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Abstract. Physical side-channel leakages are an important threat for
cryptographic implementations. One of the most prominent countermea-
sures against such leakage attacks is the use of a masking scheme. A
masking scheme conceals the sensitive information by randomizing in-
termediate values thereby making the physical leakage independent of
the secret. An important practical leakage model to analyze the secu-
rity of a masking scheme is the so-called noisy leakage model of Prouff
and Rivain (Eurocrypt’13). Unfortunately, security proofs in the noisy
leakage model require a technically involved information theoretic ar-
gument. Very recently, Duc et al. (Eurocrypt’14) showed that security
in the probing model of Ishai et al. (Crypto’03) implies security in the
noisy leakage model. Unfortunately, the reduction to the probing model
is non-tight and requires a rather counter-intuitive growth of the amount
of noise, i.e., the Prouff-Rivain bias parameter decreases proportional to
the size of the set X of the elements that are leaking (e.g., if the leaking
elements are bytes, then |X | = 256). The main contribution of our work
is to eliminate this non-optimality in the reduction by introducing an
alternative leakage model, that we call the average probing model. We
show a tight reduction between the noisy leakage model and the much
simpler average random probing model; in fact, we show that these two
models are essentially equivalent. We demonstrate the potential of this
equivalence by two applications:
– We show security of the additive masking scheme used in many pre-

vious works for a constant bias parameter.
– We show that the compiler of Ishai et al. (Crypto’03) is secure in

the average probing model (assuming a simple leak free component).
This results into security with an optimal bias parameter of the noisy
leakage for the ISW construction.

1 Introduction

Side-channel attacks break cryptographic implementations by exploiting physi-
cal observations of, e.g., the power consumption [18] or running time [17] of a
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cryptographic device. One of the most well-studied and widely used side-channel
attacks are power analysis techniques (see, e.g., [18, 13, 3, 20] and many more).
In a power analysis attack the adversary exploits the instantaneous power con-
sumption of a physical cryptographic device, e.g., of a smart card, with the goal
to extract sensitive information and breaking the cryptographic implementation.
One of the most prominent countermeasures against power analysis attacks are
masking schemes [2, 13]. The basic idea of a masking scheme is to secretly share
all sensitive information, including the secret key and all intermediate values
that depend on it, thereby making the leakage independent of the secret data.
The most prominent masking scheme is the Boolean masking: a secret bit X is
encoded by random bits (X1, . . . , Xn) such that X = X1⊕ . . .⊕Xn. It is easy to
extend the Boolean masking to work over larger fields X with |X | > 1. In this
case the shares Xi are random elements in X and ⊕ denotes addition in X .

Amplifying noise with masking. As physical measurements are inherently
noisy, one main challenge for a side-channel adversary is to isolate the relevant
sensitive information from the noise in the measurement. Indeed, an attack is
more likely to succeed if the adversary obtains less noisy measurements. More-
over, in practice noise can be relatively easily amplified using practical tech-
niques [3, 5, 20, 2], where one particular example to amplify noise is the masking
countermeasure. The fact that masking amplifies noise in measurements was
first formally studied in the the pioneering work of Chari et al. [2]. In particu-
lar, their main result considers shares Xi of the binary field and shows that if
the adversary observes a noisy version ν(Xi) for each share Xi, he will need an
exponential number (in n) of measurements to recover the secret bit X.

Noisy leakage models for masking. The noisy leakage model of Chari et
al. assumes a specific noise model, where the noise χ is assumed to be sampled
from a Gaussian distribution and the adversary obtains X + χ as the noisy
leakage. The recent work of Prouff and Rivain [25] generalizes the definition
of noise by introducing the concept of a noisy leakage function ν(.). Informally
speaking, a function ν(.) is δ-noisy if the statistical distance between the uniform
distribution X and the conditional distribution X|ν(X) is bounded by some
parameter δ ∈ [0, 1]. To give a better understanding of the Prouff-Rivain noise
model, consider the example when δ is close to 0. In this case the function ν
is assumed to be very noisy, i.e., the leakage is non-informative as the noise
dominates the signal. On the other extreme, when δ is close to 1 then the noisy
component of the leakage ν(.) is close to deterministic.

The way in which Prouff and Rivain model the noisy leakage has two impor-
tant advantages over the work of Chari et al.: first, the noise is neither assumed
to be sampled from some fixed Gaussian distribution nor is it required to be
of an additive nature. Instead, in [25] any type of noisy leakage is allowed as
long as it satisfies the proposed statistical measure. Second, the noisy leakage
model of [25] provides a meaningful and natural interpretation of what it means
to obtain noisy leakage from values of larger sets (e.g., leakage from a byte).



For instance, ν(.) may take as input a byte X and first computes the Hamming
weight of X before perturbing the result by a noisy component.

While the model of Prouff and Rivain provides a first good approximation
of physical side-channel leakage, which is generally applicable in practice, it is
very involved to work in. In particular, in [25] the authors prove the security of
the masking scheme of [14] against noisy leakage by going through a technical
information theoretic argument. This situation is unsatisfying as proving the
security of new masking schemes requires to redo the involved analysis of Prouff
and Rivain.

Leakage reductions. The recent work of Duc, Dziembowski and Faust [7] re-
considers the notion of noisy leakages. Their main result is a simple reduction
from the noisy leakage model to the much simpler and cleaner random prob-
ing model. The ε-random probing model – first introduced by Ishai et al. [14] –
considers only a single simple noisy leakage function ϕ, where ϕ(X) = X with
probability ε, and ⊥ otherwise. Notice that in case when ϕ outputs ⊥ the ad-
versary learns nothing about the underlying secret value X. The consequence of
this reduction are twofold: first, it significantly simplifies security proofs in the
noisy leakage model as one only needs to analyze the security of the masking
scheme in the random probing model. Second, Duc et al. [7] show by a simple
Chernoff argument that any scheme that is secure in the t-probing model of
Ishai, Sahai and Wagner [14] is secure in the random probing model, which by
their reduction also implies security in the noisy leakage model of Prouff and
Rivain. Recall that in the t-probing model the leakage is bounded to t-bits and
hence eventually the noisy leakage is reduced to the much simpler and cleaner
deterministic bounded leakage model.

While Duc et al. [7] provide a first step towards a better understanding of
the noisy leakage model, one main drawback of their analysis is the fact that
the reduction between the noisy leakage model and the random probing model
is not tight. More precisely, when one extends the Boolean masking to work
over larger fields, i.e., when the shares Xi of the encoding are from a larger
field X with |X | > 1, then ε-random probing security implies “only” δ := ε/|X |
noisy resilience in the Prouff-Rivain model. Recall that in the Prouff-Rivain noise
model a smaller value for δ results into a weaker result as the leakage is required
to be “more noisy”. For instance, consider the situation where the shares Xi of
the encoding (X1, . . . , Xn) are bytes or words as it would be the case on many
standard hardware architectures. In this case, as an artefact of the proof the
requirement on the noise needs to take into account an additional factor of 28

or 232 in order to compensate for the 1/|X | loss.

The main contribution of our work is to eliminate this unnatural loss in the
reduction by developing a tight characterization of the noisy leakage model of
Prouff and Rivain. Our main new technique to achieve this goal is to show a
tight (up to a constant 2) equivalence between the noisy leakage model and a
new leakage model that we call the average probing model.



We emphasize that the equivalence between these two models allows us to sig-
nificantly improve the formally verifiable security guarantees of common masking
schemes (see below) when the noisy component of the leakage is small. Moreover,
our improved reduction is of particular importance for applications that work
with fields of super-polynomial size, e.g, when we use blinding in a discrete-log
based scheme. In this case, the reduction of Duc et al. looses a factor that is
super-polynomial in the security parameter and hence results into meaningless
security guarantees due to requiring almost uniform noise.

1.1 Our contribution

The main contribution of our work is to introduce a new noisy leakage model
that we name the ε-average probing model that provides a much tighter (and
essentially optimal) equivalence to the leakage model of Prouff and Rivain. Our
approach is in spirit of the recent work of Duc et al. [7] who show that t-probing
security implies security in the noisy leakage model. In contrast to [7], however,
our reduction does not result in the 1/|X | loss that occurs in the reduction of
Duc et al. We demonstrate how to use the new leakage model by two applications
that result due to the tightness of the reduction to the noisy leakage model to
significantly improved security statements compared to earlier works; namely, we
show that using the natural noise model of Prouff and Rivain [25] the additive
masking is secure with a δ-noise parameter that is independent of the size of
the underlying field. As a second important application, we show that masking
schemes based on the ISW construction [14] are secure in the average probing
model (under the assumption of a leak-free component). Our analysis results
in an asymptotically optimal δ-noise parameter for the ISW construction as
for asymptotically higher values of δ the ISW construction can be broken. We
provide more details on our contributions below. A summary of our contributions
are given in Figure 2 and Figure 1.

The ε-average probing model. The definition of the ε-average probing model,
described formally in Section 5, can be viewed as a relaxation of the definition
of the random probing model of Ishai et al. [14] and Duc et al. [7] . Intuitively,
it comes from a different interpretation of an informal statement “probability of
ϕ(x) 6= ⊥ is equal to ε” (where ϕ is the leakage function). Recall that in [7] it
was required that it holds for every x ∈ X , and the randomness in the probabil-
ity came only from the internal random choices3 made by ϕ. In contrast, in the
ε-average probing model we require that P (ϕ(X) 6= ⊥) is equal to ε when the
probability is taken also over X. This seemingly small change has huge impli-
cations. In particular, it allows us to show a tight (up to a factor 2) equivalence
between our new probing model and the model of [25]. This, in turn, permits
us to obtain much better parameters for the security of additive masking. We
elaborate on these points below.

3 In the sequel we will often make this internal randomness of ϕ explicit.



ǫ-random probing δ-noisy leakage
ǫ-average probing
(this work)

δ := ǫ
|X|

ǫ := 2δ

δ := ǫ

Fig. 1. The figure illustrates the connection between the noisy leakage model of [25],
the ε-random probing model of [14] and the new average probing model introduced in
this work. As shown in the figure, the average probing model is equivalent to the noisy
leakage model.

New characterization of noisy leakage functions. We show that the leak-
age model of Prouff-Rivain is essentially equivalent to the average probing model
described above. More concretely, we show (cf. Lemma 7) that every ε-noisy ad-
versary can be perfectly simulated by an ε-average-probing adversary. We also
show the reduction in the other direction (cf. Lemma 8), namely that every ε-
average-probing adversary can be perfectly simulated by a 2ε-noisy adversary.
This means that instead of analyzing security against noisy leakage (in the [25]
sense) one can use the ε-average-probing model. Moreover, we show two impor-
tant applications of the average probing model that improve the earlier works
of [25, 7] when δ is large (i.e., the noise component is rather small compared
to the sensitive information). A summary of known reductions between leakage
models is given in Figure 1.

Application to masking function. As a first application of our new tech-
niques we show that the additive masking function used in many works [2, 14,
28, 4] is secure for a δ-noise parameter which is independent of the size of the
underlying field. Security of the encoding function here means that if the adver-
sary obtains a noisy version ν(Xi) of each share Xi of an encoding (X1, . . . , Xn)
he cannot distinguish between an encoding of any two messages. While earlier
works showed feasibility with weak bounds [25, 7], i.e., when δ < 1

c|X | for some

constant c < 1/2, we are able for the first time to show security of the additive
masking function for a constant δ < 1/16 – in particular, δ is independent of X .

Our result also can be viewed as an answer to a question raised in the orig-
inal work of Chari et al. [2]. In this work (Section 3.7) the authors ask for an
extension of the security analysis when leakage is not on bits but from bytes.
Unfortunately [2] does not precisely define what “noisy leakage of a byte value”
means (e.g., noisy version of each byte share, noisy HW, do we use bit-strings
or decimals to represent bytes,...). We believe that a very appealing noise model
for bytes is given by the noisy leakage model of Prouff and Rivain [25]. Using the
Prouff-Rivain interpretation of a noisy leakage from a byte value, we can provide
an answer to the question of Chari et al. [2], namely, we show that security of the
encoding can be achieved for a constant δ-noise parameter (which is optimal for
the model of [25]). We remark that a constant δ-noise parameter in the model
of [25] does not imply that we can show security for a constant noise level in
the common leakage model of additive Gaussian noise with a constant standard
deviation. For instance, if the leakage from the byte is the Hamming weight per-
turbed by additive Gaussian noise with a constant standard deviation, it is easy



to see that the encoding cannot achieve a strong distance-based security notion
when the underlying field size grows. In particular, for the additive Gaussian
noise and the Hamming weight leakage function the standard deviation of the
noise distribution has to grow at least logarithmically with the size of the field
in order to achieve security.

Application to masked computation. While our improvement of the δ-noise
parameter for the encoding scheme provides a first indication of the usefulness
of the average probing model, we provide a second – practically more relevant –
application of the average probing model. Consider the situation where a side-
channel adversary attacks a masked implementation of an AES. Of course, in
this setting the adversary can target any intermediate value of the computation
(e.g., the masked input of an AES S-Box), and hence clearly it does not suf-
fice to only analyze the security of the encoding scheme. Recent works, [25, 7]
overcome this restriction and provide the first security analysis of masked com-
putation in the noisy leakage model; in particular, [25, 7] show security of the
ISW-construction [14] in the noisy leakage model. Unfortunately, in both cases
the requirement on the δ-noise parameter is rather strong: δ decreases linearly
with the size of the field |X | and the security parameter n (cf. Figure 2). While
the loss in the security parameter is necessary (i.e., one can show easy attacks
if the noise is independent of n), there is no fundamental reason why δ has to
decrease linearly with the size of the field. We prove that indeed the later loss is
unnecessary and show that the ISW construction is secure for noise levels that
only depend on the necessary factor n – leading to an asymptotically optimal
noise rate for the ISW construction. To achieve this goal, we apply the frame-
work of reconstructors introduced by Faust et al. [10]. Quite surprisingly, while
at first sight proofs in the average probing model seem more involved as the leak-
age can implicitly depend on all intermediate values (which is in contrast to the
much simpler random probing model), the notion of reconstructors allows for a
rather simple security proof. Hence, our analysis of the ISW construction can be
seen as a basic tool box for proving security of different masking schemes against
noisy leakages with tight security bounds. We notice that – similar to the work
of Prouff and Rivain [25] – our analysis requires simple leak free components.
We leave it as an important direction for future work whether this assumption
can be eliminated.

Adaptive noisy leakages. In our proofs we assume that the leakage functions
are chosen adaptively, i.e. if the adversary attacks a sequence X1, . . . , X` of
variables, then his choice of the leakage function ϕi that will be applied to Xi

depends on the leakage information that he obtained from X1, . . . , Xi−1. This
is in contrast with the proofs in [25, 7]. We believe that in our case assuming
the adaptiveness of the adversary makes particular sense, since the adversary in
our model has a much bigger choice of leakage functions than in [7] (where his
only choice was the ε parameter and clearly the best choice for him is to take
the maximal ε he was allowed to). On a technical level, the only price for going



Author Proof technique Noise for Encoding Noise for any computation Leak-free gates

Prouff/Rivain [25] Direct analysis O(1/
√
|X |) O(1/d|X |) yes

Duc et al. [7] Random probing O(1/|X |) O(1/d|X |) no
Our work Average probing O(1/16) O(1/d) yes

Fig. 2. The second column shows the proof technique with which the results are
achieved. The third column shows the noise rate that is required for security of en-
coding. The fourth column shows the noise rate for arbitrary computation. The last
column shows under which assumption we can achieve security for arbitrary computa-
tion.

to the adaptive case is that instead of relying on the Chernoff’s bound we need
to use the theory of martingales and the Azuma-Hoeffding inequality.

Additional facts about the [25] leakage model. We also show some simple
facts about the [25] leakage model. Although they are not directly needed for
our main technical result we believe that they help in understanding this model
(this is why we placed it relatively early in the paper, in Section 4), and provide
an additional justification why the Prouff-Rivain model is natural. In particular,
we show an alternative (but equivalent) definition of the [25] leakage in spirit of
the definition of semantic security, and show by a simple hybrid argument how
the amount of noise needs to grow when the adversary obtains multiple noisy
measurements of the same value X.

1.2 Other related works

Masking & leakage resilient circuits. A large body of work has proposed
various masking schemes and studies their security in different security models
(see, e.g., [13, 1, 24, 31, 28, 4]). The already mentioned t-probing model has been
considered in the work of Rivain and Prouff [28], who show how to extend the
work of Ishai et al. to larger fields and propose efficiency improvements. With
the emerge of leakage resilient cryptography several works have proposed new
security models and alternative masking schemes [10, 29, 15, 11, 8, 12]. The main
difference between these security models and the noisy leakage model is that
these works typically put a quantitative bound on the amount of leakage – so-
called “bounded leakages”. While from a theoretical point of view the bounded
leakage model offers a beautiful abstraction to analyze the security of crypto-
graphic schemes with weak secrets, it has been questioned [30, 19, 25] whether
it models physical leakages in an appropriate way. For instance, a power mea-
surement can typically not be described by a few bits of information but instead
requires megabytes if not even gigabytes of information for its description. The
noisy leakage model studied in our work more realistically models practical side-
channel leakages.

Noisy leakage models. The work of Faust et al. [10] also considers circuit com-
pilers for noisy leakages. Specifically, they propose a construction with security



in the binomial noise model, where each value on a wire is flipped independently
with probability p ∈ (0, 1/2). Besides these works on circuit compilers, sev-
eral works consider noisy leakages for concrete cryptographic schemes [9, 23, 16].
Typically, the noise model considered in these works is significantly more general
than the noise model that is considered for masking schemes. In particular, no
strong assumption about the independency of the noise is made.

2 Preliminaries

We start with some standard definitions and lemmas about the statistical dis-
tance. If A is a set then U ← A denotes a random variable sampled uniformly
from A. Recall that if A and B are random variables over the same set A then
the statistical distance between A and B is denoted as ∆(A;B), and defined as
∆(A;B) := 1

2

∑
a∈A |P (A = a)− P (B = a) |. It is easy to see that ∆(A;B) can

be also defined in the following alternative ways:

∆(A;B) =
∑
a∈A

max(0,P (A = a)− P (B = a)) (1)

= 1−
∑
a∈A

min(P (A = a) ,P (B = a)) (2)

=
∑

a:P(A=a)≥P(B=a)

P (A = a)− P (B = a) . (3)

Moreover, ∆ satisfies the triangle inequality, i.e. for every A,B and C we have
∆(A;B) ≤ ∆(A;C)+∆(C;B). If X ,Y are some events then by∆((A|X ) ; (B|Y))
we will mean the distance between variables A′ and B′, distributed according to
the conditional distributions PA|X and PB|Y . If X is an event of probability 1
then we also write ∆(A ; (B|Y)) instead of ∆((A|X ) ; (B|Y)). If C is a random
variable then by ∆(A ; (B|C)) we mean

∑
c P (C = c) ·∆(A ; (B|(C = c))).

If A,B, and C are random variables and X is an event then ∆((B;C) | A)
denotes ∆((BA); (CA)) (where AB denotes the joint distribution of A and B)
and ∆((B;C) | A,X ) denotes ∆((BA)|X ; (CA)|X ). It is easy to see that it is
equal to ∆((B;C) | A,X ) =

∑
a P (A = a|X ) ·∆((B|A = a,X ) ; (C|A = a,X )).

If ∆(A;B) ≤ ε then we say that A and B are ε-close. The “
d
= ” symbol denotes

the equality of distributions, i.e., A
d
=B if and only if ∆(A;B) = 0. For A

distributed over A by d(A) we will mean the distance of A from the uniform
distribution over A, i.e. ∆(A;U), where U ← A. This notation extended to the
conditional case in the natural way, e.g. d(A|X ) := ∆((A|X );U). The following
lemma was proven in [22] (Lemma 1)4.

Lemma 1 ([22]). For any two independent random variables A and B over an
additive finite group we have d(A+B) ≤ 2d(A)d(B)

4 In [22] it was shown for the quasi-groups, but we do not need this generalization in
our paper



It is easy to see that the constant 2 in the lemma above cannot be replaced by
a smaller number, at least as long as we quantify over all finite groups. To see
why, consider the group (Zn2 ,⊕), where n > 1 and (x1, . . . , xn)⊕ (y1, . . . , yn) =
(x1 + y1, . . . , xn + yn). Let A and B be uniformly distributed over the set of all
elements x ∈ Zn2 such that x0 = 0. Then it is easy to verify that d(A) = d(B) =
d(A+B) = 1/2, and hence d(A+B)/(d(A)d(B)) = 2.

The following lemmata are standard information theoretic facts whose proofs
are omitted.

Lemma 2. For any two independent random variables A and B over an additive
finite group we have

d(A+B) ≤ d(A)

Lemma 3. For any random variables A,B and C that takes values over some
set C, and any event W we have

d(A|B,W) ≤
∑
c∈C

d(A|B,C = c,W) · P (C = c|W)

3 Previous noisy leakage models

In this section we review the most relevant noisy leakage models that have been
used to analyze the security of masking schemes. For the lack of space we do not
cover several other models used in the literature and refer the reader for some
important references to the introduction.

Noisy model of Prouff and Rivain. As discussed in the introduction the
noisy model of Prouff and Rivain [25] is a generalization of the model of Chari et
al. [2]. In particular, it introduces the notion of a noisy leakage function which
is formally defined below.

Definition 1 ([25]). We say that a function ν : X ×R → Y is δ-noisy if

∆((ν(X,R); ν(X ′, R)) | X) ≤ δ (4)

where X and X ′ are uniform over X and R is uniform over R.

Some explanations are needed here, since the definition from [25] may appear
different from Definition 1 at first sight. First, to make the notation consistent
with the rest of this paper, we decided to keep the internal randomness of ν
explicit. Secondly, instead of having a bound on “∆((ν(X,R); ν(X ′, R)) | X)”
(as in Definition 1)) in the work of [25] the authors impose an upper bound on
“∆(X; (X|ν(X,R)))” (cf. Eq. (2) in [25]). This is not a problem since as shown
by Duc et al. [7] both definitions are equivalent. Finally, the definition in [25] uses
as the distance measure the Euclidean norm, while we follow [7] and use the total
variation. We refer the reader to [7] for further motivation on this choice and only
emphasize here that it corresponds to the maximum distinguishing advantage of



the best possible adversary. This intuitively matches with our understanding of
security and is standard in cryptographic research.

Let us now define a notion of an adversary that adaptively attacks a sequence
of field elements using the noisy functions. For δ ≥ 0 a δ-noisy adversary on X `
(or on X if ` = 1) is a machine A that, for i = 1, . . . , ` plays the following game
against an oracle that knows (x1, . . . , x`) ∈ X `.

1. A specifies a δi-noisy function νi : X ×R → Y such that δi ≤ δ.
2. A receives νi(xi, Ri), where each Ri is sampled uniformly at random from
R.

At the end of the execution A outputs a value that we denote outA(x1, . . . , x`).
We say that A is non-adaptive if he has to specify the functions ν1, . . . , ν` in
advance. If A works in polynomial time and the noise functions specified by A
are efficiently decidable then we say that A is poly-time-noisy [7].

Random probing model. The following model has been introduced in [14]
and used in [7]. Here, we follow the formalism of [7]. We start with the following
definition.

Definition 2 ([7]). A function ϕ : X × R → X ∪ {⊥} is an ε-identity if for
every x and r we have that either ϕ(x, r) = x or ϕ(x, r) = ⊥ and

for every x P
R←R

(ϕ(x,R) 6= ⊥) = ε.

For ε ≤ 1 an ε-probing adversary on X ` (or on X if ` = 1) is a machine A
that, for i = 1, . . . , ` plays the following game against an oracle that knows
(x1, . . . , x`) ∈ X `:

1. A specifies an εi-identity function ϕi : X ×R → X ∪{⊥} where each εi ≤ ε.
2. A receives ϕi(xi, Ri), where each Ri is sampled uniformly at random from
R.

At the end of the execution A outputs a value that we denote outA(x1, . . . , x`).
We say that A in non-adaptive if he has to specify the functions ϕ1, . . . , ϕ` in
advance.

4 Useful facts about the Prouff and Rivain noise model

In this section we show some basic facts about the noise model of [25] that, to
the best of our knowledge, have not been shown before. We do it because, first
of all, we believe that they are of general interests, and may be useful in some
future work in the noisy leakage model. Secondly, we think that they may serve
as an additional justification why Prouff-Rivain noisy leakage model is natural.
This is in particular the case with Lemma 4 below, that essentially provides
an alternative and very intuitive interpretation of the [25] noise definition. The
proofs are deferred to the full version of this paper.



Lemma 4. For every δ-noisy function ν : X ×R → Y we have

2δ ≥ ∆((ν(X0); ν(X1)) | X0, X1) ≥ δ,

where X0, X1 are two independent uniform random variables distributed over X .

Let us now argue why this lemma is interesting, by showing a natural interpre-
tation of the “∆((ν(X0); ν(X1)) | X0, X1)” formula. To this end, consider the
following game played by any adversary A:

1. X0, X1 are chosen uniform at random from X and sent to the adversary,
2. the adversary receives ν(Xb) for a random b← {0, 1},
3. the adversary has to guess b (if he does it correctly then we say that he won

the game).

Note that this game can be essentially summarized as “A has to distinguish
noisy leakage from two random elements X0 and X1”, and of course it closely
resembles a “random message attack” used in defining security of the encryption
schemes. Using Lemma 4 it is easy to show the following lemma, which upper
bounds the success probability of an adversary in the above game.

Lemma 5. The probability of any A winning the game above is upper-bounded
by ∆((ν(X0); ν(X1)) | X0, X1)/2 + 1/2.

When considering noisy leakage it is also natural to ask how this notion behaves
when the adversary obtains several independent noisy leakage information from
the same given element. It turns out that the characterization of noise shown in
Lemma 4 is also useful to prove that the success probability of the adversary only
increases linearly with the number of measurements. The proof is by a simple
hybrid argument.

Lemma 6. Let ν1, . . . , νn : X → Y be such that for every i and X0, X1 ← X we
have ∆((νi(X0); νi(X1)) | X0, X1) ≤ δ. Then

∆((ν1(X0), . . . , νn(X0)); (ν1(X1), . . . , νn(X1)) | X0, X1) ≤ nδ.

5 Epsilon-average probing model

The main contribution of [7] is a reduction from the noisy leakage to the probing
model (cf. Lemma 2 of [7]). Although their reduction suffices for improving the
results of [25], it suffers from one important weakness which is a significant
loss in the error parameter. Namely, in order to “simulate” a δ-noisy function
(defined over set X ), they need an ε-random probing function with ε = δ · |X |,
a consequence of this being that in order to hope for any security one needs to
assume that δ < 1/ |X |.

It is relatively straightforward to see that this loss is inherent for this reduc-
tion (i.e. Lemma 2 of [7] cannot be improved using better proof techniques). To



see why it is the case, consider the following noisy function (let x0 be some fixed
element of X , and let α ∈ [0, 1]):

ν(x) :=

{
x0 with probability α if x = x0
⊥ otherwise.

The following calculation shows that ν defined above is approximately 2α/ |X |-
noisy for large X (let X,X ′ and R be uniformly random):

∆((ν(X); ν(X ′)) | X) =
1

|X |

∆(ν(x0); ν(X ′)) +
∑
x6=x0

∆(ν(x,R); ν(X ′, R))


=

1

|X |

(
α− α

|X |
+

(|X | − 1) · α
|X |

)
=

2α

|X |

(
1− 1

|X |

)
≈ 2α/ |X | .

On the other hand it is clear that to simulate ν any probing function ϕ on
input x0 needs to output x0 with probability at least α. Hence the |X |−1 factor
in the security loss is unavoidable.

Our main insight is that this problem can be bypassed by slightly relaxing
the definition of the “random probing”. Recall that in Definition 2 we had a
universal quantifier over all x’s from X . In particular, this meant that the probing
probability of ϕ had to depend on the “worst-case” (over all x ∈ X ) behavior of
the noisy function ν. This was particularly visible in the example above, where
the “worst case” was x = x0 (and the reduction could not take into account that
such x occurs with very low probability). Instead, our new definition will look
at the average x ∈ X . In other words: it will be possible that ϕ outputs ⊥ with
a different probability for each x, and the only thing that we will require is that
the probability (over both X and R) of receiving ⊥ is high. A formal definition
follows.

Definition 3. A function ϕ : X ×R → X ∪ {⊥} is an ε-average-identity if for
every x ∈ X and every r ∈ R we have that either ϕ(x, r) = x or ϕ(x, r) = ⊥
and

P
X←X
R←R

(ϕ(X,R) 6= ⊥) = ε. (5)

Typically in our applications an adversary will obtain not only ϕ(X,R) but also
the randomness R. One way to interpret this situation is as follows: (a) the
adversary chooses a set of functions {ϕ(·, r) : X → X ∪ {⊥}}r∈R (such that (5)
holds), then (b) a function ϕ(·, r) is chosen randomly from this set, and finally (c)
he learns this function together with ϕ(x, r). Observe that it is enough to restrict
ourselves to deterministic functions ϕ(·, r) since anyway a clever adversary will
always prefer to make the whole randomness explicit (i.e. to encode it into r),
as later he learns it for free.



We will later show (cf. Lemma 7) that the relaxation from Definition 3 allows

us to get rid of the |X |−1 factor in the reduction from noisy to probing leakage.
Moreover we show that Lemma 7 is essentially optimal, by proving a reduction in
the opposite direction (Lemma 8), that looses only factor 2 in the error parame-
ter. Altogether these lemmas provide an alternative but (essentially) equivalent
definition of the [25] noise that may be easier to reason about. As an evidence
to support this belief we show how Lemma 7 can be used to obtain better error
parameters (that do not deepened on |X |) for the additive masking scheme and
how it can be used to reason about the ISW masking scheme. This is done in
Section 6.

We are now ready to define the ε-average probing adversaries (analogously
to the ε-probing adversaries in Section 3). Let ` be some natural parameter and
X be a finite set. For ε ≤ 1 an ε-average-probing adversary on X ` (or on X if
` = 1) is a randomized machine A that for i = 1, . . . , ` plays the following game
against an oracle that knows (x1, . . . , x`) ∈ X ` :

1. A specifies an εi-average-identity function ϕi, where each εi is at most ε.
2. A receives (ϕi(xi, Ri), Ri), where each Ri is sampled uniformly at random

from R.

At the end of the execution A outputs a value that we denote outA(x1, . . . , x`).
We say that A in non-adaptive if he has to specify the functions ϕ1, . . . , ϕ` in
advance.

5.1 Connection to the noisy leakage

In this section we show a reduction form the δ-noisy model to the δ-average-
probing (Lemma 7) and vice versa (Lemma 8), establishing an equivalence be-
tween these two models (except of the factor 2 loss in the second reduction).
Applications of this equivalence are discussed further in Section 6.

Lemma 7. For any δ let A be a δ-noisy adversary on some X `. Then there
exists a δ-average-probing adversary S on X ` such that for every (x1, . . . , x`) ∈
X ` we have

outA(x1, . . . , x`)
d
= outS(x1, . . . , x`). (6)

Moreover if A is non-adaptive then so is S, and if the noise functions issued by
A are poly-time-decidable then S works in polynomial time.

Proof. Let the ν1, . . . , ν` be the functions chosen by A. Each νi is δ′i-noisy (for
some δ′i ≤ δ). Clearly we can assume that A simply outputs all the values
ν1(x1, R

1
ν), . . . , ν`(x`, R

`
ν) that it receives (where the Rνi ’s are uniform over Rν

and independent). We construct an adversary S that for each νi chooses a δ′i-
average-identity function ϕi, receives (ϕ(xi, R

ϕ
i ), Rϕi ) from the oracle (where

Rϕi is uniform over Rϕ), and computes a value out i that is distributed identi-
cally to νi(xi, R

ν
i ). Since these experiments are independent for each i it suffices

to consider each i separately. To ease the notation we drop the subscript i in
xi, νi, R

ν
i , R

ϕ
i , out i and ϕi. We also assume that δi = δ.



Hence, what we have to show is that for every δ-noisy function ν : X ×Rν →
Y there exists a randomized machine S that (1) specifies a δ-average-identity
function ϕ : X×Rϕ → Y, and (2) after receiving (ϕ(x,Rϕ), Rϕ) outputs outS(x)
such that for every x we have

ν(x,Rν)
d
= outS(x), (7)

for Rν ← Rν and Rϕ ← Rϕ. We now show how to construct such S. The set Rϕ
from which the function ϕ draws its random inputs will be defined as a product of
X and the set Rν of random inputs of ν, i.e: Rϕ := X ×Rν . Informally speaking
this random input will be used to sample “offline” (i.e. independently of the
“real” x) a value y according to the distribution ν(X ′, Rν) (where X ′ ← X and
Rν ← Rν).5 (One can think of such y as a “guess” of the noise value, performed
by someone who has no idea about the “real” x.) More precisely the adversary
S constructs the function ϕ : X ×Rϕ → X ∪{⊥} in the following way. On input
(x, (x′, rν)) the function computes y = ν(x′, rν), and then it outputs6

ϕ(x, (x′, rν)) :=

{
⊥ with probability min

(
1, P(ν(x,Rν)=y)

P(ν(X,Rν)=y)

)
x otherwise,

(8)

Informally, w = ⊥ indicates that the function ϕ (whose input is the “real” x)
is happy with the value y that was sampled “off-line”. To get some intuitions
about (8) consider two extreme cases. First suppose that P (ν(x,Rν) = y) ≥
P (ν(X,Rν) = y). This means that the value y is at least as likely to happen with
the “real” x as it is with a uniformly random X (i.e. when it is sampled “off-
line”). Hence intuitively ϕ is “happy” with this y and wants to communicate to
the adversary a message “just output y”, which is technically done by outputting
⊥.

Now, consider the other extreme case, i.e.: P (ν(x,Rν) = y) = 0. Here, in
some sense, the value of y is “totally wrong”, i.e., it is never going to occur as a
noise value for this particular x. Hence the function ϕ sends a message “wrong
y, please resample the noise using x”, which is technically done by outputting
x. The cases when 0 < P (ν(x,Rν) = y) < P (ν(X,Rν) = y) are somewhere
in between these two extremes and hence ϕ can either output ⊥ or x with
probability depending on the ratio P (ν(x,Rν) = y) /P (ν(X,Rν) = y).

Now, let (w, (x′, rν)) be the value that S receives from the oracle. Since
w = ⊥ indicates that y sampled from (x′, rν) is “correct for the real x” in this

5 We could also assume that the random input of ϕ is simply Y that is distributed
according to ν(X ′, Rν), this, however, would lead to more complicated definitions, as
in this case we would need to consider randomized functions that take non-uniform
random inputs.

6 A careful reader may notice that ϕ defined this way is randomized, which seemingly
contradicts the definition of the average-identity (where it is required to be deter-
ministic). This is not a problem since we can always extend Rϕ to include also the
“internal” randomness needed to compute ϕ. We decided to keep this additional
randomness implicit, for the sake of the clarity of the proof (cf. also remarks after
Definition 3).



case simply S outputs y. Otherwise w = x. In this case the adversary S outputs
a value z according to the distribution in which every z ∈ Y has probability7

max

(
0,

P (ν(x,Rν) = z)− P (ν(X,Rν) = z)

∆(ν(x,Rν); ν(X,Rν))

)
. (9)

This distribution is chosen in such a way that it will “compensate” the fact that
y’s chosen “off-line” have sometimes lower probability than they should have in
the “real” distribution.

We first show that S is δ-average-probing, i.e. that the expected probability
of not receiving ⊥ in the above experiment is equal to δ, more formally:

P (ϕ(X, (X ′, Rν)) 6= ⊥) = δ (10)

(where the variables X,X ′ and Rν are uniform and independent). We have

P (ϕ(X, (X ′, Rν)) = ⊥)

=
∑
x∈X

P (X = x) · P (ϕ(x, (X ′, Rν)) = ⊥)

=
∑
x∈X

P (X = x) ·
∑
y∈Y

P (ν(X ′, Rν) = y)P (ϕ(x, (X ′, Rν)) = ⊥ | ν(X ′, Rν) = y)

=
∑
x∈X

P (X = x) ·
∑
y∈Y

P (ν(X ′, Rν) = y) ·min

(
1,

P (ν(x,Rν) = y)

P (ν(X ′, Rν) = y)

)

=
∑
x∈X
y∈Y

P (X = x) · P (ν(X ′, Rν) = y) ·min

(
1,

P (ν(x,Rν) = y)

P (ν(X ′, Rν) = y)

)

=
∑
x∈X
y∈Y

min
(
P (X = x) · P (ν(X ′, Rν) = y) , P (X = x) · P (ν(x,Rν) = y)

)
=
∑
x∈X
y∈Y

min
(
P ((X, ν(X ′, Rν)) = (x, y)) , P ((X, ν(X,Rν)) = (x, y))

)
(11)

= 1−∆((X, ν(X ′, Rν)); (X, ν(X,Rν))) = 1− δ (12)

where in (11) we used the independence of the variables, and (12) follows from
Eq. (2). What remains is to show (7). Take some x ∈ X and y ∈ Y. We have

P (outS(x) = y) = (13)

P (ϕ(x, (X ′, Rν)) = ⊥ ∧ outS(x) = y) + (14)

P (ϕ(x, (X ′, Rν)) 6= ⊥ ∧ outS(x) = y) (15)

7 Eq. (9) defines a probability distribution, since the values in (9) are clearly non-
negative and they sum up to 1 (when the sum is computed over all z ∈ Y),
which follows from the fact that

∑
z∈Y max(0,P (ν(x,Rν) = z)−P (ν(X,Rν) = z)) =

∆(ν(x,Rν); ν(X,Rν)) (cf. (1)).



It is easy to see that (14) is equal to

P (ϕ(x, (X ′, Rν)) = ⊥ ∧ ν(X ′, Rν) = y)

P (ν(X ′, Rν) = y) · P (ϕ(x, (X ′, Rν)) = ⊥ | ν(X ′, Rν) = y)

= P (ν(X ′, Rν) = y) · P (ϕ(x, (X ′, Rν)) = ⊥ | ν(X ′, Rν) = y)

= P (ν(X ′, Rν) = y) ·min

(
1,

P (ν(x,Rν) = y)

P (ν(X,Rν) = y)

)
= min

(
P (ν(X ′, Rν) = y) ,

P (ν(X ′, Rν) = y) · P (ν(x,Rν) = y)

P (ν(X,Rν) = y)

)
which, since (X,Rν) and (X ′, Rν) have identical distributions is equal to

min (P (ν(X ′, Rν) = y) ,P (ν(x,Rν) = y)) .

On the other hand (15) is equal to the product of

P (ϕ(x, (X ′, Rν)) 6= ⊥) (16)

and

P (outS(x) = y | ϕ(x, (X ′, Rν)) 6= ⊥) . (17)

Clearly (16) is equal to∑
z∈Y

P (ν(X ′, Rν) = z) · P (ϕ(x, (X ′, Rν)) 6= ⊥ | P (ν(X ′, Rν) = z))

=
∑
z∈Y

P (ν(X ′, Rν) = z) ·
(

1−min

(
1,

P (ν(x,Rν) = z)

P (ν(X,Rν) = z)

))
=
∑
z∈Y

P (ν(X ′, Rν) = z) ·max

(
0,

P (ν(X,Rν) = z)− P (ν(x,Rν) = z)

P (ν(X,Rν) = z)

)
(18)

=
∑
z∈Y

(max (0,P (ν(X,Rν) = z)− P (ν(x,Rν) = z))) (19)

= ∆(ν(x,Rν); ν(X,Rν)), (20)

where in (18) we used the fact that for any 0 ≤ c ≤ 1 we have 1 −min(1, c) =
max(0, 1− c), in (19) we used (X,Rν) and (X ′,Rν) are identically distributed,
and in (20) we used Eq. (1). In turn, from the construction of S it is clear that
Eq. (17) is equal to

max

(
0,

P (ν(x,Rν) = y)− P (ν(X,Rν) = y)

∆(ν(x,Rν); ν(X,Rν))

)
. (21)

Since (15) is equal to the product of (20) and (21), thus it is equal to

max (0,P (ν(x,Rν) = y)− P (ν(X,Rν) = y)) ,



and therefore (13) is equal to

=(14)︷ ︸︸ ︷
min (P (ν(X ′, Rν) = y) ,P (ν(x,Rν) = y)) (22)

+

=(15)︷ ︸︸ ︷
max (0,P (ν(x,Rν) = y)− P (ν(X,Rν) = y))

= P (ν(x,Rν) = y) , (23)

where (23) comes from a simple calculation8. In this way we have shown that

P (outS(x) = y) = P (ν(x,Rν) = y) ,

which implies (7). This finishes the proof of (6). It is also clear from the construc-
tion of S that if A is non-adaptive then so is S, and that S works in polynomial
time provided the noise functions issued by A are poly-time-decidable. ut

The opposite direction, namely the reduction from the average probing leak-
age model to the noisy leakage model is given in the lemma below. For space
limitations the proof is referred to the full version of this paper.

Lemma 8. For any ε let A be a ε-average-probing adversary on some X `. Then
there exists a 2ε-noisy adversary S on X ` such that for a every (x1, . . . , x`) ∈ X `
we have

A(x1, . . . , x`)
d
=S(x1, . . . , x`). (24)

6 Applications of the average probing model

In this section, we present some applications of the average probing model and
the reduction to the noisy leakage model of Prouff and Rivain. We first show
in Section 6.1 that the standard additive masking function used in numerous
works [26, 28, 14, 4] as a building block for masked computation is secure in the
ε-average probing model. As a second application, we prove in Section 6.2 that
the masking scheme of ISW (or rather its extension to larger fields by Rivain
and Prouff [28]) is secure in the average probing model using leak-free gates
similar to [25, 10]. We emphasize that in both cases we can achieve security with
significantly improved δ-noise parameter – in particular, in contrast to earlier
works [25, 7] we improve the δ parameter by a factor |X |.

6.1 Security of the additive masking

In this section we show the security of the additive masking scheme over a finite
group in the average probing model. Let n be a natural number and (X ,+) be

8 More precisely we use the fact that for every two real numbers A and B we
have min(A,B) + max(0, A − B) = A, with A := P (ν(x,Rν) = y) and B :=
P (ν(x,Rν) = y).



a finite group. Define an encoding function EncnX : X → Xn and a decoding
function DecnX : Xn → X as follows. Let

EncnX (x) = (X1, . . . , Xn), (25)

where (X1, . . . , Xn−1) ← Xn−1 and Xn := x − (X1 + · · · + Xn−1) and let
DecnX (X1, . . . , Xn) = X1 + · · ·+Xn.

Proof of security. Before we show the security of the encoding scheme, we pro-
vide some technical lemmata for the average probing model. The main technical
challenge we are facing when applying the average probing model to masking
schemes is the fact that average probing leakage reveals non-trivial information
about X to an adversary even in the case when ϕ(X,R) = ⊥, which was not
the case in the random probing model. This is because ϕ(x,R) = ⊥ may be
more likely for some x’s than for the other (as an example think of ϕ defined
identically to ν in the example at the beginning of Section 5). This technicality
makes security proofs in the average probing model more involved than security
proofs in the random probing model. Fortunately, in this paper we develop a set
of tools that enables us to deal with this technicality of the model. We start by
giving some technical lemmata, whose proofs appears in the full version of this
paper.

Lemma 9. Let X and R be random variables with uniform distribution over X
and R, respectively. For any ε-average-identity function ϕ we have

d(X | ϕ(X,R) = ⊥, R) = ε.

The problem with Lemma 9 above is that it only gives information about the
expected value (over r ← R) of d(X | ϕ(X,R) = ⊥, R = r). Hence, for certain
r’s this value can be very large – or in other words ϕ(X,R) = ⊥ and R = r can
reveal some significant information about X. We deal with this problem by using
a Markov-style argument: if the expected value of some term is small, then with
good probability this term is small. More precisely, let ϕ be an ε-average-identity
function, and for every ξ ∈ [0, 1] define a function f : R → [0, 1] as

f(r) := d(X|ϕ(X, r) = ⊥, R = r).

and let9

Probeξϕ(x, r) :=

{
? if ϕ(x, r) = ⊥ and f(r) ≤ ε/ξ
x otherwise.

In some sense Probeξϕ is more “generous” to the adversary than ϕ since it outputs
x also in cases when ϕ outputs ⊥. Clearly ϕ(x, r) can be easily computed from
(Probeξϕ(x, r), r), and hence any adversary that learns (Probeξϕ(X, R), R) is at
least as powerful as an adversary that learns (ϕ(X,R), R)). We will use this fact
later. First, we show some useful properties of Probeξϕ(x, r).

9 The “?” symbol is used in a similar way as “⊥”. We chosen to use “?” in order to
avoid confusion in the notation.



Lemma 10. Let ϕ be an ε-average-identity function. For every ξ ∈ [0, 1] we
have that

∀
r
d(X|Probeξϕ(X, r) = ?, R = r) ≤ ε/ξ (26)

and
P
(

Probeξϕ(X,R) 6= ?
)
≤ ξ + ε. (27)

The next lemma shows that if we obtain ` times the value ? from Probeξϕ(Xi),
then the distance of X1 + . . .+X` decreases exponentially, and exhibits the first
step to show the security of the encoding function.

Lemma 11. Let ϕ1, . . . , ϕ` be ε-average-identity functions. Suppose X is an
additive group. Let (X1, . . . , X`) ← X ` and (R1, . . . , R`) ← R` be uniform and
independent random variables and set X := X1 + · · · + X`. Then for every
(r1, . . . , r`) we have

d(X | ∀`i=1Probeξϕ(Xi, ri) = ?, R1 = r1, . . . , R` = r`) ≤ (2ε/ξ)`, (28)

and hence

d(X | ∀`i=1Probeξϕ(Xi, Ri) = ?, R1, . . . , R`) ≤ (2ε/ξ)`. (29)

The above already shows that conditioned on the auxiliary information the dis-
tance ofX from uniform decreases exponentially in `. We start by showing how to
translate this into showing security of the encoding scheme (EncnX ,DecnX ), when
X is uniform. Later (cf. Corollary 1) we show how to translate this result into one
where x is chosen by the adversary, which is the standard indistinguishability-
based security definition of leakage resilient encoding schemes. Notice that the
lemma below is fully adaptive, i.e., we allow the adversary to obtain ϕi(Xi, Ri)
and only afterwards he has to decide on which noisy leakage function ϕi+1 he
wants to observe. As such strengthening of the model comes essentially without
any additional loss in the parameters (i.e., it comes for free) using the theory of
martingales and Azuma inequality, we chose to present the most general version
of the fully adaptive adversary below.

Lemma 12. For every ε, λ, ξ ∈ [0, 1] and an ε-average-probing adversary A on
X ` and a uniform X ← X we have

d(X|outA(EncnX (X))) ≤ (2ε/ξ)d(1−ξ−ε−λ)ne + e−2λ
2n. (30)

Before we present the proof let us state the basic facts from the theory of mar-
tingales (more on this subject can be found, e.g., in [6]). Recall that a sequence
Y0, Y1, . . . of random variables is a submartingale with respect to a sequence
W0,W1, . . . of random variables if every Yi is a function of W0, . . . ,Wi−1 and
E (Yi|W0, . . . ,Wi−1) ≥ Yi−1 for every i. The sequence {Xi = Yi − Yi−1}i≥1 is
called a submartingale difference sequence (w.r.t. W0,W1, . . .). A submartingale
Y0, Y1, . . . satisfies the bounded difference condition with parameters A and B if
for every i it is the case that Xi ∈ [A,B]. We have the following fact (see, e.g.,
[6], Section 5.3)



Lemma 13 (Azuma-Hoeffding inequality). Let Y0, Y1, . . . be a submartin-
gale (w.r.t. some other sequence) satisfying the bounded difference condition with
parameters A and B. Then for any t > 0 we have

P (Yn < Y0 − t) ≤ exp

(
− 2t2

n(B −A)2

)
.

We are now ready for the proof of the lemma.

Proof (of Lemma 12). Let (X1, . . . , Xn) = EncnX (X). Since X is uniform thus
X1, . . . , Xn are independent. Let ϕ1, . . . , ϕn be functions specified by A. Since
A is ε-average-probing thus each ϕi is an εi-average identity, where εi ≤ ε. Let,
for each i, the function Probeξϕi : X × R → X ∪ {?} be defined as above. To

simplify notation for each i let Wi = Probeξϕi(Xi, Ri) (where Ri ← R). For each
i = 1, . . . , n define a variable Yi as

Yi :=

{
1 if Wi = ?
0 otherwise.

Since the adversary is adaptive, thus his choice of each ϕi can depend on the
valuesW1, . . . ,Wi−1. On the other hand, no matter how he behaves, from Lemma
10 we are guaranteed that P (Wi = ?) ≥ 1−ξ−ε and hence E (Yi|W1, . . . ,Wi−1) ≥
1− ξ − ε. Define Y ′i as Yi − (1− ξ − ε). Obviously then E (Y ′i |W1, . . . ,Wi−1) ≥
0. Hence Y ′0 , Y

′
1 , . . . is a submartingale difference sequence w.r.t. W0,W1, . . ..

Moreover for each i we have

−(1− ξ − ε) ≤ Y ′i ≤ 1− (1− ξ − ε).

Hence, if for every j = 0, . . . , n we let Zj :=
∑j
i=1 Y

′
i then Z0, . . . , Zn is a

submartingale10 w.r.t. W0,W1, . . . satisfying bounded difference condition with
parameters −(1 − ξ − ε) and 1 − (1 − ξ − ε). Therefore from Azuma-Hoeffding
inequality (Lemma 13) we get that

P (Zn < −λn) ≤ exp

(
−2(λn)2

n

)
= exp

(
−2λ2n

)
.

Of course
∑n
i=1 Yi = Zn + n(1− ξ − ε). Therefore

exp
(
−2λ2n

)
≥ P

(
n∑
i=1

Yi < −λn+ n(1− ξ − ε)

)

= P

(
n∑
i=1

Yi < n(1− ξ − ε− λ)

)
(31)

10 It is easy to see that if the adversary was non-adaptive then we could also use
Chernoff inequality, instead of the Azuma-Hoeffding inequality and martingales.



For every set I ⊆ {1, . . . , n} such that |I| ≥ n(1− ξ − ε− λ) let WI denote the
event defined as a following conjunction of events:

WI :=

∧
j∈I

Probeξϕj (Xj , rj) = ?

 ∧
∧
j 6∈I

Probeξϕ(Xj , rj) 6= ?


And let: W :=

∨
I:|I|≥n(1−ξ−ε−λ)WI . From (31) we clearly have

P (W) ≥ 1− e−2λ
2n. (32)

Suppose that WI occurred for some I and let m = |I|. Denote XI := Xi1 +
· · ·+Xim . By Lemma 11 we have

(2ε/ξ)dn(1−ξ−ε−λ)e

≥ d(XI |Ri1 , . . . , Rim ,WI)

≥ d(XI |ϕi1(Xi1 , Ri1), . . . , ϕim(Xim , Rim), Ri1 , . . . , Rim ,WI) (33)

≥ d(XI |ϕ1(X1, R1), . . . , ϕm(Xn, Rn), R1, . . . , Rn,WI) (34)

≥ d(X|ϕ1(X1, R1), . . . , ϕn(Xn, Rn), R1, . . . , Rn,WI). (35)

where (33) comes from the fact that, as observed in Section 5, ϕ(x, r) is a function
of (Probeξϕ(x, r), r). Eq. (34) holds because obviously for i 6∈ I the value of

(ϕi(Xi, Ri), Ri) does not bring any additional information about XI . Eq. (35)
holds because of Lemma 2 with A := XI and B equal to the sum of all Xi’s
with indices not in I. We now have that

d(X|ϕ1(X1, R1), . . . , ϕn(Xn, Rn), R1, . . . , Rn,W)

≤
∑

I:|I|≥n(1−ξ−ε−λ)

d(X|ϕ1(X1, R1), . . . , ϕn(Xn, Rn), R1, . . . , Rn,WI) · P
(
WI

)

≤ (2ε/ξ)dn(1−ξ−ε−λ)e ·

≤1︷ ︸︸ ︷∑
I

P
(
WI

)
, (36)

where the first inequality comes from the fact that the events WI are pair-
wise disjoint and hence we can use Lemma 3 (interpreting C as a variable that
indicates which WI occurred). We therefore obtain that

d(X|outA(EncnX (X)),W) ≤ (2ε/ξ)dn(1−ξ−ε−λ)e. (37)

We now have

d(X|outA(EncnX (X))) ≤ d(X|outA(EncnX (X)),W) + P (¬W)

≤ (2ε/ξ)dn(1−ξ−ε−λ)e + e−2λ
2n,

where in the last inequality we used (37) and (32). This finishes the proof. ut



Of course, in practice it makes more sense to have the security even if the
adversary picks up the encoded element x himself. This is shown in the corollary
below. The price is that the error parameter get multiplied by the group size
(and a constant). What is important is that this factor simply multiplies the
total error, which is much better than in [25, 7], where ε was multiplied by |X |.
As a consequence, even for very large fields this error can be made negligible
by increasing n (which was not the case in [25, 7]). The following is a simple
consequence of Lemma 12 (the formal derivation of this corollary appears in the
extended version of this paper).

Corollary 1. For every ε, λ, ξ ∈ [0, 1] and an ε-average-probing adversary (or
equivalently: ε-noisy adversary) A on X ` the information that A receives about
any encoded element x can be “simulated” without access to x, up to a small
error. More precisely there exists a random variable Y such that for every x ∈ X
we have

∆(outA(EncnX (x)) ; Y ) ≤ 2 |X | ·
(

(2ε/ξ)d(1−ξ−ε−λ)(n−1)e + e−2λ
2(n−1)

)
(38)

Moreover for any x0, x1 ∈ X we have

∆(outA(EncnX (x0)) ; outA(EncnX (x1)))

≤ 4 |X | ·
(

(2ε/ξ)d(1−ξ−ε−λ)(n−1)e + e−2λ
2(n−1)

)
, (39)

and in particular (by setting ξ =
√
ε and λ = 1/2) we have

∆(outA(EncnX (x0)) ; outA(EncnX (x1)))

≤ 4 |X | ·
(

(4ε)d(1/4−
√
ε/2−ε/2)(n−1)e + e−(n−1)/2

)
. (40)

Moreover fixing ε = 1/16 we get that this last term is at most

4 |X | ·
(
e−0.13·(n−1) + e−(n−1)/2

)
≤ 8 |X | · e−0.13·(n−1).

From Eq. (39) in the above corollary it is easy to see that with increasing number
of shares n and a decreasing ε (i.e., more noise) the statistical distance decreases.

We notice that the second term of the addition, i.e., e−2λ
2(n−1) only gets neg-

ligible if n increases, and in particular will dominate the first term when ε is
negligible. While the same additional error term appeared in the work of Duc et
al. [7] (due to the use of a Chernoff bound), the result of Prouff and Rivain [25]
did not had this additional error term. We emphasize, however, that this addi-
tional error term only becomes relevant when we consider very small values for
the δ-bias of the Prouff-Rivain model, i.e., for very noisy leakage functions. In
the full version of this paper we show how to eliminate this additional error term
using an alternative argument.

Finally, we emphasize that for the noise level in the last part of Corollary 1
(ε = 1/16) neither the work of Prouff and Rivain [25], nor the work of Duc et
al. [7] gives meaningful bounds unless the field is of a constant size.



6.2 Security of the ISW compiler with leak-free gates

As a second application, we demonstrate that also more complicated masked
computation can be proven secure in the average probing model. To this end,
we show that the ISW compiler (or rather its extension to larger fields by Prouff
and Rivain [25]), which has been widely used as building block for masking
schemes [25, 4, 7] is secure in the average probing model assuming leak-free gates.
As our reduction from the average probing model to the noisy leakage model of
Prouff and Rivain is tight, we improve the noise rate of the work of Prouff
and Rivain and Duc et al. [25, 7] significantly – in particular, we are able to
eliminate the factor |X | from the bounds in [7, 25]. We note that compared
to the recent work of Duc et al. [7] our analysis of the ISW compiler has one
important drawback, namely, that we rely on the assumption that certain parts
of the computation are leak-free. We will discuss this assumption in more detail
below.

The original circuit Γ . Following the description of [14], we model computa-
tion as an arithmetic circuit Γ carrying values from an (arbitrary) finite field X
on their wires and using the following gates to carry out computation in X :

– +,−, and ·, which compute, respectively, the sum, difference, and product
in X , of their two inputs,

– the “coin flip” gate coin, which has no inputs and produces a random inde-
pendently chosen element of X ,

– and for every α ∈ X , the constant gate constα, which has no inputs and
simply outputs α.

Fanout in Γ is handled by a special copy gate that takes as input a single value
and outputs two copies. Circuits that only contain the above types of gates are
called stateless.

Ishai et al. also consider the notion of stateful circuits. In addition to the gates
described above, stateful circuits also contain memory gates, each of which has
a single incoming and a single outgoing wire. Memory gates maintain state: at
any round, a memory gate sends its current state down its outgoing wire and
updates it according to the value of its incoming wire. The state of all memory
gates at clock cycle i is denoted by mi−1, with m0 denoting the initial state. For
instance, the state m0 of an AES circuit may be its secret key.

The computation of a stateful circuit is performed in several rounds i =
1, 2, . . .. In each of the rounds the circuit will take some public input x, its
current internal state mi−1 and produces an output y and potentially updates
its state to mi. The evaluation of the circuit proceeds in a straightforward way:
when all the input wires of a given gate are known, then the value on the output
wire can be computed naturally, i.e., for a multiplication gate with inputs a, b
the output wire becomes c = a · b. An execution of the circuit Γ with state mi−1
on input x is denoted by (y,mi) ← Γ (mi−1, x). The values that are carried on
the wires of the circuit when run on input (mi−1, x) conditioned on the output
being (y,mi) are denoted by the random variable WΓ ((mi−1, x)|(y,mi)).



The protected circuit Γ ′. The compiler takes as input the description of
the circuit Γ and outputs Γ ′. The main building block of Γ ′ is the encoding
scheme EncnX . The initial state m0 is represented in Γ ′ in encoded form, i.e.,
as M0 ← EncnX (m0). Notice that if m0 consists of multiple field elements, then
we apply the encoding function to each element of m0 individually. Next, we
consider the wires that connect individual gates. In Γ ′ such wires are represented
by wire bundles that carry the value of the wire in encoded form. The main
difficulty to compile Γ into Γ ′ is to describe how to transform the gates, i.e.,
the basic operations described in the last paragraph. For each gate in Γ we have
a a sub-circuit – so-called gadget – that represents the computation in Γ ′ and
carries out the computation in encoded form. For instance, for a multiplication
operation in Γ that takes as input two field elements a, b and outputs c = a · b,
in Γ ′ we use a gadget that takes as input two encodings of a (resp.) b and
outputs an encoding of c. We emphasize that the computation in the gadgets
uses the standard operations defined above and additionally a leak-free gate
O. We now provide some details about the most important algorithm of Γ ′ –
the multiplication gadget Mult. The remaining operations, i.e., in particular the
addition gadget is done as in the work of Faust et al. (see Figure 3 in [10]) and
omitted for space reasons.

The construction of Mult is essentially the construction of Faust et al. [10]
from Eurocrypt 2010 (which is essentially the transformation of ISW with leak-
free gates) for AC0 leakage functions. In particular, we use their leak-free gate
O, which sample from EncnX (0), i.e., X ← O(1n), where X is a random encoding
of 0. We refer to the motivation of this leak-free component to the work of [10] or
the work of Prouff and Rivain [25]. The later uses a similar component for their
security proof in the noisy leakage model. We only notice that the computation
of O(1n) can be implemented in a very simple way, namely, sample random field
elements X1, . . . , Xn−1 uniformly at random and compute Xn = −X1 − . . . −
Xn−1. The output of O(1n) is (X1, . . . , Xn).

For some finite field X the multiplication gadget Mult takes as input two
vectors A ← EncnX (a) and B ← EncnX (b), and produces C ← EncnX (c), where
c = a · b. To this end it performs the operations shown in Figure 3. To make the
algorithm easier to read, we use small letters to denote elements in X . Vectors
over X will be denoted by capital letters, and matrices are denoted with a “hat”
symbol.

The basic property that we require from the protected circuit Γ ′ is correct-
ness. That is, we want that for any input x and any initial state m0 the circuit Γ
and Γ ′ with initial state M0 ← EncnX (m0) produce the same output distribution.
In addition to correctness, Γ ′ shall be secure against certain classes of leakages,
which we discuss next.

Security definition. Informally, security means that an adversary that obtains
leakage from the execution of the protected circuit shall not have any advantage
over an adversary that attacks the original circuit with just black-box access. To
describe this formally, we use the standard simulation-based paradigm. We start



The multiplication gadget Mult

1. Compute the n×n matrix T̂ = (ai · bj)i,j∈[n], where ai, bj are the elements of
the vector A and B, respectively.

2. Compute the n× n matrix Ŝ where the i-th column of Ŝ is sampled as Si ←
O(1n).

3. Compute Û = T̂ + Ŝ using matrix addition.
4. Sum the values in each row of Û , i.e., for each i ∈ [n] compute qi =

∑
j ui,j ,

where qi denotes the i-th element of the vector Q.
5. Sample O ← O(1n) and compute the output as C = Q+O.

Fig. 3. The multiplication operation takes as input (A,B) and produces the encoding
C of ab. The leak-free component O(1n) samples from the distribution EncnX (0) and
can be implemented as described in the text above.

by introducing some different types of adversaries. In the following, we assume
that the adversary chooses his leakage functions in each round non-adaptively.
This can be extended to the adaptive case by making the description of the
model more involved and we omit details for space reasons.

A black-box circuit adversary A is a machine that interacts with a circuit Γ

via the input and output interface. We denote by out

(
A

bb

�Γ (m0)

)
the out-

put of A after interacting with Γ whose initial memory state is m0. A δ-noisy
circuit adversary A is an adversary that has the following additional ability:
after each ith round, A obtains some partial information about the internal
state of the computation via the noisy leakage functions. More precisely: let
WΓ ′((x,Mi−1)|(y,Mi)) be the random variable denoting the values on the wires
of Γ ′(M0) in the ith round when run on input x and outputting y. Then A plays
the role of a δ-noisy adversary in a game againstWΓ ′((x,Mi−1)|(y,Mi)) (cf. Sec-
tion 3), namely: he chooses a sequence {νi : X×R → Y}`i=1 of functions such that
every νi is δi-noisy for some δi ≤ δ and he receives ν1(V1), . . . , ν`(V`), where Vi de-
notes a random variable that is part of the wire assignmentWΓ ′((x,Mi−1)|(y,Mi)).
The adversary can repeat this process multiple times for chosen inputs x and we

denote the output of A at the end of this experiment by out

(
A

noisy

� Γ ′(M0)

)
.

We can also replace, in the above definition, the “δ-noisy adversary” with
the “ε-average probing adversary”. In this case, after each ith round A chooses
a sequence (ε1, . . . , ε`) such that each εi ≤ ε and he learns ϕ1(V1), . . . , ϕ`(V`),

where each ϕi is the εi-average identity function. Let out

(
A

avg

� Γ ′(M0)

)
denote

the output of such A after interacting with Γ whose initial memory state is M0.
We are now ready to define security of a transformed circuit Γ ′.

Definition 4. Consider a stateful circuit Γ and its transformation Γ ′ (over
some field X ) and a randomized encoding function EncnX . We say that Γ ′ is a
(δ, γ)-noise resilient implementation of a circuit Γ w.r.t. EncnX if for every δ-
noisy circuit adversary A there exists a black-box circuit adversary S such that



for every m ∈ X ` (for ` ∈ N), we have:

∆

(
out

(
S

bb
�Γ (m)

)
; out

(
A

noisy

� Γ ′(EncnX (m))

))
≤ γ. (41)

The definition of Γ ′ being a (ε, γ)-average-probing resilient implementation of
a circuit Γ is identical to the one above, except that we let A be an ε-average-
probing circuit adversary A and Equation 41 is replaced with:

∆

(
out

(
S

bb
�Γ (m)

)
; out

(
A

avg

� Γ ′(EncnX (m))

))
≤ γ.

In all cases above we will say that Γ ′ is an implementation of Γ with efficient
simulation if the simulator S works in time polynomial in Γ ′ · |X | as long as A is
poly-time and the noise functions specified by A are efficiently decidable, which
will be the case for all our results.

Security of Γ ′ against noisy leakages. In contrast to Section 6.1, where we
show the security of the additive encoding function in the average probing model,
the security analysis of computation is more involved. The reason is that now
we have multiple intermediate values that may depend in some predictable way
on each other. Intuitively, noise will cancel out the sensitive information in the
intermediate values if the sensitive information does not influence too many other
intermediate values in the computation, and hence its value is not leaked too
many times with independent noise. A similar approach was already exploited in
the analysis of Duc et al. [7] – though there the situation was considerably simpler
as in the ε-probing model the leakage is independent of most of the computation
(i.e., large parts of the computation do not leak at all!). In contrast in the
average probing model considered in this work, the leakage depends implicitly
on all intermediate values as even in the case when the leakage function outputs
⊥ the adversary may learn non-trivial information about the value probed.

To overcome these difficulties we use the framework of reconstructors intro-
duced by Faust et al. [10] to argue about the security of masked gadgets. Infor-
mally, we give a simulator that just has leakage access to the inputs and outputs
of the gadget and from that can simulate the entire leakage from the intermediate
values of the gadget. We say that a simulation is good if the simulated leakage
is indistinguishable from the real leakage of the intermediate values, when the
leakage is assumed to be an ε-average probing leakage function. Moreover, we
will require the simulator to be from some restricted class of functions. This is
important since eventually we want to reduce the security of the protected cir-
cuit to the security of the underlying encoding scheme. We here strongly rely on
the formalization given in [10] who consider such restricted simulators to achieve
security against noisy leakages (albeit in a different noise model).

At a very informal level, we show that the internal values of a gadget can
be simulated by a function REC that takes as input X (which is an encoded
input of the gadget) and returns two types of values to simulate the internals



of the gadget: (i) either constant values that are independent of the input X,
or (ii) values that depend in a very restricted way on REC’s input, namely for
an input X they have the form cX + C, where c and C are constants in X
and Xn respectively. Now, clearly (i) does not reveal any sensitive information
about X (since it is independent of relevant information), and (ii) can essentially
be reduced to just (multiple) noisy leakages from the encoding. As the security
proof is very similar to [10], and in our work the circuit compiler is merely an
application to show how to carry out security proofs of masked computation
in the average probing model, we refer the reader to the full version of [10] for
further details on the formalization of reconstructors.

To formalize the above informal description of what an admissible simulator
REC shall look like, we recall the definition of the function class LOCAL(`) in-
troduced by [10]. Function ins LOCAL(`) depend only in a very restricted way
on their inputs, and are hence useful to simulate noisy leakage without revealing
too much sensitive information. For some `, n, t, k ∈ N, a function f : X tn → X k
with inputs X(1), . . . , X(t) ∈ Xn is said to be in LOCAL(`) if the following holds
for each i ∈ [1, t]:

For any fixed t− 1 inputs X(1), . . . , X(i−1), X(i+1), . . . , X(t), all but at most
n` output values (from X ) of the function f(X(1), . . . , X(t)) (as a function
of X(i)) are constant (i.e., do not depend on X(i)); the remaining outputs
are computed as cX(i) + C, for some constant C ∈ Xn and c ∈ X .

The identity function, for instance, is in LOCAL(1), while a function that outputs
` copies of its inputs is in LOCAL(`).

We now give a formal definition of efficient simulators (aka reconstructors)
tailored to our setting of ε average probing leakage functions and for the masked
multiplication operation. It is straightforward to generalize the notion to arbi-
trary masked computation. We then show that the multiplication gadget satis-
fies the notion. Given that the multiplication gadget is reconstructible, Faust et
al. [10] show that security according to Definition 4 can be achieved (cf. Theo-
rem 1 below).

Definition 5 ((ε, γ, `)-reconstructors [10]). Let Mult be the masked multipli-
cation with encoded inputs X := (A,B) and encoded outputs Y := C. We say
that a pair of strings (X,Y ) is plausible for Mult if Mult might output Y on
input X, i.e., if Pr[Mult(X) = Y ] > 0.

Consider a distribution RECMult over the functions whose input is a plausible
pair (X,Y ), and whose output is an assignment to the wires of Mult. Define
RECMult(X,Y ) as the distribution obtained by sampling a function RMult from
RECMult and computing RMult(X,Y ). Such a distribution is called a (ε, γ, `)-
reconstructor for Mult if for any plausible (X,Y ) and any ε-average probing
adversary A, the following two distributions are γ-close:

– outA(WMult(X|Y )),
– outA(RECMult(X,Y )).

If the support of the distribution RECMult is in some set of functions LOCAL(`),
we say that Mult is (ε, γ, `)-reconstructible.



Besides the reconstructibility property, we also require that the gadgets of Γ ′ are
re-randomizing. We only state it in an informal way here and refer the reader to
Definition 3 in [10]. Informally, we say that the masked multiplication operation
is re-randomizing if the output of the multiplication is distributed as EncnX (c)
for c = a · b even given the input encoding A := EncnX (a) and B := EncnX (b).

It is easy to see that the masked multiplication Mult is re-randomizing. What
is more challenging to prove is the fact that Mult is (ε, γ, `)-reconstructible, which
is shown in the lemma below. The proof of the lemma is very similar to the proof
of Lemma 9 in [10], and is deferred to the full version of the paper. To simply
notation the lemma below uses the particular parameter setting of Eq. (40)
from Corollary 1. It is easy to generalize the lemma for other settings of the
parameters.

Lemma 14. Let n be the security parameter and X be some finite field. Let ε be
a function in n defining the noise parameter of the average probing model. The
Mult operation is (ε, γ, 2n)-reconstructible for:

γ := 4 |X |n ·
(

(4(n+ 1)ε)d(1/4−
√

((n+1)ε/2−(n+1)ε/2)(n−1)e + e−(n−1)/2
)
.

Given the above lemma we are now ready to apply the framework of Faust
et al. [10] and prove that Γ ′ is secure according to Definition 4. The proof is
straightforward and merely puts the different parameters together.

Theorem 1. Let n > 1 be the security parameter. Let Γ be an arbitrary stateful
arithmetic circuit over some field X . Let Γ ′ be the circuit that results from the
transformation procedure described above. Let q be the number of observations,
then Γ ′ is a (δ, γ)-noise resilient implementation of Γ (with efficient simulation),
where

γ = 4 |X | q |Γ | (n+ 3) ·
(

(4(n+ 1)δ)d(1/4−
√

((n+1)δ/2−(n+1)δ/2)(n−1)e + e−(n−1)/2
)

For concreteness, when we plug-in for δ := (24n)−1 we get for n > 4:

γ := 4 |X | q |Γ | (n+ 3) · exp(−n/12) (42)

We notice that the number of measurements/observations (i.e., the number of
times the adversary can apply a noisy leakage attack on the implementation Γ ′)
was ignored in the work of [7]. In case we do not consider multiple measurements,
we can eliminate the factor q from the above bound. Moreover, if we compare
the above concrete bound from Eq. (42) with the bound that was achieved by
Duc et al. (see Theorem 1 in [7]), then we see that we improve the noise level
not only by a factor |X | but also the constant is increased from 1/28 to 1/24
in our work while achieving (asymptotically for large n) the same bound on the
statistical distance.
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