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Abstract. We introducehoney encryptioHE), a simple, general approach to
encrypting messages using low min-entropy keys such asvpeds. HE is de-
signed to produce a ciphertext which, when decrypted withaira number of
incorrect keys, yields plausible-looking but bogus plaintexts chtbeney mes-
sages A key benefit of HE is that it provides security in cases wherelittle
entropy is available to withstand brute-force attacks thaevery key; in this
sense, HE provides security beyond conventional bruteeftwounds. HE can
also provide a hedge against partial disclosure of higheninepy keys.

HE significantly improves security in a number of practicgti®gs. To showcase
this improvement, we build concrete HE schemes for passWwaseéd encryption
of RSA secret keys and credit card numbers. The key chakeaigedevelopment
of appropriate instances of a new type of randomized mesyagmling scheme
called adistribution-transforming encodgDTE), and analyses of the expected
maximum loading of bins in various kinds of balls-and-biasngs.

1 Introduction

Many real-world systems rely for encryption on low-entramyweak secrets, most
commonly user-chosen passwords. Password-based eooryBBE), however, has a
fundamental limitation: users routinely pick poor passigExisting PBE mechanisms
attempt to strengthen bad passwords via salting, whichsshitacks against multiple
users, and iterated application of one-way functions, Wwisiows decryption and thus
attacks by a constant facter(e.g.,c = 10,000). Recent results [6] prove that for con-
ventional PBE schemes (e.d., [32]), warlsuffices to crack a single ciphertext with
probability g/ c2" for passwords selected from a distribution with min-enyrppThis
brute-force bounds the best possible for in-use schemes.

Unfortunately empirical studies show this level of segutit frequently be insuffi-
cient. A recent study [12] reports< 7 for passwords observed in a real-world popula-
tion of 69+ million users. (1.08% of users chose the samengasks) For any slowdown
¢ small enough to support timely decryption in normal use séhaurity offered by con-
ventional PBE is clearly too small to prevent message-regofMR) attacks.

We explore a new approach to PBE that provides security kbt brute-force
bound. The idea is to build schemes for which attackersiaable to succeed in mes-
sage recovery even after trying every possible passworg./\We formalize this ap-
proach by way of a new cryptographic primitive calledney encryptior{HE). We



provide a framework for realizing HE schemes and show sieharseful in prac-
tice in which even computationally unbounded attackerspramably recover an HE-
encrypted plaintext with probability at ma&t* + ¢ for negligiblee. Since there exists
a trivial, fast attack that succeeds with probabifity* (guess the most probable pass-
word), we thus demonstrate that HE can yield optimal securit

While HE is particularly useful for password-based endgmp{PBE), we empha-
size that “password” here is meant very loosely. HE is applie toanydistribution of
low min-entropy keys, including passwords, PINs, bionueatfy extracted keys, etc. It
can also serve usefully as a hedge against partial compeafiggh min-entropy keys.

Background. Stepping back, let us review briefly how brute-force messagevery
attacks work. Given an encryptidti = enc(K, M) of messagé/, whereK and M
are drawn from known distributions, an attacker’s goal isetcoverM . The attacker
decryptsC' under as many candidate keys as she can, yielding messéages. , M,,.
Should one of the candidate keys be correct (keis from a low-entropy distribution),
M is guaranteed to appear in this list, and at this stage taekatt wins with probability
equal to her ability to pick oud/ from theq candidates. Conventional PBE schemes
make this easy in almost all settings. For exampl#/ifs a 16-digit credit card number
encoded via ASCIl and the PBE scheme acts like an ideal giffitegprobability that any
M; # M is a valid ASCIl encoding of a 16-digit string is negligibk,(10/256)'6 <
2-74, An attacker can thus reject incorrect messages and regdweth overwhelming
probability. In fact, cryptographers generally ignore greblem of identifying valid
plaintexts and assume conservatively thatfifappears in the list, the attacker wins.

Prior theoretical frameworks for analyzing PBE schemegliagused on showing
strong security bounds for sufficiently unpredictable k@edlare, Ristenpart, and Tes-
saro [6] prove of PKCS#5 PBE schemes that no attacker cak bezaantic security
(learn partial information about plaintexts) with probébigreater thany/(c2#); here,

c is the time to perform a single decryptignjs the min-entropy of the distribution of
the keys, and negligible terms are ignored. As mentionegelibough, whem = 7,
such a result provides unsatisfying security guaranteestee formalisms and proof
techniques of [6] cannot offer better results. It may seeatthis is the best one can do
and that providing security beyond this “brute-force benrremains out of reach.

Perhaps unintuitively (at least to the authors of the prigsaper), the bounds above
are actuallynottight for all settings, as they do not take into account ttséritiution of
the challenge messagdé. ShouldM be a uniformly chosen bit-string of length longer
than y, for instance, then the best possible message recoveck attauld appear to
work with probability at most /2#. This is because for typical PBE schemes an attacker
will have a hard time, in practice, distinguishing the réstitlec( K, C') for any K from
a uniform bit string. Said another way, the candidate mess&g, . . ., M, would all
appear to be equally valid as plaintexts. Thus an adversamdgeem to maximize her
probability of message recovery simply by decryptingsing the key with the highest
probability, which is at most /2#.

Previously proposed security tools have exploited exattiy intuition for spe-
cial cases. Hoover and Kaus[k [26] consider the problem ofyating a (uniformly-
chosen) RSA or DSA secret exponent for authenticating a tesarremote system.
Only the remote system holds the associated public key. @gdagainst compro-



mise of the user’s machine, they suggest encrypting thesegponent under a PIN
(a short decimal-string password). They informally arguat trute-force decryption
yields valid-looking exponents, and that an attacker cdeat use each candidate ex-
ponent in a brute-force online attack against the remottesysTheir work led to a
commercially deployed system [29]. Other systems sinyilaglek to foil offline brute-
force attacks, but mainly by means of hiding valid autheiitm credentials in an
explicitly stored listof plausible-looking fake ones (often called “decoys” oofiey-
words”) [10/28]. Similarly, detection of system breachsiyg “honeytokens,” such as
fake credit-card numbers, is a common industry practick [38

Honey encryption (HE). Inspired by such decoy systems, we set out to build HE
schemes that provide security beyond the brute-forcedyafiihese schemes yield can-
didate messages during brute-force attacks that are imglisshable from valid ones.
We refer to the incorrect plaintext candidates in HEhasey messagge®llowing the
long established role of this sweet substance in computeriggterminology.

We provide a formal treatment of HE. Functionally, an HE sobés exactly like
a PBE scheme: it takes arbitrary strings as passwords asdthuse to perform ran-
domized encryption of a message. We ask that HE schemesaimaausly target two
security goals: message recovery (MR) security, as pamsinet! by a distribution over
messages, and the more (multi-instance) semantic-sgatyle goals of[[6]. As we
noted, the latter can only be achieved up to the brute-foaceds, and is thus mean-
ingful only for high min-entropy keys; our HR schemes achiéive goals of [6] using
standard techniques. The bulk of our efforts in this pap#heion MR security, where
we target security better thamic2*. Our schemes will, in fact, achieve security bounds
close tol /2# for unbounded attackers when messages are sufficientledigpable.

HE schemes can also produce compact ciphertexts (unlikiicitypstored de-
coys). While lengths vary by construction and messageilligion, we are able to give
schemes for which the HE ciphertext fof can be as small as a constant multiple (e.g.,
2) of the length of a conventional PBE ciphertextiah

Framework for HE schemes. We provide a general methodology for building HE
schemes. Its cornerstone is a new kind of (randomized) messeoding that we call
adistribution-transforming encoder (DTEA DTE is designed with an estimate of the
message distributiop,, in mind, making it conceptually similar to arithmetic/Hofan
coding [19]. The message space for a DTE is exactly the stipppy,, (messages with
non-zero probability). Encoding a message sampled frgrygields a “seed” value dis-
tributed (approximately) uniformly. It is often conventdar seeds to be binary strings.
A DTE must have an efficient decoder that, given a seed, abtiagncorresponding mes-
sage. Applying the decoder to a uniformly sampled seed pexla message distributed
(approximately) undes,,,. A good (secure) DTE is such that no attacker can distinguish
with significant probability between these two distribuso(1) a paif M, S) generated
by selecting)/ from p,,, and encoding it to obtain see and (2) a paif}, S) gener-
ated by selecting a seeétduniformly at random and decoding it to obtain message
Building DTEs is non-trivial in many cases, for example whepis non-uniform.

Encrypting a message under HE involves a two-step procedure that we PAIE-
then-encryptFirst, the DTE is applied td/ to obtain a seed. Second, the seeflis



encrypted under a conventional encryption scheme using the keyk, yielding an
HE ciphertextC'. This conventional encryption scherarc must have message space
equal to the seed space and all ciphertexts must decrypt angiéey to a valid seed.
Typical PBE schemes operating on bitstrings provide alhaf (but authenticated en-
cryption schemes do not). Appropriate care must be takenever, to craft a DTE
whose outputs require no padding (e.qg., for CBC-mode eriony)p

We prove a general theorem (Theotlgm 2) that upper boundsEhsddurity of any
DTE-then-encrypt scheme by the DTE's security and a schegmeific value that we
call the expected maximum load. Informally, the expectedimam load measures the
worst-case ability of an unbounded attacker to output thketnnessage; we relate it
to the expected maximum load of a bin in a kind of balls-antslgame. Analyzing
an HE scheme built with our approach (and a good DTE) thegafeduces to analyz-
ing the balls-and-bins game that arises for the particidgrdnd message distribution.
Assuming the random oracle model or ideal cipher model feruthderlying conven-
tional encryption scheme enables us to assume balls arertlindependently in these
games. (We conjecture thatwise independent hashing, and thusiise independent
ball placement, may achieve strong security in many casegh3

A DTE is designed using an estimate of the target messagiéhdisbn p,,. If the
DTE is only approximately right, we can nevertheless proessage-recovery security
far beyond the brute-force-barrier. If the DTE is bad, ibmsed on a poor estimate of
pm, We fall back to normal security (up to the brute-force ban)iat least provably
achieving the semantic security goalslin [6]. This means @&ndo worse than prior
PBE schemes, and, in particular, attackers must alwaypérgorm the work of offline
brute-force attacks before HE security becomes relevant.

HE instantiations. We offer as examples several concrete instantiations ofjeoeral
DTE-then-encrypt construction. We build HE schemes thakvior RSA secret keys
by crafting a DTE for uniformly chosen pairs of prime numbdrisis enables us to ap-
ply HE to RSA secret keys as used by common tools such as OpeaB&improves
on the non-standard selection of RSA secret exponents ingt@md Kausik[26]. In-
terestingly, simple encoding strategies here fail. Fonga, encoding the secret keys
directly as binary integers (in the appropriate range) warlable an attacker to rule
out candidate messages resulting from decryption by rgnpimality tests. Indeed,
the DTE we design has decode (essentially) implement a prim&er generation al-
gorithm. (This approach slows down decryption significgritut as noted above, in
PBE settings slow decryption can be advantageous.)

We also build HE schemes for password-based encryptioreditazard numbers,
their associated Card Verification Values (CVVs), and (ssdected) PINs. Encryp-
tion of PINs requires a DTE that handles a non-uniform distibn over messages,
as empirical studies show a heavy user bias in PIN seled®pnThe resulting anal-
ysis consequently involves a balls-and-bins game with unaiferm bin capacities, a
somewhat unusual setup in the literature.

In each of the cases above we are able to prove close to opiRakcurity.

Limitationsof HE. The security guarantees offered by HE come with some statigs
tached. First, HE security does not hold when the adversasgtide information about



the target message. As a concrete example, the RSA secrétEkegheme provides
strong MR guarantees only when the attacker does not knomuhkc key associated
with the encrypted secret key. Thus the HE cannot effegtipebtect normal HTTPS
certificate keys. (The intended application for this HE sabés client authorization,
where the public key is stored only at the remote server, iadypetting for SSH users.
See, e.g.,[[26].) Second, because decryption of an HE d¢gptiarnder a wrong key
produces fake but valid-looking messages, typos in paswoight confuse legitimate
users in some settings. We address this issue of “typoysafeSectionJ. Third and
finally, we assume in our HE analyses that the key and messstgibutions are inde-
pendent. If they are correlated, an attacker may be abletdifgt a correct message by
comparing it with the decryption key that produced it. Sarli}, encrypting two cor-
related messages under the same key may enable an adverskmytify correct mes-
sages. (Encrypting independent messages under the sansefkes/) We emphasize,
however, that should any of these assumptions fail, HE #gdatls back to normal
PBE security: there is never any harm in using HE.

Full version. Due to page constraints, this abstract omits proofs and sdhse con-
tent. Refer to the full version of the paper for the omittedenial [27].

2 Reated Work

Our HE schemes provide a form of information-theoretic gption, as their MR secu-
rity does not rely on any computational hardness assumptiformation-theoretic en-
cryption schemes, starting with the one-time gad [36], ls®an extensive study. Most
closely related is entropic securify [21]35], where theaigketo exploit high-entropy
messages to perform encryption that leaks no predicateepléintext even against
unbounded attackers (and hence beyond the brute-forcalpolimeir goal was to en-
able use of uniform, smaller (than one-time pads) keys y@esae information-theoretic
security. HE similarly exploits the entropy of messagesatao provides useful bounds
(by targeting MR security) even when the combined entropsne$sages and keys is
insufficient to achieve entropic security. See also theudision in the full version.

Deterministic([2,4,11] and hedged [3)34] public-key emptign rely on entropy in
messages to offset having no or only poor randomness dumneryion. HE similarly
exploits adversarial uncertainty about messages in treetbas keys are poor; HE can
be viewed as “hedging” against poor keys (passwords) assggito poor randomness.

In natural applications of HE, the message spAdemust encompass messages
of special format, rather than just bitstrings. In this #nsE is related to format-
preserving encryption (FPE)][5], although HE is randomiaad has no preservation
requirement (our ciphertexts are unstructured bit st)inga implication of our ap-
proach, however, is that some FPE constructions (e.g.réalitecard encryption) can
be shown to achieve HE-like security guarantees when mestiatsibutions are uni-
form. HE is also conceptually related to collisionful hash{Q], the idea of creating
password hashes for which it is relatively easy to find inegi@nd thus hard to identify
the original, correct password (as opposed to identifyingraect message).

Under (non-interactive) non-committing encryption I[17],3a ciphertext can be
“opened” to an arbitrary message under a suitably seleagd(kor example, a one-



time pad is non-committing.) HE has a different requiremeainely that decrypting a
fixed ciphertext under different keys yields independeniking samples of the message
space. Note that unlike non-committing encryption| [31], idE&chievable in the non-
programmable random oracle model. Deniable encryptiohdls® allows ciphertexts
to be opened to chosen messages; HE schemes do not in gdfesrdéaiability.

Canetti, Halevi, and Stein€r [118] propose a protocol in Wwhigpassword specifies
a subset of CAPTCHAs that must be solved to decrypt a crezlestdire. Their scheme
creates ambiguity around where human effort can be mosttie#dy invested, rather
than around the correctness of the contents of the credistaia, as HE would.

Perhaps most closely related to HE is a rich literature orepiéan and decoys
in computer security. Honeypots, fake computer systenenddd to attract and study
attacks, are a stock-in-trade of computer security rebd@id. Researchers have pro-
posed honeytokens [£0,138], which are data objects whossigsels a compromise,
and honeywords$[28], a system that uses passwords as hkaegtédditional propos-
als include false documents|14], false network traffid [E8]d many variants.

The Kamouflage system [10] is particularly relevant. It aeals a true password
vault encrypted under a true master password amérmpgus vaults encrypted under
bogus master passwords. Kamouflage requies) storage. With a suitable DTE, HE
can in principle achieve similar functionality and secpritith O(1) storage. Kamou-
flage and related systems require the construction of fludecoys. This problem has
seen study specifically for password protection in, €.d,/2Z8], but to the best of our
knowledge, we are the first to formalize it with the concepDdEs.

3 HE Overview

HE schemes. An HE scheme has syntax and semantics equivalent to thatyha s
metric encryption scheme. Encryption maps a key and meseageiphertext and, in
our schemes, is randomized. Decryption recovers messegasfphertexts. The de-
parture from conventional symmetric encryption schemdswiin how HE decryption
behaves when one uses the wrong key in attempting to decigiphartext. Instead of
giving rise to some error, decryption will emit a plainteixat “looks” plausible.

Formally, letkC and M be sets, the key space and message space. For generality, we
assume that consists of variable-length bit strings. (This supportgarticular, vary-
ing length passwords.) An HE sched& = (HEnc, HDec) is a a pair of algorithms.
EncryptionHENC takes input a key' € K, messagel/ € M, some uniform ran-
dom bits, and outputs a cipherteXt We write this ag”' «—s HEncx (M), where <—s
denotes thaHEnc may use some number of uniform random bits. Decrypki@rec
takes as input a kel( € I, ciphertexiC', and outputs a messagé € M. Decryption,
always deterministic, is written a@g «+ HDecx (C).

We require that decryption succeeds: FormatyHDec x (HEnck (M)) = M] =
1forall K € K andM € M, where the eventis defined over the randomnekHanc.

We will write SE = (enc, dec) to denote a conventional symmetric encryption
scheme, but note that the syntax and semantics match thaseHE scheme.

Message and key distributions. We denote a distribution on s§tby a mapp: S —
[0, 1] and require tha} | . ¢ p(s) = 1. The min-entropy of a distribution is defined to be



—log max,cs p(s). Sampling according to such a distribution is writter-,, S, and
we assume all sampling is efficient. We ysg to denote a message distribution over
M andp,, for a key distribution oveiC. Thus sampling according to these distributions
is denotedV/ <, , M andK <, K. Note that we assume that draws frpp andpy,

are independent, which is not always the case but will be memample applications;
see Sectiofl7. Whether HE schemes can provide security jokiad of dependent
distributions is an interesting question for future work.

M essage recovery security. To formalize our security goals, we use the notion of se-
curity against message recovery attacks. Normally, ons #iat, given the encryption
of a message, the probability of any adversary recoverimgdhrect message is negligi-
ble. But this is only possible when both messages and keysshigh entropy, and here
we may have neither. Nevertheless, we can measure the massayery advantage
of any adversary concretely, and will do so to show (say) élttaickers cannot achieve
advantage better than'2# wherey is the min-entropy of the key distributign..
Formally, we define the MR security game as
shown in Figuréll and define advantage for an adver-

sary A against a schemdE by Advyg , . (A) = MRYE .,
Pr[MR{ , . = true]. When working in the ran- | K" < K

dom oracle (RO) model, the MR game additionally | M <. M

has a procedure implementing a random function that | ¢* < HEnc(K™, M™)
A may query. For our schemes, we alloWvto run M s A(C™)

for an unbounded amount of time and make an un- [éturnM = M~
bounded number of queries to the RO. For simplici
we assume,,, andp,, are independent of the RO.

Elig. 1. Game defining MR secu-
rity.
Semantic security. In the case that keys are suffi-
ciently unpredictable and adversaries are computatiphailinded, our HE schemes
will achieve semantic security [24]. Our schemes will tliere never provide worse
confidentiality than conventional encryption, and in partar the MR advantage in
this case equals the min-entropy of the message distribptjp plus the (assumed)
negligible semantic security term. When combined with &aflé password-based key-
derivation function[[3R], our schemes will also achieverthgti-instance security guar-
antees often desired for password-based encryption [G¢ that the results in [6] still
hold only for attackers that cannot exhaust the min-entaodjilze key space.

In the full version we discuss why existing or naive apphess; e.g., conventional
encryption or hiding a true plaintextin a list of fake onegrdt satisfactory HE schemes.

4 Distribution-Transforming Encoders

We introduce a new type of message encoding scheme thatevéoefs alistribution-
transforming encodg{DTE). Formally, it is a paiDTE = (encode, decode) of algo-
rithms. The usually randomized algorithencode takes as input a messagé € M
and outputs a value in a s&t We call the range& theseed spacéor reasons that will
become clear in a moment. The deterministic algorittenode takes as input a value



S € § and outputs a messadé € M. We call a DTE schemeorrectif for any
M € M, Pr[decode(encode(M)) = M] = 1.

A DTE encodes a priori knowledge of the message distributign One goal in
constructing a DTE is thatecode applied to uniform points provides sampling close
to that of a target distributiop,,,. For a given DTE (that will later always be clear from
context), we defing, to be the distribution ovet defined by

pa(M)=Pr[M' =M : U+sS; M + decode(S)] .
We will often refer top, as the DTE distribution. Intuitively, in a good or secure QTE
the distributiong,,, andp, are “close.”
Formally, we define this notion of DTE security or goodnessiadlows. LetA be
an adversary attempting to distinguish between the two gahewn in Figurgl2. We

define advantage of an adversatyor a message distributigrn,, and encoding scheme
DTE = (encode, decode) by

Advpfe, (A) = [Pr[SAMPIge , = 1] — Pr[SAMPO%e = 1]] .

While we focus mostly on adversaries with unbounded runtimgs, we note that these
measures can capture computationally-good DTEs as wellerfegtly secure DTE

is a scheme for which the indistinguishability advantageeiso for even unbounded
adversaries. In the full version we explore another way oAsneng DTE goodness
that, while more complex, sometimes provides slightlydrdtbunds.

Inverse sampling DTE. We
first build a general purpose

DTE using inverse sampling, a SAMP15 SAMPOE; ¢
common technique for convert- | A"+, M S*¢sS

ing uniform random variables 5* +sencode(M*)| | M* « decode(S*)
into ones from some other dis- b s B(S*, M*) b s B(S*, M*)
tribution. LetF;,, be the cumula- returnb returnb

tive distribution function (CDF)

associated with a known mes- Fig. 2. Games defining DTE goodness.

sage distributiorp,,, according

to some ordering ofM =

{My,..., M} Define F,,(My) = 0. Let the seed space h& = [0,1). In-
verse sampling picks a value accordingztp by selectingS «+s [0, 1); it outputs
M; such thatF,,(M;—1) < S < F,(M;). This amounts to computing the in-
verse CDFM = F,'(S) = min{F,,(M;) > S}. The associated DTE scheme
IS-DTE = (is-encode, is-decode) encodes by picking uniformly from the range
[Fy,(M;_1), F(M;)) for input messag@/;, and decodes by computirg, ' (S).

All that remains is to fix a suitably granular representatidrihe reals between
[0,1). The representation error gives an upper bound on the DTEiseaf the scheme.
We defer the details and analysis to the full version. Emgdind decoding each work
in time O(log | M]) using a tables of siz&(|M|), though its performance can easily
be improved for many special cases (e.g., uniform distioing).

DTEsfor RSA secret keys. We turn to building a DTE for RSA secret keys. A popular
key generation algorithm generates an RSA key of bit-le@gtria rejection sampling



of random valueg, ¢ € [2°~1, 2). The rejection criterion for eitheror ¢ is failure of a
Miller-Rabin primality test[[30, 33]; the resulting didtrition of primes is (essentially)
uniform over the range. The private exponent is computet-as:~! mod (p—1)(q —
1) for some fixed (typically 65537), yielding secret keyN, d) and public key(V, e).
Usually, the keyp, ¢ is stored with some ancillary values (not efficiently reaaize
from d) to speed up exponentiation via the Chinese Remainder €he@ince for fixed
e, the pairp, ¢ fully defines the secret key, we now focus on building DTE$ thke as
input primesp, ¢ € [2¢71, 2¢) for some/ and aim to match the message distributign
that is uniformly distributed over the primesiizf =, 2¢).

One strawman approach is just to encode the inppytas a pair of(¢ — 2)-bit
strings (the leading ‘1’ bit left implicit), but this givesmoor DTE. The prime number
theorem indicates that arbit integer will be prime with probability about/¢; thus an
adversaryA that applies primality tests to a candidate plaintext haseay(high) DTE
advantage of about— 1/¢2.

We can instead adapt the rejection-sampling approachreepgeneration itself as
a DTE,RSA-REJ-DTE = (rsa-rej-encode, rsa-rej-decode), which works as fol-
lows. Encoding i(sa-rej-encode) takes a pair of prime§p, ¢), constructs a vector of
t bitstrings selected uniformly at random from the raigfe’!, 2¢), replaces the first
(resp. second) prime integer in the list pyresp.q), and outputs the modified vector
of ¢ integers (each encoded usifig 2 bits). (If there’s one prime and it's not the last
integer in the vector, then that prime is replacedpbgnd the last integer is replaced
by ¢. Should there be no primes in the vector, or one prime in tsigolasition, then the
last two integers in the vector are replaced byy).) Decoding (sa-rej-decode) takes
as input a vector of theintegers, and outputs its first two primes. If there do nostexi
two primes, then it outputs some (hard-coded) fixed prﬁk‘m simplicity, we assume
a perfect primality testing algorithm; it is not hard to geadze to probabilistic onds.
We obtain the following security bound.

Theorem 1. Let p,, be uniform over primes if2¢~!,2¢) for some/ > 2 and let
RSA-REJ-DTE be the scheme described above. TA&t 35 res.ore . (A) < (1 —
1/(3¢))!~! for any adversaryA.

sPm

This scheme is simple, but a small adversarial advantagetdaeslate into a large
encoding. For example with = 1024 (2048-bit RSA), in order to achieve a bound of
Adv‘,%tseA_REJ_DTE7pm (A) < 1075 requires > 35,361, resulting in an encoding of about
4.5 megabytes. (Assuming keys of low entrop§; > is small enough to contribute
insignificantly to security bounds on the order of those iot®a[4.) It may be tempting
to try to save on space by treatiftas a seed for a pseudorandom generator (PRG) that
is then used to generate thevalues during decoding. Encoding, though, would then
need to identify seed values that map to particular mesqagese pairs), effectively
inverting the PRG, which is infeasible.

Some RSA key generators do not use rejection-samplingnbtgad use the classic
algorithm that picks a random integer 2/ —!,2¢) and increments it by two until a

3 We could also output bottom, but would then need to permirsrin decoding and HE de-
cryption.
4 Doing so would also require our definition of DTE correctniesallow errors.



HEnc™ (K, M) HDec” (K, (R, Cs))
S «+—s encode(M) S+ Co®H(R,K)
R+s{0,1}" M < decode(S)
Co«sHR,K)®S return M

return(R, C2)

Fig. 3. A particularly simple instantiation of DTE-then-Encryping a hash-functio to im-
plement the symmetric encryption.

prime is found (c.f. [[1/5,25]). In this case, a DTE can be tarsed (see the full version
for details) that requires onB(¢ — 2)-bit seeds, and so is space-optimal. Other, more
randomness-efficient rejection-sampling techniqiies [28} also be used to obtain
smaller encodings.

In some special settings it may be possible to hook existygdeneration software,
extract the PRG key / seedised for the initial generation of an RSA key pair, and apply
HE directly tox. A good DTE (and thus HE scheme) can then be constructedltyivi
ask is just a short (e.g., 256-bit) uniformly random bitstring.

5 DTE-then-Encrypt Constructions

We now present a general construction for HE schemes forgettaistributionp,,, .
Intuitively, the goal of any HE scheme is to ensure that thenpéxt resulting from
decrypting a ciphertext string under a key is indistingatsle from freshly sampling a
plaintext according t®,,. Let DTE = (encode, decode) be a DTE scheme whose
outputs are in the space= {0, 1}*. Let SE = (enc, dec) be a conventional symmet-
ric encryption scheme with message spaand some ciphertext spa€e

Then DTE-then-EncrydE[DTE, SE| = (HEnc, HDec) applies the DTE encod-
ing first, and then performs encryption under the key. Detmoypnorks in the natural
way. It is easy to see that the resulting scheme is secure setise of semantic security
(when keys are drawn from a large enough space) sHsibldnjoy the same property.

We fix a simple instantiation using a hash functiin {0,1}" x £ — S to per-
form symmetric encryption, see Figlre 3. It is denote®lB$DTE, H|. Of course, one
should apply a password-based key-derivation functiofi fiirst, as per([32]; we omit
this for simplicity.

To analyze security, we use the following approach. Firsteastblish a general
theorem (Theoreim 2) that uses the goodness of the DTE scliemeve to a setting
where, intuitively, the attacker’s best bet is to outputrtiessageé/ that maximizes the
probability (over choice of key) af/ being the result of decrypting a random challenge
ciphertext. The attacker wins, then, with exactly the sunthef probabilities of the
keys that map the ciphertext to that message. Second, we @efireighted balls-and-
bins game with non-uniform bin sizes in a way that makes thmeeted load of the
maximally loaded bin at the end of the game exactly the wigmhrobability of the
attacker. We can then analyze these balls-and-bins gamearfous message and key
distributions combinations (in the random oracle modelg put all of this together



to derive bounds for some concrete applications in Seflidu¥emphasize that the
results here provide a general framework for analyzing HEStroctions.

Applying DTE goodness. Let Ky c = {K : K € KA M = HDec(K,C)} be
the set of keys that decrypt a specific ciphertext to a spenifissage and (overloading
notation slightly) letpy, (Ka,c) = ZKe/cM,cPk(K) be the aggregate probability of
selecting a key that falls in any such set. Then for @y C we defineLyg ,, (C') =
maxns pr(Kar,c). Let Lyg p, represent the random variablge ,, (C') defined over
C' uniformly chosen fronC and any coins used to defitDec. (For example in the
hash-based scheme, we take this over the coins used to défiieen modeled as a
random oracle.) We will later show, for specific messagefisyributions and using
balls-and-bins-style arguments, bounds driige ,, |. We call this value the expected
maximum load, following the terminology from the balls-abiths literature.

For the following theorem we require froBE only that encrypting uniform mes-
sages gives uniform ciphertexts. More precisely, #hats S ; C «senc(K,S) and
C<+sC; S+ dec(K,C) define identical distributions for any kdy € K. This is
true for many conventional schemes, including the hasledssheme used in Figurk 3,
CTR mode over a block-cipher, and CBC-mode over a block cifdssuming the DTE
is designed so thaf includes only bit strings of length a multiple of the blockes).
The proof of the following theorem is given in the full versio

Theorem 2. Fix distributionsp,,, px, an encoding schem#TE for p,,,, and a symmet-
ric encryption schem8E = (enc, dec). Let.4 be an MR adversary. Then we give a
specific adversary in the proof such thaAdvye , . (A) < AdvgtTCE_’me (B) +
E[Lne,p, |- AdversaryB runs in time that of4 plus the time of onenc operation.

The balls-and-bins interpretation. What remains is to bound [Eg , |. To do so,
we use the following equivalent description of the prohab#ipace as a type of balls-
and-bins game. Uniformly pick a ciphertext<s C. Each ball represents one ké&y
and has weight equal tp,(K). We leta = |K| be the number of balls. Each bin
represents a messagé andb = |M| is the number of binB.A ball is placed in a
particular bin should” decrypt undeis to the message labeling that bin. Thege ,,,
as defined above is exactly the random variable defined as déxémam, over bins,
sum of weights of all balls thrown into that bin. In this badlad-bins game the balls
are weighted, the bins have varying capacities, and thddpgndence of ball throws
depends on the details of the symmetric encryption scheet us

To derive bounds, then, we must analyze the expected maxilwafor various
balls-and-bins games. For brevity in the following sectiare focus on the hash-based
HE scheme shown in Figuié 3. By modeliify as a random oracfewe get that all
the ball throws are independent. At this stage we can alswaabaway the details of
the DTE, instead focusing on the distributipp defined overM. The balls-and-bins
game is now completely characterizedigyandp,, and we define the random variable
Ly, », asthe load of the maximally loaded bin at the end of the lzall$-bins game that

5 Convention is to haven balls andn bins, but we use balls andb bins to avoid confusion
sincem connotes messages.
6 Technically speaking we only require the non-programmadatelom oracle [22,31].



throws|K| balls with weights described by independently intoM | bins, choosing a
bin according tg,. The following lemma formalizes this transition.

Lemma 1. ConsiderHE[DTE, H] for H modeled as a RO ardTE having distribu-
tion pg. For any key distributiomy,, E[Lye .| < E[Lp, p.]-

We give similar lemmas for block-cipher based modes (indealicipher model) in
the full version. Thus we can interchange the hash-basethsjrit encryption scheme
for other ones in the final results of Sectidn 7 with essdgtihk same security bounds.

6 Balls-and-Bins Analyses

In this section we derive bounds for various types of batid-hins games, as motivated
and used for the example applications of HE in the next seclibese cases are by
no means exhaustive; they illustrate the power of our géhtEaanalysis framework.
Treatingp,, andp, as vectors, we can write their dimensiongg = « and|p,| = b.

In the special case of = b and bothp, andp, uniform, the balls-and-bins game
becomes the standard one. One can use the classic proofviotlsaibE[ Ly, ,,] <
b + b?i‘frfb HE schemes for real applications, however, are unlikelyoincide with

this special case, and so we seek other bounds.

Majorization. To analyze more general settings, we exploit a result dueterBink,
Friedetzky, Hu, and Martin[7] that builds on a techniqudezhl'majorization” earlier
used for the balls-and-bins setting by Azar, Broder, Kadind Upfal [1].

Distributions such ag, andp, can be viewed as vectors of appropriate dimension
over R. We assume below that vector components are in decreadiieg, @.g. that
pr(i) > pr(j) fori < j. Letm be a number angy, pj, € R°. Thenpk majorizespy,
denotedp, - py, if 2?21 pilil = Zz 1 Prli] andzz L Pli] > Zz 1 pi[i] for all
1<j<a.

Majorization intuitively states that), is more “concentrated” thapy,: a prefix of
any length ofpj, has cumulative weight at least as large as the cumulativghwef the
same-length prefix of,. We have the following theorem frorhl[7, Cor. 3.5], slightly
recast to use our terminology. We also extend our definitibload to include the
highest loaded bins: IeltZ ..pa D€ the random variable which is the total weight in the
highest-loaded bins at the end of the balls-and-bins game.

Theorem 3 (BFHMO08). Let py, p}., pa be distributions. If}, >~ pi, thenE[L
E[L¢ . ]forallie [1,b].

PksPd
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Consider the casé = 1, which corresponds to the expected maximum bin loads
for the two key distributions. As a concrete exampleplet= (1/2,1/4,1/4), pj, =
(1/2,1/2,0). Thenp, = p, and thus B L(p}., pq)| > E[ L(pk, pa) ] because “fusion”
of the two 1/4-weight balls into one ball biases the expeotadimum load upwards.

Our results will use majorization to shift from a settinghwiton-uniform key distri-
butionp;. having max-weightv to a setting with uniform key distribution with weight

[1/w].

Non-uniform key distributions. We turn now to giving a bound for the case that
has maximum weightv (meaningp, (M) < w for all M) andp, is uniform. In our



examples in the next section we have thak b, and so we focus on results for this
case. We start with the following lemma (whose proof is givetie full version).

Lemma 2. Suppose;, has maximum weight andp, is such thath = ca for some
positive integer. Then for any positive integer> 2¢/c¢, wheree is Euler’'s constant,

it holds that
a2 e\’
E[Lppi] Sw ((s— 1)+2 (1) (<) ) .

For cases in which = O(a?), a convenient, somewhat tighter bound op/E, ,,, | is
possible. We observe that in many cases of interest, therterh) in the bound below
will be negligible. Proof of this next lemma is given in thdlfuersion.

Lemma 3. Suppose; has maximum weight and p, is such that) = ca? for some
positive integer. ThenE[ Ly, ,, ] < w [1+ & + r(c, b)], wheree is Euler's constant

andr(c,b) = (5%) (1— <)

Non-uniform balls-and-bins. To support our examples in the next section, we also
consider the case of non-unifopy . Proof of this lemma is given in the full version.

Lemma4. Let Lz denote the maximum load yielded by throwinballs (of weight 1)
into a setB of b bins of non-uniform capacity at mo&t< v < 3 — /5. Let L~ denote
the maximum load yielded by throwing = 3a balls (of weight 1) into a seB* of
b* = |2/~] bins of uniform capacity. Thel[L3] < E[Lg-].

7 Example Applications, Bounds, and Deployment Consider ations

We now draw together the results of the previous sectiossioine concrete examples
involving honey encryption of RSA secret keys and creditiagata. For concreteness,
we assume password-based encryption of these secretajgitbur proven results are
much more general. Appealing again to Bonneau’s Yahooyqti&] in which the most
common password was selectedb§8% =~ 1/100 of users, we assume for simplicity
that the maximum-weight password / key is selected with abdly w = 1/100. (At
this level of entropy, prior security results for PBE scheraee not very useful.)

7.1 HE for Credit Card Numbers, PINs, and CVVs

We first consider application of HE to credit card numbers.demvenience, we evalu-
ate HE as applied to a single value, e.g., one credit-cardeurRecall, though, that HE
security is unaffected by simultaneous encryption of rplétiindependent messages
drawn from the same distribution. So our security boundsrincgple apply equally
well to encryption of a vault or repository of multiple credard numbers.

A (Mastercard or Visa) credit card number, known technycadl a Primary Account
Number (PAN), consists of sixteen decimal digits. Althosgtuctures vary somewhat,
commonly nine digits constitute the cardholder’s accouwmber, and may be regarded



as selected uniformly at random upon issuance. One digit(iead 10) checksum
(known as the Luhn formula). A useful result then is the failog theorem, whose
proof is given in the full version.

Theorem 4. ConsiderHE[IS-DTE, H] with H modeled as a RO ankB-DTE using
an (-bit representation. Lep,,, be a uniform distribution ovel messages ang, be a
key-distribution with maximum weight Leta = [1/w]. Then for any adversary,

mr 1+«
A VHE.,pm,p;C (A) S w(l =+ 6) + 2@

2

—1
— Ot2 ea4 e
Where5—%+ﬁ(1—b—2) .

For many cases of interest,> «?2, and thuss will be small. We can also sétap-
propriately to maké1 + «)/2¢ negligible. Theorerfl4 then yields a simple and useful
bound, as for our next two examples.

As cardholder account numbers are uniformly selected digi-values, they in-
duce a uniform distribution over a spacebof 10° messages. Given = 1/100, then,
a?/b = 107" and so§ ~ 0. The upper bound on MR advantage:ds= 1/100. This
bound is essentially tight, as there exists an advetrdaaghieving advantage = ﬁ.
Namely, the adversary that decrypts the challenge cipktentgh the most probable
key and then outputs the resulting message. This adveraargdvantage at least

Finally, consider encrypting both 5-digits of the creditrd / debit-card account
number (the last 4 digits still considered public) alonghwiite user’'s PIN number.
(Credit card PINs are used for cash withdrawals and to aizéhaiebit-card transac-
tions.) A detailed examination of a corpus of 3.4 million mselected PINSs is given
in [8], and gives in particular a CDF that can be used to defin@éeerse sampling
DTE. The most common user-selected PIN is ‘1234’; it has aeoked frequency of
10.713%. Thus, PINs have very little minimum entropy (royghbits). Combining a
PIN with a five-digit effective account number inducesan-uniformmessage space,
with maximum message probability= 1.0713 x 10~°. Consequently, Theorelm 4 is
not applicable to this example.

A variant of the proof of Theoref 4, however, that makes udeeaime4 for non-
uniform bin sizes, establishes the following corollary.

Corollary 1. ConsiderHE[IS-DTE, H] with H modeled as a RO ani$-DTE using
an /-bit representation. Lep,,, be a non-uniform distribution with maximum message
probability v < 3 — /5, andp;, be a key-distribution with maximum weigft Let

a = [1/w]. Then for any adversary, Adv{je , . (A) < w(l +6) + (1 —2:04)

—2 —4 o\ —1 -
wheres = 2 + <%, (1~ <) anda = [3/w] andb = |2/+.
Corollary[] yields a bound defined by the expected maximurd tfaa balls-and-
bins experiment witl300 balls (of weightw = 1/100) and|2/~| = 1,866,890 uniform-
capacity bins, witle = @* /b = 1,/20.74. The final MR bound is therefore abau02%.
This is slightly better than the bound of the previous exanfat1.05%). It shows, sig-
nificantly, that Corollar{1L is tight enough to give improviedunds despite the scant
minimum entropy in a PIN.
Credit cards often have an associated three- or four-dagd verification value
a secret used to conduct transactions. In the full versi@njnwestigate the case of
applying HE to such small messages.



7.2 HE for RSA Secret Keys

We now show how to apply HE to RSA secret keys using the DTBdhtced for this
purpose in Sectidn 4.

In some settings, RSA is used without making a user’s pulglcrkeadily available
to attackers. A common example is RSA-based client auttegidin to authorize access
to a remote service using HTTPS or SSH. The client stores @nde6ret / private key
and registers the corresponding public key with the remenéce.

Practitioners recommend encrypting the client’s secrgt lkeder a password to
provide defense-in-depth should the client's system besipely compromiseE.With
password-based encryption, though, an attacker can mouofflme brute-force at-
tack against the encrypted secret key. Use of straightimhwaauthenticated encryp-
tion wouldn’t help here: as the secret key is usually stoeeal jpair of primeg andgq (to
facilitate use of the Chinese Remainder Theorem), an atarzn quickly test the cor-
rectness of a candidate secret key by applying a primaktytteits factors. Similarly,
given the passwords used in practice (e.g.ufee 1/100), key-hardening mechanisms
(e.g., iterative hashing) do not provide an effective slowd against brute-force attack.
Cracking a password-encrypted RSA secret key remainy fady.

HE is an attractive option in this setting. To build an HE sukefor 2¢-bit RSA
secret keys we can use the DTE from Sediion 4. We have thevialijitheorem.

Theorem 5. ConsiderHE[RSA-REJ-DTE, H] with RSA-REJ-DTE the 2¢-bit RSA
DTE using seed space vectors of sizend H modeled as a RO. Let,, be uniform
over primes inf2—‘~1,2¢) and letp,, be a key-distribution with maximum weight Let
a = [1/w]. Then for any adversary it holds that

1 t—1
AdviE, L (A) < w(l+0)+(1+0a) (1 _ @>

o? ea’ ea’ -
whered = 2120177 + (27(2@*1/6]2) ' (1 - W) '

The proof is much like that of Theordm 4 (the full version)ppTheoreni 2; plug
in the advantage upper bound for the RSA rejection samplifg Drheorenill); ap-
ply Lemmdl to get independent ball tosses; majorize to gdonm-weighted balls
(Theoreni B); apply a union bound to move frpmback to uniform bin selection; and
then finally apply the balls-and-bins analysis for uniforimsyLemmd.B).

The term¢ is small when—logw < ¢. For example, wittd = 1024 andw =
1/100 and settingg = 35,393, we have that ~ 0 and the overall MR advantage is
upper bounded by.1%. The ciphertext size will still be somewhat large, at aba6t 4
megabytes; one might use instead the DTEs discussed in iheefgion for which
similar MR bounds can be derived yet ciphertext size end$op.s

" Obviously an active attacker can sniff the keyboard or atissr capture the secret key. We also
are ignoring the role of network attackers that may also gaiess to transcripts dependent
on the true secret key. Sée [26] for discussion.



7.3 Deployment consider ations

A number of considerations and design options arise in thpementation and use of
HE. Here we briefly mention a couple involving the use of clsecks.

Typo-safety. Decryption of an HE ciphertext* under an incorrect password / k&y
yields a fake but valid-looking messadé. This is good for security, but can be bad for
usability if a fake plaintext appears valid to a legitimaseu

One possible remedy, proposed(ini[28], is the use of errtaetiag codes or check-
sums, such as those for ISBN book codes. For example, a airaais the password
/ key K* might be stored with the cipherte&t*. Such checksums would reduce the
size of the key spack and cause some security degradation, and thus require care-
ful construction and application. Another option in someasais online verification of
plaintexts. For example, if a credit-card number is rejgdig an online service after
decryption, the user might be prompted to re-enter her passw

Honeytokens without explicit sharing. In [10], it is suggested that fake passwords
/ honeytokens be shared explicitly between password vaylicGations and service
providers. Application of error-correcting codes to pteitts in HE can creatkoney-
tokens without explicit sharingis a naive example (and crude error-correcting code),
an HE scheme for credit-card numbers might explicitly stheefirst two digits of the
credit-card account number. If a service provider thenivesean invalid credit-card
number in which these digits are correct, it gains eviderfi@ decryption attempt on
the HE ciphertext by an adversary. This approach degradasiseslightly by reducing
the message space, and must be applied with care. But is @ffeinteresting way of
coupling HE security with online security checks.

8 Conclusion

Low-entropy secrets such as passwords are likely to pensistmputer systems for
many years. Their use in encryption leaves resources \abieeto offline attack. Honey
encryption can offer valuable additional protection intsscenarios. HE yields plau-
sible looking plaintexts under decryption with invalid lsefpasswords), so that offline
decryption attempts alone are insufficient to discover threect plaintext. HE also of-
fers a gracefully degrading hedge against partial disctostihigh min-entropy keys,
and, by simultaneously meeting standard PBE security nst&hould keys be high
entropy, HE never provides worse security than existing B&temes.

We showed applications in which HE security upper boundsegreal to an ad-
versary’s conditional knowledge of the key distributiae, j they min-entropy of keys.
These settings have message space entropy greater thamtrimgyeof keys, but our
framework can also be used to analyze other settings.

A key challenge for HE—as with all schemes involving decoysthe generation
of plausible honey messages through good DTE construatferhave described good
DTEs for several natural problems. For the case where phastonsist of passwords,
e.g., password vaults, the relationship between passweraaking and DTE construc-
tion mentioned above deserves further exploration. DTHer @n intriguing way of



potentially repurposing improvements in cracking tecbgglto achieve improvements
in encryption security by way of HE.

More generally, for human-generated messages (passwaolitd,\&mail, etc.), esti-
mation of message distributions via DTEs is interestingreegtaral language processing
problem. Similarly, the reduction of security bounds in HEHhe expected maximum
load for balls-and-bins problems offers an interestingnemtion with combinatorics.
The concrete bounds we present can undoubtedly be tighfenedvariety of cases.
Finally, a natural question to pursue is what kinds of HE latsucan be realized in the
standard model via, e.g:;wise independent hashing.
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