
Multi-Input Functional Encryption?

Shafi Goldwasser1,??, S. Dov Gordon2, Vipul Goyal3, Abhishek Jain4,
Jonathan Katz5,? ? ?, Feng-Hao Liu5, Amit Sahai7,†, Elaine Shi5,‡, and

Hong-Sheng Zhou9,§

1 MIT and Weizmann. shafi@csail.mit.edu
2 Applied Communication Sciences. sgordon@appcomsci.com

3 Microsoft Research, India. vipul@microsoft.com
4 Boston University and MIT. abhishek@csail.mit.edu

5 University of Maryland. jkatz, fenghao, elaine@cs.umd.edu
6 UCLA. sahai@cs.ucla.edu

7 Virginia Commonwealth University. hszhou@vcu.edu

Abstract. We introduce the problem of Multi-Input Functional En-
cryption, where a secret key skf can correspond to an n-ary func-
tion f that takes multiple ciphertexts as input. We formulate both
indistinguishability-based and simulation-based definitions of security
for this notion, and show close connections with indistinguishability and
virtual black-box definitions of obfuscation.
Assuming indistinguishability obfuscation for circuits, we present con-
structions achieving indistinguishability security for a large class of
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settings. We show how to modify this construction to achieve simulation-
based security as well, in those settings where simulation security is
possible.

1 Introduction

Traditionally, encryption has been used to secure a communication channel
between a unique sender-receiver pair. In recent years, however, our networked
world has opened up a large number of new usage scenarios for encryption. For
example, a single piece of encrypted data, perhaps stored in an untrusted cloud,
may need to be used in different ways by different users. To address this issue, the
notion of functional encryption (FE) was developed in a sequence of works [19,
13, 7, 14, 15, 6, 16, 18]. In functional encryption, a secret key skf can be created
for any functions f from a class F ; such a secret key is derived from the master
secret key MSK. Given any ciphertext c with underlying plaintext x, using SKf a
user can efficiently compute f(x). The security of FE requires that the adversary
“does not learn anything” about x, other than the computation result f(x).

How to define “does not learn anything about” x is a fascinating question
which has been addressed by a number of papers, with general formal definitions
first appearing in [6, 16]. The definitions range from requiring a strict simulation
of the view of the adversary, which enlarges the range of applications, but has
been shown to necessitate a ciphertext whose size grows with the number of
functions for which secret keys will ever be released [1] (or a secret key whose
size grows with the number of ciphertexts that will ever be released [6]), to an
indistinguishability of ciphertexts requirement which supports the release of an
unbounded number of function keys and short ciphertexts.

Functional encryption seems to offer the perfect non-interactive solution to
many problems which arise in the context of delegating services to outside
servers. A typical example is the delegation of spam filtering to an outside server
as follows: Alice publishes her public key online and gives the spam filter a key for
the filtering function; Users sending email to Alice will encrypt the email with her
public key. The spam filter can now determine by itself, for each email, whether
to pass it along to Alice’s mailbox or to deem it as spam, but without ever
learning anything about Alice’s email (other than the fact that it was deemed
a spam message or not). This example inherently requires computing a function
f on a single ciphertext.

Multi-Input Functional Encryption. It is less clear, however, how to define or
achieve functional encryption in the context of computing a function defined
over multiple plaintexts given their corresponding ciphertexts, or further, the
computation of functions defined over plaintexts given their ciphertexts each
encrypted under a different key. Yet, these settings, which we formalize as Multi-
Input Functional Encryption, encompass a vast landscape of applications, going
way beyond delegating computation to an untrusted server or cloud.

Let us begin by clarifying the setting of Multi-Input Functional Encryption:
Let f be an n-ary function where n > 1 can be a polynomial in the security
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parameter. We begin by defining multi-input functional encryption where the
owner of a master secret key MSK can derive special keys SKf whose knowledge
enables the computation of f(x1, . . . , xn) from n ciphertexts c1, . . . , cn of
underlying messages x1, . . . , xn with respect to the same master secret key MSK.
We next allow the different ciphertexts ci to be each encrypted under a different
encryption key EKi to capture the setting in which each ciphertext was generated
by an entirely different party.

Let us illustrate a few settings in which one would want to compute a function
over multiple plaintexts given the corresponding ciphertexts.

Example: Multi-input symmetric-key FE can be used for secure searching over
encrypted data, where it can function in the same role as order-preserving
encryption (OPE) [4, 5] or, more generally, property-preserving encryption [17].
A direct application of our construction yields the first OPE scheme to satisfy the
indistinguishability notion of security proposed by Boldyreva et al. [4], resolving
a primary open question in that line of research. More specifically, consider a
setting in which a client uploads several encrypted data items c1 = Enc(x1),
. . . , cn = Enc(xn) to a server. If at some later point in time the client wants to
retrieve all data items less than some value t, the client can send c∗ = Enc(t)
along with a secret key SKf for the (binary) comparison function. This allows the
server to identify exactly which data items are less than the desired threshold t
(and send the corresponding ciphertexts back to the client), without learning
anything beyond the relative ordering of the data items. In fact, we can hide
even more information than OPE: if the client tags every data item with a ‘0’
(i.e., uploads ci = Enc(0‖xi)) and tags the search term with a ‘1’ (i.e., sends
c∗ = Enc(1‖t)), then the client can send SKf for the function

f(b‖x, b′‖t) =

{
x < t b = 0, b′ = 1

0 otherwise

Thus, SKf allows comparisons only between the data items and the threshold,
but not between the data items themselves. More generally, the same approach
can be followed to enable arbitrary searches over encrypted data while revealing
only a minimal amount of information. We note also that the search query itself
can remain hidden as well.

More generally, suppose Alice wishes to perform a certain class of general
SQL queries over this database. If we use ordinary functional encryption, Alice
would need to obtain a separate secret key for every possible valid SQL query,
a potentially exponentially large set. Multi-input functional encryption allows
us to address this problem in a flexible way. We highlight two aspects of how
Multi-Input Functional Encryption can apply to this example:

– Let f be the function where f(q, x) first checks if q is a valid SQL query
from the allowed class, and if so f(q, x) is the output of the query q on the
database x. Now, if we give the secret key SKf and the encryption key ek1
to Alice, then Alice can choose a valid query q and encrypt it under her
encryption key EK1 to obtain ciphertext c1. Then she could use her secret



4 Authors Suppressed Due to Excessive Length

key SKf on ciphertexts c1 and c2, where c2 is the encrypted database, to
obtain the results of the SQL query.

– Furthermore, if our application demanded that multiple users add or
manipulate different entries in the database, the most natural way to build
such a database would be to have different ciphertexts for each entry in the
database. In this case, for a database of size n, we could let f be an (n+ 1)-
ary function where f(q, x1, . . . , xn) is the result of a (valid) SQL query q on
the database (x1, . . . , xn).

1.1 This paper

This paper is a merge of two independent works, both of which can be found
online [10, 12]. These two works contain many overlapping results dedicated to
the study of multi-input functional encryption, starting with formalizations of
security. In them, the authors provide both feasibility results and negative results
with respect to different definitions of security. Following the single-input setting,
they consider two notions of security, namely, indistinguishability-based security
(or IND security for short) and simulation-based security (or SIM security for
short). Below we summarize only what appears in this proceedings, and refer
the reader to the full versions for a more complete study of the subject.

Indistinguishability-based security. We start by considering the notion of
indistinguishability-based security for n-ary multi-input functional encryption:
Informally speaking, in indistinguishability security for multi-input functional
encryption, we consider a game between a judge and an adversary. First, the
judge generates the master secret key MSK, evaluation keys {EK1, . . . ,EKn},
and public parameters, and gives to the adversary the public parameters and
a subset of evaluation keys (chosen by the adversary). Then the adversary can
request any number of secret keys SKf for functions f of the adversary’s choice.
Next, the adversary declares two “challenge vectors” of sets X0 and X1, where
Xb
i is a set of plaintexts. The judge chooses a bit b at random, and for each

i ∈ [n], the judge encrypts every element of Xb
i using evaluation key eki to

obtain a tuple of “challenge ciphertexts” C, which is given to the adversary.
After this, the adversary can again request any number of secret keys SKf for
functions f of the adversary’s choice. Finally, the adversary has to guess the bit
b that the judge chose.

If the adversary has requested any secret key SKf such that there exist
vectors of plaintexts x0 and x1 where for every i ∈ [n], either xbi ∈ Xb

i or the
adversary has EKi, such that f(x0) 6= f(x1), then we say that this function f
splits the challenge, and in this case the adversary loses – because the legitimate
functionalities that he has access to already allow him to distinguish between the
scenario where b = 0 and b = 1. If the adversary has never asked for any splitting
function, and nevertheless the adversary guesses b correctly, we say that he wins.
The indistinguishability-based security definition requires that the adversary’s
probability of winning be at most negligibly greater than 1

2 .
This definition generalizes the indistinguishability-based definition of (single-

input) functional encryption, which was historically the first security formaliza-
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tion considered for functional encryption [19]. Informally speaking, this definition
captures an information-theoretic flavor of security, where the adversary should
not learn anything beyond what is information-theoretically revealed by the
function outputs it can obtain.

With regard to the indistinguishability notion of security, we obtain the
following results:

– Indistinguishability-based security implies indistinguishability ob-
fuscation, even for single-key security. We show that the existence of
a multi-input functional encryption scheme achieving indistinguishability-
based security for all circuits implies the existence of an indistinguishability
obfuscator [2] for all circuits, even when security is only needed against an
adversary that obtain a single secret key, and where the adversary does not
receive any evaluation keys. This stands in stark contrast to the single-
input setting, where [18] showed how to obtain single-key secure (single
input) functional encryption for all circuits, under only the assumption that
public-key encryption exists. Indeed further research in single-key security
for functional encryption has largely focused on efficiency issues [11] such as
succinctness of ciphertexts, that enable new applications. In the setting of
multi-input security, in contrast, even single key security must rely on the
existence of indistinguishability obfuscation.

– Positive Result, General Setting On the other hand, if we assume
that an indistinguishability obfuscator for general circuits exists with sub-
exponential security (the first candidate construction was recently put
forward by [9]), and we assume that sub-exponentially secure one-way
functions exist, then we obtain full indistinguishability-based security for
any polynomial-size challenge vectors, with any subset of evaluation keys
given to the adversary. Furthermore, our construction has security when
the adversary can obtain any unbounded polynomial number of secret
keys SKf . Our result is obtained by first achieving selective security,
where the adversary must begin by declaring the challenge vectors, using
indistinguishability obfuscation and one-way functions (leveraging the results
of [20]). Then we use complexity leveraging to obtain full security in a
standard manner.

– Positive Result, Symmetric Key Setting We consider a special case
where the adversary is not given any of the evaluation keys, corresponding
to a typical symmetric key setting. As an example, this can be useful in
a scenario where a single user wishes to outsource their private dataset to
one or more untrusted servers, issuing keys to facilitate searches over the
data. In this setting, we give a construction with succinct ciphertexts whose
size is dependent only on the security parameter, and not on the number
of challenge plaintexts. We remark that the size of the public parameters,
which are used in encryption and decryption, still grows with the number of
challenge plaintexts. We refer the reader to the full versions [10, 12] for ways
to remove this dependency.
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– Positive Result, Isolated Time-steps We consider one last setting where
each party encrypts a single plaintext in every time-step, and we modify the
security definition to prevent the computation on ciphertexts from different
time-steps. In this setting, as above, the adversary can request any subset
of the evaluation keys. We give a construction that has succinct ciphertexts,
dependent only on the security parameter, and independent of the number
of time-steps or the number of challenge plaintexts. (The remark about the
public parameters that appears above still applies.)

Simulation-based security. In simulation-based security, informally speaking,
we require that every adversary can be simulated using only oracle access to the
functions f for which the adversary obtains secret keys, even when it can obtain
a set of “challenge” ciphertexts corresponding to unknown plaintexts – about
which the simulator can only learn information by querying the function f at
these unknown plaintexts. We highlight two natural settings for the study of
simulation security for multi-input functional encryption: (1) the setting where
an adversary has access to an encryption key (analogous to the public-key
setting), and (2) the setting where the adversary does not have access to any
encryption keys (analogous to the secret key setting). The security guarantees
which are achievable in these settings will be vastly different as illustrated below.

Several works [6, 1, 3] have shown limitations on parameters with respect
to which simulation-based security can be achieved for single-input functional
encryption. For multi-input functional encryption, due to the connection to
obfuscation discussed above, the situation for simulation-based security is more
problematic. Indeed, it has been a folklore belief that n-ary functional encryption
with simulation-based security would imply Virtual Black-Box obfuscation,
which is known to be impossible [2]. We strengthen and formalize this folklore
in three results:

– In the setting where the adversary receives only a single key for a single n-
ary function, and receives no evaluation keys, and where the adversary can
obtain a set of challenge ciphertexts that can (informally speaking) form a
super-polynomial number of potential inputs to f , if simulation security is
possible then virtual black-box obfuscation must be possible for arbitrary
circuits, which is known to be impossible [2]. This follows immediately from
the same construction that shows the connection of indistinguishability-
based security to indistinguishability obfuscation mentioned above, and most
directly formalizes the folklore belief mentioned above.

– In the setting where the adversary receives only a single key for a 2-ary
function, and receives one evaluation key and one challenge ciphertext, if
simulation security is possible then virtual black-box obfuscation must be
possible for arbitrary circuits, which is known to be impossible [2].

– The above results demonstrate that we cannot achieve simulation security
for arbitrary multi-input functions. Looking at which functions we might
support, we define a new notion of learnable functions and demonstrate
that we can only achieve simulation-based security for this type of function.
Informally, we call a 2-ary function, f(·, ·), learnable if, when given a
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description of f and oracle access to f(x, ·), one can output the description of
a function that is indistinguishable from fx(·) (i.e. from the function obtained
when restricting f to input x).

Positive Result. In light of these negative results, the only hope for obtaining
a positive result lies in a situation where: (1) no evaluation keys are given to the
adversary, and (2) the challenge ciphertexts given to the adversary can only form
a polynomial number of potential inputs to valid functions. Assuming one-way
functions and indistinguishability obfuscation, for any fixed polynomial bound on
the size of these potential inputs we give a construction that achieves simulation-
based security for multi-input functional encryption where the adversary obtains
no evaluation keys, but can obtain some fixed polynomial number of secret keys
SKf before obtaining challenge ciphertexts, as well as an unbounded number of
secret keys SKf after obtaining challenge ciphertexts.

Finally, we complement this positive result by showing that even in the
setting where the adversary obtains no evaluation keys and an unlimited number
of challenge ciphertexts, simulation-based security is impossible if the adversary
can ask for even one secret key SKf before it obtains the challenge ciphertexts.

Our Techniques. We have several results in this work, but to provide some flavor
of the kinds of difficulties that arise in the multi-input functional encryption
setting, we now describe some of the issues that we deal with in the context of our
positive result for indistinguishability-based security for multi-input functional
encryption. (Similar issues arise in our other positive result for simulation-based
security.)

The starting point for our construction and analysis is the recent single-input
functional encryption scheme for general circuits based on indistinguishability
obfuscation due to [9]. However, the central issue that we must deal with is
one that does not arise in their context: Recall that in the indistinguishability
security game, the adversary is allowed to get secret keys for any function f , as
long as this function does not “split” the challenge vectors X0 and X1. That
is, as long as it is not the case that there exist vectors of plaintexts x0 and x1

where for every i ∈ [n], either there exists j such that xbi ∈ Xb
j or the adversary

has EKi, such that f(x0) 6= f(x1). A crucial point here is what happens for an
index i where the adversary does not have EKi. Let us consider an example with
a 3-ary function, where the adversary has EK1, but neither EK2 nor EK3.

Suppose the challenge ciphertexts (CT1,CT2,CT3) are encryptions of either
(y01 , y

0
2 , y

0
3) or (y11 , y

1
2 , y

1
3). Now, any function f that the adversary queries

is required to be such that f(·, y02 , y03) ≡ f(·, y12 , y13) and f(y01 , y
0
2 , y

0
3) =

f(y11 , y
1
2 , y

1
3). However, there may exist an input plaintext (say) z such that

f(y01 , y
0
2 , z) 6= f(y11 , y

1
2 , z). This is not “supposed” to be a problem because the

adversary does not have EK3, and therefore it cannot actually query f with z as
its third argument.

However, in the obfuscation-based approach to functional encryption of [9]
that we build on, the secret key for f is essentially built on top of an obfuscation
of f . Let CT∗ denote an encryption of z w.r.t. EK3. Then, informally speaking, in
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one of our hybrid experiments, we will need to move from an obfuscation that on
input (CT1,CT2,CT

∗) would yield the output f(y01 , y
0
2 , z) to another obfuscation

that on the same input would yield the output f(y11 , y
1
2 , z). Again, while an

adversary may not be able explicitly perform such a decryption query, since we
are building upon indistinguishability obfuscation – which only guarantees that
obfuscations of circuits that implement identical functions are indistinguishable
– such a hybrid change would not be indistinguishable since we know that
f(y01 , y

0
2 , z) 6= f(y11 , y

1
2 , z) are not identical.

Solving this problem is the core technical aspect of our constructions and
their analysis. At a very high level, we address this problem by introducing a new
“flag” value that can change the nature of the function f that we are obfuscating
to “disable” all plaintexts except for the ones that are in the challenge vectors.
We provide more intuition in the full-versions.

Open Questions. Currently, our positive result for indistinguishability-based
security requires that there to be a fixed polynomial limit on the size of challenge
vectors, known at the time of setup. Unlike in the case of simulation security, we
know of no corresponding lower bound showing that such a bound is necessary.
Achieving full security without using complexity leveraging is another open
question.

2 Multi-Input Functional Encryption

In this work, we study functional encryption for n-ary functions, where n > 1
(and in general, a polynomial in the security parameter). In other words, we
are interested in encryption schemes where the owner of a “master” secret key
can generate special keys SKf that allow the computation of f(x1, . . . , xn) from
n ciphertexts CT1, . . . ,CTn corresponding to messages x1, . . . , xn, respectively.
We refer to such an encryption scheme as multi-input functional encryption.
Analogously, we will refer to the existing notion of functional encryption (that
only considers single-ary functions) as single-input functional encryption.

Intuitively, while single-input functional encryption can be viewed as a
specific (non-interactive) way of performing two-party computation, our setting
of multi-input functional encryption captures multiparty computation. Going
forward with this analogy, we are interested in modeling the general scenario
where the n input ciphertexts are computed by n different parties. This raises
the following two important questions:

1. Do the parties (i.e., the encryptors) share the same encryption key or do
they use different encryption keys EKi to compute input ciphertexts CTi.

2. Are the encryption keys secret or public?

As we shall see, these questions have important bearing on the security
guarantees that can be achieved for multi-input functional encryption.

Towards that end, we present a general, unified syntax and security
definitions for multi-input functional encryption. We consider encryption systems
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with n encryption keys, some of which may be public, while the rest are secret.
When all of the encryption keys are public, then this represents the “public-key”
setting, while when all the encryption keys are secret, then this represents the
“secret-key” setting. Looking ahead, we remark that our modeling allows us to
capture the intermediary cases between these two extremes that are interesting
from the viewpoint of the security guarantees possible.

The rest of this section is organized as follows. We first present the syntax
and correctness requirements for multi-input FE in Section 2.1). Then, in Section
2.2, we present our security definitions for multi-input FE. In Section 2.3 we give
a construction that meets these definitions.

2.1 Syntax

Throughout the paper, we denote the security parameter by k. Let X = {Xk}k∈N
and Y = {Yk}k∈N be ensembles where each Xk and Yk is a finite set. Let F =
{Fk}k∈N be an ensemble where each Fk is a finite collection of n-ary functions.
Each function f ∈ Fk takes as input n strings x1, . . . , xn, where each xi ∈ Xk
and outputs f(x1, . . . , xn) ∈ Yk.

A multi-input functional encryption scheme FE for F consists of four
algorithms (FE.Setup, FE.Enc, FE.Keygen, FE.Dec) described below.

– Setup FE.Setup(1k, n) is a PPT algorithm that takes as input the security
parameter k and the function arity n. It outputs n encryption keys
EK1, . . . ,EKn and a master secret key MSK.

– Encryption FE.Enc(EK, x) is a PPT algorithm that takes as input an
encryption key EKi ∈ (EK1, . . . ,EKn) and an input message x ∈ Xk and
outputs a ciphertext CT.
In the case where all of the encryption keys EKi are the same, we assume that
each ciphertext CT has an associated label i to denote that the encrypted
plaintext constitutes an i’th input to a function f ∈ Fk. For convenience of
notation, we omit the labels from the explicit description of the ciphertexts.
In particular, note that when EKi’s are distinct, the index of the encryption
key EKi used to compute CT implicitly denotes that the plaintext encrypted
in CT constitutes an i’th input to f , and thus no explicit label is necessary.

– Key Generation FE.Keygen(MSK, f) is a PPT algorithm that takes as
input the master secret key MSK and an n-ary function f ∈ Fk and outputs
a corresponding secret key SKf .

– Decryption FE.Dec(SKf ,CT1, . . . ,CTn) is a deterministic algorithm that
takes as input a secret key SKf and n ciphertexts CTi, . . . ,CTn and outputs
a string y ∈ Yk.

Definition 1 (Correctness). A multi-input functional encryption scheme FE
for F is correct if for all f ∈ Fk and all (x1, . . . , xn) ∈ Xnk :

Pr

[
(EK,MSK)← FE.Setup(1k) ; SKf ← FE.Keygen(MSK, f) ;

FE.Dec (SKf ,FE.Enc (EK1, x1) , . . . ,FE.Enc (EKn, xn)) 6= f(x1, . . . , xn)

]
= negl(k)

where the probability is taken over the coins of FE.Setup, FE.Keygen and FE.Enc.
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2.2 Security for Multi-Input Functional Encryption

We now present our security definitions for multi-input functional encryption.
We provide the most general possible definition with respect to adversarial
corruptions, allowing the adversary to choose which subset of parties he corrupts,
and which evaluation keys he will learn as a consequence. In Section 3 we will
consider more restricted definitions.

Following the literature on single-input FE, we consider two notions of
security, namely, indistinguishability-based security (or IND-security, in short)
and simulation-based security (or SIM-security, in short).

Notation. We start by introducing some notation that is used in our security
definitions. Let N denote the set of positive integers {1, . . . , n} where n denotes
the arity of functions. For any two sets S = {s0, . . . , s|S|} and I = {i1, . . . , i|I|}
such that |I| ≤ |S|, we let SI denote the subset {si}i∈I of the set S. Throughout
the text, we use the vector and set notation interchangeably, as per convenience.
For simplicity of notation, we omit explicit reference to auxiliary input to the
adversary from our definitions.

Indistinguishability-based Security Here we present an indistinguishability-
based security definition for multi-input FE.

Intuition. We start by giving an overview of the main ideas behind our
indistinguishability-based security definition. To convey the core ideas, it suffices
to consider the case of 2-ary functions. We will assume familiarity with the
security definitions for single-input FE.

Let us start by considering the natural extension of public-key single-input
FE to the two-input setting. That is, suppose there are two public encryption
keys EK1, EK2 that are used to create ciphertexts of first inputs and second
inputs, respectively, for 2-ary functions. Let us investigate what security can
be achieved for one pair of challenge message tuples (x01, x

0
2), (x11, x

1
2) for the

simplified case where the adversary makes secret key queries after receiving the
challenge ciphertexts.

Suppose that the adversary queries secret keys for functions {f}. Now, recall
that the IND-security definition in the single-input case guarantees that an
adversary cannot differentiate between encryptions of x0 and x1 as long as
f(x0) = f(x1) for every f ∈ {f}. We note, however, that an analogous security
guarantee cannot be achieved in the multi-input setting. That is, restricting
the functions {f} to be such that f(x01, x

0
2) = f(x11, x

1
2) is not enough since an

adversary who knows both the encryption keys can create its own ciphertexts
w.r.t. each encryption key. Then, by using the secret key corresponding to
function f , it can learn additional values {f(xb1, ·)} and {f(·, xb2)}, where b is
the challenge bit. In particular, if, for example, there exists an input x∗ such
that f(x01, x

∗) 6= f(x11, x
∗), then the adversary can learn the challenge bit b!

Therefore, we must enforce additional restrictions on the query functions f .
Specifically, we must require that f(x01, x

′) = f(x11, x
′) for every input x′ in the
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domain (and similarly f(x′, x02) = f(x′, x12)). Note that this restriction “grows”
with the arity n of the functions.

Let us now consider the secret-key case, where all the encryption keys
are secret. In this case, for the above example, it suffices to require that
f(x01, x

0
2) = f(x11, x

1
2) since the adversary cannot create its own ciphertexts.

Observe, however, that when there are multiple challenge messages, then
an adversary can learn function evaluations over different “combinations” of
challenge messages. In particular, if there are q challenge messages per encryption
key, then the adversary can learn q2 output values for every f . Then, we must
enforce that for every i ∈ [q2], the i’th output value y0i when challenge bit b = 0
is equal to the output value y1i when the challenge bit b = 1.

The security guarantees in the public-key and the secret-key settings as
discussed above are vastly different. In general, we observe that the more the
number of encryption keys that are public, the smaller the class of functions that
can be supported by the definition. Bellow, we present a unified definition that
simultaneously captures the extreme cases of public-key and secret-key settings
as well as all the “in between” cases.

Notation. Our security definition is parameterized by two variables t and q,
where t denotes the number of encryption keys known to the adversary, and q
denotes the number of challenge messages per encryption key. Thus, in total, the
adversary is allowed to make Q = q · n number of challenge message queries.

To facilitate the presentation of our IND security definition, we first introduce
the following two notions:

Definition 2 (Function Compatibility). Let {f} be any set of functions f ∈
Fk. Let N = {1, . . . , n} and I ⊆ N. Then, a pair of message vectors X0 and X1,
where Xb =

{
xb1,j , . . . , x

b
n,j

}q
j=1

, are said to be I-compatible with {f} if they

satisfy the following property:

– For every f ∈ {f}, every I′ = {i1, . . . , it} ⊆ I ∪ ∅, every j1, . . . , jn−t ∈ [q],
and every x′i1 , . . . , x

′
it
∈ Xk,

f
(〈
x0i1,j1 , . . . , x

0
in−t′ ,jn−t

, x′i1 , . . . , x
′
it

〉)
= f

(〈
x1i1,j1 , . . . , x

1
in−t,jn−t

, x′i1 , . . . , x
′
it

〉)
,

where 〈yi1 , . . . , yin〉 denotes a permutation of the values yi1 , . . . , yin such that
the value yij is mapped to the `’th location if yij is the `’th input (out of n
inputs) to f .

Definition 3 (Message Compatibility). Let X0 and X1 be any pair of
message vectors , where Xb =

{
xb1,j , . . . , x

b
n,j

}q
j=1

. Let N = {1, . . . , k} and I ⊆ N.

Then, a function f ∈ Fk is said to be I-compatible with (X0,X1) if it satisfies
the following property:

– For every I′ = {i1, . . . , it} ⊆ I ∪ ∅, every j1, . . . , jn−t ∈ [q] and every
x′i1 , . . . , x

′
it
∈ Xk,

f
(〈
x0i1,j1 , . . . , x

0
in−t,jn−t

, x′i1 , . . . , x
′
it

〉)
= f

(〈
x1i1,j1 , . . . , x

1
in−t,jn−t

, x′i1 , . . . , x
′
it

〉)
,
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We are now ready to present our formal definition for (t, q)-IND-secure multi-
input functional encryption.

Definition 4 (Indistinguishability-based security). We say that a multi-
input functional encryption scheme FE for for n-ary functions F is (t, q)-IND-
secure if for every PPT adversary A = (A0,A1,A2), the advantage of A defined
as

AdvFE,INDA (1k) =

∣∣∣∣Pr[INDFEA (1k) = 1]− 1

2

∣∣∣∣
is negl(k), where:

Experiment INDFEA (1k):
(I, st0)← A0(1k) where |I| = t
(EK,MSK)← FE.Setup(1k)

(X0,X1, st1)← AFE.Keygen(MSK,·)
1 (st0,EKI) where X` =

{
x`1,j , . . . , x

`
n,j

}q
j=1

b← {0, 1} ; CTi,j ← FE.Enc(EKi, x
b
i,j) ∀i ∈ [n], j ∈ [q]

b′ ← AFE.Keygen(MSK,·)
2 (st1,CT)

Output: (b = b′)

In the above experiment, we require:

– Compatibility with Function Queries: Let {f} denote the entire set of
key queries made by A1. Then, the challenge message vectors X0 and X1

chosen by A1 must be I-compatible with {f}.
– Compatibility with Ciphertext Queries: Every key query g made by
A2 must be I-compatible with X0 and X1.

Selective Security. We also consider selective indistinguishability-based security
for multi-input functional encryption. Formally, (t, q)-sel-IND-security is defined
in the same manner as Definition 4, except that the adversary A1 is required to
choose the challenge message vectors X0, X1 before the evaluation keys EK and
the master secret key MSK are chosen by the challenger. We omit the formal
definition to avoid repetition.

Simulation-based Security Here we present a simulation-based security
definition for multi-input FE. We consider the case where the adversary makes
key queries after choosing the challenge messages. That is, we only consider
adaptive key queries.

Our definition extends the simulation-based security definition for single-
input FE that supports adaptive key queries[6, 16, 3, 8]. In particular, we present
a general definition that models both black-box and non-black-box simulation.
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Intuition. We start by giving an overview of the main ideas behind our
simulation-based security definition. To convey the core ideas, it suffices to
consider the case of 2-ary functions. Let us start by considering the natural
extension of public-key single-input FE to the two-input setting. That is,
suppose there are two public encryption keys EK1, EK2 that are used to create
ciphertexts of first inputs and second inputs, respectively, for 2-ary functions.
Let us investigate what security can be achieved for one challenge message tuple
(x1, x2).

Suppose that the adversary queries secret keys for functions {f}. Now, recall
that the SIM-security definition in the single-input case guarantees that for every
f ∈ {f}, an adversary cannot learn more than f(x) when x is the challenge
message. We note, however, that an analogous security guarantee cannot be
achieved in the multi-input setting. Indeed, an adversary who knows both the
encryption keys can create its own ciphertexts w.r.t. each encryption key. Then,
by using the secret key corresponding to function f , it can learn additional values
{f(x1, ·)} and {f(·, x2)}. Thus, we must allow for the ideal world adversary, aka
simulator, to learn the same information.

In the secret-key case, however, since all of the encryption keys are secret, the
SIM-security definition for single-input FE indeed extends in a natural manner
to the multi-input setting. We stress, however, that when there are multiple
challenge messages, we must take into account the fact that adversary can learn
function evaluations over all possible “combinations” of challenge messages. Our
definition presented below formalizes this intuition.

Similar to the IND-security case, our definition is parameterized by variables
t and q as defined earlier. We now formally define (t, q)-SIM-secure multi-input
functional encryption.

Definition 5 (Simulation-based Security). We say that a functional en-
cryption scheme FE for n-ary functions F is (t, q)-SIM-secure if for every PPT
adversary A = (A0,A1,A2), there exists a PPT simulator S = (S0,S1,S2)
such that the outputs of the following two experiments are computationally
indistinguishable:

Experiment REALFEA (1k):
(I, st0)← A0(1k) where |I| = t
(EK,MSK)← FE.Setup(1k)
(M, st1)← A1(st0,EKI)
X ←M where X = {x1,j , . . . , xn,j}qj=1

CTi,j ← FE.Enc(EKi, xi,j) ∀i ∈ [n], j ∈ [q]

α← AFE.Keygen(MSK,·)
2 (CT, st1)

Output: (I,M,X, {f}, α)

Experiment IDEALFES (1k):
(I, st0)← S0(1k)
(M, st1)← S1(st0)

α← STP(M,·,·)
2 (st1)

Output: (I,M,X, {g}, α)

where the oracle TP(M, ·, ·) denotes the ideal world trusted party, {f} denotes the
set of queries of A2 to FE.Keygen and {g} denotes the set of functions appearing
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in the queries of S2 to TP. Given the message distributionM, TP first samples a
message vector X ←M , where X = {x1,j , . . . , xn,j}qj=1. It then accepts queries

of the form
(
g, (j1, . . . , jn−p) ,

(
x′i′1
, . . . , x′i′p

))
where p ≤ t, {i′1, . . . , i′p} ⊆ I ∪ ∅

and x′i′1
, . . . , x′i′p ∈ Xk. On receiving such a query, TP outputs:

g
(〈
xi1,j1 , . . . , xin−p,jn−p

, x′i′1 , . . . , x
′
i′p

〉)
,

where 〈yi1 , . . . , yin〉 denotes a permutation of the values yi1 , . . . , yin such that the
value yij is mapped to the `’th location if yij is the `’th input (out of n inputs)
to g.

Remark 1 (On Queries to the Trusted Party). Note that when t = 0, then given
the challenge ciphertexts CT, intuitively, the real adversary can only compute
values FE.Dec (SKf ,CT1,j1 , . . . ,CTn,jn) for every ji ∈ [q], i ∈ [n]. To formalize
the intuition that this adversary does not learn anything more than function
values {f (x1,j1 , . . . , xn,jn)}, we restrict the ideal adversary aka simulator to learn
exactly this information.

However, when t > 0, then the real adversary can compute values:

FE.Dec
(
SKf ,

〈
CTi1,j1 , . . . ,CTin−t,jn−t

,CT′i′1 , . . . ,CT
′
i′t

〉)
for ciphertexts CT′i′` of its choice since it knows the encryption keys EKI.
In other words, such an adversary can learn function values of the form
f
(〈
xi1,j1 , . . . , xin−t,jn−t

, ·, . . . , ·
〉)

. Thus, we must provide the same ability to
the simulator as well. Our definition presented above precisely captures this.

Selective Security. We also consider selective simulation-based security for multi-
input functional encryption. Formally, (t, q)-sel-SIM-security is defined in the
same manner as Definition 5, except that in the real world experiment, adversary
A1 chooses the message distribution M before the evaluation keys EK and
the master secret key MSK are chosen by the challenger. We omit the formal
definition to avoid repetition.

Remark 2 (SIM-security: Secret-key setting). When t = 0, none of the encryption
keys are known to the adversary. In this “secret-key” setting, there is no
difference between (0, q)-sel-SIM-security and (0, q)-SIM-security.

Impossibility of (0, poly (k))-SIM-security. We note that the lower bounds of
[6, 3] already establish that it is impossible to achieve (0, poly(k))-SIM-secure
functional encryption for 1-ary functions. In particular, [6] prove their result
for the IBE functionality, while the [3] impossibility result is given for almost
all 1-ary functionalities (assuming the existence of collision-resistance hash
functions). The positive results in this paper for SIM-secure multi-input FE are
consistent with these negative results. That is, our constructions (for general
functionalities) provide SIM security only for the case where the number of
challenge messages q are a priori bounded.
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2.3 A construction for the general case

Let F denote the family of all efficiently computable (deterministic) n-ary
functions. We now present a functional encryption scheme FE for F . Assuming
the existence of one-way functions and indistinguishability obfuscation for all
efficiently computable circuits, we prove the following security guarantees for
FE :

1. For t = 0, and any q = q(k) such that
(
qn
n

)
= poly(k), FE is (0, q)-SIM-

secure.8 In this case, the size of the secret keys in FE grows linearly with(
qn
n

)
.

2. For any t ≤ n and q = poly(k), FE is (t, q)-sel-IND-secure. In this case, the
size of the secret keys is independent of q.

Note that by using standard complexity leveraging, we can extend the second
result to show that FE is, in fact, (t, q)-IND-secure. Note that in this case, we
would require the indistinguishability obfuscator iO (and the one-way function)
to be secure against adversaries running in time O(2M ), where M denotes the
total length of the challenge message vectors.

Notation. Let (CRSGen,Prove,Verify) be a NIWI proof system. Let Com denote
a perfectly binding commitment scheme. Let iO denote an indistinguishability
obfuscator. Finally, let PKE = (PKE.Setup,PKE.Enc,PKE.Dec) be a semantically
secure public-key encryption scheme. We denote the length of ciphertexts in PKE
by c-len = c-len(k). Let len = 2 · c-len.

We now proceed to describe our scheme FE = (FE.Setup,FE.Enc,FE.Keygen,FE.Dec).

Setup FE.Setup(1k): The setup algorithm first computes a CRS crs← CRSGen(1k)
for the NIWI proof system. Next, it computes two key pairs – (pk1, sk1) ←
PKE.Setup(1k) and (pk2, sk2) ← PKE.Setup(1k) – of the public-key encryption
scheme PKE. Finally, it computes the following commitments: (a) Zi,j1 ←
Com(0len) for every i ∈ [n], j ∈ [q]. (b) Zi2 ← Com(0) for every i ∈ [n].

For every i ∈ [n], the i’th encryption key EKi =
(
crs, pk1, pk2,

{
Zi,j1

}
, Zi2, r

i
2

)
where ri2 is the randomness used to compute the commitment Zi2. The master

secret key is set to be MSK =
(
crs, pk1, pk2, sk1,

{
Zi,j1

}
,
{
Zi2
})

. The setup

algorithm outputs (EK1, . . . ,EKn,MSK).

Encryption FE.Enc(EKi, x): To encrypt a message x with the i’th encryption
key EKi, the encryption algorithm first computes c1 ← PKE.Enc(pk1, x) and
c2 ← PKE.Enc(pk2, x). Next, it computes a NIWI proof π ← Prove(crs, y, w) for

the statement y =
(
c1, c2, pk1, pk2,

{
Zi,j1

}
, Zi2

)
:

– Either c1 and c2 are encryptions of the same message and Zi2 is a commitment
to 0, or

8 Recall that when t = 0, there is no difference between selective security and standard
security as defined in Section 2.2. See Remark 2.



16 Authors Suppressed Due to Excessive Length

– ∃ j ∈ [q] s.t. Zi,j1 is a commitment to c1‖c2.

A witness wreal = (m, s1, s2, r
i
2) for the first part of the statement, referred to

as the real witness, includes the message m and the randomness s1 and s2 used
to compute the ciphertexts c1 and c2, respectively, and the randomness ri2 used
to compute Zi2. A witness wtrap = (j, ri,j1 ) for the second part of the statement,

referred to as the trapdoor witness, includes an index j and the randomness ri,j1
used to compute Zi,j1 .

The honest encryption algorithm uses the real witness wreal to compute π.
The output of the algorithm is the ciphertext CT = (c1, c2, π).

Key Generation FE.Keygen(MSK, f): The key generation algorithm on input f
computes SKf ← iO(Gf ) where the function Gf is defined in Figure 1. Note that
Gf has the master secret key MSK hardwired in its description.

Gf (CT1, . . . ,CTn)

1. For every i ∈ [n]:
(a) Parse CTi = (ci,1, ci,2, πi).
(b) Let yi =

(
ci,1, ci,2, pk1, pk2,

{
Zi,j1

}
, Zi2

)
be the statement corresponding

to the proof string πi. If Verify(crs, yi, πi) = 0, then stop and output ⊥.
Otherwise, continue to the next step.

(c) Compute xi ← PKE.Dec(sk1, ci,1).
2. Output f(x1, . . . , xn).

Fig. 1. Functionality Gf

The algorithm outputs SKf as the secret key for f .

Size of Function Gf . In order to prove that FE is (0, q)-SIM-secure, we require
the function Gf to be padded with zeros such that |Gf | = |Sim.Gf |, where the
“simulated” functionality Sim.Gf is described in the full version. In this case,
the size of SKf grows linearly with

(
qn
n

)
.

Note, however, that such a padding is not necessary to prove (t, q)-sel-IND-
security for FE . Indeed, in this case, the secret keys SKf are independent of the
number of message queries q made by the adversary.

Decryption FE.Dec(SKf ,CT1, . . . ,CTn): The decryption algorithm on input
(CT1, . . . ,CTn) computes and outputs SKf (CT1, . . . ,CTn).

This completes the description of our functional encryption scheme FE . The
correctness property of the scheme follows from inspection. In the full version
by Goldwasser et al. [10], we prove that FE is (0, q)-SIM-secure, and that FE is
(t, q)-sel-IND-secure (and (t, q)-IND-secure via complexity leveraging).
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3 Restricted Security Notions

In this section we present indistinguishability-based definitions and constructions
for two restricted settings: the symmetric key setting in which the adversary does
not learn any evaluation keys, and a setting in which all clients operate in fixed
time-steps, encrypting only one plaintext in each time-step. In this latter setting,
we do not allow functions to compute on ciphertexts from different time-steps.
A full exposition appears in the full version by Gordon et al. [12].

3.1 The Symmetric-Key Setting

For simplicity, we focus on the binary-input setting in the symmetric key setting.
However, we remark that our construction extends naturally to the n-ary setting.
The only modification is to make the iO circuit accept more ciphertexts as
inputs, and compute the function f over all decrypted values. The proof follows
in a straightforward manner.

Definitions Let F = {Fn}n>0 be a collection of function families, where every

f ∈ Fn is a polynomial time function f : {0, 1}m1(n) × {0, 1}m2(n) → Σ. A
binary symmetric key FE scheme supporting F is a collection of 4 algorithms:
(Setup,KeyGen,Enc,Eval). The first three algorithms are probabilistic, and Eval
is deterministic. They have the following semantics, if we leave the randomness
implicit:

Setup: (msk, param)← Setup(1κ)

KeyGen: for any f ∈ Fn, TKf ← KeyGen(msk, f)

Enc: CT← Enc(msk, x)

Eval: ans← Eval(param,TKf ,CT1,CT2)

As usual, we must define the desired correctness and security properties.
The correctness property states that, given (msk, param) ← Setup(1κ), with
overwhelming probability over the randomness used in Setup, KeyGen and Enc,
it holds that Eval(KeyGen(msk, f), param,Enc(msk, x),Enc(msk, y)) = f(x, y).

We now define security for IND-secure symmetric-key binary FE. In the
full version by Gordon et al.[12] we provide the stronger, adaptive security
definition. Unlike in the public key setting, here single-message security does
not imply multi-message security, so we cannot prove a parallel to Lemma 1.
(Technically, the problem arises in the reduction, where the simulator cannot
create the necessary ciphertexts for the hybrid world without knowing the secret
key.) Instead, we only define the multi-message variant.

Our construction below only achieves selective security, but we note that
we can achieve adaptive security through standard complexity-leveraging tech-
niques. (We omit the details.)
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Selective security. An Ind-Secure scheme is said to be selectively IND-secure if
for all PPT, non-trivial adversary A, its probability of winning the following
game is Pr[b = b′] < 1

2 + negl(κ).

Ind-Secure-selective:

1. {(x1, . . . , xn), (y1, . . . , yn)} ← A(1κ)
2. (msk, param)← Setup(1κ)
3. b← {0, 1}
4. if b = 0: ∀i ∈ [n] : CTi ← Enc(msk, xi), else: ∀i ∈ [n] : CTi ← Enc(msk, yi).

5. b′ ← AKeyGen(·)(param,CT1, . . . ,CTn)

An adversary is considered non-trivial if for every query f made to the KeyGen(·)
oracle, and for all i, j ∈ [n], it holds that f(xi, xj) = f(yi, yj). We note that this
is a much weaker restriction on the adversary than the one used in the public
key setting, which makes symmetric key schemes more difficult to construct.

A Construction

Scheme description. Our construction uses a SSS-NIZK scheme NIZK :=
(Setup,Prove,Verify) that is statistically simulation sound for multiple simu-
lated statements an indistinguishable obfuscation scheme iO, and a perfectly
binding commitment scheme (commit, open), all of which are defined in the
full version [12]. We also use a CPA-secure public-key encryption scheme
E := (Gen,Enc,Dec) with perfect correctness. Our construction is as follows:
Setup(1κ) :

1. crs← NIZK.Setup(1κ)
2. α, r ← {0, 1}κ; com = commit(α; r)
3. (pk, sk)← E .Gen(1κ), (pk′, sk′)← E .Gen(1κ)
4. Output param := (crs, pk, pk′, com), msk := (sk, sk′, α, r)

KeyGen(msk, f)

1. Using msk = (sk, sk′, α, r), construct a circuit Cf that computes program P
as described in Figure 2.

2. Define TKf := iO(Cf ), and output TKf .

Enc(msk, x):

1. Parse msk as (sk, sk′, α, r).
2. Compute c = E .Enc(pk;x; ρ) and c′ = E .Enc(pk′;x; ρ′) for random strings ρ

and ρ′ consumed by the encryption algorithm.
3. Output CT := (c, c′, α, π) where π := NIZK.Prove(crs, (c, c′, α), (r, ρ, ρ′, x))

is a NIZK for the language Lpk,pk′,com: for any statement stmt := (c, c′, α),
stmt ∈ Lpk,pk′,com if and only if ∃(r, ρ, ρ′, x) s.t. (c = E .Enc(pk;x; ρ)) ∧(
c′ = E .Enc(pk′;x; ρ′)

)
∧ (com = commit(α; r)).

Eval(param,TKf ,CT0,CT1):
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Internal (hardcoded) state: param = (crs, pk, pk′, com), sk, f

On input: CT0,CT1

– Parse CT0 as (c0, c
′
0, α0, π0) and CT1 as (c1, c

′
1, α1, π1). Let

stmt0 := (c0, c
′
0, α0), and stmt1 := (c1, c

′
1, α1). Verify that α0 = α1

and NIZK.Verify(crs, stmt0, π0) = NIZK.Verify(crs, stmt1, π1) = 1. If
fails, output ⊥.

– Compute x0 = E .Dec(sk, c0) and x1 = E .Dec(sk, c1) output
f(x0, x1).

Fig. 2. Symmetric-key IND-secure binary FE: Program P

1. Interpret TKf as an obfuscated circuit. Compute TKf (CT0,CT1) and output
the result.

In the full version we provide a proof of the following theorem [12].

Theorem 1. If the iO is secure, the NIZK is statistically simulation sound, the
commitment is perfectly binding and computationally hiding, and the encryption
scheme is semantically secure and perfectly correct, then the above construction
is selectively IND-secure, as defined in Section 3.1

Instantiation and efficiency. If we use the approach described in our full version
for constructing the SSS-NIZK, the ciphertext is succinct, and is poly(κ) in size
[12]. For a scheme tolerant up to n ciphertext queries, the public parameter size,
encryption time, decryption time areO(n)poly(κ). The reason for the dependence
on n is due to the simulator’s need to simultaneously simulate O(n) SSS-NIZKs
in the simulation, which increases the size of the crs. Removing the dependence
on n remains an important open problem.

3.2 Time-dependent Setting

Definitions Let F = {F`}`>0 be a collection of function families, where every
f ∈ F` is a polynomial time function f : D` × · · · × D` → Σ. A multi-client
functional encryption scheme (MC-FE) supporting n users and function family
F` is a collection of the following algorithms:

Setup : (msk, {uski}i∈[n])← Setup(1κ, n), uski is a user secret key

Enc : CT ← Enc(uski, x, t), here t ∈ N denotes the current time step

KeyGen : TKf ← KeyGen(msk, f).

Dec : ans← Dec(TKf , {CT1,CT2, . . . ,CTn}).

Correctness. We say that an MC-FE scheme is correct, if given (msk, {uski}i∈[n])←
Setup(1κ, n), given some t ∈ N, except with negligible probability over
randomness used in Setup, Enc, KeyGen, and Dec, it holds that
Dec(KeyGen(msk, f),Enc(usk1, x1, t), . . . ,Enc(uskn, xn, t)) = f(x1, x2, . . . , xn).
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Below we define a selectively secure indistinguishability-based security for
binary FE. In the full version [12] we provide two other, stronger security
definitions, both allowing adaptive plaintext challenges. There we prove the
following Lemma stating that the two notions are equivalent.

Lemma 1. Adaptive, multi-message indistinguishability security is equivalent to
adaptive, single-message indistinguishability security.

Our construction below only achieves selective security, but we note that we
can achieve the stronger definitions through standard complexity-leveraging
techniques [Folklore]. (We omit the details.)

Our definitions assume a static corruption model where the corrupted parties
are specified at the beginning of the security game. How to support adaptive
corruption is an interesting direction for future work.

Notations. We often use a shorthand x to denote a vector x := (x1, x2, . . . , xn).
Let disjoint sets G,G denote the set of uncorrupted and corrupted parties respec-
tively. G ∪G = [n]. We use the short-hand −→varG to denote the vector {vari}i∈G
for a variable var. Similarly, we use the short-hand CTG ← Enc(uskG,xG, t) to
denote the following: ∀i ∈ G : CTi ← Enc(uski, xi, t). We use the shorthand

f(xG, ·) : D|G| → Σ to denote a function restricted to a subset G on inputs
denoted xG ∈ D|G|. Let h := f(xG, ·), then by our definition, h(xG) := f(x).

Selective security. We define a relaxation of the above security notion called
selective security. Define the following single-challenge, selective experiment for
a stateful adversary A. For simplicity, we will omit writing the adversary A’s
state explicitly.

Define short-hand K(·) := KeyGen(msk, ·) to be an oracle to the KeyGen
function. Define EG(·) to be a stateful encryption oracle for the uncorrupted set
G. Its initial state is the intial time step counter t := 0. Upon each invocation
EG(xG), the oracle increments the current time step t ← t + 1, and returns
Enc(uskG,xG, t).

1. G,G, (x∗G,y
∗
G)← A.

2. b
$← {0, 1}, (msk, {uski}i∈[n])← Setup(1κ, n)

3. “challenge”← AK(·),EG(·)(uskG).
4. If b = 0: CT∗G ← EG(x∗G). Else: CT∗G ← EG(y∗G).
5. b′ ← AK(·),EG(·)(CT∗G).

We say A is non-trivial, if for any function f queried to the KeyGen(msk, ·) oracle,
f(x∗G, ·) = f(y∗G, ·).

Definition 6 (Selective IND-security of MC-FE). We say that an MC-FE
scheme is selectively and indistinguishably secure, if for any polynomial-time,
non-trivial adversary A in the above selective security game,

∣∣Pr[b′ = b]− 1
2

∣∣ ≤
negl(κ).
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A Construction Intuition: In this setting, the adversary is allowed to corrupt
some set Ḡ. Our restriction on the adversary is that for challenge vectors xG
and yG, f(xG, · · · ) = f(yG, · · · ), where xG and yG correspond to the plaintexts
by the uncorrupted parties, and · · · denotes the plaintexts corresponding to the
corrupted parties.

Recall that in the aforementioned single-client, symmetric-key setting, the
sender must have a secret value α to encrypt. However, here we cannot give a
single α to each party since the adversary can corrupt a subset of the parties.
Instead, we would like to give each party their own αi.

As before, there is a hybrid world in which the challenger must encrypt
as (Enc(xG),Enc(yG)) in the two parallel encryptions. Later, in order for
us to switch the decryption key in the iO from sk to sk′, the two iO’s
(using sk and sk′ respectively) must be functionally equivalent. To achieve this
functional equivalence, we must prevent mix-and-match of simulated and honest
ciphertexts. In the earlier single-client, symmetric-key setting, this is achieved
by using a fake α value in the simulation, and verifying that all ciphertexts input
into the iO must have the same α value. In the multi-client setting, a simple
equality check no longer suffices, so we need another way to prevent mix-and-
match of hybrid ciphertexts with well-formed ciphertexts. We do this by choosing
a random vector βG such that 〈βG,αG〉 = 0. We hard-code βG in the iO, and
if the αG values in the ciphertexts are not orthogonal to βG, the iO will simply
output ⊥.

In the hybrid world, instead of using the honest vector αG, the simulator
uses another random α′G orthogonal to βG, and simulates the NIZKs. In this
way, a mixture of honest and simulated ciphertexts for the set G will cause the
iO to simply output ⊥, since mixing the coordinates of αG and α′G will result in
a vector not orthogonal to βG (except with negligible probability over the choice
of these vectors). In this way, except with negligible probability over the choice
of these vectors, using either sk or sk′ to decrypt in the iO will result in exactly
the same input and output behavior.

Finally, in order for us to obtain faster encryption and decryption time,
instead of encoding αG directly in the ciphertexts, we use a generator for a
group that supports the Diffie-Hellman assumption and encode gαG instead. As
we will show later, this enables the simulator to simulate fewer NIZKs. In fact,
with this trick, the simulator only needs to simulate NIZKs for the challenge
time step alone. Therefore, the CRS and the time to compute ciphertexts will
be independent of the number of time steps.

Let G denote a group of prime order p > 2n · 2κ in which Decisional Diffie-
Hellman is hard. Let H : N → G denote a hash function modelled as a random
oracle. Let E := (Gen,Enc,Dec) denote a public-key encryption scheme.

– Setup(1κ, n): Compute (pk, sk) ← E .Gen(1κ), and (pk′, sk′) ← E .Gen(1κ).
Run crs := NIZK.Setup(1κ, n), where n is the number of clients. Choose

a random generator g
$← G. Choose random α1, α2, . . . , αn ∈ Zp. For i ∈

[n], let gi := gαi . Set param := (crs, pk, pk′, g, {gi}i∈[n]). The secret keys
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for each user are: uski := (αi, param) The master secret key is: msk :=
({αi}i∈[n], sk, sk′).

– Enc(uski, x, t): For user i to encrypt a message x for time step t, it computes
the following. Let ht := H(t). Choose random ρ and ρ′ as the random bits
needed for the public-key encryption scheme. Let c := E .Enc(pk, x; ρ) and
c′ := E .Enc(pk′, x; ρ′). Let d = hαi

t , Let statement stmt := (t, i, c, c′, d);
let witness w := (ρ, ρ′, x, αi). Let the NP language be defined as in
Figure 3. Let π := NIZK.Prove(crs, stmt, w). Informally, this proves that 1)
the two ciphertexts c and c′ encrypt consistent plaintexts using pk and pk′

respectively; and 2) (ht, gi, d) is a true Diffie-Hellman tuple.
The ciphertext is defined as:CT := (t, i, c, c′, d, π).

Our NP language Lpk,pk′,g,{gi}i∈[n]
is parameterized by (pk, pk′, g, {gi}i∈[n]) output by

the Setup algorithm as part of the public parameters. A statement of this language is
is of the format stmt := (t, i, c, c′, d), and a witness is of the format w := (ρ, ρ′, x, ω).
A statement stmt := (t, i, c, c′, d) ∈ Lpk,pk′,g,{gi}i∈[n]

, iff

∃ x, (ρ, ρ′), ω s.t. DH(ht, gi, d, ω) ∧ (c = E .Enc(pk, x; ρ)) ∧
(
c′ = E .Enc(pk′, x; ρ′)

)
where ht = H(t) for the t defined by CT; gi := gαi is included in the
public parameters; (ρ, ρ′) are the random strings used for the encryptions; and
DH(A,B,C, ω) is defined as the following relation that checks that (A,B,C) is a
Diffie-Hellman tuple with the witness ω:

DH(A,B,C, ω) := ((A = gω) ∧ (C = Bω)) ∨ ((B = gω) ∧ (C = Aω))

Fig. 3. NP language Lpk,pk′,g,{gi}i∈[n]
.

∃ m, (ρ, ρ′), ω s.t.

DH(ht, gi, d, ω) ∧ (c = E .Enc(pk,m; ρ)) ∧
(
c′ = E .Enc(pk′,m; ρ′)

)
where ht = H(t) for the t defined by CT; gi := gαi is included in the public

parameters; (ρ, ρ′) are the random strings used for the encryptions; and
DH(A,B,C, ω) is defined as the following relation that checks that (A,B,C)
is a Diffie-Hellman tuple with the witness ω:

DH(A,B,C, ω) := ((A = gω) ∧ (C = Bω)) ∨ ((B = gω) ∧ (C = Aω))

Note that the NIZK π ties together the ciphertexts (c, c′) with the term
d = H(t)αi . This intuitively ties (c, c′) with the time step t, such that it
cannot be mix-and-matched with other time steps.

– KeyGen(msk, f): To generate a server token for a function f over n parties’
inputs compute token TKf := iO(P ) for a Program P defined as in Figure 4:

– Dec(TKf ,CT1, . . . ,CTn): Interpret TKf as an obfuscated program. Output
TKf (CT1,CT2, . . . ,CTn).
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Program P (CT1,CT2, . . . ,CTn):

Internal hard-coded state: param = (crs, pk, pk′, g, {gi}i∈[n]), sk, f

1. For i ∈ [n], unpack (ti, ji, ci, c
′
i, di, πi) ← CTi. Check that t1 = t2 =

. . . = tn, and that ji = i. Let stmti := (ti, ji, ci, c
′
i, di).

2. For i ∈ [n], check that NIZK.Verify(crs, πi, stmti) = 1.
3. If any of these above checks fail, output ⊥.

Else: for i ∈ [n], let xi ← E .Dec(sk, ci). Output f(x1, x2, . . . , xn).

Fig. 4. MC-FE: Program P .

Theorem 2. Let G be a group for which the Diffie-Hellman assumption holds,
and let H be a random oracle. If the iO is secure, the NIZK is statistically
simulation sound, and the encryption scheme is semantically secure and perfectly
correct, then the above construction is selectively, IND-secure, as defined in
Section 3.2.

Removing the random oracle. It is trivial to remove the random oracle if we
choose h1, h2, . . . , hT at random in the setup algorithm, and give them to each
user as part of their secret keys (i.e., equivalent to embedding them in the public
parameters). This makes the user key O(n+ T )poly(κ) in size, where n denotes
the number of parties, and T denotes an upper bound on the number of time
steps.

Instantiation and efficiency. We can instantiate our scheme using the SSS-NIZK
construction and the iO construction described by Garg et. al [9]. In this way,
our ciphertext is succinct, and is only poly(κ) in size. Letting n denote the
number of parties, the encryption time is O(n)poly(κ), and the decryption time
isO(n+|f |)·poly(κ). The dependence on n arises due to the need for the simulator
to simulate O(n) SSS-NIZKs. Each user’s secret key is of size is O(n)poly(κ) for
the version with the random oracle, and is O(n+T )poly(κ) for the version of the
scheme without the random oracle. Note that due to our use of the Diffie-Hellman
assumption, we have removed the dependence on T for encryption/decryption
time in a non-trivial manner.
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