
How to Efficiently Evaluate RAM Programs
with Malicious Security

Arash Afshar, Zhangxiang Hu, Payman Mohassel, and Mike Rosulek2?

1 University of Calgary, aafshar@ucalgary.ca
2 Oregon State University, {huz,rosulek}@eecs.oregonstate.edu

3 Yahoo Labs, pmohassel@yahoo-inc.com

Abstract. Secure 2-party computation (2PC) is becoming practical for
some applications. However, most approaches are limited by the fact that
the desired functionality must be represented as a boolean circuit. In
response, random-access machines (RAM programs) have recently been
investigated as a promising alternative representation.

In this work, we present the first practical protocols for evaluating RAM
programs with security against malicious adversaries. A useful efficiency
measure is to divide the cost of malicious-secure evaluation of f by the
cost of semi-honest-secure evaluation of f . Our RAM protocols achieve
ratios matching the state of the art for circuit-based 2PC. For statistical
security 2−s, our protocol without preprocessing achieves a ratio of s;
our online-offline protocol has a pre-processing phase and achieves on-
line ratio ∼ 2s/ log T , where T is the total execution time of the RAM
program.

To summarize, our solutions show that the “extra overhead” of obtain-
ing malicious security for RAM programs (beyond what is needed for
circuits) is minimal and does not grow with the running time of the
program.

1 Introduction

General secure two-party computation (2PC) allows two parties to perform “ar-
bitrary” computation on their joint inputs without revealing any information
about their private inputs beyond what is deducible from the output of compu-
tation. This is an extremely powerful paradigm that allows for applications to
utilize sensitive data without jeopardizing its privacy.

From a feasibility perspective, we know that it is possible to securely com-
pute any function, thanks to seminal results of [41,11]. The last decade has
also witnessed significant progress in design and implementation of more prac-
tical/scalable secure computation techniques, improving performance by orders
of magnitude and enabling computation of circuits with billions of gates.

These techniques, however, are largely restricted to functions represented as
Boolean or arithmetic circuits, whereas the majority of applications we encounter

? Supported by NSF award CCF-1149647.

in practice are more efficiently captured using random-access memory (RAM)
programs that allow constant-time memory lookup. Modern algorithms of prac-
tical interest (e.g., binary search, Dijkstra’s shortest-paths algorithm, and the
Gale-Shapely stable matching algorithm) all rely on fast memory access for effi-
ciency, and suffer from major blowup in running time otherwise. More generally,
a circuit computing a RAM program with running time T requires Θ(T 2) gates
in the worst case, making it prohibitively expensive (as a general approach) to
compile RAM programs into a circuit and then apply known circuit 2PC tech-
niques.

A promising alternative approach uses the building block of oblivious RAM,
introduced by Goldreich and Ostrovsky [12]. ORAM is an approach for mak-
ing a RAM program’s memory access pattern input-oblivious while still retain-
ing fast (polylogarithmic) memory access time. Recent work in 2PC has begun
to investigate direct computation of ORAM computations as an alternative to
RAM-to-circuit compilation [13,28,19,10,27]. These works all follow the same
general approach of evaluating a sequence of ORAM instructions using tradi-
tional circuit-based 2PC phases. More precisely, they use existing circuit-based
MPC to (1) initialize and setup the ORAM, a one-time computation with cost
proportional to the memory size, (2) evaluate the next-instruction circuit which
outputs “shares” of the RAM program’s internal state, the next memory op-
erations (read/write), the location to access, and the data value in case of a
write. All of these existing solutions provide security only against semi-honest
adversaries.

Challenges for malicious-secure RAM evaluation. It is possible to take a semi-
honest secure protocol for RAM evaluation (e.g., [13]) and adapt it to the mali-
cious setting using standard techniques. Doing so näıvely, however, would result
in several major inefficiencies that are avoidable. We point out three significant
challenges for efficient, malicious-secure RAM evaluation:

1: Integrity and consistency of state information, by which we mean
both the RAM’s small internal state and its large memory both of which are
passed from one CPU step to the next. A natural approach for handling internal
state is to have parties hold secret shares of the state (as in [13]), which they
provide as input to a secure evaluation of the next-instruction circuit. Using
standard techniques for malicious-secure SFE, it would incur significant overhead
in the form of oblivious transfers and consistency checks to deal with state
information as inputs to the circuit.

A natural approach suitable for handling RAM memory is to evaluate an
Oblivious RAM that encrypts its memory contents. In this approach, the par-
ties must evaluate a next-instruction circuit that includes both encryption and
decryption sub-circuits. Evaluating a block cipher’s circuit securely against ma-
licious adversaries is already rather expensive [22], and this approach essentially
asks the parties to do so at every time-step, even when the original RAM’s
behavior is non-cryptographic. Additional techniques are needed to detect any
tampering of data by either participant, such as computing/verifying a MAC of
each memory location access inside the circuit or computing a “shared” Merkle-

tree on top of the memory in order to check its consistency after each access.
All these solutions incur major overhead when state is passed or memory is ac-
cessed and are hence prohibitively expensive (see full version [1] for a concrete
example).

2: Compatibility with batch execution and input-recovery tech-
niques. In a secure computation, every input bit must be “touched” at some
point. Oblivious RAM programs address this with a pre-processing phase that
“touches” the entire (large) RAM memory, after which the computation need
not “touch” every bit of memory. Since an offline phase is already inevitable for
ORAMs, we would like to use such a phase to further increase the efficiency of
the online phase of the secure evaluation protocol. In particular, recent tech-
niques of [15,26] suggest that pre-processing/batching garbled circuits can lead
to significant efficiency improvement for secure evaluation of circuits. The fact
that the ORAM next-instruction circuits are used at every timestep and are
known a priori makes the use of batch execution techniques even more critical.

Another recent technique, called input-recovery [23], reduces the number of
garbled circuits in cut-and-choose by a factor of 3 by only requiring that at
least one of the evaluated circuits is correct (as opposed to the majority). This
is achieved by running an input-recovery step at the end of computation that
recover’s the garbler’s private input in case he cheats in more than one evaluated
circuit. The evaluator then uses the private input to do the computation on his
own. A natural applications of this technique in case of RAM programs, would
require running the input-recovering step after every timestep which would be
highly inefficient (see full version [1] for a concrete example).

3: Run-time dependence. The above issues are common to any com-
putation that involves persistent, secret internal state across several rounds of
inputs/outputs (any so-called reactive functionality). RAM programs present an
additional challenge, in that only part of memory is accessed at each step, and
furthermore these memory locations are determined only at run-time. In partic-
ular, it is non-trivial to reconcile run-time data dependence with offline batching
optimizations.

Our approach: In a RAM computation, both the memory and internal state
need to be secret and resist tampering by a malicious adversary. As mentioned
above, the obvious solutions to these problem all incur major overhead whenever
state is passed from one execution to the next or memory is accessed. We bypass
all these overheads and obtain secrecy and tamper-resistance essentially for free.
Our insight is that these are properties also shared by wire labels in most garbling
schemes — they hide the associated logical value, and, given only one wire label,
it is hard to “guess” the corresponding complementary label.

Hence, instead of secret-sharing the internal state of the RAM program be-
tween the parties, we simply “re-use” the garbled wire labels from the output of
one circuit into the input of the next circuit. These wire labels already inherit the
required authenticity properties, so no oblivious transfers or consistency checks
are needed.

Similarly, we also encode the RAM’s memory via wire labels. When the RAM
reads from memory location `, we simply reuse the appropriate output wire labels
from the most recent circuit to write to location ` (not necessarily the previous
instruction, as is the case for the internal state). Since the wire labels already
hide the underlying logical values, we only require an oblivious RAM that hides
the memory access pattern and not the contents of memory. More concretely,
this means that we do not need to add encryption/decryption and MAC/verify
circuitry inside the circuit that is being garbled or perform oblivious transfers on
shared intermediate secrets. Importantly, if the RAM program being evaluated
is “non-cryptographic” (i.e., has a small circuit description) then the circuits
garbled at each round of our protocols will be small.

Of course, it is a delicate task to make these intuitive ideas work with the
state of art techniques for cut-and-choose. We present two protocols, which use
different approaches for reusing wire labels.

The first protocol uses ideas from the LEGO paradigm [33,9] for 2PC and
other recent works on batch-preprocessing of garbled circuits [15,26]. The idea
behind these techniques is to generate all the necessary garbled circuits in an
offline phase (before inputs are selected), open and check a random subset, and
randomly assign the rest into buckets, where each bucket corresponds to one
execution of the circuit. But unlike the setting of [15,26], where circuits are
processed for many independent evaluations of a function, we have the additional
requirement that the wire labels for memory and state data should be directly
reused between various garbled circuits. Since we cannot know which circuits
must have shared wire labels (due to random assignment to buckets and run-
time memory access pattern), we use the “soldering” technique of [33,9] that
directly transfers garbled wire labels from one wire to another, after the circuits
have been generated. However, we must adapt the soldering approach to make
it amenable to soldering entire circuits as opposed to soldering simple gates as
in [33,9]. For a discussion of subtle problems that arise from a direct application
of their soldering technique, see Section 3.

Our second approach directly reuses wire labels without soldering. As a re-
sult, garbled circuits cannot be generated offline, but the scheme does not require
the homomorphic commitments required for the LEGO soldering technique. At
a high level, we must avoid having the cut-and-choose phase reveal secret wire
labels that are shared in common with other garbled circuits. The technique
recently proposed in [31] allows us to use a single cut-and-choose for all steps of
the RAM computation (rather than independent cut-and-choose steps for each
time step), and further hide the set of opened/evaluated circuits from the gar-
bler using an OT-based cut-and-choose [18,22]. We observe that this approach
is compatible with the state of the art techniques for input-consistency check
[30,38].

We also show how to incorporate the input-recovery technique of [23] for
reducing the number of circuits by a factor of three. The naive solution of run-
ning the cheating recovery after each timestep would be prohibitively expensive
since it would require running a malicious 2PC for the cheating recovery circuit

(and the corresponding input-consistency checks) at every timestep. We show a
modified approach that only requires a final cheating recovery step at the end
of the computation.

Based on some concrete measurements (see full version [1]), the “extra over-
head” of achieving malicious security for RAM programs (i.e. the additional cost
beyond what is needed for malicious security of the circuits involved in the com-
putation), is at least an order of magnitude smaller than the naive solutions and
this gap grows as the running time of the RAM program increases.

Related work. Starting with seminal work of [42,11], the bulk of secure multiparty
computation protocols focus on functions represented as circuits (arithmetic or
Boolean). More relevant to this work, there is over a decade’s worth of active
research on design and implementation of practical 2PC protocols with malicious
security based on garbled circuits [29,20,24,25,37,38,23,14,30], based on GMW
[32], and based on arithmetic circuits [8].

The work on secure computation of RAM programs is much more recent.
[13] introduces the idea of using ORAM inside a Yao-based secure two-party
computation in order to accommodate (amortized) sublinear-time secure com-
putation. The work of [28,10] study non-interactive garbling schemes for RAM
programs which can be used to design protocols for secure RAM program com-
putation. The recent work of [19], implements ORAM-based computation using
arithmetic secure computation protocol of [8], hence extending these ideas to
the multiparty case, and implementing various oblivious data-structures. SCVM
[27] and Obliv-C [44] provide frameworks (including programming languages)
for secure computation of RAM programs that can be instantiated using differ-
ent secure computation RAM programs on the back-end. The above work all
focus on the semi-honest adversarial model. To the best of our knowledge, our
work provides the first practical solution for secure computation of RAM pro-
gram with malicious security. Our constructions can be used to instantiate the
back-end in SCVM and Obliv-C with malicious security.

2 Preliminaries

2.1 (Oblivious) RAM Programs

A RAM program is characterized by a deterministic circuit Π and is executed in
the presence of memory M . The memory is an array of blocks, which are initially
set to 0n. An execution of the RAM program Π on inputs (x1, x2) with memory
M is given by:

RAMEval(Π,M, x1, x2)

st := x1‖x2‖0n; block := 0n; inst := ⊥
do until inst has the form (halt, z):

block := [if inst = (read, `) then M [`] else 0n]
r ← {0, 1}n; (st, inst, block) := Π(st, block, r)
if inst = (write, `) then M [`] := block

output z

Oblivious RAM, introduced in [12], is a technique for hiding all information
about a RAM program’s memory (both its contents and the data-dependent
access pattern). Our constructions require a RAM program that hides only the
memory access pattern, and we will use other techniques to hide the contents
of memory. Throughout this work, when we use the term “ORAM”, we will be
referring to this weaker security notion. Concretely, such an ORAM can often be
obtained by taking a standard ORAM construction (e.g., [40,7]) and removing
the steps where it encrypts/decrypts memory contents.

Define I(Π,M, x1, x2) as the random variable denoting the sequence of val-
ues taken by the inst variable in RamEval(Π,M, x1, x2). Our precise notion of
ORAM security for Π requires that there exist a simulator S such that, for
all x1, x2 and initially empty M , the output S(1λ, z) is indistinguishable from
I(Π,M, x1, x2), where z is the final output of the RAM program on inputs
x1, x2.

2.2 Garbling Schemes

In this section we adapt the abstraction of garbling schemes [5] to our needs. Our
2PC protocol constructions re-use wire labels between different garbled circuits,
so we define a specialized syntax for garbling schemes in which the input and
output wire labels are pre-specified.

We represent a set of wire labels W as a m × 3 array. Wire labels W [i, 0]
and W [i, 1] denote the two wire labels associated with some wire i. We employ
the point-permute optimization [34], so we require lsb(W [i, b]) = b. The value
W [i, 2] is a single-bit translation bit, so that W [i,W [i, 2]] is the wire label that
encodes false for wire i. For shorthand, we use τ(W) to denote the m-bit string
W [1, 2] · · ·W [m, 2].

We require the garbling scheme to have syntax F ← Garble(f,E,D) where f
is a circuit, E and D represent wire labels as above.

For v ∈ {0, 1}m, we define W |v = (W [1, v1], . . . ,W [m, vm]), i.e., the wire
labels with select bits v. We also define W |∗x := W |x⊕τ(W), i.e., the wire labels
corresponding to truth values x. The correctness condition we require for garbling
is that, for all f , x, and valid wire label descriptions E, D, we have:

Eval(Garble(F,E,D), E|∗x) = D|∗f(x)

If Y denotes a vector of output wire labels, then it can be decoded to a plain
output via lsb(Y)⊕τ(D), where lsb is applied component-wise. Hence, τ(D) can
be used as output-decoding information. More generally, if µ ∈ {0, 1}m is a mask
value, then revealing (µ, τ(D)∧µ) allows the evaluator to learn only the output
bits for which µi = 1.

Let W denote the uniform distribution of m× 3 matrices of the above form
(wire labels with the constraint on least-significant bits described above). Then
the security condition we need is that there exists an efficient simulator S such
that for all f, x,D, the following distributions are indistinguishable:

Real(f, x,D):

E ←W
F ← Garble(f,E,D)
return (F,E|∗x)

SimS(f, x,D):

E ←W
F ← S(f,E|∗x, D|∗f(x))
return (F,E|∗x)

To understand this definition, consider an evaluator who receives garbled
circuit F and wire labels E|∗x which encode its input x. The security definition
ensures that the evaluator learns no more than the correct output wires D|∗f(x).

Consider what happens when we apply this definition with D chosen from
W and against an adversary who is given only partial decoding information
(µ, τ(D) ∧ µ).4 Such an adversary’s view is then independent of f(x) ∧ µ. This
gives us a combination of the privacy and obliviousness properties of [5]. Fur-
thermore, the adversary’s view is independent of the complementary wire la-
bels D|∗

f(x)
, except possibly in their least significant bits (by the point-permute

constraint). So the other wire labels are hard to predict, and we achieve an
authenticity property similar to that of [5].5

Finally, we require that it be possible to efficiently determine whether F is
in the range of Garble(f,E,D), given (f,E,D). For efficiency improvements, one
may also reveal a seed which was used to generate the randomness used in Garble.

These security definitions can be easily achieved using typical garbling schemes
used in practice (e.g., [21]). We note that the above arguments hold even when
the distribution W is slightly different. For instance, when using the Free-XOR
optimization [21], wire label matrices E and D are chosen from a distribution pa-
rameterized by a secret ∆, where E[i, 0]⊕E[i, 1] = ∆ for all i. This distribution
satisfies all the properties of W that were used above.

Conventions for wire labels. We exclusively garble the ORAM circuit which has
its inputs/outputs partitioned into several logical values. When W is a descrip-
tion of input wire labels for such a circuit, we let st(W), rand(W), block(W)
denote the submatrices of W corresponding to the incoming internal state, ran-
dom tape, and incoming memory block. When W describes output wires, we
use st(W), inst(W) and block(W) to denote the outgoing internal state, out-
put instruction (read/write/halt, and memory location), and outgoing memory
data block. We use these functions analogously for vectors (not matrices) of wire
labels.

2.3 (XOR-Homomorphic) Commitment

In addition to a standard commitment functionality Fcom, one of our protocols
requires an XOR-homomorphic commitment functionality Fxcom. This function-
ality allows P1 to open the XOR of two or more commited messages without

4 Our definition applies to this case, since a distinguisher for the above two distribu-
tions is allowed to know D which parameterizes the distributions.

5 We stress that the evaluator can indeed decode the garbled output (using τ(D) and
the select bits), yet cannot forge valid output wire labels in their entirety. This
combination of requirements was not considered in the definitions of [5].

The functionality is initialized with internal value
i = 1. It then repeatedly responds to commands as
follows:

– On input (commit,m) from P1, store (i,m) in-
ternally, set i := i+1 and output (committed, i)
to both parties.

– On input (open, S) from P1, where S is a set of
integers, for each i ∈ S find (i,mi) in memory.
If for some i, no such mi exists, send ⊥ to P2.
Otherwise, send (open, S,

⊕
i∈S mi) to P2.

Fig. 1. XOR-homomorphic commitment functionality Fxcom.

leaking any other information about the individual messages. The funcionality
is defined in Figure 1. Further details, including an implementation, can be found
in [9].

3 Batching Protocol

3.1 High-level Overview

Roughly speaking, the LEGO technique of [33,9] is to generate a large quantity
of garbled gates, perform a cut-and-choose on all gates to ensure their correct-
ness, and finally assemble the gates together into a circuit which can tolerate
a bounded number of faulty gates (since the cut-and-choose will not guarantee
that all the gates are correct). More concretely, with sN gates and a cut-and-
choose phase which opens half of them correctly, a statistical argument shows
that permuting the remaining gates into buckets of size O(s/ logN) each en-
sures that each bucket contains a majority of correct gates, except with negligible
probability in s.

For each gate, the garbler provides a homomorphic commitment to its in-
put/output wire labels, which is also checked in the cut and choose phase. This
allows wires to be connected on the fly with a technique called soldering. A
wire with labels (w0, w1) (here 0 and 1 refer to the public select bits) can be
soldered to a wire with labels (w′0, w

′
1) as follows. If w0 and w′0 both encode the

same truth value, then decommit to ∆0 = w0⊕w′0 and ∆1 = w1⊕w′1. Otherwise
decommit to ∆0 = w0⊕w′1 and ∆1 = w1⊕w′0. Then when an evaluator obtains
the wire label wb on the first wire, wb ⊕ ∆b will be the correct wire label for
the second wire. To prove that the garbler hasn’t inverted the truth value of the
wires by choosing the wrong case above, she must also decommit to the XOR of
each wire’s translation bit (i.e., β ⊕ β′ where wβ and w′β′ both encode false).

Next, an arbitrary gate within each bucket is chosen as the head. For each
other gate, we solder its input wires to those of the head, and output wires to
those of the head. Then an evaluator can transfer the input wire labels to each of
the gates (by XORing with the appropriate solder value), evaluate the gates, and

transfer the wire labels back. The majority value is taken to be the output wire
label of the bucket. The cut-and-choose ensures that each bucket functions as a
correct gate, with overwhelming probability. Then the circuit can be constructed
by appropriately soldering together the buckets in a similar way.

For our protocol we use a similar approach but work with buckets of cir-
cuits, not buckets of gates. Each bucket evaluates a single timestep of the RAM
program. To transfer RAM memory and internal state between timesteps, we
solder wires together appropriately (i.e., state input of time t soldered to state
output of time t − 1; memory-block input t soldered to memory-block output
of the previous timestep that wrote to the desired location). Additionally, the
approach of using buckets also saves an asymptotic log T factor in the number
of circuits needed for each timestep (i.e., the size of the buckets), where T is
the total running time of the ORAM, a savings that motivates similar work on
batch pre-processing of garbled circuits [15,26].

We remark that our presentation of the LEGO approach above is a slight
departure from the original papers [33,9]. In those works, all gates were garbled
using Free XOR optimization, where w0 ⊕ w1 is a secret constant shared on
all wires. Hence, we have only one “solder” value w0 ⊕ w′0 = w1 ⊕ w′1. If the
sender commits to only the “false” wire label of each wire, then the sender
is prevented from inverting the truth value while soldering (“false” is always
mapped to “false”). However, to keep the offset w0 ⊕ w1 secret, only one of the
4 possible input combinations of each gate can be opened in the cut-and-choose
phase. The receiver has only a 1/4 probability of identifying a faulty gate. This
approach does not scale to a cut-and-choose of entire circuits, where the number
of possible input combinations is exponential. Hence our approach of forgoing
common wire offsets w0 ⊕ w1 between circuits and instead committing to the
translation bits. As a beneficial side effect, the concrete parameters for bucket
sizes are improved since the receiver will detect faulty circuits with probability
1, not 1/4.

Back to our protocol, P1 generates O(sT/ log T) garblings of the ORAM’s
next-instruction circuit, and commits to the circuits and their wire labels. P2

chooses a random half of these to be opened and aborts if any are found to be
incorrect.

For each timestep t, P2 picks a random subset of remaining garbled circuits
and the parties assemble them into a bucket Bt (this is the MkBucket subpro-
tocol) by having P1 open appropriate XORs of wire labels, as described above.
We can extend the garbled-circuit evaluation function Eval to EvalBucket using
the same syntax. Then EvalBucket inherits the correctness property of Eval with
overwhelming probability, for each of the buckets created in the protocol.

After a bucket is created, P2 needs to obtain garbled inputs on which to
evaluate it. See Figure 3 for an overview. Let Xt denote the vector of input wire
labels to bucket Bt. We use block(Xt), st(Xt), rand(Xt) to denote the sets of wire
labels for the input memory block, internal state, and shares of random tape,
respectively. The simplest wire labels to handle are the ones for internal state,
as they always come from the previous timestep. We solder the output internal

GC(1)

GC(2)

GC(3)

maj
E(1) D(1)

E(2) D(2)

E(3) D(3)

∆(1→2)

∆(1→3)

∆(2→1)

∆(3→1)

Fig. 2. Illustration of MkBucket(B = {1, 2, 3}, hd = 1).

state wires of bucket Bt−1 to the input internal state wires of bucket Bt. Then
if Yt−1 were the output wire labels for bucket Bt−1 by P2, we obtain st(Xt) by
adjusting st(Yt−1) according to the solder values.

If the previous memory instruction was a read of a location that was last
written to at time t′, then we need to solder the appropriate output wires from
bucket Bt′ to the corresponding input wires of Bt. P2 then obtains block(Xt) by
adjusting the wire labels block(Yt′) according to the solder values. If the previous
memory instruction was a read of an uninitialized block, or a write, then P1

simply opens these input wire labels to all zero values (see GetInputpub).
To obtain wire labels rand(Xt), we have P1 open wire labels for its shares

(GetInput1) and have P2 obtain its wire labels via a standard OT (GetInput2).
At this point, P2 can evaluate the bucket (EvalBucket). Let Yt denote the

output wire labels. P1 opens the commitment to their translation values, so P2

can decode and learn these outputs of the circuit. P2 sends these labels back to
P1, who verifies them for authenticity. Knowing only the translation values and
not the entire actual output wire labels, P2 cannot lie about the circuit’s output
except with negligible probability.

3.2 Detailed Protocol Description

LetΠ be the ORAM program to be computed. Define Π̃(st, block, inp1, inp2,1, . . . , inp2,n) =
Π(st, block, inp1,

⊕
i inp2,i). Looking ahead, during the first timestep, the parties

will provide inp1 = x1 and inp2 = x2, while in subsequent timesteps they input
their shares r1 and r2 of the RAM program’s randomness. P2’s input is further
secret shared to prevent a selective failure attack on both x2 and his random
input r2. We first define the following subroutines / subprotocols:

prot Solder(A,A′) // A, A′ are wire labels descriptions

P1 opens Fxcom-commitments to τ(A) and τ(A′)
so that P2 receives τ = τ(A)⊕ τ(A′)

for each position i in τ and each b ∈ {0, 1}:

bucket Bt−1 bucket Btst(·)

block(·)

inst(·)

st(·)

block(·)

rand(·)

D(hdt−1)

Yt−1

E(hdt)

Xt

∆st = Solder(·, ·)
Adjust(·,∆st)

read from block

last written at t′
∆block = Solder(·, ·)
Adjust(·,∆block)

no read, or read

from uninitialized

block GetInputpub(·, 0n)

decode via τ(·)

GetInput1,GetInput2

Text above an edge refers to the entire
set of wire labels. Text below an edge
refers to the wire labels visible to P2

while evaluating.

Fig. 3. Overview of soldering and evaluation steps performed in the online phase.

P1 opens Fxcom-commitments to A[i, b] and A′[i, τi ⊕ b]
so that P2 receives ∆[i, b] = A[i, b]⊕A′[i, τi ⊕ b]

return ∆

prot MkBucket(B, hd) // B is a set of indices

for each j ∈ B \ {hd}:
∆(hd→j) = Solder(E(hd), E(j))
∆(j→hd) = Solder(D(j), D(hd))

∆(hd→hd) := all zeroes // for convenience

func Adjust(X,∆) // X is a vector of wire labels

for each i do X̃[i] = X[i]⊕∆[i, lsb(X[i])]

return X̃

func EvalBucket(B, X, hd)

for each j in B:

X̃j = Adjust(X,∆(hd→j)))
Yj = Adjust(Eval(GC(j), X̃j), ∆

(j→hd))
return the majority element of {Yj}j∈B

prot GetInputpub(A, x) // A describes wire labels; x public

P1 opens commitments of A|∗x; call the result X
P1 opens commitments of τ(A)
P2 aborts if lsb(X) 6= τ(A)⊕ x; else returns X

prot GetInput1(A, x) // A describes wire labels; P1 holds x

P1 opens commitments of A|∗x; return these values

prot GetInput2(A, x) // A describes wire labels; P2 holds x

for each position i in A, parties invoke an instance of Fot:

P1 uses input (A[i, A[i, 2]], A[i, 1⊕A[i, 2]])
P2 uses input xi
P2 stores the output as X[i]

P2 returns X

We now describe the main protocol for secure evaluation of Π. We let s denote a
statistical security parameter, and T denote an upper bound on the total running
time of Π.

1. [Pre-processing phase] Circuit garbling: P1 and P2 agree on the total
number N = O(sT/ log T) of garbled circuits to be generated. Then, for each
circuit index i ∈ {1, . . . , N}:
(a) P1 chooses random input/output wire label descriptions E(i), D(i) and

commits to each of these values component-wise under Fxcom.
(b) P1 computes GC(i) = Garble(Π̃, E(i), D(i)) and commits to GC(i) under
Fcom.

2. [Pre-processing phase] Cut and choose: P2 randomly picks a subset Sc
of {1, . . . , N} of size N/2 and sends it to P1. Sc will denote the set of check
circuits and Se = {1, . . . , N} \ Sc will denote the set of evaluation circuits.
For check circuit index i ∈ Sc:
(a) P1 opens the commitments of E(i), D(i), and GC(i).
(b) P2 checks that GC(i) ∈ Garble(Π̃, E(i), D(i)); if not, P2 aborts.

3. Online phase: For each timestep t:
(a) Bucket creation: P2 chooses a random subset of Bt of Se of size

Θ(s/ log T) and a random head circuit hdt ∈ Bt. P2 announces them
to P1. Both parties set Se := Se \ Bt.

(b) Garbled input: randomness: P1 chooses random r1 ← {0, 1}n, and
P2 chooses random r2,1, . . . , r2,n ← {0, 1}n. P2 sets

rand1(Xt) = GetInput1(rand1(E(hdt)), r1)

rand2(Xt) = GetInput2(rand2(E(hdt)), r2,1 · · · r2,n)

(c) Garbled input: state: If t > 1 then the parties execute:

∆st = Solder(st(D(hdt−1)), st(E(hdt)))

and P2 sets st(Xt) := Adjust(st(Yt−1), ∆st).
Otherwise, in the first timestep, let x1 and x2 denote the inputs of P1

and P2, respectively. For input wire labels W , let st1(W), st2(W), st3(W)
denote the groups of the internal state wires corresponding to the initial
state x1‖x2‖0n. To prevent selective abort attacks, we must have P2

encode his input as n-wise independent shares, as above. P2 chooses
random r2,1, . . . , r2,n ∈ {0, 1}n such that

∑n
i r2,i = x2, and sets:6

st(Xt) = GetInput1(st1(E(hdt)), x1)

‖ GetInput2(st2(E(hdt)), r2,1 · · · r2,n)

‖ GetInputpub(st3(E(hdt)), 0n)

6 We are slightly abusing notation here. More precisely, the parties are evaluating a
slightly different circuit Π̃ in the first timestep than other timesteps. In the first

(d) Garbled input: memory block: If the previous instruction instt−1 =
(read, `) and no previous (write, `) instruction has happened, or if the
previous instruction was not a read, then the parties do block(Xt) =
GetInputpub(block(E(hdt)), 0n).
Otherwise, if instt−1 = (read, `) and t′ is the largest time step with
instt′ = (write, `), then the parties execute:

∆block = Solder(block(D(hdt′)), block(E(hdt)))

Then P2 sets block(Xt) := Adjust(block(Yt′), ∆block).
(e) Construct bucket: P1 and P2 run subprotocol MkBucket(Bt, hdt) to

assemble the circuits.
(f) Circuit evaluation: For each i ∈ Bt, P1 opens the commitment to

GC(i) and to τ(inst(D(i))). P2 does Yt = EvalBucket(Bt, Xt, hdt).
(g) Output authenticity: P2 sends Ỹ = inst(Yt) to P1. Both parties decode

the output instt = lsb(Ỹ) ⊕ τ(inst(D(hdt))). P1 aborts if the claimed
wire labels Ỹ do not equal the expected wire labels inst(D(hdt))|∗instt . If
instt = (halt, z), then both parties halt with output z.

3.3 Security proof

Due to page limits, we give only an overview of the simulator S and security
proof. The complete details are deferred to the full version [1].

Assumptions. The security of our protocol relies on the security underlying func-
tionalities, i.e. Fxcom,Fcom,Fot, a garbling scheme satisfying properties discussed
in Section 2.2, and an ORAM scheme satisfying standard properties discussed
in Section 2.1. All the functionalities can be instantiated using standard number
theoretic assumptions, and for UC security would be in the CRS model. The
garbling scheme can be instantiated using a standard PRF, or using stronger
assumptions such as correlation-secure hash functions for taking advantage of
free-XOR. As noted earlier, we do not require the garbling scheme to be adap-
tively secure, but if so, we can simplify the protocol by not committing to the
garbled circuits.

When P1 is corrupted: The pre-processing phase does not depend on
party’s inputs, so it is trivial to simulate the behavior of an honest P2. However,
S can obtain P1’s commitments to all circuits and wire labels. Hence, it can
determine whether each of these circuits is correct.

In each timestep t of the online phase, S can abort if an bucket is constructed
with a majority of incorrect circuits; this happens with only negligible proba-
bility. S can abort just as an honest P2 would abort if P1 cheats in the Solder,

timestep, it is P2’s input x2 that is encoded randomly, whereas in the other steps it
is P2’s share r2 of the random tape. However, the difference between these circuits
is only in the addition of new XOR gates, and only at the input level. When using
the Free-XOR optimization, these gates can actually be added after the fact, so the
difference is compatible with our pre-processing.

GetInput1, or GetInputpub subprotocols. Using a standard argument from [24], S
can also match (up to a negligible difference) the probability of an honest P2

aborting due to cheating in the GetInput2 subprotocol. S can extract P1’s input
x1 in timestep t = 1 by comparing the sent wire labels to the committed wire
labels extracted in the offline phase. S can send x1 to the ideal functionality
and receive the output z. Then S generates a simulated ORAM memory-access
sequence. Each time in step (3g), S knows all of the relevant wire labels so
can send wire labels Ỹ chosen to encode the desired simulated ORAM memory
instruction.

When P2 is corrupted: In the pre-processing phase, S simulates commit
messages from Fcom. After receiving Sc from P2, it equivocates the opening of
the check sets to honestly garbled circuits and wire labels.

In each timestep t of the online phase, S sends random wire labels in the
GetInput1 and GetInputpub subprotocols, and also simulates random wire labels
as the output of Fot in the GetInput2 subprotocols. These determine the wire
labels that are “visible” to P2. S also extracts P2’s input x2 from its select bits
sent to Fot. It sends x2 to the ideal functionality and receives the output z. Then
S generates a simulated ORAM memory-access sequence.

In the Solder steps, S equivocates soldering values chosen to map visible
wire labels to their counterparts in other circuits, and chooses random soldering
values for the non-visible wire labels. When it is time to open the commitment
to the garbled circuit, S chooses a random set of visible output wire labels and
equivocates to a simulated garbled circuit generated using only these visible wire
labels. S also equivocates on the decommitment to the decoding information
τ(inst(D(i))), chosen so that the visible output wires will decode to the next
simulated ORAM memory instruction. Instead of checking P2’s claimed wire
labels in step (3g), the simulator simply aborts if these wire labels are not the
pre-determined visible output wire labels.

3.4 Efficiency and Parameter Analysis

In the offline phase, the protocol is dominated by the generation of many garbled
circuits, O(sT/ log T) in all. In the full version [1], we describe computation of
the exact constant. As an example, for T = 1 million, and to achieve statistical
security 2−40, it is necessary to generate 10 · T circuits in the offline phase.

In the online phase, the protocol is dominated by two factors: the homomor-
phic decommitments within the Solder subprotocol, and the oblivious transfers
(in GetInput2) in which P2 receives garbled inputs. For the former, we require
one decommitment for each input and output wire label (to solder that wire to
another wire) of the circuit Π̃. Hence the cost in each timestep is proportional
to the input/output size of the circuit and the size of the buckets. Continuing
our example from above (T = 106 and s = 40), buckets of size 5 are sufficient.

In the full version [1], we additionally discuss parameter settings for when
the parties open a different fraction (i.e., not 1/2) of circuits in the cut-and-
choose phase. By opening a smaller fraction in the offline phase, we require fewer

circuits overall, at the cost of slightly more circuits per timestep (i.e., slightly
larger buckets) in the online phase.

We require one oblivious transfer per input bit of P2 per timestep (indepen-
dent of the size of buckets). P2’s input is split in an s-way secret share to assure
input-dependent failure probabilities, leading to a total of sn OTs per timestep
(where n is the number of random bits required by Π̃). However, online oblivious
transfers are inexpensive (requiring only few symmetric-key operations) when in-
stantiated via OT extension [16,2], where the more expensive “seed OTs” will
be done in the pre-processing phase. In Section 5 we suggest further ways to
reduce the required number of OTs in the online phase.

Overall, the online overhead of this protocol (compared to the semi-honest
setting) is dominated by the bucket size, which is likely at most 5 or 7 for most
reasonable settings.

In terms of memory requirements, P1 must store all pre-processed garbled cir-
cuits, and P2 must store all of their commitments. For each bit of RAM memory,
P1 must store the two wire labels (and their decommitment info) corresponding
to that bit, from the last write-time of that memory location. P2 must store only
a single wire label per memory bit.

4 Streaming Cut-and-choose Protocol

4.1 High-level Overview

The standard cut-and-choose approach is (for evaluating a single circuit) for
the sender P1 to garble O(s) copies of the circuit, and receiver P2 to request half
of them to be opened. If all opened circuits are correct, then with overwhelming
probability (in s) a majority of the unopened circuits are correct as well.

When trying to apply this methodology to our setting, we face the challenge of
feeding past outputs (internal state, memory blocks) into future circuits. Näıvely
doing a separate cut-and-choose for each timestep of the RAM program leads to
problems when reusing wire labels. Circuits that are opened and checked in time
step t must have wire labels independent of past circuits (so that opening these
circuits does not leak information about past garbled outputs). Circuits used for
evaluation must be garbled with input wire labels matching output wire labels of
past circuits. But the security of cut and choose demands that P1 cannot know,
at the time of garbling, which circuits will be checked or used for evaluation.

Our alternative is to use a technique suggested by [31] to perform a single cut-
and-choose that applies to all timesteps. We make O(s) independent threads
of execution, where wire labels are directly reused only within a single thread.
A cut-and-choose step at the beginning determines whether each entire thread
is used for checking or evaluation. Importantly, this is done using an oblivious
transfer (as in [18,22]) so that P1 does not learn the status of the threads.

More concretely, for each thread the parties run an oblivious transfer allowing
P2 to pick up either kcheck or keval. Then at each timestep, P1 sends the garbled
circuit but also encrypts the entire set of wire labels under kcheck and encrypts

GC(i,t′) GC(i,t−1) GC(i,t)· · ·

inst(·)
⇒ (write, `)

inst(·)
⇒ (read, `)

rand(·) rand(·)

block(·) block(·)

st(·)
E(i,t) D(i,t)E(i,t−1) D(i,t−1)E(i,t′) D(i,t′)

Fig. 4. Wire-label reuse within a single thread i, in the streaming cut-and-choose pro-
tocol.

wire labels for only her input under keval. Hence, in check threads P2 receives
enough information to verify correct garbling of the circuits (including reuse of
wire labels — see below), but learns nothing about P1’s inputs. In evaluation
threads, P2 receives only P1’s garbled input and the security property of garbled
circuits applies. If P1 behaves incorrectly in a check thread, P2 aborts immedi-
ately. Hence, it is not hard to see that P1 cannot cause a majority of evaluation
threads to be faulty while avoiding detection in all check threads, except with
negligible probability.

Reusing wire labels is fairly straight-forward since it occurs only within a
single thread. The next circuit in the thread is simply garbled with input wire
labels matching the appropriate output wire labels in the same thread (i.e., the
state output of the previous circuit, and possibly the memory-block output wires
of an earlier circuit). We point out that P1 must know the previous memory
instruction before garbling the next batch of circuits: if the instruction was
(read, `), then the next circuit must be garbled with wire labels matching those
of the last circuit to write to memory location `. Hence this approach is not
compatible with batch pre-processing of garbled circuits.

For enforcing consistency of P1’s input, we use the approach of [38]7, where
the very first circuit is augmented to compute a “hiding” universal hash of P1’s
input. For efficiency purposes, the hash is chosen as M · (x1‖r), where M is a
random binary matrix M of size s× (n+ 2s+ log s) chosen by P2. We prevent
input-dependent abort based on P2’s input using the XOR-tree approach of [24],
also used in the previous protocol.

We ensure authenticity of the output for P1 using an approach suggested
in [30]. Namely, wire labels corresponding to the same output wire and truth
value are used to encrypt a random “output authenticity” key. Hence P2 can
compute these output keys only for the circuit’s true output. P2 is not given
the information required for checking these ciphertexts until after he commits
to the output keys. At the time of committing, he cannot guess complementary
output keys, but he does not actually open the commitment until he receives
the checking information and is satisfied with the check circuits.

The adaptation of the input-recovery technique of Lindell [23] is more in-
volved and hence we discuss it separately in Section 4.5.

7 although our protocol is also compatible with the solution of [30].

4.2 Detailed Protocol Description

We now describe the streaming cut-and-choose protocol for secure evaluation of
Π, the ORAM program to be computed. Recall that Π̃(st, block, inp1, inp2,1, . . . , inp2,n) =
Π(st, block, inp1

⊕
i inp2,i). We let s denote a statistical security parameter pa-

rameter, and T denote an upper bound on the total running time of Π. Here,
we describe the majority-evaluation variant of the protocol and discuss how to
integrate the input-recovery technique in Section 4.5.

1. Cut-and-choose. The parties agree on S = O(s), the number of threads
(see discussion below). P2 chooses a random string b ← {0, 1}S . Looking
ahead, thread i will be a check thread if bi = 0 and an evaluation thread if
bi = 1.
For each i ∈ {1, . . . , S}, P1 chooses two symmetric encryption keys k(i,check)
and k(i,eval). The parties invoke an instance of Fot with P2 providing input
bi and P1 providing input (k(i,check), k(i,eval)).

2. RAM evaluation. For each timestep t, the following are done in parallel
for each thread i ∈ {1, . . . , S}:
(a) Wire label selection. P1 determines the input wire labels E(t,i) for

garbled circuit GC(t,i) as follows. If t = 1, these wire labels are cho-
sen uniformly. Otherwise, we set st(E(t,i)) = st(D(t−1,i)) and choose
rand1(E(t,i)) and rand2(E(t,i)) uniformly. If the previous instruction instt−1 =
(read, `) and no previous (write, `) instruction has happened, or if the
previous instruction was not a read, then P1 chooses block(E(t,i)) uni-
formly at random. Otherwise, we set block(E(t,i)) = block(D(t′,i)), where
t′ is the last instruction that wrote to memory location `.

(b) Input selection. Parties choose shares of the randomness required for
Π̃: P1 chooses r1 ← {0, 1}n, and P2 chooses r2,1, . . . , r2,n ← {0, 1}n.

(c) P1’s garbled input transfer. P1 sends the following wire labels, en-
crypted under k(i,eval):

st1(E(t,i))|∗x1
if t = 1

rand1(E(t,i))|∗r1
The following additional wire labels are also sent in the clear:

st3(E(t,i))|∗0n if t = 1

block(E(t,i))|∗0n if write or uninitialized read

(d) P2’s garbled input transfer. P2 obtains garbled inputs via calls to
OT. To guarantee that P2 uses the same input in all threads, we use a
single OT across all threads for each input bit of P2. For each input bit,
P1 provides the true and false wire labels for all threads as input to Fot,
and P2 provides his input bit as the OT select bit.
Note that P2’s inputs consist of the strings r2,1, . . . , r2,n as well as the
string x2 for the case of t = 1.

(e) Input consistency. If t = 1, then P2 sends a random s×(n+2s+log s)
binary matrix M to P1. P1 chooses random input r ∈ {0, 1}2s+log s, and
augments the circuit for Π̃ with a subcircuit for computing M · (x1‖r).

(f) Circuit garbling. P1 chooses output wire labels D(t,i) at random and

does GC(t,i) = Garble(Π̃, E(t,i), D(t,i)), where in the first timestep, Π̃

also contains the additional subcircuit described above. P1 sends GC(t,i)

to P2 as well as τ(inst(D(t,i))).
In addition, P1 chooses a random ∆t for this time-step and for each
inst-output bit j, he chooses random strings w(t,j,0) and w(t,j,1) (the
same across all threads) to be used for output authenticity, such that
w(t,j,0) ⊕ w(t,j,1) = ∆t. For each thread i, output wire j and select bit b
corresponding to truth value b′, let vi,j,b denote the corresponding wire
label. P1 computes ci,j,b = Encvi,j,b(w(t,j,b′)) and hi,j,b = H(ci,j,b), where
H is a 2-Universal hash function. P1 sends hi,j,b in the clear and sends
ci,j,b encrypted under k(eval,i).

(g) Garbled input collection. If thread i is an evaluation thread, then P2

assembles input wire labels X(t,i) for GC(t,i) as follows:
P2 uses k(eval,i) to decrypt wire labels sent by P1. Along with the wire
labels sent in the clear and those obtained via OTs in GetInput2, these
wire labels will comprise rand(X(t,i)); block(X(t,i)) in the case of a write
or uninitialized read; and st(X(t,i)) when t = 1.
Other input wire labels are obtained via:

st(X(t,i)) = st(Y(t−1,i))

block(X(t,i)) = block(Y(t′,i))

where t′ is the last write time of the appropriate memory location, and
Y denote the output wire labels that P2 obtained during previous eval-
uations.

(h) Evaluate and commit to output. If thread i is an eval thread, then
P2 evaluates the circuit via Y(t,i) = Eval(GC(t,i), X(t,i)) and decodes the
output inst(t,i) = lsb(Y(t,i))⊕τ(D(t,i)). He sets instt = majorityi{inst(t,i)}.
For each inst-output wire label j, P2 decrypts the corresponding cipher-
text ci,j,b, then takes w′j to be the majority result across all threads i.
P2 commits to w′j .
If t = 1, then P2 verifies that the output of the auxiliary function M ·
(x1‖r) is identical to that of all other threads; if not, he aborts.

(i) Checking the check threads. P1 sends
Enck(i,check)

(seed(t,i)) to P2, where seed(t,i) is the randomness used in
the call to Garble. Then if thread i is a check thread, P2 checks the cor-
rectness of GC(t,i) as follows. By induction, P2 knows all the previous
wire labels in thread i, so can use seed(t,i) to verify that GC(t,i) is gar-
bled using the correct outputs. In doing so, P2 learns all of the output
wire labels for GC(t,i) as well. P2 checks that the wire labels sent by
P1 in the clear are as specified in the protocol, and that the ci,j,b ci-
phertexts and hi,j,b are correct and consistent. He also decrypts ci,j,b for

b ∈ {0, 1} with the corresponding output label to recover w′(t,j,b) and

checks that w′(t,j,0)⊕w′(t,j,1) is the same for all j. Finally, P2 checks that
the wire labels obtained via OT in GetInput2 are the correct wire labels
encoding P2’s provided input. If any of these checks fail, then P2 aborts
immediately.

(j) Output verification. P2 opens the commitments to values w′j and P1

uses them to decode the output instt. If a value w′j does not match one
of w(t,j,0) or w(t,j,1), then P1 aborts.

4.3 Security Proof

Again we only give a brief overview of the simulator, with the details deferred
to the full version [1].

The security of the protocol relies on functionalities Fcom,Fot which can both
be instantiated under number theoretic assumptions in the CRS model, a secure
garbling scheme and an ORAM scheme satisfying standard properties discussed
earlier. More efficiency can be obtained using RO or correlation-secure hash
functions, to take advantage of the free-XOR technique for garbling (and faster
input-consistency checks), or the use of fast OT extension techniques.

When P1 is corrupt: In the cut-and-choose step, the simulator S extracts
both encryption keys k(i,eval) and k(i,check). Just as P2, the simulator designates
half of the threads to be check threads and half to be eval threads, and aborts if
a check thread is ever found to be incorrect. However, the simulator can perform
the same check for all threads, and keeps track of which eval threads are correct.
A standard argument shows that if all check threads are correct, then a majority
of eval threads are also correct, except with negligible probability. Without loss
of generality, we can have S abort if this condition is ever violated.

Knowing both encryption keys, S can associate P1’s input wire labels with
truth values (at least in the correct threads). If P1 provides disagreeing inputs
x1 among the correct eval threads, then S aborts, which is negligibly close to
P2’s abort probability (via the argument regarding the input-consistency of [38]).
Otherwise, this determines P1’s input x1 which S sends to the ideal functionality,
receiving output z in return. S generates a simulated ORAM memory access
pattern.

In the output commitment step, S simulates a commit message. Then after
the check phase, S learns all of the output-authenticity keys. So S simply equiv-
ocates the opening of the output keys to be the ones encoding the next ORAM
memory instruction.

When P2 is corrupt: In the cut-and-choose phase, S extracts P2’s selection
of check threads and eval threads. In check threads, S always sends correctly
generated garbled circuits, following the protocol specification and generates
dummy ciphertexts for the encryptions under k(i,eval). Hence, these threads can
be simulated independently of P1’s input.

In each eval thread, S maintains visible input/output wire labels for each
circuit, chosing new output wire labels at random. S ensures that P2 picks up

these wire labels in the input collection step. S also extracts P2’s input x2 in this
phase, from its select bit inputs to Fot. S sends x2 to the ideal functionality and
receives output z. Then S generates a simulated ORAM memory access pattern.

At each timestep, for each eval thread, S generates a simulated garbled cir-
cuit, using the appropriate visible input/output wire labels. It fixes the decoding
information τ so that the visible output wire labels will decode to the appropri-
ate ORAM instruction. In the output reveal step, S aborts if P2 does not open
its commitment to the expected output keys. Indeed, P2’s view in the simulation
is independent of the complementary output keys.

4.4 Efficiency and Parameter Analysis

At each timestep, the protocol is dominated by the generation of S garbled cir-
cuits (where S is the number of threads) as well as the oblivious transfers for
P2’s inputs. As before, using OT extension as well as the optimizations discussed
in Section 5, the cost of the oblivious transfers can be significantly minimized.
Other costs in the protocol include simple commitments and symmetric encryp-
tions, again proportional to the number of threads. Hence the major computa-
tional overhead is simply the number of threads. An important advantage of this
protocol is that we avoid the soldering and the “expensive” xor-homomorphic
commitments needed for input/outputs of each circuit in our batching solution.
On the other hand, this protocol always require O(s) garbled circuit executions
regardless of the size of the RAM computation, while as discussed earlier, our
batching protocol can require significantly less garbled circuit execution when
the running time T is large. The choice of which protocol to use would then
depend on the running time of the RAM computation, the input/output size of
the next-instruction circuits as well as practical efficiency of xor-homomorphic
commitment schemes in the future.

Compared to our other protocol, this one has a milder memory requirement.
Garbled circuits are generated on the fly and can be discarded after they are
used, with the exception of the wire labels that encode memory values. P1 must
remember 2S wire labels per bit of memory (although in Section 5 we discuss
a way to significantly reduce this requirement). P2 must remember between S
and 2S wire labels per bit of memory (1 wire label for evaluation threads, 2 wire
labels for check threads).

Using the standard techniques described above, we require S ≈ 3s threads
to achieve statistical security of 2−s. Recently, techniques have been developed
[23] for the SFE setting that require only s circuits for security 2−s (concretely,
s is typically taken to be 40). We now discuss the feasibility of adapting these
techniques to our protocol:

4.5 Integrating Cheating Recovery

The idea of [23] is to provide a mechanism that would detect inconsistency in the
output wire labels encoding the final output of the computation. If P2 receives
output wire labels for two threads encoding disparate values, then a secondary

computation allows him to recover P1’s input (and hence compute the function
himself). This technique reduces the number of circuits necessary by a factor of
3 since we only need a single honest thread among the set of evaluated threads
(as opposed to a majority). We refer the reader to [23] for more details. We point
out that in some settings, recovering P1’s input may not be enough. Rather, if
P2 is to perform the entire computation on his own in the case of a cheating P1,
then he also needs to know the contents of the RAM memory!

Cheating recovery at each timestep. It is possible to adapt this approach to
our setting, by performing an input-recovery computation at the end of each
timestep. But this would be very costly, since each input-recovery computation
is a maliciously secure 2PC that requires expensive input-consistency checks for
both party’s inputs, something we worked hard to avoid for the state/memory
bits. Furthermore, each cheating-recovery garbled circuit contains non-XOR
gates that need to be garbled/evaluated 3s times at each timestep. These ad-
ditional costs can become a bottleneck in the computation specially when the
next-instruction circuit is small.

Cheating recovery at the end. It is natural to consider delaying the input-recovery
computation until the last timestep, and only perform it once. If two of the
threads in the final timestep (which also computes the final output of computa-
tion) output different values, the evaluator recovers the garbler’s input. Unfor-
tunately, however, this approach is not secure. In particular, a malicious P1 can
cheat in an intermediate timestep by garbling one or more incorrect circuits. This
could either lead to two or more valid memory instruction/location outputs, or
no valid outputs at all. It could also lead to a premature “halt” instruction. In ei-
ther case, P2 cannot yet abort since that would leak extra information about his
private input. He also cannot continue with the computation because he needs
to provide P1 with the next instruction along with proof of its authenticity (i.e.
the corresponding garbled labels) but that would reveal information about his
input.

We now describe a solution that avoids the difficulties mentioned above
and at the same time eliminates the need for input-consistency checks or gar-
bling/evaluating non-XOR gates at each timestep. In particular, we delay the
“proof of authenticity” by P2 for all the memory instructions until after the
last timestep. Whenever P2 detects cheating by P1 (i.e. more than two valid
memory instructions), instead of aborting, he pretends that the computation is
going as planned and sends “dummy memory operations” to P1 but does not
(and cannot) prove the authenticity of the corresponding wire labels yet. For
modern tree-based ORAM constructions ([40,7], etc) the memory access pattern
is always uniform, so it is easy for P2 to switch from reporting the real memory
access pattern to a simulated one. Note that in step (h) of the protocol, P2 no
longer needs to commit to the majority w′j . As a result, step (j) of the protocol
will be obsolete. Instead, in step (h), P2 sends the instt in plaintext. This in-
struction is the single valid instruction he has recovered or a dummy instruction
(if P2 has attempted to cheat).

After the evaluation of the final timestep, we perform a fully secure 2PC for
an input-recovery circuit that has two main components. The first one checks
if P1 has cheated. If he has, it reveals P1’s input to P2. The second one checks
the proofs of authenticity of the inst instructions P2 reveals in all timesteps and
signals to P1 to abort if the proof fails.

First cheating recovery, then opening the check circuits. For this cheating recov-
ery method to work, we perform the evaluation steps (step (h)) for all time-steps
first (at this stage, P2 only learns the labels for the final output but not the ac-
tual value), then perform the cheating recovery as described above, and finally
perform all the checks (step (i)) for all time-steps.

We now describe the cheating recovery circuit which consists of two main
components in more detail.

– The first component is similar to the original cheating recovery circuit of
[23]. P2’s input is the XOR of two valid output authenticity labels for a
wire j at step t for which he has detected cheating (if there is more than
one instance of cheating he can use the first occurrence). Lets denote the
output authenticity labels for jth bit of block(Y(t,i)) at time-step t with
w(t,j,b), b ∈ {0, 1}. Then P2 will input w(t,j,0)⊕w(t,j,1) to the circuit. If there
is no cheating, he inputs garbage. Notice that w(t,j,0) ⊕ w(t,j,1) = ∆t for
valid output authenticity values, as described in the protocol (note that we
assume that all output authenticity labels in timestep t use the same offset
∆t).
P1 inputs his input x1. He also hardcodes ∆t. For timestep t (as shown in
Figure 5) the circuit compares P2’s input against the hardcoded ∆t. If P2’s
input is the same as the ∆t, cheating is detected and the circuit outputs 1.
To check that P2’s input is the same as at least one of the hard-coded ∆s,
in the circuit of Figure 6 we compute the OR of all these outputs. Thus, if
the output of this circuit is 1, it means that P1 has cheated in at least one
timestep.
To reveal P1’s input, we compute the AND of output of circuit of Figure
6 with each bit of P1’s input as depicted in Figure 7. This concludes the
description of the first component for cheating recovery.

– In the second component, we check the authenticity of the memory instruc-
tions P2 provided in all timesteps. In particular, he provides the hash of
concatenation of all output authentication labels he obtained during the
evaluation corresponding to inst in all timesteps (P2 uses dummy labels if he
does not have valid ones due to P1’s cheating), while P1 does the same based
on the plaintext instructions he received from P2 and the labels which he
knows. The circuit then outputs 1 if the two hash values match. The circuit
structure is therefore identical to that of Figure 5, but the inputs are the
hash values. An output of 0 would mean that P2 does not have a valid proof
of authenticity.
As shown in the final circuit of Figure 7 then, if P1 was not already caught
cheating in the previous step, and P2’s proof of authenticity fails, the circuit

outputs a 1 to signal an abort to P1. This is a crucial condition, i.e., it
is important to ensure P1 did not cheat (the output of circuit of Figure 6)
before accusing P2 of cheating, since in case of cheating by P1 say in timestep
t, P2 may be able to prove authenticity of the instructions for timestep t or
later.

Efficiency: Following the techniques of [23], all the gates of Figures 5, and 6 can
be garbled using non-cryptographic operations (XORs) and only the circuit of
Figure 7 has non-XOR gates. More precisely it requires |x1| ANDs and a NOT
gate.

Of course, the final circuit will be evaluate using a basic maliciously secure
2PC. Thus, we need to add a factor of 3s to the above numbers which results
in garbling a total of 3s(|x1|+ 1) non-XOR gates which is at most 12s(|x1|+ 1)
symmetric operations.

The input consistency checks are also done for P1’s input x1 and P2’s input
which is a proof of cheating of length |∆| and a proof of authenticity which is the
output of a hash function (both are in the order of the computational security
parameter). We stress that the gain is significant since both the malicious 2PC
and the input consistency cheks are only done once at the end.

∆t[0]
(w(t,j,0) ⊕ w(t,j,1))[0]

∆t[1]
(w(t,j,0) ⊕ w(t,j,1))[1]

∆t[m]
(w(t,j,0) ⊕ w(t,j,1))[m]

outt

MatchBoxt

Fig. 5. Cheating recovery component 1: MatchBox. Where ∆t[i] denotes the ith bit of
∆t and m = |∆t|.

5 Optimizations

Here we present a collection of further optimizations compatible with our 2PC
protocols:

5.1 Hide only the input-dependent behavior

Systems like SCVM [27] use static program analysis to “factor out” as much
input-independent program flow as possible from a RAM computation, leaving

MatchBox0

MatchBox1

MatchBoxT

w(t,j,0) ⊕ w(t,j,1)
garbler
cheated

GarbCheatDetection

Fig. 6. Cheating Recovery component 1: Garbler Cheating Detection.

significantly less residual computation that requires protection from the 2PC
mechanisms.

The backend protocol currently implemented by SCVM achieves security only
against semi-honest adversaries. However, our protocols are also compatible with
their RAM-level optimizations, which we discuss in more detail:

Special-purpose circuits. For notational simplicity, we have described our RAM
programs via a single circuit Π that evaluates each timestep. Then Π must
contain subcircuits for every low-level instruction (addition, multiplication, etc)
that may ever be needed by this RAM program.

Instruction-trace obliviousness means that the choice of low-level in-
struction (e.g., addition, multiplication) performed at each time t does not de-
pend on private input. The SCVM system can compile a RAM program into an
instruction-trace-oblivious one (though one does not need full instruction-trace
obliviousness to achieve an efficiency gain in 2PC protocols). For RAM pro-
grams with this property, we need only evaluate an (presumably much smaller)
instruction-specific circuit Πt at each timestep t.

It is quite straight-forward to evaluate different circuits at different timesteps
in our cut-and-choose protocol of Section 4. For the batching protocol of Section
3, enough instruction-specific circuits must be generated in the pre-processing
phase to ensure a majority of correct circuits in each bucket. However, we point
out that buckets at different timesteps could certainly be different sizes! One
particularly interesting use-case would involve a very aggressive pre-processing of
the circuits involved in the ORAM construction (i.e., the logic translating logical
memory accesses to physical accesses), since these will dominate the computation
and do not depend on the functionality being computed.8 The bucket size /
replication factor for these timesteps could be very low (say, 5), while the less-
aggressively pre-processed instructions could have larger buckets. In this case,
the plain-RAM internal state could be kept separate from the ORAM-specific
internal state, and only fed into the appropriate circuits.

8 Such pre-processing yields an instance of commodity-based MPC [3].

w(t,j,0) ⊕ w(t,j,1)

Hash(w(t,j,b)),
t ∈ {0, . . . , T},

j ∈ {1, . . . , |instt|}

GarbCheat
Detection

MatchBox

x1

P2’s
output

P1 aborts
if equal to 1

Fig. 7. Final Circuit

Along similar lines, we have for simplicity described RAM programs that re-
quire a random input tape at each timestep. This randomness leads to oblivious
transfers within the protocol. However, if it is known to both parties that a par-
ticular instruction does not require randomness, then these OTs are not needed.
For example, deterministic algorithms require randomness only for the ORAM
mechanism. Concretely, tree-based ORAM constructions [39,40,7] require only
a small amount of randomness and at input-indepenent steps.

Memory-trace obliviousness. Due to their general-purpose nature, ORAM con-
structions protect all memory accesses, even those that may already be input-
independent (for example, sequantial iteration over an array). One key feature of
SCVM is detecting which memory accesses are already input-independent and
not applying ORAM to them. Of course, such optimizations to a RAM program
would yield benefit to our protocols as well.

5.2 Reusing memory

We have described our protocols in terms of a single RAM computation on
an initially empty memory. However, one of the “killer applications” of RAM
computations is that, after an initial quasi-linear-time ORAM initialization of
memory, future computations can use time sublinear in the total size of data
(something that is impossible with circuits). This requires an ORAM-initialized
memory to be reused repeatedly, as in [13].

Our protocols are compatible with reusing garbled memory. In particular, this
can be viewed as a single RAM computation computing a reactive functionality
(one that takes inputs and gives outputs repeatedly).

5.3 Other Protocol Optimizations

Storage requirements for RAM memory. In our cut-and-choose protocol, P1

chooses random wire labels to encode bits of memory, and then has to remember
these wire labels when garbling later circuits that read from those locations. As
an optimization, P1 could instead choose wire labels via Fk(t, j, i, b), where F
is a suitable PRF, t is the timestep in which the data was written, j is the
index of a thread, i is the bit-offset within the data block, and b is the truth
value. Since memory locations are computed at run-time, P1 cannot include the
memory location in the computation of these wire labels. Hence, P1 will still
need to remember, for each memory location `, the last timestep t at which
location ` was written.

Adaptive garbling. In the batching protocol, P1 must commit to the garbled
circuits and reveal them only after P2 obtains the garbled inputs. This is due
to a subtle issue of (non)adaptivity in standard security definitions of garbled
circuits; see [4] for a detailed discussion. These commitments could be avoided
by using an adaptively-secure garbling scheme.

Online/offline tradeoff. For simplicity we described our online/offline protocol
in which P1 generates many garbled circuits and P2 opens exactly half of them.
Lindell and Riva [26] also follow a similar approach of generating many circuits in
an offline phase and assigning the remainder to random buckets; they also point
out that changing the fraction of opened circuits results in different tradeoffs
between the amount of circuits used in the online and offline phases. For example,
checking 20% of circuits results in fewer circuits overall (i.e., fewer generated in
the offline phase) but larger buckets (in our setting, more garbled circuits per
timestep in the online phase).

References

1. A. Afshar, Z. Hu, P. Mohassel, and M. Rosulek. How to efficiently evaluate ram
programs with malicious security. Cryptology ePrint Archive, Report 2014/759,
2014. http://eprint.iacr.org/.

2. G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More efficient oblivious
transfer and extensions for faster secure computation. In Sadeghi et al. [35], pages
535–548.

3. D. Beaver. Commodity-based cryptography (extended abstract). In 29th Annual
ACM Symposium on Theory of Computing, pages 446–455. ACM Press, May 1997.

4. M. Bellare, V. T. Hoang, and P. Rogaway. Adaptively secure garbling with appli-
cations to one-time programs and secure outsourcing. In X. Wang and K. Sako,
editors, Advances in Cryptology – ASIACRYPT 2012, volume 7658 of Lecture Notes
in Computer Science, pages 134–153. Springer, Dec. 2012.

5. M. Bellare, V. T. Hoang, and P. Rogaway. Foundations of garbled circuits. In Yu
et al. [43], pages 784–796.

6. R. Canetti and J. A. Garay, editors. Advances in Cryptology – CRYPTO 2013,
Part II, volume 8043 of Lecture Notes in Computer Science. Springer, Aug. 2013.

http://eprint.iacr.org/

7. K.-M. Chung and R. Pass. A simple ORAM. Cryptology ePrint Archive, Report
2013/243, 2013. http://eprint.iacr.org/2013/243.

8. I. Damg̊ard, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation
from somewhat homomorphic encryption. In Safavi-Naini and Canetti [36], pages
643–662.

9. T. K. Frederiksen, T. P. Jakobsen, J. B. Nielsen, P. S. Nordholt, and C. Orlandi.
MiniLEGO: Efficient secure two-party computation from general assumptions. In
Johansson and Nguyen [17], pages 537–556.

10. C. Gentry, S. Halevi, S. Lu, R. Ostrovsky, M. Raykova, and D. Wichs. Garbled
RAM revisited. In EUROCRYPT, 2014.

11. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In A. Aho, editor, 19th
Annual ACM Symposium on Theory of Computing, pages 218–229. ACM Press,
May 1987.

12. O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious
RAMs. J. ACM, 43(3):431–473, 1996.

13. S. D. Gordon, J. Katz, V. Kolesnikov, F. Krell, T. Malkin, M. Raykova, and
Y. Vahlis. Secure two-party computation in sublinear (amortized) time. In Yu
et al. [43], pages 513–524.

14. Y. Huang, J. Katz, and D. Evans. Efficient secure two-party computation using
symmetric cut-and-choose. In Canetti and Garay [6], pages 18–35.

15. Y. Huang, J. Katz, V. Kolesnikov, R. Kumaresan, and A. J. Malozemoff. Amor-
tizing garbled circuits. In Advances in Cryptology – CRYPTO 2014., 2014.

16. Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers
efficiently. In D. Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume
2729 of Lecture Notes in Computer Science, pages 145–161. Springer, Aug. 2003.

17. T. Johansson and P. Q. Nguyen, editors. Advances in Cryptology – EURO-
CRYPT 2013, volume 7881 of Lecture Notes in Computer Science. Springer, May
2013.

18. S. Kamara, P. Mohassel, and B. Riva. Salus: a system for server-aided secure
function evaluation. In Yu et al. [43], pages 797–808.

19. M. Keller and P. Scholl. Efficient, oblivious data structures for MPC. Cryptology
ePrint Archive, Report 2014/137, 2014. http://eprint.iacr.org/.

20. M. Kiraz and B. Schoenmakers. A protocol issue for the malicious case of Yao’s
garbled circuit construction. In 27th Symposium on Information Theory in the
Benelux, pages 283–290, 2006.

21. V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR gates and
applications. In L. Aceto, I. Damg̊ard, L. A. Goldberg, M. M. Halldórsson,
A. Ingólfsdóttir, and I. Walukiewicz, editors, ICALP 2008: 35th International Col-
loquium on Automata, Languages and Programming, Part II, volume 5126 of Lec-
ture Notes in Computer Science, pages 486–498. Springer, July 2008.

22. B. Kreuter, a. shelat, and C.-H. Shen. Billion-gate secure computation with ma-
licious adversaries. In Proceedings of the 21st USENIX conference on Security
symposium, pages 14–14. USENIX Association, 2012.

23. Y. Lindell. Fast cut-and-choose based protocols for malicious and covert adver-
saries. In Canetti and Garay [6], pages 1–17.

24. Y. Lindell and B. Pinkas. An efficient protocol for secure two-party computation in
the presence of malicious adversaries. In M. Naor, editor, Advances in Cryptology
– EUROCRYPT 2007, volume 4515 of Lecture Notes in Computer Science, pages
52–78. Springer, May 2007.

http://eprint.iacr.org/2013/243
http://eprint.iacr.org/

25. Y. Lindell and B. Pinkas. Secure two-party computation via cut-and-choose obliv-
ious transfer. In Y. Ishai, editor, TCC 2011: 8th Theory of Cryptography Confer-
ence, volume 6597 of Lecture Notes in Computer Science, pages 329–346. Springer,
Mar. 2011.

26. Y. Lindell and B. Riva. Cut-and-choose Yao-based secure computation in the
online/offline and batch settings. In J. A. Garay and R. Gennaro, editors, CRYPTO
(2), volume 8617 of Lecture Notes in Computer Science, pages 476–494. Springer,
2014.

27. C. Liu, Y. Huang, E. Shi, J. Katz, and M. Hicks. Automating efficient RAM-
model secure computation. In Proceedings of the IEEE Symposium on Security
and Privacy (Oakland), May 2014.

28. S. Lu and R. Ostrovsky. How to garble RAM programs. In Johansson and Nguyen
[17], pages 719–734.

29. P. Mohassel and M. Franklin. Efficiency tradeoffs for malicious two-party com-
putation. In M. Yung, Y. Dodis, A. Kiayias, and T. Malkin, editors, PKC 2006:
9th International Conference on Theory and Practice of Public Key Cryptography,
volume 3958 of Lecture Notes in Computer Science, pages 458–473. Springer, Apr.
2006.

30. P. Mohassel and B. Riva. Garbled circuits checking garbled circuits: More efficient
and secure two-party computation. In Canetti and Garay [6], pages 36–53.

31. B. Mood, D. Gupta, J. Feigenbaum, and K. Butler. Reuse It Or Lose It: More
Efficient Secure Computation Through Reuse of Encrypted Values. In ACM CCS,
2014.

32. J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra. A new approach to
practical active-secure two-party computation. In Safavi-Naini and Canetti [36],
pages 681–700.

33. J. B. Nielsen and C. Orlandi. LEGO for two-party secure computation. In O. Rein-
gold, editor, TCC 2009: 6th Theory of Cryptography Conference, volume 5444 of
Lecture Notes in Computer Science, pages 368–386. Springer, Mar. 2009.

34. B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams. Secure two-party
computation is practical. In M. Matsui, editor, Advances in Cryptology – ASI-
ACRYPT 2009, volume 5912 of Lecture Notes in Computer Science, pages 250–267.
Springer, Dec. 2009.

35. A.-R. Sadeghi, V. D. Gligor, and M. Yung, editors. ACM CCS 13: 20th Conference
on Computer and Communications Security. ACM Press, Nov. 2013.

36. R. Safavi-Naini and R. Canetti, editors. Advances in Cryptology – CRYPTO 2012,
volume 7417 of Lecture Notes in Computer Science. Springer, Aug. 2012.

37. a. shelat and C.-H. Shen. Two-output secure computation with malicious adver-
saries. In K. G. Paterson, editor, Advances in Cryptology – EUROCRYPT 2011,
volume 6632 of Lecture Notes in Computer Science, pages 386–405. Springer, May
2011.

38. a. shelat and C.-H. Shen. Fast two-party secure computation with minimal as-
sumptions. In Sadeghi et al. [35], pages 523–534.

39. E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li. Oblivious RAM with O((logN)3)
worst-case cost. In D. H. Lee and X. Wang, editors, Advances in Cryptology –
ASIACRYPT 2011, volume 7073 of Lecture Notes in Computer Science, pages
197–214. Springer, Dec. 2011.

40. E. Stefanov, M. van Dijk, E. Shi, C. W. Fletcher, L. Ren, X. Yu, and S. Devadas.
Path ORAM: an extremely simple oblivious RAM protocol. In Sadeghi et al. [35],
pages 299–310.

41. A. C.-C. Yao. Protocols for secure computations (extended abstract). In 23rd
Annual Symposium on Foundations of Computer Science, pages 160–164. IEEE
Computer Society Press, Nov. 1982.

42. A. C.-C. Yao. How to generate and exchange secrets (extended abstract). In 27th
Annual Symposium on Foundations of Computer Science, pages 162–167. IEEE
Computer Society Press, Oct. 1986.

43. T. Yu, G. Danezis, and V. D. Gligor, editors. ACM CCS 12: 19th Conference on
Computer and Communications Security. ACM Press, Oct. 2012.

44. S. Zahur. Obliv-c: A lightweight compiler for data-oblivious computation. Work-
shop on Applied Multi-Party Computation. Microsoft Research, Redmond, 2014.

	How to Efficiently Evaluate RAM Programs with Malicious Security

