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Abstract. The main bottleneck affecting the efficiency of all known
fully homomorphic encryption (FHE) schemes is Gentry’s bootstrapping
procedure, which is required to refresh noisy ciphertexts and keep com-
puting on encrypted data. Bootstrapping in the latest implementation
of FHE, the HElib library of Halevi and Shoup (Crypto 2014), requires
about six minutes. We present a new method to homomorphically com-
pute simple bit operations, and refresh (bootstrap) the resulting out-
put, which runs on a personal computer in just about half a second.
We present a detailed technical analysis of the scheme (based on the
worst-case hardness of standard lattice problems) and report on the per-
formance of our prototype implementation.

1 Introduction

Since Gentry’s discovery of the first fully homomorphic encryption (FHE) scheme
[15], much progress has been made both towards basing the security of FHE on
more standard and well understood security assumptions, and improving the
efficiency of Gentry’s initial solution.

On the security front, a sequence of papers [16,9,8,5,2] has lead to (leveled)
FHE schemes based on essentially the same intractability assumptions under-
lying standard (non homomorphic) lattice based encryption. To date, the main
open theoretical problem still left to be solved is how to remove the “circular
security” assumption made in [15] (and all subsequent works) to turn a lev-
eled FHE scheme (i.e., a scheme where the homomorphic computation depth is
chosen at key generation time) into a full fledged one which allows to perform
arbitrarily large homomorphic computations on encrypted data, even after all
key material has been fixed.
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the views of DARPA or NSF.
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Improving the efficiency of Gentry’s scheme has received even more atten-
tion [23,6,21,20,19,18,17,2,1], resulting in enhanced asymptotic performance, and
some reference implementations and libraries [23,17] that are efficient enough to
be run on a personal computer. Still, the cost of running FHE schemes is quite
substantial. The main bottleneck is caused by the fact that all current FHE
solutions are based on “noisy” encryption schemes (based on lattices or similar
problems) where homomorphic operations increase the noise amount and lower
the quality of ciphertexts. As more homomorphic operations are performed, the
noise can easily grow to a level where the ciphertexts are no longer decryptable,
and operating on them produces meaningless results. Gentry’s breakthrough dis-
covery [15] was an ingenious “bootstrapping” technique (used in all subsequent
works) that refreshes the ciphertexts by homomorphically computing the decryp-
tion function on encrypted secret key, and bringing the noise of the ciphertexts
back to acceptable levels. This bootstrapping method allows to homomorphically
evaluate arbitrary circuits, but it is also the main bottleneck in any practical
implementation due to the complexity of homomorphic decryption.

Going back to efficiency considerations, the current state of the art in terms
of FHE implementation is represented by the recent HElib of Halevi and Shoup
[23,24], which reported a bootstrapping/refreshing procedure with running times
around 6 minutes. While this is much better than previous implementations,
and a nontrivial amount of computation can be performed in-between refreshing
operations, the fact that even the simplest computation requiring bootstrapping
takes such a macroscopic amount of time makes FHE clearly unattractive.

Our work The goal of this paper is to investigate to what extent the running time
of a useful FHE bootstrapping procedure can be reduced. We do so by analyzing
bootstrapping in vitro, i.e., in the simplest possible setting: given two encrypted
bits Epb1q and Epb2q, we want to compute their logical NAND (or any other
complete boolean operation) and obtain the encrypted result Epb1 ¯̂ b2q in a
form which is similar to the input bits. As in the most recent FHE schemes, here
Ep¨q is just a standard lattice (LWE [32]) encryption scheme. In particular, Epbiq
are noisy encryptions, and the output ciphertext Epb1 ¯̂ b2q is homomorphically
decrypted (i.e., bootstrapped) in order to reduce its noise level back to that of
Epb1q and Epb2q. Our main result is a new boostrapping method and associated
implementation that allows to perform the entire computation (consisting of ho-
momorphic NAND computation and homomorphic decryption/bootstrapping)
in less than a second on a standard (consumer grade) personal computer as
detailed in Section 6.4.

We remark that the problem solved here is definitely simpler than HElib
[23], as we perform only a single bit operation before bootstrapping, while [23]
allows to perform more complex operations. In fact, using complex ciphertexts
packing and homomorphic SIMD techniques, [23] achieves an amortized cost
(per homomorphic bit operation) which we estimate to be in the same order
of magnitude as our solution. The main improvement with respect to previous
work is in terms of granularity and simplicity: we effectively show that half
hour delays are not a necessary requirement of bootstrapped FHE computations,



and bootstrapping itself can be achieved at much higher speeds than previously
thought possible. Another attractive feature of the scheme presented in this
paper is simplicity: we implemented our fully bootstrapped NAND computation
in just a few hundreds lines of code and just a few days of programming effort.

Finally, our methods are not necessarly limited to a single NAND computa-
tion. As a simple extension of our basic scheme we show how to compute (homo-
morphically, and at essentially the same level of efficiency) various other opera-
tions, like majority, threshold gates. This extension also offers xor-for-almost-free
as previous homomorphic schemes. Combining our fast (subsecond) bootstrap-
ping method with other techniques that allow to perform substantially more
complex computations in-between bootstrappings, is left as an open problem.

Techniques Our improvement is based on two main techniques. One is a new
method to homomorphically compute the NAND of two LWE encryptions. We
recall that LWE encryption satisfies certain approximate additive homomorphic
properties. Specifically, given two encryptions Epm1q and Epm2q one can com-
pute a noisier version of Epm1 ` m2q. When working modulo 2, this allows
to homomorphically compute the exclusive-or of two bits. The way we extend
this operation to a logical NAND computation is by moving (during boostrap-
ping) from arithmetic modulo 2 to arithmetic modulo 4. So, adding Epm1q and
Epm2q results in the encryption Epmq of m “ 2 (if m1 ¯̂ m2 “ 0) or m P t0, 1u
(if m1 ¯̂ m2 “ 1). Moving from this ciphertext to the encryption of m1 ¯̂ m2 is
then achieved by a simple affine transformation.

The main advantage of our new homomorphic NAND operation is that it in-
troduces a much lower level of noise than previous techniques. So, the refreshing
procedure (required for bootstrapping) is faced with a much simpler task. Our
second technical contribution builds on a recent method from [2] to implement
and speed up bootstrapping. Decryption of LWE ciphertexts requires essentially
the computation of a scalar product (modulo q) and a rounding operation. So,
homomorphic decryption needs to compute these operations on encrypted data.
The scheme of [2] uses a homomorphic cryptosystem that encrypts integers mod-
ulo q, and allows the efficient computation of scalar products. This is achieved us-
ing a homomorphic encryption scheme for binary messages x P t0, 1u, and encod-
ing elements v P C of a cyclic group as vectors of ciphertexts Epx1q, . . . , Epx|C|q,
where xi “ 1 if and only if i “ v. We introduce a ring variant of the bootstrapping
method of [2] that also supports efficient homomorphic computation of scalar
products modulo q. The use of ring lattices was first suggested3 in [31] to re-
duce the asymptotic computation time of lattice cryptography from quadratic to
quasi-linear (using FFT techniques), and have become a fundamental technique
to bring theoretical lattice constructions to levels of performance that are at-
tractive in practice. Our work uses the LWE instantiation of ring lattices [29,30]
for the efficient implementation of encryption. But our bootstrapping method

3 Similar lattices had previously been used in practice also by the NTRU cryptosys-
tem [25] , but without employing quasi-linear FFT techniques, and no connection to
the worst-case complexity of lattice problems.



goes beyond the use of ring lattices to speed up normal lattice operations. We
also use the ring structure of these lattices to directly implement the encryp-
tion of cyclic groups by encoding the cyclic group Zq into the group of roots of
unity: i ÞÑ Xi where i is a primitive q-th root of unity. This allows to implement
a bootstrapping method similar to [2], but where each cyclic group element is
encoded by a single ciphertext, rather than a vector of ciphertexts.

As a last technique, in order to contain noise generation during key switch-
ing operations, we use LWE instances with binary secrets, which were recently
proved as hard as standard LWE in [7].

Like all previously known schemes, our FHE construction requires (in addi-
tion to standard worst-case lattice intractability assumptions) a circular security
assumption in order to release a compact homomorphic evaluation key, and allow
to combine an arbitrarily large number of homomorphic bit operations.

Organization The rest of the paper is organized as follows. In section 2 we give
some background on lattices and related techniques as used in the paper. In
Section 3 we present a detailed description of the LWE encryption scheme that
we want to bootstrap. The high level structure of our bootstrapped homomorphic
NAND computation is given in Section 4. Section 5 goes into the core of our
new refreshing procedure based on ring lattices. Section 6 describes concrete
parameters, implementation and performance details. Section 7 concludes the
paper with extensions and open problems.

2 Preliminaries

We will use bold-face lower-case letters a,b . . . to denote column vectors over Z
or any other ring R, and boldface upper-case letters A,B . . . for matrices. The
product symbol ¨ will be used for both scalar products of two column vectors,
and for matrix product, to be interpreted as the only applicable one. The norm
} ¨ }, will denote the euclidean norm. When speaking of the norm of a vector v
over the residue ring ZQ of Z modulo Q, we mean the shortest norm among the
equivalence class of v P ZnQ in Zn.

2.1 Distributions

A randomized rounding function χ : RÑ Z is a function mapping each x P R to
a distribution over Z such that χpx ` nq “ χpxq ` n for all integers n. For any
x P R, the random variable χpxq ´ x is called the rounding error of χpxq. As a
special case, when the domain of χ is restricted to Z, we have χpxq “ x` χp0q,
i.e., the randomized rounding function simply adds a fixed “noise” distribution
χp0q to the input x P Z.

A random variable X over R is subgaussian with parameter α ą 0 if for
all t P R, the (scaled) moment-generating function satisfies Erexpp2πtXqs ď
exppπα2t2q. If X is subgaussian, then its tails are dominated by a Gaussian of
parameter α, i.e., Prt|X| ě tu ď 2 expp´πt2{α2q for all t ě 0. Any B-bounded



symmetric random variable X (i.e., |X| ď B always) is subgaussian with pa-
rameter B

?
2π. More generally, we say that a random vector x (respectively,

a random matrix X) is subgaussian (of parameter α) if all its one-dimensional
marginals xu,xy (respectively, utXv) for unit vectors u,v are subgaussian (of
parameter α). It follows immediately from the definition that the concatenation
of independent subgaussian vectors with common parameter α, interpreted as
either a vector or matrix, is subgaussian with parameter α.

2.2 The Cyclotomic Ring

Throughout the paper, we let N be a power of 2 defining the p2Nqth cyclotomic
polynomial Φ2N pXq “ XN `1 and associated cyclotomic ring R “ ZrXs{pXN `

1q. We also write RQ “ R{pQRq for the residue ring of R modulo an integer
Q. Elements in R have a natural representation as polynomials of degree N ´ 1
with coefficients in Z, and R can be identified (as an additive group) with the
integer lattice ZN , where each ring element a “ a0` a1x` . . .` aN´1x

N´1 P R
is associated with the coefficient vector ÝÑa “ pa0, . . . , aN´1q P ZN . We extend
the notation ÝÑ̈ to any vector (or matrix) over R component-wise. We use the
identification R “ ZN to define standard lattice quantities like the euclidean
length of a ring element }a} “ }ÝÑa } “

a

ř

i |ai|
2, or the spectral norm of a

matrix R P Rwˆk of ring elements s1pRq “ supxPRkzt0u }R ¨ x}{}x}.
The ring R is also identified with the sub-ring of anti-circulant square matri-

ces of dimension N by regarding each ring element r P R as a linear transforma-
tion x ÞÑ r ¨ x over (the coefficient embedding) of R. The corresponding matrix

is denoted
ùñ
r P ZNˆN , and its first column is ÝÑr . (The other columns are the

cyclic rotations of ÝÑr with the cycled entries negated.) We extend the notation
ùñ
¨ to vectors and matrices over R: for R P Rwˆk,

ùñ
R P ZNwˆNk is a matrix with

anti-circulant NˆN blocks. Notice that the definition of spectral norm of a ring
element (or a matrice of ring elements) is consistent with the definition of spec-
tral norm of the corresponding anticirculant matrix (or blockwise anti-circulant

matrix): s1prq “ s1p
ùñ
r q and s1pRq “ s1p

ùñ
R q.

We say that a random polynomial a is subgaussian if its associated vector
ÝÑa is subgaussian. The fact that a is subgaussian does not imply that its asso-
ciated anticirculant matrix

ùñ
a is also subgaussian, because its columns are not

independent. Nevertheless, subgaussianity of a ring elements still allows a good
bound on its singular norm. This bound is as small as its non-ring counterpart
as soon as either w or k is larger than ωp

?
logNq.

Fact 1 (Adapted from [12], Fact 6) If D is a subgaussian distribution of pa-
rameter α over R, and R Ð Dwˆk has independents coefficients drawn from D,
then, with overwhelming probability, we have s1pRq ď α

?
N ¨ Op

?
w `

?
k `

ωp
?

logNqq.

Invertibility in R. Invertibility in cyclotomic rings has to be handled with care.
(E.g., see [12].) The main issue is that, for a power-of-two cyclotomic ring R “



ZrXs{pXN ` 1q, the residue ring RQ is never a field whatever the choice of Q.
Yet, for appropriate moduli Q, it is not so far from being a field. More concretely,
for Q a power of 3 most elements in R will be invertible, and so will most of the
square matrices over R as detailed by the following Lemma 4. The lemma uses
the following two facts.

Fact 2 (Irreducible factors of XN ` 1 modulo 3.) For any k ě 3 and N “

2k we have XN ` 1 “ pXN{2 `XN{4 ´ 1q ¨ pXN{2 ´XN{4 ´ 1q mod 3 and both
factors are irreducible in F3rXs.

Proof. This follows directly from [26, Theorem 2.47].

Lemma 3 (Hensel Lemma for powers of prime integers) Let R be the ring
ZrXs{pF pXqq for some monic polynomial F P ZrXs. For any prime p, if u P Rpe

is invertible mod p (i.e. it is invertible in Rp) then u is also invertible in Rpe .

Lemma 4 (Invertibility of random matrices) For Q a power of 3, and any
dimension k, if D is a distribution over RQ such that D mod 3 is (statistically
close to) uniform over R3, then, with overwhelming probability D Ð Dkˆk is
invertible.

Proof. By Fact 2, the ring R3 factors as R3 “ F1ˆF2, where F1 “ R{p3, P1pXq “
XN{2`XN{4´1q and F2 “ R{p3, P2pXq “ XN{2´XN{4´1q are fields of order
q “ #Fi “ 3N{2. Note that D mod p3, PipXqq is (statistically close to) a uniform
random variable over Fkˆki . We recall that the number of invertible matrices
over the field of size q is given by

#GLpk, qq “ qk
2
k´1
ź

i“0

p1´ qi´kq

ě qk
2

p1´
k
ÿ

i“1

q´iq ě qk
2

p1´
1

q

ÿ

iě0

q´iq “ qk
2

p1´
1

q ´ 1
q.

In particular D mod p3, PipXqq is invertible except with probability 1{pq´1q.
By a union bound, D is invertible modulo both p3, P1pXqq and p3, P2pXqq, except
with negligible probability 2{pq´1q “ 2{p3N{2´1q. It follows that D is invertible
modulo 3, and by Hensel lifting (Lemma 3), also modulo Q. Indeed, Hensel
lemma extends to matrices over R, considering that a matrix M P Rkˆk

Q is
invertible if and only if its determinant over RQ is invertible.

3 LWE Symmetric Encryption

We recall the definition of the most basic LWE symmetric encryption scheme
(see [4,32,3]). LWE symmetric encryption is parametrized by a dimension n,
a message-modulus t ě 2, a ciphertext modulus q “ nOp1q and a randomized
rounding function χ : RÑ Z. The message space of the scheme is Zt. (Typically,



the rounding function has error distribution |χpxq ´ x| ă q{2t, and t “ 2 is used
to encrypt message bits.) The (secret) key of the encryption scheme is a vector
s P Znq , which may be chosen uniformly at random, or as a random short vector.
The encryption of a message m P Zt under key s P Znq is

LWEt{qs pmq “ pa, χpa ¨ s`mq{tq mod qq P Zn`1
q (1)

where a Ð Znq is chosen uniformly at random. Notice that when t divides q, the
encryption of m equals pa,a ¨ s ` e `mq{t mod qq, where the error e is chosen
according to a fixed noise distribution χp0q. A ciphertext pa, bq is decrypted by
computing

m1 “ ttpb´ a ¨ sq{qs mod t P Zt. (2)

We write LWEt{qs pmq to denote the set of all possible encryptions of m under s.

The error of a ciphertext pa, bq P LWEt{qs pmq is the random variable errpa, bq “
pb ´ a ¨ s ´ mq{tq mod q describing the rounding error, reduced modulo q to
the centered interval r´q{2, q{2s. Notice that the error errpa, bq depends not just
on pa, bq, but also on s, q, t and m. Also, in the absence of any restriction on

the error, a ciphertext pa, bq P LWEt{qs pmq can be any vector in Zn`1
q . We write

LWEt{qs pm,Eq to denote the set of all ciphertexts c P LWEt{qs pmq with error

bounded by |errpcq| ă E. It is easy to check that for all pa, bq P LWEt{qs pm, q{2tq,
the decryption procedure correctly recovers the encrypted message:

ttpb´ a ¨ sqqs mod t “

Z

t

q
¨

´q

t
m` e

¯

V

“

Z

m`
t

q
e

V

“ m mod t

because t
q |e| ă 1{2.

Modulus switching. LWE ciphertexts can be converted from one modulus Q to
another q using the (scaled) randomized rounding function r¨sQ:q : ZQ Ñ Zq
defined as

rxsQ:q “ tqx{Qu`B

where B P t0, 1u is a Bernoulli random variable with PrtB “ 1u “ pqx{Qq ´
tqx{Qu P r0, 1q. Notice that ErrxsQ:qs “ tqx{Qu ` ErBs “ qx{Q and |rxsQ:q ´

pqx{Qq| ă 1 with probability 1. In particular, the rounding error rxsQ:q´pqx{Qq
is subgaussian of parameter

?
2π. The randomized rounding function is applied

to vectors (e.g., LWE ciphertexts) coordinatewise:

ModSwitchpa, bq “ rpa, bqsQ:q “ ppra1sQ:q, . . . , ransQ:qq, rbsQ:qq. (3)

Lemma 5 For any s P Znq , m P Zt and ciphertext c P LWEt{Qs pmq with subgaus-

sian error of parameter σ, the rounding ModSwitchpcq “ rcsQ:q is a LWEt{qs pmq

ciphertext with subgaussian error of parameter
a

pqσ{Qq2 ` 2πp||s||2 ` 1q.

Proof. Let c “ pa, bq and rcsQ:q “ pa1, b1q. We have a1i “
q
Qai ` ri and b1 “

q
Qb ` r0 for independent subgaussian rounding errors r0 . . . rn of parameter



?
2π. It follows that c1 is an LWEt{qs encryption of m with error errpc1q “

b1 ´ a1 ¨ s ´ qm
t “ pqerrpcq{Qq ` r0 ´

řn
i“1 siri. Since errpcq, r0, . . . , rn are in-

dependent subgaussian variables, their sum is also subgaussian, with parameter
a

pqσ{Qq2 ` 2πp||s||2 ` 1q.

In practice, one may use the non-randomized rounding function t ¨ s. Then,
the error of the ouput of ModSwitch, according to the central limit heuristic is ex-
pected to be close to a gaussian of standard deviation

a

pqσ{Qq2 ` p||s||2 ` 1q{12,
based on the randomness of a. The factor 1{12 comes from the standard devia-
tion of a uniform distribution in r´ 1

2 ,
1
2 s.

Key Switching. Key switching allows to convert an LWE encryption under a key
z P ZNq into an LWE encryption of the same message (and slightly larger error)
under a different key s P Znq . The key switching procedure is parametrized by a
base Bks, and requires as an auxiliary input a suitable encryption of z under s.
Specifically, let ki,j,v P LWEq{qs pvziB

j
ksq be an encryption of vziB

j
ks under z, for

all i “ 1, . . . , N , v P t0, . . . , Bksu and j “ 0, . . . , dks ´ 1, where dks “ rlogBks
qs.

(Notice that the message vziB
j
ks is interpreted as a value modulo t “ q, and

therefore the ciphertext ki,j,v is not typically decryptable because it has error
bigger than q{2t “ 1{2.) Given the switching key K “ tki,j,vu and a ciphertext

pa, bq P LWEt{qz pmq, the key swtching procedure computes the base-Bks expansion
of each coefficient ai “

ř

j ai,jB
j
ks, and outputs

KeySwitchppa, bq,Kq “ p0, bq ´
ÿ

i,j

ki,j,ai,j . (4)

Lemma 6 The key switching procedure, given a ciphertext c P LWEt{qz pmq with

subgaussian error of parameter α, and switching keys ki,j,v “ LWEq{qs pvziB
j
ksq

and subgaussian error of parameter σ, outputs an encryption KeySwitchpc, tki,j,vuq P

LWEt{qz pmq with subgaussian error of parameter
?
α2 `Ndksσ2.

Proof. Let ei,j,v “ errpki,j,vq, so that ki,j,v “ pa
1
i,j,v,a

1
i,j,v ¨ s` vziB

j
ks` ei,j,vq for

some a1i,j,v P Znq . The output of the key switching procedure is KeySwitchpa, bq “
pa1, b1q where a1 “ ´

ř

i,j a1i,j,ai,j and

b1 “ b´
ÿ

i,j

pa1i,j,ai,j ¨ s` ai,jziB
j
ks ` ei,j,ai,j q “ b´ a ¨ z` a1 ¨ s´ E,

where E “
ř

i,j ei,j,ai,j is subgaussian with parameter σ
?
Ndks. It follows that

pa1, b1q has error

errpa1, b1q “ b1 ´ a1 ¨ s´
qm

t
“ b´ a ¨ z´ E ´

qm

t
“ errpa, bq ´ E.

Since errpa, bq and E are both subgaussian, their difference is also subgaussian
with parameter

?
α2 `Ndksσ2.



4 Our FHE: high level structure

In this section we describe the high level structure/design of our fully homo-
morphic (symmetric) encryption scheme. (This private-key FHE scheme can be
transformed into a public-key one using standard techniques.) The encryption
scheme itself is just the standard LWE symmetric encryption described in Sec-
tion 3. For now we focus on encrypting single bits, and evaluating boolean NAND
circuits. In summary, we need to solve the following problem: given two cipher-
texts ci P LWE2{q

s pmiq (for i “ 0, 1), compute a ciphertext c P LWE2{q
s pmq where

m “ 1´m0 ¨m1 “ m0 ¯̂ m1 is the logical NAND of m0 and m1.

4.1 A new Homomorphic NAND gate

The main idea to perform this encrypted NAND computation is to assume that
the input ciphertexts are available in a slightly different form. (We will see later
how to perform the required transformation.) Namely, assume that the input

bits m0,m1 P t0, 1u are encrypted as ciphertexts ci P LWE4{q
s pmi, q{16q using a

slighly different message modulus t “ 4 and error bound E “ q{16. (Compare
to the standard binary LWE encryption parameters t “ 2 and E “ q{4.)

Lemma 7 There is a simple algorithm

HomNAND : LWE4{q
s pm0, q{16q ˆ LWE4{q

s pm1, q{16q Ñ LWE2{q
s pm0 ¯̂ m1, q{4q

that on input two ciphertexts ci P LWE4{q
pmi, q{16q (for i “ 0, 1) encrypting

binary messages m0,m1 P t0, 1u, outputs an encryption HomNANDpc0, c1q P

LWE2{q
pm, q{4q of their logical NAND m “ 1´m0m1 “ m0 ¯̂ m1 with error less

than q{4.

Proof. The NAND of the two ciphertexts ci “ pai, biq can be easily computed as

pa, bq “ HomNANDppa0, b0q, pa1, b1qq “

ˆ

´a0 ´ a1,
5q

8
´ b0 ´ b1

˙

.

(Remember that we assumed for simplicity that 8 “ 2t divides q, and therefore
5q{8 is an integer.) The resulting ciphertext satisfies

b´ as´ p1´m0m1q
q

2
“
q

4
p
1

2
´ pm0 ´m1q

2q ´ pe0 ` e1q “ ˘
q

8
´ pe0 ` e1q.

So, pa, bq “ HomNANDpc0, c1q is a regular LWE2{q
s encryption of 1 ´ m0m1 “

m0 ¯̂ m1 with error at most

ˇ

ˇ

ˇ
˘
q

8
´ pe0 ` e1q

ˇ

ˇ

ˇ
ă
q

8
`

q

16
`

q

16
“
q

4
.



Notice that the HomNAND function can be computed from the input cipher-
texts without using any key material, and it requires just a handfull of additions
modulo q. This shows that in order to compute the NAND of two ciphertexts
(and therefore homomorphically evaluate any boolean circuit on LWE encryp-
tions), it is enough to be able to compute a refreshing function

Refresh : LWE2
spm, q{4q Ñ LWE4

spm, q{16q.

The refreshing function will require some key material, and it will be substan-
tially more expensive of HomNAND, accounting essentially for the whole cost of
homomorphic circuit evaluation. Notice that the number of refresh computations
required to evaluate a circuit with g gates is n ` g (one for each circuit input
and gate-output wire). Assuming that the encrypted input bits are already pro-

vided in refreshed form (e.g., by using the modified LWE4{q
pm, q{16q encryption

scheme), one needs just 1 refresh evaluation per gate, applied to the output of
the gate, rather than 2 evaluation (one for each input into the gate). So, the
computational cost of homomorphically evaluating a NAND gate is essentially
that of a single refresh function computation.

Improvement. Previous methods to compute homomorphic AND gates on LWE
ciphertexts require errors of input to be at most Op

?
qq, against Opqq in our

case. Our technique therefore relaxes the requirement on the Refresh procedure,
potentially making the overall scheme faster.

4.2 Refreshing via Homomorphic Accumulator

We now move to the description of the refreshing function. As in all previous
works on FHE, our ciphertext refreshing is based on Gentry’s bootstrapping
technique of homomorphically evaluating the decryption function. More specif-
ically, in our setting, given an LWE ciphertext pa, bq P LWE2{q

s pmq, we compute
an encryption Epmq of the same message under a different encryption scheme
E by homomorphically evaluating the LWE decryption procedure (2) on the
encrypted key Epsq to yield

t2pb´ a ¨ Epsqq{qs mod 2 » Epmq.

We recall that the final goal of the refreshing function is to obtain an encryp-
tion in LWE4{q

pm, q{16q. However, this target encryption scheme is not versatile
enough to perform the required homomorphic computation. Instead, following
[2], we use an intermediate encryption scheme E with message space Zq, which
allows to encrypt the secret s P Znq componentwise Epsq “ pEps1q, . . . , Epsnqq
and supports the efficient computation of affine transformations b ´ a ¨ Epsq “
Epb´ a ¨ sq. Once this computation is done, it remains to homomorphically ex-
tract the most significant bit of b ´ a ¨ s as an LWE ciphertext. We summarize
our requirements under the following definition. Notice that the definition makes
use of two (typically different) encryption schemes:



– a scheme E, which is used internally by the accumulator, and it is left un-
specified to allow a wider range of possible implementations, and

– a target encryption scheme, which for simplicity we fix to LWEt{q as required
by our application.

The definition is easily generalized to make it parametric also with respect to
the target encryption scheme.

Definition 1 (Homomorphic Accumulator). A Homomorphic Accumula-
tor Scheme is a quadruple of algorithms pE, Init, Incr,msbExtractq together with
moduli t, q, where E and msbExtract may require key material related to an

LWE key s. For brevity, we write ACCÐ v for ACCÐ Initpvq, and ACC
`
Ð Epvq

for ACC Ð IncrpACC, Epvqq. For any v0, v1 . . . v` P Zq, after the sequence of
operations

ACCÐ v0; for i “ 1 to ` do ACC
`
Ð Epviq

we say that we say that ACC is an `-encryption of v, where v “
ř

vi mod q.
A Homomorphic Accumulator Scheme is said E-correct for some function

E if, for any `-encryption ACC of v, computing c Ð msbExtractpACCq ensures

c P LWEt{qs pv, Ep`qq with overwelming probability.

In order to use the accumulator in our refreshing function, we set t “ 4
and we will need Ep`q ď q{16. Note that the correctness requirement assumes
that all ciphertexts added to the accumulator are freshly generated and indepen-
dent. (In particular, although the internal encryption scheme E may enjoy useful
homomorphic properties, the ciphertexts Epviq are generated by a direct appli-
cation of the encryption function E on vi, rather than performing homomorphic
operations on ciphertexts.)

Using this accumulator data structure, we describe a family of refreshing
procedures (exhibiting different space/time trade-offs) parametrized by an in-
teger Br. (The subscript in Br stands for Refresh, and it is used to distin-
guish Br from similar basis parameters used elsewhere in the paper.) The re-

freshing procedure takes as input a ciphertext pa, bq P LWE2{q
s pm, q{4q and a

refreshing key K consisting of the encryptions Ki,c,j “ EpcsiB
j
r mod qq for

c P t0, . . . , Br ´ 1u, j “ 0, . . . , dr ´ 1 (where dr “ rlogBr
qs) and i “ 1, . . . , n.

(In total, nBrdr « npBr{ logBrq log q ciphertexts). It then proceeds as described
in Algorithm 1.

Algorithm 1 RefreshKpa, bq, for K “ tKi,c,juiďn,cďBr,jďdr

ACCÐ b` pq{4q
for i “ 1, . . . , n do

Compute the base-Br representation of ´ai “
ř

j B
j
r ¨ ai,j pmod qq

for j “ 0, . . . , dr ´ 1 do ACC
`
Ð Ki,ai,j ,j

end for
Output msbExtractpACCq.



Theorem 8 If pE, Init, Incr,msbExtractq is a correct Homomorphic Accumulator

Scheme, then the Refresh procedure, on input any ciphertext c P LWE2{q
s pm, q{4q,

and a valid refreshing key K “ tKi,c,j “ EpcsiB
j
r qui,c,j, outputs a ciphertext

RefreshKpcq P LWEt{qs pm, Epndqq.

Proof. The refreshing procedure initializes the accumulator to b` q{4, and then
adds nd (distinct, freshly generated) ciphertexts Ki,ai,j ,j “ Epai,jsiB

j
r q to it.

So, the final output is (with overwhelming probability) an LWE encryption with
error at most Epndq. The implicit value v of the accumulator at the end of the
main loop is

v ´
q

4
“ b`

ÿ

i,j

ai,jsiB
j
r “ b`

ÿ

i

si
ÿ

j

Bjr ai,j “ b`´
ÿ

i

aisi “
q

2
m` e

where e is the error of the input ciphertext pa, bq. Since |e| ă q{4 by assumption,
we have 0 ă e` q{4 ă q{2. If follows that 0 ă v ă q{2 if m “ 0, and q{2 ă v ă q

if m “ 1. Therefore, msbExtractpACCq produces a LWEq{ts pm, Epndqq encryption
as claimed.

5 Homomorphic Accumulator from Ring-GSW

In this section we show how to implement the homomorphic accumulator scheme
needed by our refreshing procedure. As a reminder, the homomorphic accumu-
lator is parametrized by a modulus q “ 2k (which we assume to be a power of
2), an integer t (in our main application, t “ 4), and an encryption scheme E
with message space Zq.

Our construction follows the suggestion of Alperin-Sheriff and Peikert [2]
to generalize their scheme. Essentially, we avoid the costly construction of the
additive group Zq as a subgroup of some symmetric group S` (represented as
permutation matrices). Instead, we directly implement Zq as the multiplicative
(sub)group of the roots of unity of the ring R.

5.1 Description

The scheme is parametrized by a modulus Q, a dimension N “ 2K such that
q divides 2N , and a base Bg. (Here the subscript in Bg stands for gadget.) For

simplicity of the analysis, we will assume that Q “ B
dg
g for some integer dg, and

that Bg is a power of 3. We use the rings R “ ZrXs{pXN`1q and RQ “ pR{QRq
(see Section 2), and an additional parameter u, which should be an invertible
element of ZQ close to Q{2t. Since Q is a power of 3, either tQ{2tu or rQ{2ts is
invertible, and we can let u be one of these two numbers, so that the distance
δ “ u´Q{2t is at most |δ| ă 1.

Messages m P Zq are encoded as roots of unity Y m P R where Y “ X2N{q.
Notice that the roots of unity G “ xXy “ t1, X . . . ,XN´1,´1,´X . . . ,´XN´1u

form a cyclic group, and the message space Zq » xY y is a subgroup of G »

Z2N . Our Homomorphic Accumulator Scheme is based on a variant of the GSW
cryptosystem and works as follows:



– Ezpmq, on input a message m and a key z P R, picks a P R2dg
Q uniformly

at random, and e P R2dg » Z2dgN with a subgaussian distribution χ of
parameter ς, and outputs

Ezpmq “ ra,a ¨ z ` es ` uY mG P R2dgˆ2
Q

where G “ pI, BgI, . . . , B
dg´1
g Iq P R2dgˆ2

Q .

– Init (ACCÐ v), on input v P Zq, simply sets ACC :“ uY v ¨G P R2dgˆ2
Q .

– Incr (ACC
`
Ð C), on input the current accumulator content ACC P R2dgˆ2

Q

and a ciphertext C P R2dgˆ2
Q , first computes the base-Bg decomposition of

u´1ACC “
řdg
i“1B

i´1
g Di (where each Di P R2dgˆ2 has entries with coeffi-

cients in t
1´Bg

2 , . . . ,
Bg´1

2 u), and then updates the accumulator to

ACC :“ rD1, . . . ,Ddg s ¨C.

An efficient algorithm for Incr using FFT/NTT will be detailed in Section 5.3.
– msbExtract (defined by Algorithm 2) uses a key-switching auxiliary input K

(as defined in Section 2) and a testing vector t “ ´
řq{2´1
i“0

ÝÑ
Y i. (On a first

reading, the reader may want to focus on the special case where q “ 2N ,
where the testing vector is just t “ ´p1, 1, . . . , 1q.) The algorithm follows.

The crux of matter for the extraction of the msb is that t ¨
ÝÑ
Y v “ ´1 if

0 ď i ă N , and `1 if N ď i ă 2N .

Algorithm 2 msbExtractKpACCq, for K “ tki,j,wuiďN,jďBks,wďdks

Require: A switching key K “ tki,j,wui,j,w from z to s: ki,j,w Ð LWEq{q
s pw ¨ zi ¨ d

j
ksq.

An accumulator ACC that is an `-encryption of v.

1: rat,bt
s Ð pr

ÝÑ
0

t
, tt,

ÝÑ
0

t
, . . . ,

ÝÑ
0

t
s ¨
ùùùñ
ACC q P Z2N

Q //
ùùùñ
ACC P Z2Ndgˆ2N

2: cÐ pa, b0 ` uq P LWEt{Q
ÝÑz pmsbpvqq

3: c1 Ð KeySwitchpc,Kq P LWEt{Q
s pmsbpvqq

4: c2 Ð ModSwitchpc1q P LWEt{q
s pmsbpvqq

5: Return c1.

Before providing a detailed analysis (Theorem 10) we explain the ideas behind
the definitions of our homomorphic accumulator. As already mentioned, the
scheme is based on a variant of the (private-key, ring-based) GSW encryption
scheme. There are two main differences between our scheme and the original
GSW scheme: the use of the extra parameter u (which plays an important role
in our msb extraction algorithm), and the fact that the messages are encrypted in
the exponent (of Y ). At any point in time, the accumulator data structure holds
the encryption Ezpvq of some value v P Zq under a fixed key z. The initialization
step Init simply sets ACC to a trivial (noiseless) encryption of v. The increment



procedure is similar to the multiplicative homomorphism of the GSW scheme [22].
Since our messages are in the exponent, this provides homomorphic additions of
ciphertexts.

5.2 Correctness

In this subsection we prove that ACC is a correct Homomorphic Accumulator
Scheme for an appropriate error function E . The main result is given in Theo-
rem 10. But first, let us detail the behaviour of individual operations.

The Init operation ACCÐ v sets up ACC to a noiseless encryption of v under
Ez for any secret key z. The homomorphic property of Incr follows from the
following claim.

Fact 9 For any messages m,m1 P Zq, if ACC “ ra,a ¨ z ` es ` uY mG and C “

ra1,a1 ¨z`e1s`uY m
1

G, then ACC
`
Ð C has the form ra2,a2 ¨z`e2s`uY m`m

1

G
for e2 “ e` rC1, . . . ,Cdg s ¨ e

1.

The last operation msbExtract is slightly more intricate. Let us put aside the key
and modulus switching steps, and consider, as in the algorithmic definition of
msbExtract, the vector

“

at, b0
‰

Ð tt ¨
”

ùñ
a ,
ÝÑ
b1
ı

where ra, b1s P R1ˆ2 is the second row of the accumulator ACC P R2dgˆ2. If ACC

is a GSW encryption of a value v, ra, b1s verifies
ÝÑ
b1 “

ùñ
a ¨ÝÑz `u ¨

ÝÝÑ
Y v `e for some

small error e. Let’s write
ÝÝÑ
Y v as the vector xv¨2N{q P ZNQ defined as follows:

xi “
ÝÝÑ
Xi “ p 0 , . . . , 0

looomooon

i´1

, 1, 0 . . . , 0q if i P t0 . . . N ´ 1u, xi “ ´xi´N otherwise.

For i P Z2N , summing all coordinates of xi results in p´1qmsbpiq, and tt ¨
ÝÝÑ
Y v “

´p´1qmsbpvq for any v P Zq. It remains to recall the identity 1´ p´1qx “ 2x for
any bit x P t0, 1u to rewrite

c “ pa, b0 ` uq “ pa,a ¨ÝÑz ` t ¨ e` 2umsbpvqq where a “ tt ¨
ùñ
a ,

which is an LWE
t{Q
ÝÑz encryption of msbpvq since u « Q{2t. We may now move to

the formal correctness statement, including bound on error size.

Theorem 10 Assuming the hardness Ring-LWER,Q,χ the above Homomorphic
Accumulator Scheme is E-correct with error function

Ep`q “

d

q2

Q2

´

ς2B2
g ¨ ` ¨ q ¨Ndg ` σ

2Ndks

¯

` }s}2 ¨ ωp
a

log nq.



We obtain Theorem 10 by combining the following Lemma 11 with the cor-
rectness of Key Switching and Modulus Switching, Lemmata 6 and 5. The hard-
ness assumption is not strictly necessary for correctness, but does simplify the
proof by allowing one to assume that fresh ciphertexts C Ð Ezp¨q behave as
independent uniform random matrices.

Lemma 11 (Intermediate error) Assume the hardness of Ring-LWER,Q,χ,
and let ACC is an `-encryption of v where ` ě ωp

?
logNq. Then the cipher-

text c P LWEt{Qz pmsbpvqq as define in line 2 of algorithm 2 while computing
msbExtractpACCq has an error errpcq which is a subgaussian with variable pa-
rameter β and mean 2δ under the randomness used in the calls to Ezp¨q, for
β “ OpςB

a

q ¨Ndg ¨ `q.

Let us start with the following fact.

Fact 12 (Spectral Norm of Decomposed Matrices) Let Cpiq Ð Ezpv
piqq

be fresh encryptions of vpiq P Zq for all i ď ` “ ωp
?

log nq, and assume that the
Cpiq’s are indistinguishable from random without the knowledge of z. Consider
ACCp`q as the value of ACC after the sequence of operations:

ACCÐ vp0q; for i “ 1 . . . ` do ACC
`
Ð Cpiq.

Set Dpiq “ rD1 . . .Ddg s to be the decomposition of u´1ACCpiq “
řdg
j“1B

j´1
g Dj.

Then, with overwhelming probability we have

s1

´”

Dp0q,Dp1q . . . ,Dp`´1q
ı¯

“ OpBg

a

Ndg ¨ `q.

Proof. Because the spectral norm s1prD
p0q,Dp1q . . . ,Dp`´1qsq is efficiently com-

putable from the Cpiq’s, we can assume without loss of generality that the Cpiq’s
are truly uniformly random. We prove by induction on ` that

1. for 1 ď i ď `, the Dpiq’s follow independents uniform distributions in

R2dgˆ2dg
rBgs

where RrBgs is the set of polynomials with coefficients in t
1´Bg

2 . . .
Bg´1

2 u.

2. for 0 ď i ď `, Dpiq is invertible with overwhelming probability.

The implication 1.ñ 2. follows from Lemma 4. Indeed the uniform distribu-
tion over RrBgs is still a uniform distribution when taken mod3 since 3 divides

Bg. Note that Dp0q “ Y v0 ¨ I2D is invertible.
We may now start the induction and assume that Dp`´1q is invertible. It

follows that ACCp`q “ Dp`´1q ¨ Cp`q is uniformly random in R2dgˆD
Q and inde-

pendent of all Dpiq for i ă `. We conclude the induction using the fact that the

decomposition step is a bijective map R2dgˆ2
Q Ñ R2dgˆ2dg

rBgs
.

The coefficients of D “ rDp1q . . . ,Dp`´1qs P R2dgˆ2dg` are independents sub-
gaussian variables with parameter OpBgq. It follows by lemma 1 that

s1p
”

Dp0q,Dp1q . . . ,Dp`´1q
ı

q ď OpBg

a

Ndg ¨ `q.



Proof (of Lemma 11). Applying ` times Fact 9, we can show that ACCp`q has
the form

ACCp`q “ rA,A ¨ z ` es ` uXvG with e “
ÿ̀

i“1

Dpi´1qepiq

where epiq is the error used in the encryption Cpiq Ð Ezpv
piqq. The final error in

c is e “ r
ÝÑ
0
t
, tt,

ÝÑ
0
t
, . . . ,

ÝÑ
0
t
s ¨ ÝÑe . We rewrite

e “
”

ÝÑ
0
t
, tt,

ÝÑ
0
t
, . . . ,

ÝÑ
0
t
ı

¨

ùùùùùùùùùùùùùùùñ”

Dp0q, . . . ,Dp`´1q
ı

¨

ÝÝÝÝÝÝÝÝÝÝÝÑ´

ep1q, . . . , ep`q
¯

.

Recall that }t} “
a

q{2, and by Fact 12, we have that
ùùùùùùùùùùùùùùñ
rDp0q, . . . ,Dp`´1qs

has spectral norm OpBg

a

Ndg ¨ `q. We can rewrite e “ v ¨
ÝÝÝÝÝÝÝÝÝÝÝÑ
pep1q, . . . , ep`qq

where }v} “ OpBg

a

q ¨Ndg ¨ `q and
ÝÝÝÝÝÝÝÝÝÝÝÑ
pep1q, . . . , ep`qq is a subgaussian vector

of parameter ς. We conclude that the final error is subgaussian of parameter
β “ OpςBg

a

qNdg ¨ `q.

5.3 Efficient Accumulator Increment

To efficiently implement the accumulator increment Incr, one needs to keep the
accumulator ACC, as well as the precomputed ciphertexts from the bootstrapping
key, in FFT/NTT format.

Algorithm 3 IncrpzACC P pR2dgˆ2, pC P pR2dgˆ2q

Compute ACCÐ FFT´1
pzACCq

Decompose u´1ACC “
řdg

i“1 B
i´1
g Di, and set D “ rD1 . . .Ddg s P R2dgˆ2dg

Compute pDÐ FFTpDq
Return pDd pC

Each increment requires 4dg backward FFT’s and 4d2g forward FFT’s. If
one uses the Number Theoretic Transform rather than the complex FFT, 4dg
forward transforms can be traded for a few additions modQ by computing pD1 “

u´1
zACC´

řdg
i“2B

i´1
g ¨ pDi mod Q.

5.4 Asymptotic parameters and efficiency

Secret keys and errors. We choose the secret key s of the LWE scheme to be
binary in order to minimize the final error parameter Epndq that depends on
}s} (Theorem 10). The hardness of LWE for such a distribution of secrets was
established in [7]. The randomized rounding used for errors in the switching key



ki,j,v Ð LWEq{qs pv ¨ zi ¨ d
j
ksq, is χσpxq “ DZ,x,σ, the discrete gaussian of standard

deviation σ centered in x.

The secret z P R of the Ring-GSW scheme follows the discrete gaussian dis-
tribution χςp0q, and the errors follow the gaussian randomized rounding function
χς .

Parameters. For simplicity, we take the base Bg, Br, Bks “ Θp1q to be fixed,
which sets dg, dr, dks “ Oplog nq provided that q,Q “ polypnq. Error parameters
are set to σ, ς “ ωp

?
log nq. For the dimension of the Ring-GSW scheme, we take

2N “ q “ Θpnq. It remains to set Q “ n2 ¨ log n ¨ ωplog nq, and we obtain a
refreshing error Epndq “ Opnq ď q{16.

Efficiency and comparison. The running time of the Refresh operation is domi-
nated by dn homomorphic operations. For comparison, the scheme of [2] requires
dn ¨Oplog3 q{ log log qq homomorphic operations.

In practice this polylogarithmic is far from negligible, e.g. q “ 2 ¨3 ¨5 ¨7 ¨11 “
2310 gives a factor 22`32`52`72`112 “ 208. Memory usage is also decreased
by a factor Oplog2 q{ log log qq, that is a factor 28 in our previous example.

Also, we do not rely on randomized decomposition for the increment opera-

tion ACC
`
Ð C. While this randomization is asymptotically less expensive than

the FFT step by a factor logN , avoiding it makes the implementation simpler
and potentially faster considering the cost of randomness in practice.

Finally, our Refresh procedure (before key and modulus switching) produces
a ciphertext with subgaussian error of parameter α “ Opn2 log nq in our scheme
against α “ Θpn5{2 log3 n{log log nq in [2].

LWE4{q
s pm1, q{16q

LWE4{q
s pm2, q{16q

NAND LWE2{q
s pm, q{4q

LWE4{Q
ÝÑz pm, E1pndrqq

ACC operations

LWE4{Q
s pm, E2pndrqq

KeySwitch

LWE4{q
s pm, Epndrqq

ModSwitch

Fig. 1: Cycle for a simple NAND gate, using the Homomorphic property of Sec-
tion 3



6 Parameters, Implementation and Benchmark

We start by presenting the methodology to evaluate the security of our scheme
in Section 6.1, propose parameters in Section 6.2, discuss FFT implementation
details in Section 6.3 and conclude with the benchmarks in Section 6.4.

6.1 Security estimation

The security estimate methodology follows the analysis of [27]. To build an ε-
distinguisher against LWE in dimension n, modulus q and a randomized rounding
function χ of standard deviation σ, Lindner and Peikert estimate that the best
known attack by lattice reduction requires to achieve a root Hermite factor of

δ “ δ-LWEpn, q, σ, εq “ 2plog
2
2 ρq{p4n log2 qq where ρ “ pq{σq ¨

a

2 lnp1{εq (5)

To estimate the security of binLWEn,q,σ, going through the security reduction
of [7] would be a very pessimistic approach. Still, binLWEn,q,σ doesn’t enjoy as
much concrete security as LWEn,q,σ. Indeed, binary secrets allow an attacker to
switch to a smaller modulus q1 without affecting the relative error 1{ρ much
(which is actually the property we exploit for the correctness of our scheme).
Indeed, switching from modulus q to q1, one obtains essentially binLWE samples
with errors parameter σ1 “

a

pq1{qq2σ2 ` }s}{12 « σq1{q, following Lemma 5.
For comparison, such modulus switch on usual LWE produces errors of parameter
σ1 “

a

pq1{qq2σ2 ` σ2Opnq « σ
?
n.

In light of this attack, we compute the root Hermite factor for binLWE as
follows:

δ-binLWEpn, q, σ, εq “ min
q1ďq

δ-LWEpn, q1, σ1 “
a

pq1{qq2σ2 ` n{24, εq. (6)

Such minimum will be computed using standard numerical analysis tools for
the security estimation of our set of parameters below.

6.2 Proposed Parameters

Relaxed constraints on Bg and Q. In practice we will ignore the constraints of the
correctness statement (Theorem 10) that Bg is a power of 3 and Q is a power
of Bg. Those constraints are artifact of our proofs, we will only require that

B
dg
g ě Q. We have verified that in practice this relaxation does not signficantly

affects the distribution of errpRefreshpcqq.

Accumulated Errors. According to the central limit heuristic, the final error
errpRefreshpcqq of a refreshed ciphertext behaves as a Gaussian of standard de-
viation:

β “

d

q2

Q2

ˆ

ς2 ¨
B2

r

12
¨ ndr ¨

q

2
¨ 2Nd1 ` σ2Ndks

˙

`
}s}2 ` 1

12
.



The factors 1
12 follows from the fact that a uniform random variable in r- 12 ,

1
2 s

has variance 1
12 .

The factor 2d1 (instead of 2dg) takes account that the final coordinate of a

decomposition of an element modQ over base Bg is bounded by Q{2B
dg
g rather

than Bg{2. Therefore we set d1 “ Bg ´ 1 `Q{B
dg
g (in the following parameters

we have d1 “ 2.5 instead of dg “ 3).
Additionally, we assume that }s} ď n{2, which is true for half of the random

secrets s P t0, 1un. If not, one may simply discard this s during key generation
and resample a fresh secret key. To thwart an attack that would shift all co-
ordinates of s by ´1{2, we also randomize the signs of each entry of s, which
intuitively, can only increase the security (and does not affect the error analysis).

We evaluate the error probability as the probability that two independently
refreshed ciphertexts c1, c2 verify |errpc1q`errpc2q| ă q{8, which is sufficient but
looser than |errpciq| ă q{16.

Parameters.

LWE parameters: n “ 500 Q “ 232, σ “ 217, q “ 29.
Ring-GSW parameters: N “ 210, ς “ 1.4.

Gadget Matrix: Bg “ 211, dg “ 3, u “ Q
8 ` 1.

Bootstrapping Key parameters: Br “ 23, dr “ 2.
Key Switching Key parameters: Bks “ 24, dks “ 7.

Efficiency.

Bootstrapping Key Size: 4nNdrBrdg log2Q bits “ 1032 MBytes.
Key Switching Key Size: nNBksdks log2Q bits “ 314 MBytes.
FFTs per NAND gate: 4ndrdgpdg ` 1q “ 48, 000 FFTs.

Correctness.

Final error parameter: β “ 6.94.

Pr. of error per NAND: p “ 1´ erfpr{
?

2q ď 2´31 where r “ q{8
?
2β

.

The error probability can be brought down to 2´45 by applying the HomNAND
operation before KeySwitch and ModSwitch.

Security.

Security of the LWE scheme δ-binLWEpn,Q, σ, 2´64q “ 1.0064.
Security of the Ring-GSW scheme δ-LWEpN,Q, ς, 2´64q “ 1.0064.

The security of the Ring-GSW scheme is evaluated ignoring the ring structure,
since there are yet no known algorithms that exploit such structure.

According to the predictions of [10], the BKZ algorithm requires a block size
greater than 190 to reach a root hermite factor of 1.0065. For such block size,
each of the many calls to the enumeration routine would visit more than 2100

nodes of the pruned enumeration tree. This is to be considered as a preliminary
security analysis, demonstrating the feasibility of our construction. For a more
precise security analysis, one should include the more involved results of Liu and
Nguyen [28], and any new advances on lattice cryptanalysis.



6.3 FFT implementation

To avoid implementation technicalities related to working in a prime field FQ
and potentially expensive reduction modQ, we choose to rely on the complex
FFT rather than the Number Theoretic Transform, that is, we use the complex
primitive 2N -th root of unity ω “ expp2πı{2Nq rather than a primitive root in
FQ. This allows us to rely on a flexible and optimized library for FFT, namely,
the Fastest Fourier Transform in the West [13] and choose Q as a power of two,
essentially offering reductions modQ for free.

Technically, one wishes to compute the so-called negacyclic-FFT of rank N ,
which can be extracted from the FFT in rank 2N by only keeping the odd
indexes of the result. Nevertheless, a factor 2 is saved considering that we are
computing FFT on real-data.

Due to vectorized instructions, this implementation of FFT at double-precision
reaches up to 6 Gflops on a single 64-bits Intel Core running at 3 Ghz. We mea-
sure a running time of 10 microseconds per FFT at dimension 2N “ 2048; which
fits the predictions4. While it is unclear if either the choice of FFT over NTT
is optimal, or if this particular implementation is, this prototype is enough to
support our claim.

Precision issues. One crucial question when using complex FFT is the precision
requirement. In our case (see Section 5.3), FFT is used to multiply two integer
polynomials with coefficients in ZQ, yet one of them is guaranteed to have co-
efficients smaller than Bg{2. Without reduction modQ, the resulting product is
expected to have coefficients of size S “ BgQ

?
N{4. The final result is guaran-

teed to be correct if the final relative error ε verifies Sε ď 1{2. For our set of
parameters, we have S “ 246.

Asymptotically, the relative error growth during FFT is known to beOplogNq
in the worst case and Op

?
logNq on average [14,33]. In practice, at double preci-

sion (ε0 “ 2´54 relative error for each operation) FFTW [13] in rank 2N “ 2048
is reported5 to produce errors of standard deviation ε “ 2´52 (which match
« ε0 ¨

?
logN). It seems barely sufficient to ensure perfect correctness of each

computation of a products of polynomials. Yet, if small errors are introduced by
floating-point approximations, this doesn’t necessary breaks the correctness of
the scheme. Indeed, this errors can simply be considered as a small extra error
term introduced at each operation on the accumulator.

A formal claim would require a more detailed study. The fact that our im-
plementation works in practice, and that the measurements of errors fit our
prediction is sufficient for our purpose.

6.4 Benchmark and Source Code

Our implementation performs a HomNAND and a Refresh operation every 0.69
seconds on a single 64-bits Intel core at 3GHz, which conforms to our prediction

4 http://www.fftw.org/speed/
5 http://www.fftw.org/accuracy/

http://www.fftw.org/speed/
http://www.fftw.org/accuracy/


of 0.5 seconds from the count of FFT operations (the key switching step is having
non negligible cost because it hasn’t been vectorized yet). It consumes 2.2Gbytes
of memory, which is approximately twice the prediction. This is explained by the
fact that for efficiency, the Bootstrapping Key is stored in FFT form, at double
precision.

We can expect those performance figures to be improved by further imple-
mentation efforts. Yet, our prototype implementation already performs within
one order of magnitude of the amortized cost of bootstrapping in HElib [23]. A
more precise comparison is hard to state considering our scheme has a different
security parameters, and does not offers the same set of gates. Sophisticated
benchmarking would not be very useful until this new scheme is optimized and
generalized to reach its full potential.

The source code is reasonably concise and simple, consisting of about 600
lines of C++ code, excluding the library FFTW. It is available on github [11].

7 Extensions, Conclusions and Future Work

We have shown that a complete bootstrappable homomorphic computation can
be performed in a fraction of a second, much faster than any previous solution.
We achieved the result by addressing the simplest form of bootstrappable com-
putation (the computation of a single binary gate that is complete for boolean
circuits), and introducing new techniques for this homomorphic computation.
We remark that the techniques presented in the paper are not limited to NAND
gates. For example, it is immediate to extend our solution to compute a major-
ity gate that on input 3 bits x1, x2, x3 P t0, 1u, outputs 1 if at least two of the
inputs are 1, and 0 if at least two of the inputs are zero. To see this, recall that
our solution to the NAND problem resorted to viewing bits are integers modulo
t “ 4, and then encoding the NAND operation in terms of addition. Still using
arithmetic modulo 4, one can compute the majority of x1, x2, x3 by taking the
sum y “ x1 ` x2 ` x3 P t0, 1, 2, 3u, and checking if the result is at least 2. The
final test is easily performed by applying our most significant bit extraction pro-
cedure to the shifted sum y´ 0.5. As we are adding three input ciphertexts, this
may require slighly smaller noise, but the computation is almost identical to the
NAND gate described in this paper.

This can be further generalized to (weigthed) threshold gates
ř

i wixi ą h,
where the number of inputs, weigths wi and the threshold h are arbitrary, by
using arithmetic modulo a larger t ą 2

ř

|wi|.

Further generalizations are possible by replacing our msbExtract procedure
with a more complex test that checks membership for many subsets of Zt. Pre-
cisely, membership test may be extended to any anti-symmetric set S Ă Zt
(x P S ô x` t

2 R S). For example, with t “ 6 arbitrary large xor’s x1‘ . . . ‘xk
can be performed in just one Refresh operation using the membership test
x1 ` . . . ` xk mod 6 P t1, 3, 5u. With this generalization, our technique also
offers xor-for-almost-free, as in previous FHE schemes.



Additionally, taking weighted linear combinations of k input bits
ř

i 2ixi,
and checking membership in subsets of Z2k`2 , one can (at least in principle)
implement arbitrary boolean gates (adders, S-boxes, etc.), but the complexity
grows exponentially in the number of inputs k.

We also remark that since the membership test is much less expensive than
the rest of the Refresh procedure, one may test several function of the same input
for almost free. In other words, gates with several outputs would not be much
more expensive than gates with only one output. For t “ 6, this already allows
to perform an add-with-carry gate (3 inputs, 2 outputs) in a single shot (instead
of 5 using binary gates).

Fully exploring the use of our techniques to realize more complex gates is
left to future work. Other interesting open problems are finding ways to fully
exploit the message space offered by ring LWE encryption in our accumulator
implementation, and combining our framework with the CRT techniques of [2].

Acknowledgments

The authors wish to thank Igors Stepanovs for interesting conversations about
circular security that lead us to the new homomorphic NAND procedure, as well
as the anonymous EUROCRYPT’15 reviewers for their careful reading of the
paper and their diligent comments.

References

1. J. Alperin-Sheriff and C. Peikert. Practical bootstrapping in quasilinear time. In
R. Canetti and J. A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS,
pages 1–20. Springer, Aug. 2013.

2. J. Alperin-Sheriff and C. Peikert. Faster bootstrapping with polynomial error.
In J. A. Garay and R. Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of
LNCS, pages 297–314. Springer, Aug. 2014.

3. B. Applebaum, D. Cash, C. Peikert, and A. Sahai. Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In S. Halevi,
editor, CRYPTO 2009, volume 5677 of LNCS, pages 595–618. Springer, Aug. 2009.

4. A. Blum, M. L. Furst, M. J. Kearns, and R. J. Lipton. Cryptographic primitives
based on hard learning problems. In D. R. Stinson, editor, CRYPTO’93, volume
773 of LNCS, pages 278–291. Springer, Aug. 1993.

5. Z. Brakerski. Fully homomorphic encryption without modulus switching from
classical GapSVP. In R. Safavi-Naini and R. Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 868–886. Springer, Aug. 2012.

6. Z. Brakerski, C. Gentry, and S. Halevi. Packed ciphertexts in LWE-based homo-
morphic encryption. In K. Kurosawa and G. Hanaoka, editors, PKC 2013, volume
7778 of LNCS, pages 1–13. Springer, Feb. / Mar. 2013.

7. Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé. Classical hardness
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