation of FSP1.

Common Parameter (G, G̃, F1, F2, F̃1, F̃2, {Ui, Ũi}`+2
i=1)

Public-key (Ṽ1, Ṽ2, Ṽ3, Ṽ4, Ṽ5, Ṽ6, V7, Ṽ8)

Secret-key (K1,K2,K3,K4)

Message (M1, . . . ,M`)

Signature (S̃0, S1, . . . , S5, Ã, Ã2, Ã3, G̃z, G̃z2, G̃z3, {G̃i, G̃i2, G̃i3}`i=1,

Z,R)

Verification PPEs e(G, Ã) = e(Z, G̃z) e(R, G̃)
∏`
i=1 e(Mi, G̃i),

e(S5, Ṽ6 Ã3 G̃z3
∏`
i=1 G̃i3) = e(G, S̃0),

e(S1, Ṽ1) e(S2, Ṽ3) e(S3, Ṽ2) = e(S4, Ṽ4) e(S5, Ṽ5) e(V7, Ṽ8),

e(F1, Ã3) = e(U`+2, Ã), e(F2, Ã3) = e(U`+2, Ã2)

e(F1, G̃z3) = e(U`+1, G̃z), e(F2, G̃z3) = e(U`+1, G̃z2)

For i = 1, . . . , `:

e(F1, G̃i3) = e(Ui, G̃i), e(F2, G̃i3) = e(Ui, G̃i2)

Motivation for Improvement. Since an SPS is an OTS, construction FSP1 can
be seen as a generic conversion from any SPS to an FSPS. In exchange for the
generality, the construction has several shortcomings when instantiated with
current building blocks.

– (O(|m|)-size signatures) The resulting signature σ includes the one-time
verification key ovkots, which is linear in the size of messages in all current
instantiations of OTS.

– (Factor 3 expansion in xSIG) As shown above, the message space of xSIG
must cover ovkots, which is linear in the size of the message. Even worse, the
currently known instantiation of xSIG suffers from an expansion factor of
µ = 3 for messages. That is, to sign a message consisting of a group element,
say Gx, it requires to represent the message with two more extra elements F x2
and Uxi for given bases F2 and Ui. Thus, the size of ovkots will actually be µ
times larger than the one-time verification key that OTS originally requires.

The above shortcomings amplify each other. Finding an instantiation of xSIG
with a smaller expansion factor is one direction of improvement. We leave it as
an interesting open problem and focus on a generic approach in the next section.

5.2 Main Construction based on Shrinking Trapdoor Commitments

Our idea is to avoid signing any components whose size grows to that of messages
directly with xSIG. We achieve this by committing to the message using a
shrinking commitment scheme and signing the commitment with xSIG. Again,
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combining a trapdoor commitment scheme (or a chameleon hash) and a signature
scheme to achieve such an improvement is ultimately a known approach. What is
important here is the security required from each building block. We show that
chosen-message target collision resistance is sufficient for TC to reach UF-CMA
in combination with an XRMA-secure signature scheme.

Let xSIG be a UF-XRMA secure FSPS scheme and TC be a CMTCR secure
trapdoor commitment scheme with common setup function Setup. We construct
our FSPS scheme FSP2 from xSIG and TC as follows.

[Signature Scheme: FSP2 ]

Setup(1λ): Run common setup gk ← Setup(1λ) and output gk. Set the message
spaces Mxsig := Ctc and M :=Mtc.

Key(gk): Run (vk xsig, sk xsig) ← xSIG.Key(gk), and (cktc, tktc) ← TC.Key(gk).
Set vk := (vk xsig, cktc), sk := sk xsig. Output (vk, sk)

Sign(sk,M): Parse sk into sk xsig. Run (comtc, opentc)← TC.Com(cktc,M) and
σxsig ← xSIG.Sign(sk xsig, comtc). Output σ := (σxsig, opentc, comtc)

Vrf(vk,M, σ): Parse vk = (vk xsig, cktc) and σ = (σxsig, opentc, comtc). Output
1 if 1 = TC.Vrf(cktc, comtc,M, opentc) and 1 = xSIG.Vrf(vk xsig, comtc, σxsig).
Output 0, otherwise.

Theorem 21. If TC is a CMTCR secure SPTC, and xSIG is a UF-XRMA secure
FSPS relative to TC.SimCom as a message sampler, then FSP2 is a UF-CMA
FSPS.

Proof. Correctness holds trivially from those of the underlying TC and xSIG.
Regarding the full structure-preserving property, observe that sk consists of sk xsig,
which that are source group elements since xSIG is fully structure-preserving. The
same is true for public components, i.e., public keys, messages, and signatures.
The verification only evaluates verification functions of these underlying building
blocks, which evaluate PPEs. Thus, FSP2 is FSPS.

We next prove the security property. Let A be an adversary against FSP2.
Let Game 0 be the UF-CMA game that A is playing. By definition, Pr[Game 0] =

Advuf-cma
FSP2,A(λ). Let (σ†,m†) be a forgeryA outputs. Let σ† := (σ†xsig, open

†
tc, com

†
tc).

In Game 1, abort the game if (σ†,m†) is a valid forgery and com†tc is never
viewed by the signing oracle. We show that this event occurs only if the UF-XRMA
security of xSIG is broken. Let B be an adversary against xSIG launching an
XRMA attack. The message sampler for XRMA is TC.SimCom. That is, the
challenger samples random messages by (comtc, ektc)← TC.SimCom(gk;ω) with
random coin ω and gives comtc and ω with signature σxsig on comtc as a mes-

sage. Let sample(j) be the j-th sample, i.e., sample(j) := (com
(j)
tc , ω

(j), σ
(j)
xsig).

Given (vk xsig, sample(1), . . . , sample(qs)) as input, B runs as follows. It first

takes gk from vk xsig and recovers every ek
(j)
tc from ω(j) by (comtc, ektc) ←

TC.SimCom(gk;ω). It then runs (cktc, tktc) ← TC.Key(gk) and invokes A with
input vk := (vk xsig, cktc). Given the j-th signing query m(j) from A, it executes
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open
(j)
tc ← TC.Equiv(m(j), tktc, ek

(j)
tc , ) and returns σ := (σ

(j)
xsig, open

(j)
tc , com

(j)
tc ) to

A. If A eventually outputs a forgery, σ† = (σ†xsig, open
†
tc, com

†
tc) and m†, it outputs

σ?xsig := σ†xsig and m? := com†tc as a forgery with respect to xSIG.

Correctness of the above reduction holds from statistically close distribution

of simulated com
(j)
tc , and open

(j)
tc . The output (σ?xsig,m

?) is also a valid forgery

since com†tc differs from any com
(j)
tc . Letting εsim denote the statistical distance,

we have |Pr[Game 0]− Pr[Game 1]| ≤ Advuf-xrma
xSIG,B (λ) + εsim.

Now we claim that A winning in Game 1 occurs only if the CMTCR security
of TC is broken. The reduction from successful A in Game 1 to adversary C that
breaks TC is straightforward. Given cktc, C runs (vk xsig, sk xsig) ← xSIG.Key(gk)
and invokes A with vk := (vk xsig, cktc). Then, given message m(j), forward it

to the oracle of TC and obtain (com
(j)
tc , open

(j)
tc ). Then sign com

(j)
tc using sk xsig

to obtain σ
(j)
xsig and return (σ

(j)
xsig, open

(j)
tc , com

(j)
tc ) to A. Given a forged signature

(σ†xsig, open
†
tc, com

†
tc) and m†, output open?tc := open†tc and m? := m†. It is a valid

forgery since m† 6= m(j) for all j. We thus have Pr[Game 1] = Advcmtcr
TC,C (λ).

By summing up the differences, we have

Advuf-cma
FSP2,A(λ) ≤ Advuf-xrma

xSIG,B (λ) + Advcmtcr
TC,C (λ) + εsim, (14)

which proves the statement. ut

To instantiate this construction with the building blocks from previous sections,
we again need to duplicate comgbc = G̃u = G̃ζ

∏`
i=1 X̃

mi
i to a triple with respect

to bases G̃ = F̃2, F̃3 and Ũ1 as follows. To be able to do so without holding the
discrete logarithms of the X̃i’s, we need to duplicate X̃ to the same set of bases
as well. Details are shown below.

Setup: It runs xSIG.Setup and sets (F1, F̃1) as default generators (G, G̃) for
TCγ with extra generators (F2, U1) as well.

TCγ.Key: On top of the legitimate procedure with G := F̃1 to obtain X̃i := Gρi ,
additionally compute X̃i2 := F̃ ρi2 and X̃i3 := Ũρi1 for i = 1, . . . , ` and include
them to ckgbc.

TCγ.Com: On top of the legitimate procedure that computes G̃u = G̃ζ
∏`
i=1 X̃

mi
i

for G̃ := F̃1, compute G̃u2 := F̃ ζ2
∏`
i=1 X̃

mi
i1 and G̃u3 := Ũζ1

∏`
i=1 X̃

mi
i3 and

include them to comgbc.

TCγ.SimCom: Compute the above extra components as G̃u2 := F̃ωu
2 , and

G̃u3 := Uωu
1 .

The result is an extended commitment comgbc = (G̃u, G̃u2, G̃u3) that matches
to the message space of xSIG with ` = 1. Note that the duplicated keys have no
effect on the security of POS nor TCγ since they can be easily simulated when
the discrete-logs of the extra bases to the original base G̃ are known.
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We summarize the instantiation of FSP2 in the following. Let k = d `
`pos
e and

`gbc = 1 + k + `pos.

Common Parameter (G, G̃, F1, F2, F̃1, F̃2, U1, Ũ1)

Public-key (Ṽ1, Ṽ2, Ṽ3, Ṽ4, Ṽ5, Ṽ6, V7, Ṽ8, {X̃i, X̃i2, X̃i3}
`gbc
i=1)

Secret-key (K1,K2,K3,K4)

Message (M̃1, . . . , M̃`)

Signature (S̃0, . . . , S5, G̃u, G̃u2, G̃u3, R,Gz, G1, . . . , G`pos , {Ai, Z̃i, R̃i}ki=1)

Verification PPEs Let (N1, . . . , N`gbc) := (Gz, G1, . . . , G`pos , A1, . . . , Ak).

For j = 1, . . . , k:

e(Aj , G̃) = e(Gz, Z̃j) e(G, R̃j)
∏`pos
i=1 e(Gi, M̃(j−1)`pos+i),

e(G, G̃u) = e(R, G̃)
∏`gbc
i=1 e(Ni, X̃i)

e(S5, Ṽ6 G̃u3) = e(G, S̃0),

e(S1, Ṽ1) e(S2, Ṽ3) e(S3, Ṽ2) = e(S4, Ṽ4) e(S5, Ṽ5) e(V7, Ṽ8),

e(F1, G̃u3) = e(U1, G̃u), e(F2, G̃u3) = e(U1, G̃u2).

5.3 Efficiency

In this section, we assess the efficiency of FSP1 and FSP2 instantiated as described
in Section 5.1 and 5.2.

Signature Size and Number of PPEs. Here we assess the sizes of a key and a
signature for unilateral messages consisting of ` group elements. By |vkx| for
x ∈ {ots, xsig}, we denote the number of group elements in vkx except for those
in |gk|. By the term #PPEx we denote the number of pairing product equations
in the corresponding building block x. Table 1 summarizes the comparison with
signature length for some concrete message lengths.

Scheme |sk| |vk| |σ| #PPE

` ` = 1 4 9 25 100

FSP1 4 18 + 2 ` 14 + 3 ` 17 26 41 89 314 7 + 2`

FSP2 4 19 + 6 d
√
`e 11 + 4 d

√
`e 15 19 23 31 51 5 + d

√
`e

Table 1. Size of secret keys, verification keys, signatures, and number of PPEs
in verification for unilateral messages of size `.
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– FSP1. According to the descriptions in Section 3.2 and Section 3.3, we have
the following parameters for the building blocks.

• OTS: |vkots| = |vkpos|+ |ovkpos| = `+ 2, |σots| = 2, and #PPEots = 1.

• xSIG: |sk xsig| = 4, |vk xsig| = 8, and #PPExsig = 2 + 2 |vkots|.
The common setup function for these building blocks generates bases (G, G̃, F1,

F2, F̃1, F̃2, {Ui, Ũi}
`xsig
i=1) for `xsig = |vkots| to allow xSIG to sign vkots. (Note

that vkots consists only of group elements from G1, which xSIG can sign.)
Taking the message expansion factor µ = 3 into account, we obtain the
following for FSP1:

|gk| = 6 + 2 |vkots|

|sk| = |sk xsig| = 4

|vk| = |gk|+ |vk xsig| = 18 + 2`

|σ| = |σxsig|+ |σots|+ µ |vkots| = 14 + 3`

#PPE = #PPExsig + #PPEots = 7 + 2 `

– FSP2. The underlying components are xSIG, TCγ and POS. Since POS is
repeatedly used in FSP2, its message size `pos can be set independently from
the input message size `. The parameters for these underlying components
are:

• POS: |vkpos| = `pos + 1, |ovkpos| = 1, |σpos| = 2, and #PPEpos = 1.

• TCγ: |ckgbc| = |vkpos|+d`/`pose·|ovkpos| = 1+d`/`pose+`pos, |comgbc| = 1,
and |opengbc| = 1.

• xSIG: |sk xsig| = 4, |vk xsig| = 8, and #PPExsig = 2 + 2 |comgbc|.
As well as the previous case, the common setup function outputs gk including

bases (G, G̃, F1, F2, F̃1, F̃2, {Ui, Ũi}
`xsig
i=1) for `xsig = |comgbc| to allow xSIG to

sign comgbc. Based on these parameters, the following evaluation is obtained
for FSP2:

|sk| = |sk xsig| = 4

|vk| = |gk|+ |vk xsig|+ |ckgbc| = 19 + 3 d`/`pose+ 3 `pos = 19 + 6 d
√
`e

|σ| = |σxsig|+ |opengbc|+ |σpos|+ µ|comgbc|+ |vkpos|+ d`/`pose · |ovkpos|

= 11 + 3 d`/`pose+ `pos = 11 + 4 d
√
`e

#PPE = #PPExsig + #PPEgbc + d`/`pose ·#PPEpos

= 5 + d`/`pose = 5 + d
√
`e

The last equality in each evaluation is obtained at the optimal setting;
`pos = d`/`pose = d

√
`e.
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Proof Size for Knowing a Secret Key. Next we assess the cost for proving one’s
knowledge of a secret key for FSP1 and FSP2 with the Groth-Sahai proof as a
non-interactive witness indistinguishable proof (NIWIPoK) or a zero-knowledge
proof (NIZKPoK). Results are summarized in Table 2. In either scheme, a secret
key comes only from xSIG, which is of the form (K1,K2,K3,K4).

– NIWIPoK: Relations to prove are in (8) that we recall as

e(K2, G̃) = e(G, Ṽ1), e(G, Ṽ3) = e(K2, Ṽ2), e(K1, Ṽ1) = e(V7, Ṽ8),

e(K2, Ṽ4) = e(G, Ṽ5), e(K3, G̃) e(K4, Ṽ2) = e(G, Ṽ4),
(15)

These are linear relations in G1 when proved with the Groth-Sahai proofs.
Underlined variables are the witnesses the prover commits to. According to
[31], committing to a group element in G1 (or G2) requires 2 elements in
G1 (or G2, respectively). Proving a linear relation with a PPE yields a proof
consisting of 2 group elements in G2. Thus, with 4 witnesses, and 5 linear
relations, the resulting proof (i.e. commitments and proofs for all relations)
consists of 4× 2 + 5× 2 = 18 group elements (8 in G1 and 10 in G2).

– NIZKPoK: The above witness-indistinguishable proof is turned into zero-
knowledge in the following manner. First, the prover commits to public-key
elements V7 and G and proves relations

W = V7 and V = G. (16)

Committing to W and V costs 2× 2 = 4 group elements in G1, and proving
elations in (16) as multiscalar multiplication equations requires 2 × 2 = 4
scalar values in Zp. The prover also proves relations:

e(K2, G̃) = e(V , Ṽ1), e(V , Ṽ3) = e(K2, Ṽ2), e(K1, Ṽ1) = e(W, Ṽ8),

e(K2, Ṽ4) = e(V , Ṽ5), e(K3, G̃)e(K4, Ṽ2) = e(V , Ṽ4).
(17)

Since all witnesses in (17) belong to G1, the cost for proving the relations
is unchanged from that for (15). Thus the total cost is 18 + 4 = 22 group
elements (12 in G1 and 10 in G2) and 4 scalar values in Zp.

Proof Size for Knowing a Valid Signature. Here we assess the cost for proving
possession of a valid signature using the Groth-Sahai proofs as NIWIPoK. The
result is summarized in Table 2.
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Scheme WI (sk) ZK (sk) WI (σ) ZK (σ)

FSP1 18 22 54 + 10` 56 + 10`

FSP2 18 22 44 + 16d
√
`e 46 + 16d

√
`e

Table 2. Number of group elements in the Groth-Sahai proofs for
possession of a secret key and a signature for unilateral messages of
size ` with the optimal parameter setting. For ZK, proofs actually
include a small number of elements in Zp ignored here.

– Case of FSP1. According to the descriptions in Section 5.1, a valid signature
satisfies the following relations.

e(G, Ã) = e(Z, G̃z) e(R, G̃)
∏̀
i=1

e(Mi, G̃i), e(S5, Ṽ6 Ã3 G̃z3
∏̀
i=1

G̃i3) = e(G, S̃0),

e(S1, Ṽ1) e(S2, Ṽ3) e(S3, Ṽ2) = e(S4, Ṽ4) e(S5, Ṽ5) e(V7, Ṽ8),

e(F1, Ã3) = e(U`+2, Ã), e(F2, Ã3) = e(U`+2, Ã2), e(F1, G̃z3) = e(U`+1, G̃z),

e(F2, G̃z3) = e(U`+1, G̃z2), e(F1, G̃i3) = e(Ui, G̃i), e(F2, G̃i3) = e(Ui, G̃i2)

for i = 1, . . . , ` for the last two relations. There are 7 underlined witnesses in
G1 and 1+3(`+2) in G2. Committing to these witnesses requires 14 elements
in G1 and 14 + 6` elements in G2. The first two relations involve witnesses in
both groups whose proofs require 2 × 4 elements in G1 and G2. The third
relation has witnesses only in G1. Its proof consists of 2 elements in G2.
The remaining 4 + 2` relations have witnesses only in G2, and each of their
proof costs 2 elements in G1. In total the proofs and commitments consist of
14+4×2+2×(4+2`) = 30+4` elements in G1 and 14+6`+4×2+2 = 24+6`
elements in G2, which sum up to 54 + 10` group elements.

– Case of FSP2. As described in Section 5.2, a valid signature satisfies the
following relations:

e(Aj , G̃) = e(Gz, Z̃j) e(G, R̃j)

`pos∏
i=1

e(Gi, M̃(j−1)`pos+i) (for j = 1, . . . , k),

e(G, G̃u) = e(R, G̃)

`gbc∏
i=1

e(Ni, X̃i), e(S5, Ṽ6 G̃u3) = e(G, S̃0),

e(S1, Ṽ1) e(S2, Ṽ3) e(S3, Ṽ2) = e(S4, Ṽ4) e(S5, Ṽ5) e(V7, Ṽ8),

e(F1, G̃u3) = e(U1, G̃u), e(F2, G̃u3) = e(U1, G̃u2).
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where (N1, . . . , N`gbc) is actually (Gz, G1, . . . , G`pos , A1, . . . , Ak) that are also
witnesses. Thus we do not need to count the cost for committing to Ni. We
consider `gbc = k = d

√
`e. A signature consists of 4 + 2d

√
`e elements in

G1 and 7 + 2d
√
`e elements in G2. Thus committing to the signature costs

2(4 + 2d
√
`e) and 2(7 + 2d

√
`e) elements in G1 and G2, respectively. The first

three relations (indeed d
√
`e + 2 relations) that came from POS and TCγ

involve witnesses in both groups. Hence proofs for them cost 4(d
√
`e + 2)

elements in G1 and G2, respectively. The remaining three relations that came
from xSIG involves witnesses for either of G1 or G2. Proofs for those relations
costs 2 group elements in G2 and 2× 2 group elements in G1. In total the
proofs and commitments consists of 2(4+2d

√
`e)+4(d

√
`e+2)+4 = 20+8d

√
`e

and 2(7 + 2d
√
`e) + 4(d

√
`e+ 2) + 2 = 24 + 8d

√
`e in G1 and G2, respectively.

They sum up to 44 + 16d
√
`e group elements in total.

For either scheme, proving in zero-knowledge is possible only by additionally
committing to V7 and proving the correctness. It adds 2 elements in G1 for the
commitment of V7 and 2 Zp elements as a proof.

5.4 Lower Bound on Signature Size and Verification key size

The signatures of our concrete FSPSs consist of Ω(
√
`) group elements when

signing `-element messages. This may seem disappointing compared to previous
constructions of SPS, which have generally achieved constant-size signatures, but
we argue that, at least for our modular constructions of FSPS, the

√
` factor

is unavoidable. This is a consequence of the following new trade-off between
signature and verification key size for arbitrary (possibly one-time) SPS schemes.

Theorem 22. Consider a (possibly one-time) SPS scheme on messages in G`2
in the asymmetric (Type III) bilinear group setting. Let κ be the number of
verification key elements and σ the number of group elements in signatures. If
the scheme is existentially unforgeable in a model in which the adversary has
access to a valid signature on a known message and the scheme has an algebraic
signing algorithm, we have κ+ σ ≥

√
`.

Proof. Denote by (M1, . . . ,M`) ∈ G`2 the message vector, by (U1, . . . , Uκ1
, V1, . . . ,

Vκ2
) ∈ Gκ1

1 ×G
κ2
2 (κ1+κ2 = κ) the verification key elements, and by (R1, . . . , Rσ1

,
S1, . . . , Sσ2

) ∈ Gσ1
1 ×G

σ2
2 (σ1+σ2 = σ) the signature elements. The corresponding

discrete logarithms are written in lowercase letters.

Each verification equation of the scheme can be expressed as a bilinear relation
between the discrete logarithms of the group elements in G1 (namely the Ui’s and
Ri’s) on the one hand, and those of the elements in G2 (namely the Mi’s, Vi’s
and Si’s) on the other. The i-th pairing product equation can thus be written in
matrix form as:

XTEiY = 0, (18)



28 Authors Suppressed Due to Excessive Length

where X and Y are the column vectors given by

X = (r1, . . . , rσ1 , u1, . . . , uκ1 , 1)T , and

Y = (m1, . . . ,m`, s1, . . . , sσ2
, v1, . . . , vκ2

, 1)T ,

and Ei is a public (κ1 + σ1 + 1)× (`+ κ2 + σ2 + 1) matrix over Zp.
Now fix a valid message-signature pair (M1, . . . ,M`, R1, . . . , Rσ1

, S1, . . . , Sσ2
),

and suppose that there exists a non-zero tuple (m∗1, . . . ,m
∗
` ) ∈ Z`p such that

Ei(m
∗
1, . . . ,m

∗
` , 0, . . . , 0)T = 0

for all i. Then, it is clear from the shape (18) of the corresponding verification
equations that (R1, . . . , Rσ1 , S1, . . . , Sσ2) is still a valid signature on the distinct
message vector (M1G̃

m∗1 , . . . ,M`G̃
m∗` ), which contradicts existential unforgeabil-

ity.
Therefore, by denoting by n as the number of verification equations, the linear

map Z`p → Zn(κ1+σ1+1)
p mapping (m1, . . . ,m`) to the concatenation of all vectors

Ei(m1, . . . ,m`, 0, . . . , 0)T must be injective. In particular, we have:

` ≤ n · (κ1 + σ1 + 1) ≤ n · (κ+ σ) ,

where the second inequality comes from the fact that we must have σ2 ≥ 1;
otherwise, the algebraic signing algorithm would output signatures that cannot
depend on the message.

Finally, an argument similar to [6, Theorem 5] shows that we must have
n ≤ σ (after removing possibly redundant verification equations). Indeed, if it
were not the case, the quadratic system satisfied by the discrete logarithms of
the signature elements would be overdetermined, and a generic message would
not admit any valid signature at all. We thus obtain ` ≤ σ · (κ+ σ) ≤ (κ+ σ)2,
which concludes the proof. ut

As a result, we immediately see that an FSPS scheme obtained from construc-
tion FSP1 must have signatures of more than

√
` elements. This is because all

signatures include as a subset including both the verification key and signature
of a structure-preserving OTS scheme signing `-element messages. Similarly, the
following result holds with the same proof as above:

Theorem 23. Consider a structure-preserving commitment scheme on messages
in G`2 in the asymmetric (Type III) bilinear group setting. Assume that the
commitment key consists of elements in G2, and let χ be the number of elements
in commitments and o the number of group elements in the opening information.
If the scheme is collision resistant and has an algebraic commitment algorithm,
we have χ+ o ≥

√
`.

This shows that an FSPS scheme obtained from construction FSP2 must also
have signatures of more than

√
` elements, at least when the underlying trapdoor

commitment scheme has its key elements on the same side as the resulting
signature, which seems necessary with our approach based on TCγ (in particular,
this holds for the instantiation above and all the variants in [9]).
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