
Distributed Point Functions and their Applications?

Niv Gilboa1 and Yuval Ishai2??

1 Dept. of Communication Systems Eng., Ben-Gurion University, Beer-Sheva, Israel
gilboan@bgu.ac.il

2 Dept. of Computer Science, Technion, Haifa, Israel
yuvali@cs.technion.ac.il

Abstract. For x, y ∈ {0, 1}∗, the point function Px,y is defined by Px,y(x) = y
and Px,y(x′) = 0|y| for all x′ 6= x. We introduce the notion of a distributed point
function (DPF), which is a keyed function family Fk with the following property.
Given x, y specifying a point function, one can efficiently generate a key pair
(k0, k1) such that: (1) Fk0 ⊕ Fk1 = Px,y , and (2) each of k0 and k1 hides x
and y. Our main result is an efficient construction of a DPF under the (minimal)
assumption that a one-way function exists.
Distributed point functions have applications to private information retrieval (PIR)
and related problems, as well as to worst-case to average-case reductions. Con-
cretely, assuming the existence of a strong one-way function, we obtain the fol-
lowing applications.

– Polylogarithmic 2-server binary PIR. We present the first 2-server com-
putational PIR protocol in which the length of each query is polylogarithmic
in the database size n and the answers consist of a single bit each. This im-
proves over the 2O(

√
logn) query length of the protocol of Chor and Gilboa

(STOC ’97). Similarly, we get a polylogarithmic “PIR writing” scheme,
allowing secure non-interactive updates of a database shared between two
servers. Assuming just a standard one-way function, we get the first 2-server
private keyword search protocol in which the query length is polynomial
in the keyword size, the answers consist of a single bit, and there is no er-
ror probability. In all these protocols, the computational cost on the server
side is comparable to applying a symmetric encryption scheme to the entire
database.

– Worst-case to average-case reductions. We present the first worst-case to
average-case reductions for PSPACE and EXPTIME complete languages
that require only a constant number of oracle queries. These reductions com-
plement a recent negative result of Watson (TOTC ’12).

Keywords: Distributed point function, PIR, secure keyword search, worst-case to
average-case reductions.

? Research received funding from the European Union’s Tenth Framework Programme
(FP10/2010-2016) under grant agreement no. 259426 ERC-CaC.

?? Supported in part by ISF grant 1361/10 and BSF grant 2012378.

2 Niv Gilboa and Yuval Ishai

1 Introduction

For x, y ∈ {0, 1}∗, the point function Px,y is defined by Px,y(x) = y and Px,y(x′) =
0|y| for all x′ 6= x. Motivated by the goal of improving the efficiency of private informa-
tion retrieval (PIR) [8, 24] and related cryptographic primitives, we introduce and study
the notion of a distributed point function (DPF). Informally speaking, a DPF is a repre-
sentation of a point function Px,y by two keys k0 and k1. Each key individually hides
x, y, but there is an efficient algorithm Eval such that Eval(k0, x′) ⊕ Eval(k1, x′) =
Px,y(x

′) for every x′. Letting Fk denote the function Eval(k, ·), the functions Fk0 and
Fk1 can be viewed as an additive secret sharing of Px,y .

A simple implementation of a DPF is to let k0 specify the entire truth-table of a
random function Fk0 : {0, 1}|x| → {0, 1}|y| and k1 specify the truth-table of Fk1 =
Fk0 ⊕ Px,y . Since each of k0 and k1 is random, this solution is perfectly secure. The
problem with this solution is that the size of each key is exponential in the input size.
Our main goal is to obtain a DPF with polynomial key size.

To demonstrate the usefulness of this new primitive, consider the goal of obtaining a
2-server secure keyword search protocol with low communication complexity. In such
a protocol, two servers hold a large database D = {w1, . . . , wn}, where each wi is an
`-bit keyword, and a user wishes to find whether w ∈ D while hiding w from each
server. Given a DPF scheme, the user creates keys (k0, k1) for the point function Pw,1
and sends one key to each server. Given a key kb, b ∈ {0, 1}, server b returns the answer
bit ab =

⊕n
j=1 Fkb(wj). The user then computes a0 ⊕ a1, which is equal to 1 if and

only if w ∈ D. Essentially the same solution applies to 2-server PIR, where D is an
n-bit database and the user wants to privately retrieve the i-th bit Di.

The connection to PIR can be used to translate linear lower bounds on the com-
munication complexity of 2-server PIR protocols with short answers [8, 32] into an
exponential lower bound of 2Ω(|x|) on the DPF key size if we require that each key
hide x with information-theoretic security. However, this lower bound does not hold in
the context of computational PIR (CPIR), where the security requirement is relaxed to
computational security [7].

Based on the above discussion, we define a DPF to be a pair of PPT algorithms
(Gen,Eval), such that Gen receives x and y as input and creates the keys (k0, k1). In
particular, the efficiency of Gen forces the key size to be polynomial in |x|+ |y|. Each
key individually must give no information in the computational sense on x, y. However,
as described previously, Eval(k0, x′)⊕ Eval(k0, x′) = Px,y(x

′) for every x′.

Our contribution. Our main result is establishing the feasibility of a DPF under the
(minimal) assumption that a one-way function exists. Our construction uses a recursion
that compresses the keys k0 and k1. The base scheme is the simple solution described
above with each key of length 2|x| |y|. The recursion runs for dlog |x|e steps. In each
step of the recursion, the key is compressed to almost a square root of its former size.
Random portions of the key are replaced with seeds for a pseudo-random generator
(PRG) that can be expanded to longer strings that are pseudo-random. Carefully corre-
lating the seeds in the two keys ensures that running Eval on the two compressed keys
and x′ and then taking the XOR of the results still gives Px,y(x′) as it does with the
uncompressed keys.

Distributed Point Functions and their Applications 3

Our construction looks quite attractive from a concrete efficiency point of view and
may well give rise to the most practical solutions to date to PIR and related problems.
The key size in our DPF is roughly 8κ · |x|log 3, where κ is the seed length of the
underlying PRG and log is a base 2 logarithm. (This analytical bound is somewhat
pessimistic; we present optimized key sizes for typical lengths of x in Table 1.)

Using the transformation described above, we get a 2-server CPIR protocol with
query size equal to the DPF key size and a single bit answer from each server. The
single bit answer feature is appealing in situations where the same user queries are used
many times, say when the database is rapidly updated but the user’s interests remain the
same. We refer to a protocol that has this feature as binary CPIR.

Our protocol improves over the first CPIR protocol from [7], which implicitly re-
lies on a DPF of super-polynomial complexity |x|O(

√
log |x|), and gives rise to the first

polylogarithmic communication 2-server CPIR protocol based on (exponentially hard)1

one-way functions, and the first binary polylogarithmic 2-server PIR protocol under any
standard assumption.

In terms of computational cost on the server side, which typically forms the prac-
tical efficiency bottleneck in PIR, the computation of each server on a database of size
n roughly corresponds to producing n pseudorandom bits.2 (The computation on the
client’s side is negligible.) This is faster by orders of magnitude than the Ω(n) public-
key operations required by known single-server CPIR protocols (cf. [24, 29, 10, 25, 17]).

Additional applications. The above applications to 2-server PIR also apply to the re-
lated problem of private information storage [26] (aka “PIR writing”), where a client
wants to non-interactively update entry i in a database D which is additively secret-
shared between two servers without revealing i to each server. We get the first polylog-
arithmic solution to this problem (assuming exponentially strong OWFs). We note that
single-server CPIR protocols or even stronger primitives such as fully homomorphic
encryption [16] do not apply in this setting.

As the previous example demonstrates, DPF can be used to get qualitatively im-
provements over previous protocols for private keyword search [9, 15, 27]. Recall that
in the two-server variant of this problem, two servers hold a set of words {w1, . . . , wn}
and a user wishes to find out whether a word w is part of the set, while hiding w from
each server. Previous solutions to this problem either make intensive use of public-key
cryptography or alternatively involve data structures that have overhead in communi-
cation, round complexity, storage complexity, update cost, and error probability. Our
protocol avoids all these disadvantages using only symmetric cryptography. It involves
a single communication round, requires no data structures, has no error probability, and

1 In this work we say that a one-way function is exponentially hard if it is hard to invert by
circuits of size 2n

c

, for some c > 0. The proof of Theorem 5 shows that such a one-way
function is necessary for the existence of binary 2-server CPIR protocols in which the query
length is polylogarithmic in the database size n and security holds against poly(n)-time dis-
tinguishers. Alternatively, using the two-parameter definition of CPIR from [25] that limits
the distinguisher to run in poly(κ) time (independently of n), we get binary 2-server PIR with
query length κ·polylog(n) assuming the existence of a standard one-way function.

2 A naive usage of a DPF requires a separate DPF evaluation for each nonzero entry of the
database. In the full version we describe a method for amortizing this cost.

4 Niv Gilboa and Yuval Ishai

is the first private keyword search protocol we are aware of (under any standard assump-
tion) that only requires one-bit answers. In more concrete terms, the query length of our
protocol is O(κ |w|log 3

) and the dominant computational cost involves a small number
of PRG invocations (roughly corresponding to the DPF key size) for each keyword in
the database. It can easily support database updates and be used in the streaming model
of [27]. It can also be extended to support private keyword search with payloads, where
the answer size of each server is equal to the size of the payload.

Finally, we present an application of DPFs to complexity theory. Assuming the exis-
tence of an exponentially hard one-way function, we get the first worst-case to average
case reduction for PSPACE and EXPTIME languages which only makes O(1) oracle
calls. Concretely, we show a language L in PSPACE (or in EXPTIME) such that if
an algorithm A decides L correctly on all but a δ fraction of the instances, then every
language L′ in PSPACE (or EXPTIME) admits a polynomial time oracle algorithm R
such that RA decides L′ with good probability on every instance. The new feature of
our reduction is that R makes only two calls to its oracle A. The best previous reduc-
tions required Ω(n/ log n) calls for inputs of length n [1, 2]. A different version of the
reduction applies to the case where A decides L correctly on all but a δ fraction of the
instances, and on the other instances returns “don’t know”. In this case, RA correctly
decides any instance in L′, with probability 1, while the expected number of calls to A
is O(1).

Alternatives and related work. In the information-theoretic setting for PIR, the best
known 2-server protocol requires O(n1/3) bits of communication [8]. However, in the
case of binary 2-server PIR, the query size must be linear in n [8, 32, 3]. Much bet-
ter protocols are known if there are 3 or more servers and security should only hold
against a single server. The best known 3-server protocols [33, 14, 4] have queries of
size 2O(

√
logn·log logn) and single-bit answers. Note that unlike our 2-server protocols,

this communication complexity is super-polynomial in the bit-length of the user’s in-
put i. Polylogarithmic information-theoretic PIR protocols are known to exist only with
Ω(log n/ log log n) servers [8]. A general technique from [5] can be used to convert a
k-server binary PIR protocol with security against a single server into a kt-server binary
PIR protocol with security against t servers and comparable communication complex-
ity. This technique can be applied to our 2-server protocol to yield t-private 2t-server
CPIR protocols with polylogarithmic communication.

While in this work we mainly focus on 2-server CPIR protocols, a better studied
model for CPIR is the single-server model, introduced in [24]. Single-server protocols
with polylogarithmic communication are known to exist under standard cryptographic
assumptions [10, 25, 17, 6].

Our two-server CPIR protocol has three main advantages over its single-server
counterparts. First, as discussed above, our protocol is significantly more efficient in
computation. Second, our protocol has single-bit answers, instead of answers that are
at least the size of a security parameter (typically the ciphertext size in an underly-
ing public-key encryption scheme). The third advantage is that our protocol relies on
a much weaker cryptographic assumption, namely the existence of one-way functions.
In contrast, single-server PIR protocols imply oblivious transfer [13], which in turn im-
plies public-key encryption. We get even more significant advantages for the problems

Distributed Point Functions and their Applications 5

of private keyword search or PIR writing, where standard CPIR does not apply and
alternative solutions have additional costs.
Organization. In Section 2 we present definitions and notation. Section 3 describes a
construction for a distributed point function. Three applications of a distributed point
function are presented in Section 4, a CPIR scheme in subsection 4.1, a scheme to
privately retrieve information by keywords in subsection 4.2 and a worst case to average
case reduction for EXPTIME and PSPACE languages in subsection 4.3. Finally, a proof
that the existence of a DPF implies the existence of a one-way function appears in
Section 6.

2 Definitions and notation

Notation 1 For x, y ∈ {0, 1}∗, the point function Px,y : {0, 1}|x| → {0, 1}|y| is de-
fined by Px,y(x) = y and Px,y(x′) = 0|y| for all x′ 6= x.

Definition 1. A distributed point function is a pair of PPT algorithms DPF = (Gen,Eval)
with the following syntax:

– Gen(x, y), where x, y ∈ {0, 1}∗, outputs a pair of keys (k0, k1). When y is omitted
it is understood to be the single bit 1.

– Eval(k, x′,m), where k, x′ ∈ {0, 1}∗ and m ∈ N, outputs y′ ∈ {0, 1}∗.

DPF must satisfy the following correctness and secrecy requirements.
Correctness: For all x, x′, y ∈ {0, 1}∗ such that |x| = |x′|

Pr[(k0, k1)← Gen(x, y) : Eval(k0, x
′, |y|)⊕ Eval(k1, x′, |y|) = Px,y(x

′)] = 1.

Secrecy: For x, y ∈ {0, 1}∗ and b ∈ {0, 1}, let Db,x,y denote the probability distribu-
tion of kb induced by (k0, k1) ← Gen(x, y). There exists a PPT algorithm Sim such
that the following distribution ensembles are computationally indistinguishable:

1. {Sim(b, |x|, |y|)}b∈{0,1},x,y∈{0,1}∗
2. {Db,x,y}b∈{0,1},x,y∈{0,1}∗

The above definition captures the intuitive security requirement that kb reveals noth-
ing except b, |x|, and |y|. We will also be interested in exponentially strong DPFs, which
satisfy the stronger requirement that for some constant c > 0, the above two ensembles
are (2(|x|+|y|)

c

, 2−(|x|+|y|)
c

)-computationally indistinguishable.

Notation 2 Let⊕ denote bitwise exclusive-or and let || denote concatenation of strings.
We use + to denote addition over a field or a vector space, as implied by the context.

Notation 3 Let F2q denote the finite field with 2q elements and let Fn denote the vector
space of dimension n over a field F. The i-th unit vector of length n over F is denoted
by ei. The j-th element in a vector v ∈ Fn is denoted by v[j].

We sometimes view the input and output of Gen and Eval as elements of a finite
field with an appropriate number of elements instead of as binary strings. The correct-
ness requirement can be restated as Pr[(k0, k1) ← Gen(x, y) : Eval(k0, x

′, |y|) +
Eval(k1, x

′, |y|) = Px,y(x
′)] = 1, with addition over F2|y| .

6 Niv Gilboa and Yuval Ishai

3 Distributed point function

3.1 Initial scheme

If we dispense with the requirement that Gen and Eval run in polynomial time then
we can construct a fairly simple scheme for a DPF as follows. Gen(x, y) outputs two
keys k0, k1 such that k0, k1 ∈ (F2|y|)

2|x| . Each key is regarded as a vector of length 2|x|

over the field F2|y| and is chosen randomly with the constraint that k0[x] + k1[x] = y,
while k0[x′]+k1[x′] = 0, for all x′, x′ 6= x. Eval(k, x′, |y′|) returns k[x′] for every x′.
Clearly, this scheme has both the correctness and secrecy properties required in a DPF.

The scheme we propose recursively compresses the keys k0, k1. Starting with the
scheme above, which we denote DPF0 = (Gen0, Eval0), each recursion step com-
presses the length of the keys to slightly more than a square root of their length in the
previous step. Repeating the process log |x| times results in polynomial length.

As an initial attempt towards constructing the next step, DPF1 = (Gen1, Eval1),
we consider a simpler scheme DPF∗1 = (Gen∗1, Eval

∗
1). The 2|x| possible inputs x to

the point function Px,y are arranged in a table with 2m rows and 2µ columns for some
m,µ such that m + µ = |x|. Each input x′ is viewed as a pair x′ = (i′, j′), which
represents the location of x′ in the table.

Let G : {0, 1}κ −→ {0, 1}2µ|y| be a pseudo-random generator. Let the represen-
tation of x as a pair be x = (i, j). Gen∗1 first chooses uniformly at random and in-
dependently 2m + 1 seeds of length κ each, s1,. . .,si−1,s0i ,s1i ,si+1,. . .,s2m . The out-
put of Gen∗1 is a pair (k0, k1) defined by k0 = s1, . . . , si−1, s

0
i , si+1, . . . , s2m and

k1 = s1, . . .,si−1,s1i ,si+1,. . .,s2m . Given input k, x′ = (i′, j′) and |y′|, the algorithm
Eval∗1(k, x

′, |y′|) uses G to obtain 2µ · |y′| bits by computing G(k[i′]). This expanded
string is viewed as a vector of length 2µ over F

2|y′| . Eval
∗
1(k, x

′, |y′|) returns the j′-th
entry of this vector, G(k[i′])[j′].

While DPF∗1 seems promising in terms of key length it is only partially correct. For
each x′ = (i′, j′) such that i′ 6= i, we have that:

Eval∗1(k0, x
′, |y′|)⊕ Eval∗1(k1, x′, |y′|) = G(si′)[j

′] +G(si′)[j
′] = 0.

However, if i′ = i, we have that

Eval∗1(k0, x
′, |y′|)⊕ Eval∗1(k1, x′, |y′|) = G(s0i)[j

′] +G(s1i)[j
′],

and this value is wrong with overwhelming probability.
One possible approach to correct this deficiency of DPF∗1 is as follows. Associate

each element in the vector space F2µ

2|y|
with an element in the field F2|y|2

µ in the natural
way. Compute the element CW ← (G(s0i) + G(s1i))

−1 · (yej) over F2|y|2
µ . Modify

Gen∗1 by concatenating CW to both k0 and k1. Modify Eval∗1 by computing G(k[i′]) ·
CW over F2|y|2

µ , regarding the result as a vector over F
2|y′| and returning the j′-th

entry of this vector.
The actual approach we use in the next two algorithms, Gen1 and Eval1 is slightly

more complex, involving two correction elements CW0 and CW1 instead of just one.
This approach allows a recursion, further compressing the key size, which does not
seem to be possible using a single CW .

Distributed Point Functions and their Applications 7

Algorithm 1 Gen1(x, y)

1: Let G : {0, 1}κ −→ {0, 1}κ2
|x|/2

be a pseudo-random generator.
2: if (|y| · 2|x| ≤ κ+ 1) then
3: Return Gen0(x, y).

4: Let m← dlog((|y|·2
|x|

κ+1
)1/2)e where κ is the length of the seeds.

5: µ← dlog((2
|x|·(κ+1)
|y|)1/2)e.

6: Choose 2m + 1 seeds s1, . . . , s0i , s
1
i , . . . , s2m randomly and independently from {0, 1}κ.

7: Choose 2m random bits t1, . . . , t2m .
8: Let t0i ← ti and t1i ← ti ⊕ 1.
9: Choose two random vectors r0, r1 ∈ F2µ

2|y| such that r0 + r1 = y · ej .
10: Let CWb ← G(sbi) + rb, for b = 0, 1, with addition in F2µ

2|y| .
11: Let kb ← s1||t1, . . . , sbi ||tbi , . . . , s2m ||t2m , CW0, CW1, for b = 0, 1.
12: Return (k0, k1).

Algorithm 2 Eval1(k, x′, |y′|)

1: Let G : {0, 1}κ −→ {0, 1}2
x/2κ be a pseudo-random generator.

2: if (|y′| · 2|x
′| ≤ κ+ 1) then

3: Return Eval0(k, x′, |y′|).

4: Let m← dlog((|y
′|·2|x

′|
κ+1

)1/2)e where κ is the length of the seeds.

5: µ← dlog((2
|x′|·(κ+1)
|y′|)1/2)e.

6: Parse k as k = s1||t1, . . . , s2m ||t2m , CW0, CW1.
7: Let the location of x′ in the 2m × 2µ table be x′ = (i′, j′).
8: Let v ← G(si′) + CWti′ , with addition in F2µ

2|y| .
9: Return v[j′].

8 Niv Gilboa and Yuval Ishai

In both Algorithm 1 implementing Gen1 and Algorithm 2 we assume that |y| ≤
κ+ 1.
We argue that DPF1 is correct by looking at the following cases. If (|y| · 2|x| ≤ κ+ 1)
then Gen1 executes Gen0 and Eval1 executes Eval0 with correct results. Otherwise,
if i′ 6= i then

Eval∗1(k0, x
′, |y′|)⊕ Eval∗1(k1, x′, |y′|) =

(G(si′) + CWt′i
)[j′] + (G(si′) + CWt′i

)[j′] = 0.

If i′ = i then

Eval∗1(k0, x
′, |y′|)⊕ Eval∗1(k1, x′, |y′|) =

(G(s0i) + CWti)[j
′] + (G(s1i) + CWti⊕1)[j

′] = r0[j
′] + r1[j

′].

By the choice of r0 and r1, if j′ 6= j thenEval∗1(k0, x
′, |y′|)⊕Eval∗1(k0, x′, |y′|) =

0, while if j′ = j, i.e x′ = x then Eval∗1(k0, x
′, |y′|)⊕ Eval∗1(k0, x′, |y′|) = y.

Intuitively speaking, DPF1 is secret, because k0 and k1 are each pseudorandom.
Note that the only parts of a key kb which are not completely independent of the rest are
sbi , CW0 andCW1. Together, these elements satisfyCW0+CW1+G(s

b
i)+G(s

1⊕b
i) =

y · ei. However, since kb does not include the seed s1⊕bi , the three elements sbi , CW0

and CW1 are polynomially indistinguishable from a random string.
If |x| and |y| are so small that |y| · 2|x| ≤ (κ + 1) then Gen1 has similar length

output to Gen0. Otherwise, the keys in DPF1 are significantly smaller than the keys of
DPF0. Specifically, the total length of the seeds and additional bits (ti) is 2m(κ + 1).
The total length of the correction words is 2 |y| · 2µ. The total length of a key is at most
6((κ + 1) |y| · 2|x|)1/2, which is only about 6κ1/2 larger than a square root of the key
size of DPF0.

The computational complexity of Gen1 and Eval1 is proportional to the length of
the keys and therefore slightly more than a square root of the complexity of the matching
algorithms Gen0 and Eval0.

3.2 Full scheme

While DPF1 is a major improvement over DPF0, the running time of Gen1 (and that of
Eval1) is still exponential in |x|. Improving the scheme by repeating the compression
step recursively requires the following two observations.

Gen1 chooses r0, r1 randomly in line 9 so that r0, r1 ∈ (F2|y|)
2µ and r0 + r1 =

y · ej . Therefore, the pair (r0, r1) is distributed identically to the output of Gen0(j, y).
In addition, the keys k0 and k1 that Gen1 creates have a list of seeds for G and

associated bits. Specifically, kb includes σb
4
= s1||t1, . . . , , sbi ||tbi , . . . , s2m ||t2m for b =

0, 1. Regarding σ0 and σ1 as vectors in (F2κ+1)2
m

we have that σ0 + σ1 = (s0i ||t0i +
s1i ||t1i) · ei. If si

4
= s0i ⊕ s1i then σ0 + σ1 = (si||1) · ei. Therefore, the pair (σ0, σ1) is

distributed identically to the output of Gen0(i, si||1).
The conclusion is that Gen1 can be implemented by two calls to Gen0. Similarly,

we can define a pair of algorithms Gen`(x, y) = Gen(`, x, y) and Eval`(x, y) =
Eval(`, x, y) by using recursive calls to Gen`−1(x, y) and Eval`−1(x, y). The scheme
DPF` is defined as the pair of algorithms Gen`−1 and Eval`−1. Gen` is described in

Distributed Point Functions and their Applications 9

Algorithm 3 andEval` is described in Algorithm 4. Setting ` = 1 yields identicalGen1
and Eval1 algorithms to those defined in the previous sub-section.

In both the following algorithms, we assume that |y| ≤ κ+ 1.

Algorithm 3 Gen`(x, y)

1: Let G : {0, 1}κ −→ {0, 1}α be a PRG (for α that will be determined in step 11).
2: if (` = 0) or (|y| · 2|x| ≤ κ+ 1) then
3: Choose two random vectors k0, k1 ∈ (F2|y|)

2|x| , such that k0 + k1 = y · ex.
4: Return (k0, k1).

5: Let m← dlog((|y|·2
|x|

κ+1
)1/2)e.

6: Let µ← |x| −m.
7: Regard x as a pair x = (i, j), i ∈ {0, 1}m, j ∈ {0, 1}µ.
8: Choose a random κ-bit string si and let ti = 1 be a bit.
9: Recursively compute (σ0, σ1)← Gen`−1(i, si||ti).

10: Let s0i ||t0i ← Eval`−1(σ0, i, κ+ 1) and let s1i ||t1i ← Eval`−1(σ1, i, κ+ 1).
11: Recursively compute (r0, r1)← Gen`−1(j, y). Let α← |r0| (= |r1|).
12: Let CWtbi

← G(sbi) + rb, for b = 0, 1, with addition in Fα2 .
13: Let kb ← σb||CW0||CW1, for b = 0, 1.
14: Return (k0, k1).

Algorithm 4 Eval`(k, x′, |y′|)

1: Let G : {0, 1}κ −→ {0, 1}α be a PRG (for α that will be determined in step 7).
2: if (` = 0) or (|y′| · 2|x

′| ≤ κ+ 1) then
3: Return k[x′].

4: Let m← dlog((|y
′|·2|x

′|

κ+1
)1/2)e.

5: Let µ← |x| −m.
6: Regard x′ as a pair x′ = (i′, j′), i′ ∈ {0, 1}m, j′ ∈ {0, 1}µ.
7: Parse k as k = σ||CW0||CW1. Let α← |CW0| (= |CW1|).
8: Let si′ ||ti′ ← Eval`−1(σ, i

′, κ+ 1).
9: Let v ← G(si′) + CWti′ , with addition in Fα2 .

10: Let y′ ← Eval`−1(v, j
′, |y′|).

11: Return y′.

3.3 Analysis

We proceed to prove that DPF` = (Gen`, Eval`) is a distributed point function and
analyze the complexity of Gen` and Eval`. This analysis will determine the computa-
tional complexity of Gen` and Eval` and the size of the output of Gen`.

The reason to generalize DPF1 to DPF` is to improve performance and specifically
to obtain two algorithms Gen` and Eval` that run in polynomial time. Since Gen`

10 Niv Gilboa and Yuval Ishai

outputs two keys (k0, k1), the length of the keys is a lower bound on its computational
complexity. In the next proposition we provide an upper bound on the length of the
output of Gen`.

Proposition 1. For every κ, ` ∈ N and every x, y ∈ {0, 1}∗, such that |y| ≤ κ + 1,
if (k0, k1) is a possible output of Gen`(x, y) then the length of k0 and k1 is at most

3`(2|x|)
1

2` · (4(κ+ 1))
2`−1

2` |y|
1

2` .

Proof. We prove the proposition by induction on `. For ` = 0, each key is chosen from
(F2|y|)

2|x| and is therefore of length 2|x| ·|y|which is exactly what is obtained by setting

` = 0 in 3`(|y| 2|x|)
1

2` · (4(κ+ 1))
2`−1

2` .
For the induction step, let ` ≥ 1 and assume that the proposition is correct for `−1.

If |y| · 2|x| ≤ κ + 1 then Gen` runs the same algorithm as Gen0 and the key size that

Gen` outputs is |y| · 2|x|. Since |y| · 2|x| ≤ κ + 1, we deduce that (|y| · 2|x|)
2`−1

2` ≤
(4(κ+ 1))

2`−1

2` and therefore,

2|x| · |y| ≤ (2|x|)1/2
`

· (4(κ+ 1))
2`−1

2` |y|1/2
`

.

If |y|·2|x| > κ+1 thenGen` outputs two keys k0, k1 such that kb = σb||CW0||CW1

for b = 0, 1. Gen`(x, y) computes σb by (σ0, σ1) ← Gen`−1(i, si||ti). Since i ∈
{0, 1}m, the length of i is dlog(|y|·2

|x|

κ+1)1/2e. The length of si||ti is κ+1. Therefore, by
the induction hypothesis the length of σb is

3`−1 · (2dlog(
|y|·2|x|
κ+1)1/2e)

1

2`−1 (4(κ+ 1))
2`−1−1

2`−1 (κ+ 1)
1

2`−1 ≤

3`−1(2(
|y| · 2|x|

κ+ 1
)1/2)

1

2`−1 4
2`−1−1

2`−1 (κ+ 1) =

3`−1(|y| · 2|x|)
1

2` (4(κ+ 1))
2`−1

2`

CW0 and CW1 are the same length as r0 and r1. Gen`(x, y) computes r0 and
r1 by (r0, r1) ← Gen`−1(j, y), where j ∈ {0, 1}µ. The value of µ is set to µ ←
dlog(2

|x|·(κ+1)
|y|)1/2e and by the induction hypothesis, the length of each of r0 and r1 is

at most:

3`−1 · (2dlog(
2|x|·(κ+1)
|y|)1/2e)

1

2`−1 (4(κ+ 1))
2`−1−1

2`−1 |y|
1

2`−1 ≤

3`−1((
4(κ+ 1) · 2|x|

|y|
)1/2)

1

2`−1 4
2`−1−1

2`−1 |y|
1

2`−1 =

3`−1(|y| · 2|x|)
1

2` (4(κ+ 1))
2`−1

2`

The length of kb is the sum of the lengths of σb, CW0 and CW1, which is:

3 · 3`−1(|y| · 2|x|)
1

2` (4(κ+ 1))
2`−1

2` = 3`(|y| · 2|x|)
1

2` (4(κ+ 1))
2`−1

2` .

ut

Distributed Point Functions and their Applications 11

Table 1 shows the length of a key kb (either k0 or k1) for |y| = 1 and for some
values of |x| that are typical in applications of a distributed point function. The length
of a key can be compared to the domain size, which is 2|x|. The leftmost column of the
table shows the value of |x|. The next two columns show the depth of the recursion (`)
and the key size for after an actual execution of the algorithm that minimized the key
size. The last two columns show the depth of the recursion and the key size as predicted
by Proposition 1 for ` = dlog |x|e.

|x| ` (exact) |kb| (exact) ` (Prop. 1) |kb| (Prop. 1)
20 2 1298 3 4513
40 4 5000 4 20003
80 5 18906 5 72941
160 6 61943 6 241256

Table 1. Key length in bytes for some values of |x|

Corollary 1. In the special case of y = 1, by setting ` = dlog |x|e each key that Gen`
outputs is of length at most 8(κ+ 1) |x|log 3 bits.

Proposition 2. [Correctness] The scheme DPF` = (Gen`, Eval`) is correct as defined
for a distributed point function, for every ` = 0, 1,

The correctness claim for DPF` = (Gen`, Eval`) is proved using induction simi-
larly to the correctness proof of DPF1 = (Gen1, Eval1).

The next step we take is analysis of the computational complexity of Eval` and
Gen`. That complexity depends on the computational complexity of the PRG G.

Notation 4 Since G is a PRG, it stretches a κ-bit seed s to an n-bit string G(s) in
polynomial time in n. Let γ ≥ 1 be a constant such that computingG(s) with additional
O(n) work can be done in time at most nγ . We need γ as a bound on the work thatGen`
performs aside from its recursive calls. Therefore, it can be defined exactly such that nγ

is a bound on the work that Gen`(x, y) does in lines 1 − 10, 12 and 14 − 16, where n

is the length of the output, i.e. n = 2 · 3`(2|x|)
1

2` · (4(κ+ 1))
2`−1

2` |y|.

Proposition 3. If |y| ≤ κ + 1 then the computational complexity of Eval`(x, y) is at

most 3`+1[(2|x|)
1

2` · (4(κ+ 1))
2`−1

2` |y|
1

2`]γ for any x ∈ {0, 1}∗ and ` ∈ N.

Proof sketch We prove the claim by induction on `. For the base case, ` = 0, the claim
is obvious. For the induction step, the work that Eval` does can be divided into three
parts. The first part is made up of the recursive call in line 8 toEval`−1(σ, i′, κ+1), the
second includes the recursive call in line 10 to Eval`−1(v, j′, |y′|) and the third part of
the algorithm is made up of all the operations apart from the two recursive calls. Most
of the work in the third part is done in line 9, which includes an expansion of a seed by
the PRG G.

12 Niv Gilboa and Yuval Ishai

By induction and the definition of γ, the computational complexity for each of the
three parts is at most

3`[(2|x|)
1

2` · (4(κ+ 1))
2`−1

2` |y|
1

2`]γ .

ut

Proposition 4. If |y| ≤ κ + 1 then the computational complexity of Gen`(x, y) is at
most 8 · 3`+2[(2|x|)

1

2` · (κ+ 1)]γ any x ∈ {0, 1}∗ and ` ∈ N.

The proof is omitted and will appear in a full version of the paper.
In the next part of the analysis we show that DPF` is secret. We do so by proving

that each key kb is pseudo-random and can therefore be simulated.

Notation 5 Let L(Gen`(x, y)) denote the length of k0 and k1 induced by (k0, k1) ←
Gen`(x, y). Let T (Gen`(x, y)) denote the computational complexity of Gen`(x, y).

Notation 6 Let R denote the distribution induced on rb and S denote the distribution
induced on σb by the coin tosses of Gen`(x, y). Let Un denote the uniform distribution
on strings of length n and let G(Uκ) denote the distribution induced by choosing a
random string of length κ and extending it by G to |rb| bits.

Notation 7 Denote byK the distribution of the key kb. Let S||S′ denote the distribution
of σb||s1−bi . Let CW (1) ← G(s) + r1−b, where s is a uniformly random seed of length
κ. Let k(1)b be identical to kb, except for replacing CWt1−bi

by CW (1) and let K(1)

denote the distribution induced by k(1)b . Let CW (2) ← u(2) + r1−b, where u(2) is
a uniformly random string of length |r1−b|. Let k(2)b be identical to k(1)b , except for
replacing CW (1) by CW (2) and let K(2) denote the distribution induced by k(2)b . Let
CW (3) ← G(sbi) + u(3), where u(3) is a uniformly random string of length |rb|. Let
k
(3)
b be identical to k(2)b , except for replacing CWtbi

by CW (3) and let K(3) denote the

distribution induced by k(3)b .

Proposition 5. Let ` ∈ N, let x ∈ {0, 1}∗ and let G : {0, 1}κ −→ {0, 1}α be a
T (κ), ε(κ)-pseudo-random generator, for α = 4(κ+1) ·3`(2|x|)

1

2` . Then, for b = 0, 1,
the distribution K on the outputs kb of Gen`(x, y) is (T (κ) − T (Gen`(x, y)), 12 (3

` −
1)ε(κ))-computationally indistinguishable from UL(Gen`(x,y)).

Proof sketch: We use induction on ` to prove the statement. In the base of the induction,
` = 0, the key kb is distributed uniformly and therefore the claim is obvious. In the in-
duction step, we use a hybrid argument on the ensembles induced from the distributions
K,K(1),K(2),K(3) and U|kb| when x ranges over {0, 1}∗.

Proposition 6. Let x, y ∈ {0, 1}∗, let κ = max{|x| , |y|}, let ` = dlog |x|e and let
G : {0, 1}κ −→ {0, 1}α be a T (κ), ε(κ)-pseudo-random generator, for α = 4(κ+1) ·
3`(2|x|)

1

2` .

Distributed Point Functions and their Applications 13

1. If G is a pseudo-random generator, i.e. T (κ) ≥ q(κ) and ε(κ) ≤ 1/q′(κ) for any
two polynomials q(·), q′(·) then DPF` = (Gen`(x, y), Eval`(x, y)) satisfies the
secrecy requirement for a distributed point function.

2. If G is an exponentially strong PRG G, i.e. T (κ) = 2κ
c

and ε(κ) = 2−κ
c

for some
constant c > 0 then DPF` = (Gen`(x, y), Eval`(x, y)) satisfies the exponential
secrecy requirement for a distributed point function.

Proof sketch: For any polynomial T ′(κ) we have that T (κ) = T ′(κ)+T (Gen`(x, y))
is also a polynomial in κ. If G is a PRG, its output is (T (κ), ε(κ))-computationally in-
distinguishable fromUn for a negligible function ε(κ). Setting ε′(κ) = 1

2 (3
`−1)ε(κ) ≤

1
2 (3 |x|

log 3 − 1)ε(κ), we have by Proposition 5 that kb, the output of Gen`(x, y), is
(T ′(κ), ε′(κ))-computationally indistinguishable from the uniform distribution, which
satisfies the secrecy property. The exponential secrecy property is proved using a simi-
lar argument. ut

.

Theorem 1. The existence of a one-way function implies the existence of a DPF. If the
one-way function is exponentially strong, so is the DPF.

Proof. We show that the construction of DPFdlog|x|e, is a DPF assuming the existence
of a one-way function. By Proposition 2, DPF` is correct for any ` = 0, 1,

A series of works, beginning with [22] and currently culminating in [31] establish
that the existence of one-way functions implies the existence of pseudo-random gen-
erators and furthermore that the existence of an exponentially hard one-way function
implies the existence of an exponentially strong PRG.

Proposition 6 proves that given a security parameter κ = max{|x| , |y|}, the scheme
DPFdlog|x|e satisfies the secrecy requirement if G is a PRG and satisfies the exponential
secrecy requirement if G is an exponentially strong PRG. Therefore, the existence of
one-way functions implies that DPFdlog|x|e satisfies the secrecy requirement and the
existence of an exponentially strong one-way function implies that DPFdlog|x|e satisfies
the exponential secrecy requirement

Propositions 4 and 3 prove that Gen` and Eval` are polynomial time algorithms
for ` = dlog |x|e. These results together satisfy Definition 1.

The converse of the first statement of Theorem 1, that DPF implies a one-way func-
tion is also true, see Theorem 5.

4 Applications

4.1 Computationally Private Information Retrieval

In the problem of private information retrieval (PIR) [8] a user wishes to retrieve the
i-th bit of an n-bit string z = (z1, . . . , zn). This string, called the database, is held
by several different non-colluding servers. The goal of the user is to obtain the bit zi
without revealing any information on i to any individual server. The index i can be
hidden in an information-theoretical or computational sense, in which case the scheme
is called a CPIR scheme. A formal definition of a two-server CPIR is as follows.

14 Niv Gilboa and Yuval Ishai

Definition 2. A two-server CPIR protocol involves two servers S0 and S1, each holding
the same n-bit database z, and a user. The protocol P = (DomQ, DomA, Q,A,M)
consists of a query domain DomQ, an answer domain DomA, and three polynomial-
time algorithms: a probabilistic query algorithm Q, an answering algorithm A and a
reconstruction algorithm M . To retrieve zi, the i-th bit of z, the user computes two
queries Q(n, i, r) = (q0, q1) ∈ (DomQ)

2 using random coin tosses r. For each b, b ∈
{0, 1}, the server Sb receives qb and computes an answer ab = A(b, z, qb) ∈ DomA.
The user receives a0 and a1 and recovers zi by applying the reconstruction algorithm
M(i, r, a0, a1). A two-server CPIR protocol must satisfy the following requirements:
Correctness: For every n, n ∈ N, every z ∈ {0, 1}n and every i ∈ {1, . . . , n} and
given a random string r

Pr[(q0, q1)← Q(n, i, r) :M(i, r, A(0, z, q0), A(1, z, q1)) = zi] = 1.

Secrecy: Let Db,dlogne,i, b ∈ {0, 1}, n ∈ N and i ∈ {1, . . . , n}, denote the probability
distribution on qb induced by (q0, q1)← Q(n, i, r). There exists a PPT algorithm Sim
such that the following distribution ensembles are computationally indistinguishable:

1. {Sim(b, dlog ne)}b∈{0,1},n∈N
2. {Db,dlogne,i}b∈{0,1},n∈N,i∈{1,...,n}.

The main measure of the efficiency of a PIR scheme is its communication com-
plexity, which is the maximum number of bits exchanged between the user and servers
over the choices of z, i and r. The query complexity is log |DomQ| and the answer
complexity is log |DomA|.

In the following theorem we show how to turn a DPF scheme into a two-server
CPIR scheme.

Theorem 2. Let DPF = (Gen,Eval) be a distributed point function and letm(b, |x| , |y|) =
max{|kb| : b ∈ {0, 1}, (k0, k1) ← Gen(x, y)}. There exists a CPIR scheme that for
every n has query complexity m(b, log n, 1), answer complexity 1 and thus total com-
munication complexity 2m(b, log n, 1) + 2.

The full proof is omitted, but it relies on the procedure outlined in the introduction
that involves computing Eval(qb, j, 1) separately for every j = 1, . . . , n. The compu-
tational complexity of such a procedure is n times the computation required for a single
invocation ofEval. Specifically, about n·|kb| pseudo-random bits need to be computed.
However, there is a more efficient alternative that for each node in the PRF tree rooted
by kb computes all of the node’s children instead of a single one. This alternative results
in computing less than n+ 2n1/2 pseudo-random bits.

By using the construction of DPFdlog logne from Section 3, we get the following:

Corollary 2. The existence of a one-way function f implies the existence of a two-
server CPIR scheme with query complexity O(κ(log n)log 3) and answer complexity 1.
The term κ = κ(n) is the length of a seed for a PRG G : {0, 1}κ(n) → {0, 1}n that is
implied by f being a one-way function.

Distributed Point Functions and their Applications 15

4.2 Private Information Retrieval by Keywords

In the problem of Private Information Retrieval by Keywords [9, 15] several servers
hold a copy of the same set of n words, w1, . . . , wn, of the same length ν. A user
holds a word w and wishes to find out whether w ∈ {w1, . . . , wn} without providing
information to any individual server on w.

Theorem 3. The existence of a one-way function f implies the existence of a two-server
scheme for private information retrieval by keywords with query length O(κνlog 3) and
answer length 1. The term κ = κ(n) is the length of a seed for a PRGG : {0, 1}κ(n) →
{0, 1}n that is implied by f being a one-way function.

Proof. The user generates two queries (q0, q1) by running (q0, q1) ← Gendlogne(w).
Upon receiving a query qb, the server Sb returns ab =

∑n
j=1Eval(qb, wj) mod 2 as

its answer. The reconstruction algorithm M returns a0 + a1 mod 2. The correctness,
secrecy and query length are proved in the same way as in Theorem 2.

The above protocol can be efficiently extended to the case where each keyword wi
has an associated nonzero payload pi of length γ and the user should output pi if wi
is in the database and output 0 otherwise. This is done by having each server respond
with ab =

∑n
j=1 pj · Eval(qb, wj) where addition is in Fγ2 . In the full version we will

describe the application to PIR writing.

4.3 Worst-case to average-case reduction

A worst-case to average-case reduction transforms any average-case algorithm for one
language L2 into an algorithm that with good probability works on all inputs for an-
other language L1. We show how our scheme for a DPF translates into a worst-case
to average-case reduction for languages in PSPACE and EXPTIME. Our result im-
proves on known worst-case to average-case reductions for PSPACE and EXPTIME by
requiring our worst-case algorithm to make only a constant number of queries to an
average-case algorithm.

An interesting way to view our result is as a transformation of a heuristic algorithm
to a worst-case algorithm. Given a heuristic algorithm A that correctly decides a certain
language in PSPACE or EXPTIME on a 1 − δ fraction of the inputs we show that for
any language L in PSPACE or EXPTIME there exists an algorithm that decides L with
good probability on any input and makes only two calls to the heuristic algorithm.

We complement a negative result from Theorem 3 of Watson’s paper [30]. That
theorem rules out a similar result where A is unbounded, thus applying to a reduction
of “type 1” in his classification. We show that a reduction of “type 2” is possible (under
standard assumptions), thus his negative result for type 1 reductions is tight.

We assume the existence of an exponentially hard one-way function. Given such a
function there exists an exponentially strong PRG G [31].

Theorem 4. Let δ < 1/2 and assume the existence of an exponentially hard one-way
function. Then,

16 Niv Gilboa and Yuval Ishai

1. There exist a language L2 in EXPTIME (PSPACE) and a constant c > 0 such that
if there is an algorithm A, which for any κ runs in time at most 2κ

c

and correctly
decides a 1 − δ fraction of the instances of L2 ∩ {0, 1}κ then for any language
L in EXPTIME (or PSPACE) there exists a probabilistic, polynomial time oracle
algorithm R such that RA decides any instance in L ∩ {0, 1}κ with error at most
2δ + 2−κ

c

and with only two queries to A.
2. There exist a language L2 in EXPTIME (PSPACE) and a constant c > 0 such that

if there is an algorithm A running in time at most 2κ
c

that correctly decides a 1− δ
fraction of the instances ofL2∩{0, 1}κ and returns⊥ on any other instance then for
any language L in EXPTIME (or PSPACE) there exists a probabilistic, polynomial
time oracle algorithm R such that RA decides any instance in L ∩ {0, 1}κ with
only 1/(1− 2δ − 2−κ

c

) expected queries to A.

The proof is omitted and will appear in the full version of the paper

5 Efficient implementation DPF with large output

Algorithms 3 and 4 assume that |y| ≤ κ + 1. Given x and y, seeds must be chosen to
be of length κ such that |y| ≤ κ+ 1. For concrete applications in which the length κ is
given, a more efficient implementation is possible.

Let DPF = (Gen,Eval) be a distributed point function for any x ∈ {0, 1}∗
and any y, |y| ≤ κ + 1. Define DPF ′ = (Gen′, Eval′) on any x, y ∈ {0, 1}∗ as
follows. Let G : {0, 1}κ → {0, 1}|y| be a PRG. Gen′(x, y) checks if y is the all-zero
string. If it is, then Gen′(x, y) executes (k0, k1) ← Gen(x, 0κ+1), chooses a random
element r ∈ F2|y| and outputs a key pair (k

′

0 = k0||r, k
′

1 = k1||r). If y is not zero then
Gen′(x, y) chooses a random seed s ∈ {0, 1}κ and executes (k0, k1) ← Gen(x, s). It
then computes r ← y · (G(Eval(k0, x, |y|)) + G(Eval(k1, x, |y|)))−1 over F2|y| and
outputs a key pair (k

′

0 = k0||r, k
′

1 = k1||r).
Eval′(k||r, x, |y′|) returns as its output r · G(Eval(k, x, |y′|)) with computation

over F2|y| . The correctness is easy to verify and the secrecy of the DPF ′ follows from
the secrecy of DPF and from G being a PRG.

6 DPF Implies OWF

In this section we show that the existence of a distributed point function implies the
existence of a one-way function. As Theorem 2 proves, the existence of a DPF implies
the existence of a binary two-server CPIR scheme with query length o(n). We rely on
the following lemma.

Lemma 1. [19] Suppose there exist a pair of distribution ensembles {Xn}n∈N, {Yn}n∈N
and a polynomial p(·) such that Xn and Yn can be sampled in time polynomial in n;
The statistical distance between Xn and Yn is greater than 1/p(n) for all n, and Xn

and Yn are computationally indistinguishable. Then a one-way function exists.

Theorem 5. Suppose that there is a two-server CPIR protocol with query length o(n)
and binary answers. Then a one-way function exists.

Distributed Point Functions and their Applications 17

Proof. Denote the two servers by S0, S1 and define the following distribution ensem-
bles:

– Xn = (i, b,Qb(n, i)) where i ∈ {1, . . . , n} is a random index, b ∈ {0, 1} is a
random server index, andQb(n, i) is a random PIR query to server Sb on a database
of size n and index i.

– Yn = (i, b,Qb(n, i
′)) where i′ ∈ {1, . . . , n} is a random index picked indepen-

dently of i.

The secrecy property of the PIR protocol implies that Xn and Yn are indistinguish-
able. They are also efficiently samplable, since the query generation in the PIR protocol
is efficient. It remains to show that they are statistically far.

Suppose towards contradiction that Xn, Yn are (1/n2)-close for infinitely many n.
It follows that, for infinitely many n, there are no i, j, b such that Qb(n, i) and Qb(n, i′)
are more than 0.1-far. Thus, Q defines for infinitely many n an information-theoretic
2-server PIR protocol with statistical privacy error ε ≤ 0.1, sublinear-size queries, and
binary answers. Such a protocol is known not to exist (see [32], Thm 8).

References

1. D. Beaver and J. Feigenbaum, “Hiding instances in multioracle queries”, Proc. of the 7th An-
nual Symposium on Theoretical Aspects of Computer Science (STACS’90), pp. 37-48 1990.

2. L. Babai, L. Fortnow, N. Nisan and A. Wigderson, “BPP has subexponential time simulations
unless EXPTIME has publishable proofs”, Proc. of the Sixth Annual Structure in Complexity
Theory Conference, pp. 213-219, 1991.

3. R. Beigel, L. Fortnow, and W. I. Gasarch, “A tight lower bound for restricted pir protocols”,
Computational Complexity 15(1): 82-91, 2006.

4. A. Beimel, Y. Ishai, E. Kushilevitz and I. Orlov, “Share Conversion and Private Information
Retrieval”, IEEE Conference on Computational Complexity 2012, pp. 258-268, 2012.

5. O. Barkol, Y. Ishai and E. Weinreb, “On Locally Decodable Codes, Self-Correctable Codes,
and t-Private PIR”, Algorithmica, Volume 58, Number 4, pp. 831-859, 2010.

6. Z. Brakerski and V. Vaikuntanathan, “Efficient Fully Homomorphic Encryption from (Stan-
dard) LWE”, Proceedings of FOCS 2011, pp. 97-106, 2011.

7. B. Chor and N. Gilboa, “Computationally Private Information Retrieval”, Proc. of the twenty-
ninth annual ACM symposium on Theory of computing (STOC’97), pp. 304-313, 1997.

8. B. Chor, O. Goldreich, E. Kushilevitz and M. Sudan, “Private Information Retrieval”, Jour-
nal of the ACM (JACM), Volume 45 Issue 6, pp. 965-981, 1998.

9. B. Chor, N. Gilboa, and M. Naor. “Private information retrieval by keywords”, TR CS0917,
Dept. of Computer Science, Technion, 1997.

10. C. Cachin, S. Micali and Markus Stadler, “Computationally Private Information Retrieval
with Polylogarithmic Communication”, Proc. of Advances in Cryptology, the 18th Inter-
national Conference on the Theory and Application of Cryptographic Techniques (EURO-
CRYPT’99), pp. 402-414, 1999.

11. Y. Desmedt, “Society and Group Oriented Cryptography: A New Concept”, Proc. of Ad-
vances in Cryptology, the 7th Annual International Cryptology Conference (CRYPTO’87),
pp. 120-127, 1987.

12. Y. Desmedt and Y. Frankel, “Threshold Cryptosystems”, Proc. of Advances in Cryptology,
the 9th Annual International Cryptology Conference (CRYPTO’89), pp. 307-315, 1989.

18 Niv Gilboa and Yuval Ishai

13. G. Di Crescenzo, T. Malkin, and R. Ostrovsky, “Single Database Private Information Re-
trieval Implies Oblivious Transfer”, EUROCRYPT 2000, pp. 122-138, 2000.

14. K. Efremenko, “3-query locally decodable codes of subexponential length”, Proc. of the 41st
annual ACM symposium on Theory of computing (STOC’09), pp. 39-44, 2009.

15. M. Freedman, Y. Ishai, B. Pinkas and O. Reingold, “Keyword search and oblivious pseudo-
random functions”, it In Theory of Cryptography, pp. 303-324, 2005.

16. C. Gentry “Fully Homomorphic Encryption Using Ideal Lattices”, Proc. of the 41st annual
ACM symposium on Theory of computing (STOC 2009), pp. 169-178, 2009.

17. C. Gentry and Z. Ramzan, “Single-Database Private Information Retrieval with Constant
Communication Rate”, Proceedings of ICALP 2005, pp. 803-815, 2005.

18. O. Goldreich, S. Goldwasser and S. Micali, “How to construct random functions”, Journal
of the ACM (JACM) 33.4 pp. 792-807, 1986.

19. O. Goldreich, “A Note on Computational Indistinguishability”, Inf. Process. Lett., volume
34, number 6, pp. 277-281. 1990

20. O. Goldreich, “Foundations of Cryptography: Basic Tools”, Cambridge University Press,
2000.

21. I. Haitner, D. Harnik and O. Reingold, “Efficient pseudorandom generators from exponen-
tially hard one-way functions”, Proc. of the 33rd international conference on Automata,
Languages and Programming (ICALP’06), Volume Part II, pp. 228-239, 2006.

22. J. Hastad, R. Impagliazzo, L. Levin and M. Luby, “A Pseudorandom Generator from any
One-way Function”, SIAM J. Comput. 28(4), pp. 1364-1396, 1999.

23. T. Holenstein, “Pseudorandom Generators from One-Way Functions: A Simple Construction
for Any Hardness”, Proc. of the third Theory of Cryptography Conference (TCC’06), pp.
443-461, 2006.

24. E. Kushilevitz and R. Ostrovsky, “Replication is NOT Needed: SINGLE Database,
Computationally-Private Information Retrieval”, Proc. of the 38th Symposium on Founda-
tions of Computer Science (FOCS’97), pp. 364-373, 1997.

25. H. Lipmaa, “An Oblivious Transfer Protocol with Log-Squared Communication”, Proc.
of the 8th International Conference Information Security, 8th International Conference
(ISC’05), pp. 314-328, 2005.

26. R. Ostrovsky and V. Shoup, “Private information storage”, In Proceedings of the twenty-ninth
annual ACM symposium on Theory of computing, pp. 294-303. ACM, 1997.

27. R. Ostrovsky and W. E. Skeith III, “Private Searching on Streaming Data”, J. Cryptology
20(4): 397-430, 2007.
and V. Shoup, “Private information storage”, In Proceedings of the twenty-ninth annual ACM
symposium on Theory of computing, pp. 294-303. ACM, 1997.

28. Shamir, A., “How to Share a Secret”, CACM, Volume 22, Number 11, pp. 612-613, 1979.
29. J. P. Stern, “A New Efficient All-Or-Nothing Disclosure of Secrets Protocol”, Proc. of Ad-

vances in Cryptology, the fourth International Conference on the Theory and Applications
of Cryptology and Information Security (ASIACRYPT’98), pp. 357-371, 1998.

30. T. Watson, “Relativized Worlds without Worst-Case to Average-Case Reductions for NP”,
Journal of ACM Transactions on Computation Theory (TOCT), Volume 4, Issue 3, Article
No. 8, Sep. 2012.

31. S. Vadhan and C. Zheng, “Characterizing pseudoentropy and simplifying pseudorandom
generator constructions”, Proc. of the 44th Annual ACM Symposium on the Theory of Com-
puting (STOC’12), pp. 817-836, 2012.

32. S. Wehner and R. de Wolf, “Improved Lower Bounds for Locally Decodable Codes and
Private Information Retrieval”, ICALP 2005, pp. 1424-1436.

33. S. Yekhanin, “Towards 3-query locally decodable codes of subexponential length”, Proc. of
the 39th annual ACM symposium on Theory of computing (STOC’07), pp. 266-274, 2007.

