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Abstract. We introducehoney encryption(HE), a simple, general approach to
encrypting messages using low min-entropy keys such as passwords. HE is de-
signed to produce a ciphertext which, when decrypted with any of a number of
incorrect keys, yields plausible-looking but bogus plaintexts called honey mes-
sages. A key benefit of HE is that it provides security in cases wheretoo little
entropy is available to withstand brute-force attacks thattry every key; in this
sense, HE provides security beyond conventional brute-force bounds. HE can
also provide a hedge against partial disclosure of high min-entropy keys.
HE significantly improves security in a number of practical settings. To showcase
this improvement, we build concrete HE schemes for password-based encryption
of RSA secret keys and credit card numbers. The key challenges are development
of appropriate instances of a new type of randomized messageencoding scheme
called adistribution-transforming encoder(DTE), and analyses of the expected
maximum loading of bins in various kinds of balls-and-bins games.

1 Introduction

Many real-world systems rely for encryption on low-entropyor weak secrets, most
commonly user-chosen passwords. Password-based encryption (PBE), however, has a
fundamental limitation: users routinely pick poor passwords. Existing PBE mechanisms
attempt to strengthen bad passwords via salting, which slows attacks against multiple
users, and iterated application of one-way functions, which slows decryption and thus
attacks by a constant factorc (e.g.,c = 10,000). Recent results [6] prove that for con-
ventional PBE schemes (e.g., [32]), workq suffices to crack a single ciphertext with
probabilityq/c2µ for passwords selected from a distribution with min-entropy µ. This
brute-force boundis the best possible for in-use schemes.

Unfortunately empirical studies show this level of security to frequently be insuffi-
cient. A recent study [12] reportsµ < 7 for passwords observed in a real-world popula-
tion of 69+ million users. (1.08% of users chose the same password.) For any slowdown
c small enough to support timely decryption in normal use, thesecurity offered by con-
ventional PBE is clearly too small to prevent message-recovery (MR) attacks.

We explore a new approach to PBE that provides security beyond the brute-force
bound. The idea is to build schemes for which attackers areunable to succeed in mes-
sage recovery even after trying every possible password / key. We formalize this ap-
proach by way of a new cryptographic primitive calledhoney encryption(HE). We



provide a framework for realizing HE schemes and show scenarios useful in prac-
tice in which even computationally unbounded attackers canprovably recover an HE-
encrypted plaintext with probability at most2−µ + ǫ for negligibleǫ. Since there exists
a trivial, fast attack that succeeds with probability2−µ (guess the most probable pass-
word), we thus demonstrate that HE can yield optimal security.

While HE is particularly useful for password-based encryption (PBE), we empha-
size that “password” here is meant very loosely. HE is applicable toanydistribution of
low min-entropy keys, including passwords, PINs, biometrically extracted keys, etc. It
can also serve usefully as a hedge against partial compromise of high min-entropy keys.

Background. Stepping back, let us review briefly how brute-force message-recovery
attacks work. Given an encryptionC = enc(K,M) of messageM , whereK andM
are drawn from known distributions, an attacker’s goal is torecoverM . The attacker
decryptsC under as many candidate keys as she can, yielding messagesM1, . . . ,Mq.
Should one of the candidate keys be correct (i.e.,K is from a low-entropy distribution),
M is guaranteed to appear in this list, and at this stage the attacker wins with probability
equal to her ability to pick outM from theq candidates. Conventional PBE schemes
make this easy in almost all settings. For example, ifM is a 16-digit credit card number
encoded via ASCII and the PBE scheme acts like an ideal cipher, the probability that any
Mi 6= M is a valid ASCII encoding of a 16-digit string is negligible,at (10/256)16 <
2−74. An attacker can thus reject incorrect messages and recoverM with overwhelming
probability. In fact, cryptographers generally ignore theproblem of identifying valid
plaintexts and assume conservatively that ifM appears in the list, the attacker wins.

Prior theoretical frameworks for analyzing PBE schemes have focused on showing
strong security bounds for sufficiently unpredictable keys. Bellare, Ristenpart, and Tes-
saro [6] prove of PKCS#5 PBE schemes that no attacker can break semantic security
(learn partial information about plaintexts) with probability greater thanq/(c2µ); here,
c is the time to perform a single decryption,µ is the min-entropy of the distribution of
the keys, and negligible terms are ignored. As mentioned above, though, whenµ = 7,
such a result provides unsatisfying security guarantees, and the formalisms and proof
techniques of [6] cannot offer better results. It may seem that this is the best one can do
and that providing security beyond this “brute-force barrier” remains out of reach.

Perhaps unintuitively (at least to the authors of the present paper), the bounds above
are actuallynot tight for all settings, as they do not take into account the distribution of
the challenge messageM . ShouldM be a uniformly chosen bit-string of length longer
thanµ, for instance, then the best possible message recovery attack would appear to
work with probability at most1/2µ. This is because for typical PBE schemes an attacker
will have a hard time, in practice, distinguishing the result of dec(K,C) for anyK from
a uniform bit string. Said another way, the candidate messagesM1, . . . ,Mq would all
appear to be equally valid as plaintexts. Thus an adversary would seem to maximize her
probability of message recovery simply by decryptingC using the key with the highest
probability, which is at most1/2µ.

Previously proposed security tools have exploited exactlythis intuition for spe-
cial cases. Hoover and Kausik [26] consider the problem of encrypting a (uniformly-
chosen) RSA or DSA secret exponent for authenticating a userto a remote system.
Only the remote system holds the associated public key. To hedge against compro-



mise of the user’s machine, they suggest encrypting the secret exponent under a PIN
(a short decimal-string password). They informally argue that brute-force decryption
yields valid-looking exponents, and that an attacker can atbest use each candidate ex-
ponent in a brute-force online attack against the remote system. Their work led to a
commercially deployed system [29]. Other systems similarly seek to foil offline brute-
force attacks, but mainly by means of hiding valid authentication credentials in an
explicitly stored listof plausible-looking fake ones (often called “decoys” or “honey-
words”) [10,28]. Similarly, detection of system breaches using “honeytokens,” such as
fake credit-card numbers, is a common industry practice [38].

Honey encryption (HE). Inspired by such decoy systems, we set out to build HE
schemes that provide security beyond the brute-force barrier. These schemes yield can-
didate messages during brute-force attacks that are indistinguishable from valid ones.
We refer to the incorrect plaintext candidates in HE ashoney messages, following the
long established role of this sweet substance in computer security terminology.

We provide a formal treatment of HE. Functionally, an HE scheme is exactly like
a PBE scheme: it takes arbitrary strings as passwords and uses them to perform ran-
domized encryption of a message. We ask that HE schemes simultaneously target two
security goals: message recovery (MR) security, as parameterized by a distribution over
messages, and the more (multi-instance) semantic-security style goals of [6]. As we
noted, the latter can only be achieved up to the brute-force barrier, and is thus mean-
ingful only for high min-entropy keys; our HR schemes achieve the goals of [6] using
standard techniques. The bulk of our efforts in this paper will be on MR security, where
we target security better thanq/c2µ. Our schemes will, in fact, achieve security bounds
close to1/2µ for unbounded attackers when messages are sufficiently unpredictable.

HE schemes can also produce compact ciphertexts (unlike explicitly stored de-
coys). While lengths vary by construction and message distribution, we are able to give
schemes for which the HE ciphertext forM can be as small as a constant multiple (e.g.,
2) of the length of a conventional PBE ciphertext onM .

Framework for HE schemes. We provide a general methodology for building HE
schemes. Its cornerstone is a new kind of (randomized) message encoding that we call
a distribution-transforming encoder (DTE). A DTE is designed with an estimate of the
message distributionpm in mind, making it conceptually similar to arithmetic/Huffman
coding [19]. The message space for a DTE is exactly the support of pm (messages with
non-zero probability). Encoding a message sampled frompm yields a “seed” value dis-
tributed (approximately) uniformly. It is often convenient for seeds to be binary strings.
A DTE must have an efficient decoder that, given a seed, obtains the corresponding mes-
sage. Applying the decoder to a uniformly sampled seed produces a message distributed
(approximately) underpm. A good (secure) DTE is such that no attacker can distinguish
with significant probability between these two distributions: (1) a pair(M,S) generated
by selectingM from pm and encoding it to obtain seedS, and (2) a pair(M,S) gener-
ated by selecting a seedS uniformly at random and decoding it to obtain messageM .
Building DTEs is non-trivial in many cases, for example whenpm is non-uniform.

Encrypting a messageM under HE involves a two-step procedure that we callDTE-
then-encrypt. First, the DTE is applied toM to obtain a seedS. Second, the seedS is



encrypted under a conventional encryption schemeenc using the keyK, yielding an
HE ciphertextC. This conventional encryption schemeenc must have message space
equal to the seed space and all ciphertexts must decrypt under any key to a valid seed.
Typical PBE schemes operating on bitstrings provide all of this (but authenticated en-
cryption schemes do not). Appropriate care must be taken, however, to craft a DTE
whose outputs require no padding (e.g., for CBC-mode encryption).

We prove a general theorem (Theorem 2) that upper bounds the MR security of any
DTE-then-encrypt scheme by the DTE’s security and a scheme-specific value that we
call the expected maximum load. Informally, the expected maximum load measures the
worst-case ability of an unbounded attacker to output the right message; we relate it
to the expected maximum load of a bin in a kind of balls-and-bins game. Analyzing
an HE scheme built with our approach (and a good DTE) therefore reduces to analyz-
ing the balls-and-bins game that arises for the particular key and message distribution.
Assuming the random oracle model or ideal cipher model for the underlying conven-
tional encryption scheme enables us to assume balls are thrown independently in these
games. (We conjecture thatk-wise independent hashing, and thusk-wise independent
ball placement, may achieve strong security in many cases aswell.)

A DTE is designed using an estimate of the target message distribution pm. If the
DTE is only approximately right, we can nevertheless prove message-recovery security
far beyond the brute-force-barrier. If the DTE is bad, i.e.,based on a poor estimate of
pm, we fall back to normal security (up to the brute-force barrier), at least provably
achieving the semantic security goals in [6]. This means we never do worse than prior
PBE schemes, and, in particular, attackers must always firstperform the work of offline
brute-force attacks before HE security becomes relevant.

HE instantiations. We offer as examples several concrete instantiations of ourgeneral
DTE-then-encrypt construction. We build HE schemes that work for RSA secret keys
by crafting a DTE for uniformly chosen pairs of prime numbers. This enables us to ap-
ply HE to RSA secret keys as used by common tools such as OpenSSL, and improves
on the non-standard selection of RSA secret exponents in Hoover and Kausik [26]. In-
terestingly, simple encoding strategies here fail. For example, encoding the secret keys
directly as binary integers (in the appropriate range) would enable an attacker to rule
out candidate messages resulting from decryption by running primality tests. Indeed,
the DTE we design has decode (essentially) implement a primenumber generation al-
gorithm. (This approach slows down decryption significantly, but as noted above, in
PBE settings slow decryption can be advantageous.)

We also build HE schemes for password-based encryption of credit card numbers,
their associated Card Verification Values (CVVs), and (user-selected) PINs. Encryp-
tion of PINs requires a DTE that handles a non-uniform distribution over messages,
as empirical studies show a heavy user bias in PIN selection [8]. The resulting anal-
ysis consequently involves a balls-and-bins game with non-uniform bin capacities, a
somewhat unusual setup in the literature.

In each of the cases above we are able to prove close to optimalMR security.

Limitations of HE. The security guarantees offered by HE come with some stringsat-
tached. First, HE security does not hold when the adversary has side information about



the target message. As a concrete example, the RSA secret keyHE scheme provides
strong MR guarantees only when the attacker does not know thepublic key associated
with the encrypted secret key. Thus the HE cannot effectively protect normal HTTPS
certificate keys. (The intended application for this HE scheme is client authorization,
where the public key is stored only at the remote server, a typical setting for SSH users.
See, e.g., [26].) Second, because decryption of an HE ciphertext under a wrong key
produces fake but valid-looking messages, typos in passwords might confuse legitimate
users in some settings. We address this issue of “typo-safety” in Section 7. Third and
finally, we assume in our HE analyses that the key and message distributions are inde-
pendent. If they are correlated, an attacker may be able to identify a correct message by
comparing it with the decryption key that produced it. Similarly, encrypting two cor-
related messages under the same key may enable an adversary to identify correct mes-
sages. (Encrypting independent messages under the same keyis fine.) We emphasize,
however, that should any of these assumptions fail, HE security falls back to normal
PBE security: there is never any harm in using HE.

Full version. Due to page constraints, this abstract omits proofs and someother con-
tent. Refer to the full version of the paper for the omitted material [27].

2 Related Work

Our HE schemes provide a form of information-theoretic encryption, as their MR secu-
rity does not rely on any computational hardness assumption. Information-theoretic en-
cryption schemes, starting with the one-time pad [36], haveseen extensive study. Most
closely related is entropic security [21, 35], where the idea is to exploit high-entropy
messages to perform encryption that leaks no predicate on the plaintext even against
unbounded attackers (and hence beyond the brute-force bound). Their goal was to en-
able use of uniform, smaller (than one-time pads) keys yet achieve information-theoretic
security. HE similarly exploits the entropy of messages, but also provides useful bounds
(by targeting MR security) even when the combined entropy ofmessages and keys is
insufficient to achieve entropic security. See also the discussion in the full version.

Deterministic [2,4,11] and hedged [3,34] public-key encryption rely on entropy in
messages to offset having no or only poor randomness during encryption. HE similarly
exploits adversarial uncertainty about messages in the case that keys are poor; HE can
be viewed as “hedging” against poor keys (passwords) as opposed to poor randomness.

In natural applications of HE, the message spaceM must encompass messages
of special format, rather than just bitstrings. In this sense, HE is related to format-
preserving encryption (FPE) [5], although HE is randomizedand has no preservation
requirement (our ciphertexts are unstructured bit strings). An implication of our ap-
proach, however, is that some FPE constructions (e.g., for credit-card encryption) can
be shown to achieve HE-like security guarantees when message distributions are uni-
form. HE is also conceptually related to collisionful hashing [9], the idea of creating
password hashes for which it is relatively easy to find inverses and thus hard to identify
the original, correct password (as opposed to identifying acorrect message).

Under (non-interactive) non-committing encryption [17, 31], a ciphertext can be
“opened” to an arbitrary message under a suitably selected key. (For example, a one-



time pad is non-committing.) HE has a different requirement, namely that decrypting a
fixed ciphertext under different keys yields independent-lookingsamples of the message
space. Note that unlike non-committing encryption [31], HEis achievable in the non-
programmable random oracle model. Deniable encryption [16] also allows ciphertexts
to be opened to chosen messages; HE schemes do not in general offer deniability.

Canetti, Halevi, and Steiner [18] propose a protocol in which a password specifies
a subset of CAPTCHAs that must be solved to decrypt a credential store. Their scheme
creates ambiguity around where human effort can be most effectively invested, rather
than around the correctness of the contents of the credential store, as HE would.

Perhaps most closely related to HE is a rich literature on deception and decoys
in computer security. Honeypots, fake computer systems intended to attract and study
attacks, are a stock-in-trade of computer security research [37]. Researchers have pro-
posed honeytokens [20, 38], which are data objects whose usesignals a compromise,
and honeywords [28], a system that uses passwords as honeytokens. Additional propos-
als include false documents [14], false network traffic [13], and many variants.

The Kamouflage system [10] is particularly relevant. It conceals a true password
vault encrypted under a true master password amongN bogus vaults encrypted under
bogus master passwords. Kamouflage requiresO(N) storage. With a suitable DTE, HE
can in principle achieve similar functionality and security with O(1) storage. Kamou-
flage and related systems require the construction of plausible decoys. This problem has
seen study specifically for password protection in, e.g., [10, 28], but to the best of our
knowledge, we are the first to formalize it with the concept ofDTEs.

3 HE Overview

HE schemes. An HE scheme has syntax and semantics equivalent to that of a sym-
metric encryption scheme. Encryption maps a key and messageto a ciphertext and, in
our schemes, is randomized. Decryption recovers messages from ciphertexts. The de-
parture from conventional symmetric encryption schemes will be in how HE decryption
behaves when one uses the wrong key in attempting to decrypt aciphertext. Instead of
giving rise to some error, decryption will emit a plaintext that “looks” plausible.

Formally, letK andM be sets, the key space and message space. For generality, we
assume thatK consists of variable-length bit strings. (This supports, in particular, vary-
ing length passwords.) An HE schemeHE = (HEnc,HDec) is a a pair of algorithms.
EncryptionHEnc takes input a keyK ∈ K, messageM ∈ M, some uniform ran-
dom bits, and outputs a ciphertextC. We write this asC←$ HEncK(M), where←$

denotes thatHEnc may use some number of uniform random bits. DecryptionHDec
takes as input a keyK ∈ K, ciphertextC, and outputs a messageM ∈M. Decryption,
always deterministic, is written asM ← HDecK(C).

We require that decryption succeeds: Formally,Pr[HDecK(HEncK(M)) = M ] =
1 for all K ∈ K andM ∈M, where the event is defined over the randomness inHEnc.

We will write SE = (enc, dec) to denote a conventional symmetric encryption
scheme, but note that the syntax and semantics match those ofan HE scheme.

Message and key distributions. We denote a distribution on setS by a mapp : S →
[0, 1] and require that

∑

s∈S p(s) = 1. The min-entropy of a distribution is defined to be



− logmaxs∈S p(s). Sampling according to such a distribution is writtens←p S, and
we assume all sampling is efficient. We usepm to denote a message distribution over
M andpk for a key distribution overK. Thus sampling according to these distributions
is denotedM ←pm

M andK←pk
K. Note that we assume that draws frompm andpk

are independent, which is not always the case but will be in our example applications;
see Section 7. Whether HE schemes can provide security for any kind of dependent
distributions is an interesting question for future work.

Message recovery security. To formalize our security goals, we use the notion of se-
curity against message recovery attacks. Normally, one aims that, given the encryption
of a message, the probability of any adversary recovering the correct message is negligi-
ble. But this is only possible when both messages and keys have high entropy, and here
we may have neither. Nevertheless, we can measure the message recovery advantage
of any adversary concretely, and will do so to show (say) thatattackers cannot achieve
advantage better than1/2µ whereµ is the min-entropy of the key distributionpk.

MRA

HE,pm,pk

K∗←pk K

M∗←pm M

C∗←$ HEnc(K∗,M∗)

M ←$A(C∗)

returnM = M∗

Fig. 1. Game defining MR secu-
rity.

Formally, we define the MR security game as
shown in Figure 1 and define advantage for an adver-
saryA against a schemeHE by Adv

mr

HE,pm,pk
(A) =

Pr[MRA
HE,pm,pk

⇒ true]. When working in the ran-
dom oracle (RO) model, the MR game additionally
has a procedure implementing a random function that
A may query. For our schemes, we allowA to run
for an unbounded amount of time and make an un-
bounded number of queries to the RO. For simplicity
we assumepm andpk are independent of the RO.

Semantic security. In the case that keys are suffi-
ciently unpredictable and adversaries are computationally bounded, our HE schemes
will achieve semantic security [24]. Our schemes will therefore never provide worse
confidentiality than conventional encryption, and in particular the MR advantage in
this case equals the min-entropy of the message distribution pm plus the (assumed)
negligible semantic security term. When combined with a suitable password-based key-
derivation function [32], our schemes will also achieve themulti-instance security guar-
antees often desired for password-based encryption [6]. Note that the results in [6] still
hold only for attackers that cannot exhaust the min-entropyof the key space.

In the full version we discuss why existing or naı̈ve approaches, e.g., conventional
encryption or hiding a true plaintext in a list of fake ones, aren’t satisfactory HE schemes.

4 Distribution-Transforming Encoders

We introduce a new type of message encoding scheme that we refer to as adistribution-
transforming encoder(DTE). Formally, it is a pairDTE = (encode, decode) of algo-
rithms. The usually randomized algorithmencode takes as input a messageM ∈ M
and outputs a value in a setS. We call the rangeS theseed spacefor reasons that will
become clear in a moment. The deterministic algorithmdecode takes as input a value



S ∈ S and outputs a messageM ∈ M. We call a DTE schemecorrect if for any
M ∈M, Pr[decode(encode(M)) = M ] = 1.

A DTE encodes a priori knowledge of the message distributionpm. One goal in
constructing a DTE is thatdecode applied to uniform points provides sampling close
to that of a target distributionpm. For a given DTE (that will later always be clear from
context), we definepd to be the distribution overM defined by

pd(M) = Pr [M ′ = M : U ←$ S ; M ′ ← decode(S) ] .

We will often refer topd as the DTE distribution. Intuitively, in a good or secure DTE,
the distributionspm andpd are “close.”

Formally, we define this notion of DTE security or goodness, as follows. LetA be
an adversary attempting to distinguish between the two games shown in Figure 2. We
define advantage of an adversaryA for a message distributionpm and encoding scheme
DTE = (encode, decode) by

Adv
dte

DTE,pm
(A) =

∣

∣Pr
[

SAMP1ADTE,pm
⇒ 1

]

− Pr
[

SAMP0ADTE ⇒ 1
]
∣

∣ .

While we focus mostly on adversaries with unbounded runningtimes, we note that these
measures can capture computationally-good DTEs as well. A perfectly secure DTE
is a scheme for which the indistinguishability advantage iszero for even unbounded
adversaries. In the full version we explore another way of measuring DTE goodness
that, while more complex, sometimes provides slightly better bounds.

SAMP1BDTE,pm

M∗←pm M

S∗←$ encode(M∗)

b←$ B(S∗,M∗)

returnb

SAMP0BDTE

S∗←$ S

M∗ ← decode(S∗)

b←$ B(S∗,M∗)

returnb

Fig. 2. Games defining DTE goodness.

Inverse sampling DTE. We
first build a general purpose
DTE using inverse sampling, a
common technique for convert-
ing uniform random variables
into ones from some other dis-
tribution. LetFm be the cumula-
tive distribution function (CDF)
associated with a known mes-
sage distributionpm according
to some ordering ofM =
{M1, . . . ,M|M|}. Define Fm(M0) = 0. Let the seed space beS = [0, 1). In-
verse sampling picks a value according topm by selectingS←$ [0, 1); it outputs
Mi such thatFm(Mi−1) ≤ S < Fm(Mi). This amounts to computing the in-
verse CDFM = F−1

m (S) = mini{Fm(Mi) > S}. The associated DTE scheme
IS-DTE = (is-encode, is-decode) encodes by picking uniformly from the range
[Fm(Mi−1), Fm(Mi)) for input messageMi, and decodes by computingF−1

m (S).
All that remains is to fix a suitably granular representationof the reals between

[0, 1). The representation error gives an upper bound on the DTE security of the scheme.
We defer the details and analysis to the full version. Encoding and decoding each work
in timeO(log |M|) using a tables of sizeO(|M|), though its performance can easily
be improved for many special cases (e.g., uniform distributions).

DTEs for RSA secret keys. We turn to building a DTE for RSA secret keys. A popular
key generation algorithm generates an RSA key of bit-length2ℓ via rejection sampling



of random valuesp, q ∈ [2ℓ−1, 2ℓ). The rejection criterion for eitherp or q is failure of a
Miller-Rabin primality test [30, 33]; the resulting distribution of primes is (essentially)
uniform over the range. The private exponent is computed asd = e−1 mod (p−1)(q−
1) for some fixede (typically 65537), yielding secret key(N, d) and public key(N, e).
Usually, the keyp, q is stored with some ancillary values (not efficiently recoverable
fromd) to speed up exponentiation via the Chinese Remainder Theorem. Since for fixed
e, the pairp, q fully defines the secret key, we now focus on building DTEs that take as
input primesp, q ∈ [2ℓ−1, 2ℓ) for someℓ and aim to match the message distributionpm
that is uniformly distributed over the primes in[2ℓ−1, 2ℓ).

One strawman approach is just to encode the inputp, q as a pair of(ℓ − 2)-bit
strings (the leading ‘1’ bit left implicit), but this gives apoor DTE. The prime number
theorem indicates that anℓ-bit integer will be prime with probability about1/ℓ; thus an
adversaryA that applies primality tests to a candidate plaintext has a (very high) DTE
advantage of about1− 1/ℓ2.

We can instead adapt the rejection-sampling approach to prime generation itself as
a DTE, RSA-REJ-DTE = (rsa-rej-encode, rsa-rej-decode), which works as fol-
lows. Encoding (rsa-rej-encode) takes a pair of primes(p, q), constructs a vector of
t bitstrings selected uniformly at random from the range[2ℓ−1, 2ℓ), replaces the first
(resp. second) prime integer in the list byp (resp.q), and outputs the modified vector
of t integers (each encoded usingℓ − 2 bits). (If there’s one prime and it’s not the last
integer in the vector, then that prime is replaced byp and the last integer is replaced
by q. Should there be no primes in the vector, or one prime in the last position, then the
last two integers in the vector are replaced by(p, q).) Decoding (rsa-rej-decode) takes
as input a vector of thet integers, and outputs its first two primes. If there do not exist
two primes, then it outputs some (hard-coded) fixed primes.3 For simplicity, we assume
a perfect primality testing algorithm; it is not hard to generalize to probabilistic ones.4

We obtain the following security bound.

Theorem 1. Let pm be uniform over primes in[2ℓ−1, 2ℓ) for someℓ ≥ 2 and let
RSA-REJ-DTE be the scheme described above. ThenAdv

dte

RSA-REJ-DTE,pm
(A) ≤ (1−

1/(3ℓ))t−1 for any adversaryA.

This scheme is simple, but a small adversarial advantage does translate into a large
encoding. For example withℓ = 1024 (2048-bit RSA), in order to achieve a bound of
Adv

dte

RSA-REJ-DTE,pm
(A) < 10−5 requirest ≥ 35,361, resulting in an encoding of about

4.5 megabytes. (Assuming keys of low entropy,10−5 is small enough to contribute
insignificantly to security bounds on the order of those in Section 7.) It may be tempting
to try to save on space by treatingS as a seed for a pseudorandom generator (PRG) that
is then used to generate thet values during decoding. Encoding, though, would then
need to identify seed values that map to particular messages(prime pairs), effectively
inverting the PRG, which is infeasible.

Some RSA key generators do not use rejection-sampling, but instead use the classic
algorithm that picks a random integer in[2ℓ−1, 2ℓ) and increments it by two until a

3 We could also output bottom, but would then need to permit errors in decoding and HE de-
cryption.

4 Doing so would also require our definition of DTE correctnessto allow errors.



HEncH(K,M)

S←$ encode(M)

R←$ {0, 1}n

C2←$ H(R,K) ⊕ S

return(R,C2)

HDecH(K, (R,C2))

S ← C2 ⊕H(R,K)

M ← decode(S)
returnM

Fig. 3. A particularly simple instantiation of DTE-then-Encrypt using a hash-functionH to im-
plement the symmetric encryption.

prime is found (c.f., [15,25]). In this case, a DTE can be constructed (see the full version
for details) that requires only2(ℓ − 2)-bit seeds, and so is space-optimal. Other, more
randomness-efficient rejection-sampling techniques [23]may also be used to obtain
smaller encodings.

In some special settings it may be possible to hook existing key-generation software,
extract the PRG key / seedκ used for the initial generation of an RSA key pair, and apply
HE directly toκ. A good DTE (and thus HE scheme) can then be constructed trivially,
asκ is just a short (e.g., 256-bit) uniformly random bitstring.

5 DTE-then-Encrypt Constructions

We now present a general construction for HE schemes for a target distributionpm.
Intuitively, the goal of any HE scheme is to ensure that the plaintext resulting from
decrypting a ciphertext string under a key is indistinguishable from freshly sampling a
plaintext according topm. Let DTE = (encode, decode) be a DTE scheme whose
outputs are in the spaceS = {0, 1}s. Let SE = (enc, dec) be a conventional symmet-
ric encryption scheme with message spaceS and some ciphertext spaceC.

Then DTE-then-EncryptHE[DTE,SE] = (HEnc,HDec) applies the DTE encod-
ing first, and then performs encryption under the key. Decryption works in the natural
way. It is easy to see that the resulting scheme is secure in the sense of semantic security
(when keys are drawn from a large enough space) shouldSE enjoy the same property.

We fix a simple instantiation using a hash functionH : {0, 1}n × K → S to per-
form symmetric encryption, see Figure 3. It is denoted asHE[DTE, H ]. Of course, one
should apply a password-based key-derivation function toK first, as per [32]; we omit
this for simplicity.

To analyze security, we use the following approach. First weestablish a general
theorem (Theorem 2) that uses the goodness of the DTE scheme to move to a setting
where, intuitively, the attacker’s best bet is to output themessageM that maximizes the
probability (over choice of key) ofM being the result of decrypting a random challenge
ciphertext. The attacker wins, then, with exactly the sum ofthe probabilities of the
keys that map the ciphertext to that message. Second, we define a weighted balls-and-
bins game with non-uniform bin sizes in a way that makes the expected load of the
maximally loaded bin at the end of the game exactly the winning probability of the
attacker. We can then analyze these balls-and-bins games for various message and key
distributions combinations (in the random oracle model). We put all of this together



to derive bounds for some concrete applications in Section 7, but emphasize that the
results here provide a general framework for analyzing HE constructions.

Applying DTE goodness. Let KM,C = {K : K ∈ K ∧M = HDec(K,C)} be
the set of keys that decrypt a specific ciphertext to a specificmessage and (overloading
notation slightly) letpk(KM,C) =

∑

K∈KM,C
pk(K) be the aggregate probability of

selecting a key that falls in any such set. Then for anyC ∈ C we defineLHE,pk
(C) =

maxM pk(KM,C). Let LHE,pk
represent the random variableLHE,pk

(C) defined over
C uniformly chosen fromC and any coins used to defineHDec. (For example in the
hash-based scheme, we take this over the coins used to defineH when modeled as a
random oracle.) We will later show, for specific message/keydistributions and using
balls-and-bins-style arguments, bounds on E[LHE,pk

]. We call this value the expected
maximum load, following the terminology from the balls-and-bins literature.

For the following theorem we require fromSE only that encrypting uniform mes-
sages gives uniform ciphertexts. More precisely, thatS←$ S ; C←$ enc(K,S) and
C←$ C ; S ← dec(K,C) define identical distributions for any keyK ∈ K. This is
true for many conventional schemes, including the hash-based scheme used in Figure 3,
CTR mode over a block-cipher, and CBC-mode over a block cipher (assuming the DTE
is designed so thatS includes only bit strings of length a multiple of the block size).
The proof of the following theorem is given in the full version.

Theorem 2. Fix distributionspm, pk, an encoding schemeDTE for pm, and a symmet-
ric encryption schemeSE = (enc, dec). LetA be an MR adversary. Then we give a
specific adversaryB in the proof such thatAdv

mr

HE,pm,pk
(A) ≤ Adv

dte

DTE,pm
(B) +

E [LHE,pk
]. AdversaryB runs in time that ofA plus the time of oneenc operation.

The balls-and-bins interpretation. What remains is to bound E[LHE,pk
]. To do so,

we use the following equivalent description of the probability space as a type of balls-
and-bins game. Uniformly pick a ciphertextC←$ C. Each ball represents one keyK
and has weight equal topk(K). We let a = |K| be the number of balls. Each bin
represents a messageM andb = |M| is the number of bins.5 A ball is placed in a
particular bin shouldC decrypt underK to the message labeling that bin. ThenLHE,pk

as defined above is exactly the random variable defined as the maximum, over bins,
sum of weights of all balls thrown into that bin. In this balls-and-bins game the balls
are weighted, the bins have varying capacities, and the (in)dependence of ball throws
depends on the details of the symmetric encryption scheme used.

To derive bounds, then, we must analyze the expected maximumload for various
balls-and-bins games. For brevity in the following sections we focus on the hash-based
HE scheme shown in Figure 3. By modelingH as a random oracle,6 we get that all
the ball throws are independent. At this stage we can also abstract away the details of
the DTE, instead focusing on the distributionpd defined overM. The balls-and-bins
game is now completely characterized bypk andpd, and we define the random variable
Lpk,pd

as the load of the maximally loaded bin at the end of the balls-and-bins game that

5 Convention is to havem balls andn bins, but we usea balls andb bins to avoid confusion
sincem connotes messages.

6 Technically speaking we only require the non-programmablerandom oracle [22,31].



throws|K| balls with weights described bypk independently into|M| bins, choosing a
bin according topd. The following lemma formalizes this transition.

Lemma 1. ConsiderHE[DTE, H ] for H modeled as a RO andDTE having distribu-
tion pd. For any key distributionpk, E[LHE,pk

] ≤ E[Lpk,pd
].

We give similar lemmas for block-cipher based modes (in the ideal cipher model) in
the full version. Thus we can interchange the hash-based symmetric encryption scheme
for other ones in the final results of Section 7 with essentially the same security bounds.

6 Balls-and-Bins Analyses

In this section we derive bounds for various types of balls-and-bins games, as motivated
and used for the example applications of HE in the next section. These cases are by
no means exhaustive; they illustrate the power of our general HE analysis framework.
Treatingpk andpd as vectors, we can write their dimension as|pk| = a and|pd| = b.

In the special case ofa = b and bothpk andpd uniform, the balls-and-bins game
becomes the standard one. One can use the classic proof to show that E[Lpk,pd

] ≤
1

b + 3 ln b
b ln ln b . HE schemes for real applications, however, are unlikely tocoincide with

this special case, and so we seek other bounds.

Majorization. To analyze more general settings, we exploit a result due to Berenrink,
Friedetzky, Hu, and Martin [7] that builds on a technique called “majorization” earlier
used for the balls-and-bins setting by Azar, Broder, Karlin, and Upfal [1].

Distributions such aspk andpd can be viewed as vectors of appropriate dimension
over R. We assume below that vector components are in decreasing order, e.g. that
pk(i) ≥ pk(j) for i < j. Letm be a number andpk, p′k ∈ R

a. Thenp′k majorizespk,
denotedp′k ≻ pk, if

∑a
i=1

p′k[i] =
∑a

i=1
pk[i] and

∑j
i=1

p′k[i] ≥
∑j

i=1
pk[i] for all

1 ≤ j ≤ a.
Majorization intuitively states thatp′k is more “concentrated” thanpk: a prefix of

any length ofp′k has cumulative weight at least as large as the cumulative weight of the
same-length prefix ofpk. We have the following theorem from [7, Cor. 3.5], slightly
recast to use our terminology. We also extend our definition of load to include thei
highest loaded bins: letLi

pk,pd
be the random variable which is the total weight in thei

highest-loaded bins at the end of the balls-and-bins game.

Theorem 3 (BFHM08). Let pk, p′k, pd be distributions. Ifp′k ≻ pk, thenE[Li
p′

k
,pd

] ≥
E[Li

pk,pd
] for all i ∈ [1, b].

Consider the casei = 1, which corresponds to the expected maximum bin loads
for the two key distributions. As a concrete example, letpk = (1/2, 1/4, 1/4), p′k =
(1/2, 1/2, 0). Thenp′k ≻ pk and thus E[L(p′k, pd) ] ≥ E [L(pk, pd) ] because “fusion”
of the two 1/4-weight balls into one ball biases the expectedmaximum load upwards.

Our results will use majorization to shift from a setting with non-uniform key distri-
butionpk having max-weightw to a setting with uniform key distribution with weight
⌈1/w⌉.
Non-uniform key distributions. We turn now to giving a bound for the case thatpk
has maximum weightw (meaningpk(M) ≤ w for all M ) andpd is uniform. In our



examples in the next section we have thata ≪ b, and so we focus on results for this
case. We start with the following lemma (whose proof is givenin the full version).

Lemma 2. Supposepk has maximum weightw andpd is such thatb = ca for some
positive integerc. Then for any positive integers > 2e/c, wheree is Euler’s constant,
it holds that

E [Lpk,pd
] ≤ w

(

(s− 1) + 2

(

a2

cs−1

)

(e

s

)s
)

.

For cases in whichb = O(a2), a convenient, somewhat tighter bound on E[Lpk,pd
] is

possible. We observe that in many cases of interest, the termr(c, b) in the bound below
will be negligible. Proof of this next lemma is given in the full version.

Lemma 3. Supposepk has maximum weightw andpd is such thatb = ca2 for some
positive integerc. ThenE [Lpk,pd

] ≤ w
[

1 + 1

2c + r(c, b)
]

, wheree is Euler’s constant

andr(c, b) =
(

e
27c2

) (

1− e
cb

)−1
.

Non-uniform balls-and-bins. To support our examples in the next section, we also
consider the case of non-uniformpd . Proof of this lemma is given in the full version.

Lemma 4. LetLB denote the maximum load yielded by throwinga balls (of weight 1)
into a setB of b bins of non-uniform capacity at most0 ≤ γ ≤ 3−

√
5. LetLB∗ denote

the maximum load yielded by throwinga∗ = 3a balls (of weight 1) into a setB∗ of
b∗ = ⌊2/γ⌋ bins of uniform capacity. ThenE[LB] ≤ E[LB∗ ].

7 Example Applications, Bounds, and Deployment Considerations

We now draw together the results of the previous sections into some concrete examples
involving honey encryption of RSA secret keys and credit card data. For concreteness,
we assume password-based encryption of these secrets, although our proven results are
much more general. Appealing again to Bonneau’s Yahoo! study [12] in which the most
common password was selected by1.08% ≈ 1/100 of users, we assume for simplicity
that the maximum-weight password / key is selected with probability w = 1/100. (At
this level of entropy, prior security results for PBE schemes are not very useful.)

7.1 HE for Credit Card Numbers, PINs, and CVVs

We first consider application of HE to credit card numbers. For convenience, we evalu-
ate HE as applied to a single value, e.g., one credit-card number. Recall, though, that HE
security is unaffected by simultaneous encryption of multiple, independent messages
drawn from the same distribution. So our security bounds in principle apply equally
well to encryption of a vault or repository of multiple credit-card numbers.

A (Mastercard or Visa) credit card number, known technically as a Primary Account
Number (PAN), consists of sixteen decimal digits. Althoughstructures vary somewhat,
commonly nine digits constitute the cardholder’s account number, and may be regarded



as selected uniformly at random upon issuance. One digit is a(mod 10) checksum
(known as the Luhn formula). A useful result then is the following theorem, whose
proof is given in the full version.

Theorem 4. ConsiderHE[IS-DTE, H ] with H modeled as a RO andIS-DTE using
an ℓ-bit representation. Letpm be a uniform distribution overb messages andpk be a
key-distribution with maximum weightw. Letα = ⌈1/w⌉. Then for any adversaryA,

Adv
mr

HE,pm,pk
(A) ≤ w(1 + δ) +

1 + α

2ℓ
whereδ = α2

2b + eα4

27b2

(

1− eα2

b2

)−1

.

For many cases of interest,b ≫ α2, and thusδ will be small. We can also setℓ ap-
propriately to make(1 + α)/2ℓ negligible. Theorem 4 then yields a simple and useful
bound, as for our next two examples.

As cardholder account numbers are uniformly selected nine-digit values, they in-
duce a uniform distribution over a space ofb = 109 messages. Givenw = 1/100, then,
α2/b = 10−5 and soδ ≈ 0. The upper bound on MR advantage isw = 1/100. This
bound is essentially tight, as there exists an adversaryA achieving advantagew = 1

100
.

Namely, the adversary that decrypts the challenge ciphertext with the most probable
key and then outputs the resulting message. This adversary has advantage at leastw.

Finally, consider encrypting both 5-digits of the credit-card / debit-card account
number (the last 4 digits still considered public) along with the user’s PIN number.
(Credit card PINs are used for cash withdrawals and to authorize debit-card transac-
tions.) A detailed examination of a corpus of 3.4 million user-selected PINs is given
in [8], and gives in particular a CDF that can be used to define an inverse sampling
DTE. The most common user-selected PIN is ‘1234’; it has an observed frequency of
10.713%. Thus, PINs have very little minimum entropy (roughly 3 bits). Combining a
PIN with a five-digit effective account number induces anon-uniformmessage space,
with maximum message probabilityγ = 1.0713× 10−6. Consequently, Theorem 4 is
not applicable to this example.

A variant of the proof of Theorem 4, however, that makes use ofLemma 4 for non-
uniform bin sizes, establishes the following corollary.

Corollary 1. ConsiderHE[IS-DTE, H ] with H modeled as a RO andIS-DTE using
an ℓ-bit representation. Letpm be a non-uniform distribution with maximum message
probability γ ≤ 3 −

√
5, andpk be a key-distribution with maximum weightw. Let

α = ⌈1/w⌉. Then for any adversaryA, Adv
mr

HE,pm,pk
(A) ≤ w(1 + δ) +

(1 + α)

2ℓ

whereδ = α2

2b
+ eα4

27b
2

(

1− eα2

b
2

)−1

andα = ⌈3/w⌉ andb = ⌊2/γ⌋.

Corollary 1 yields a bound defined by the expected maximum load of a balls-and-
bins experiment with300 balls (of weightw = 1/100) and⌊2/γ⌋ = 1,866,890 uniform-
capacity bins, withc = α2/b = 1/20.74. The final MR bound is therefore about1.02%.
This is slightly better than the bound of the previous example (at1.05%). It shows, sig-
nificantly, that Corollary 1 is tight enough to give improvedbounds despite the scant
minimum entropy in a PIN.

Credit cards often have an associated three- or four-digitcard verification value,
a secret used to conduct transactions. In the full version, we investigate the case of
applying HE to such small messages.



7.2 HE for RSA Secret Keys

We now show how to apply HE to RSA secret keys using the DTE introduced for this
purpose in Section 4.

In some settings, RSA is used without making a user’s public key readily available
to attackers. A common example is RSA-based client authentication to authorize access
to a remote service using HTTPS or SSH. The client stores an RSA secret / private key
and registers the corresponding public key with the remote service.

Practitioners recommend encrypting the client’s secret key under a password to
provide defense-in-depth should the client’s system be passively compromised.7 With
password-based encryption, though, an attacker can mount an offline brute-force at-
tack against the encrypted secret key. Use of straightforward unauthenticated encryp-
tion wouldn’t help here: as the secret key is usually stored as a pair of primesp andq (to
facilitate use of the Chinese Remainder Theorem), an attacker can quickly test the cor-
rectness of a candidate secret key by applying a primality test to its factors. Similarly,
given the passwords used in practice (e.g., forw = 1/100), key-hardening mechanisms
(e.g., iterative hashing) do not provide an effective slowdown against brute-force attack.
Cracking a password-encrypted RSA secret key remains fairly easy.

HE is an attractive option in this setting. To build an HE scheme for 2ℓ-bit RSA
secret keys we can use the DTE from Section 4. We have the following theorem.

Theorem 5. ConsiderHE[RSA-REJ-DTE, H ] with RSA-REJ-DTE the 2ℓ-bit RSA
DTE using seed space vectors of sizet andH modeled as a RO. Letpm be uniform
over primes in[2−ℓ−1, 2ℓ) and letpk be a key-distribution with maximum weightw. Let
α = ⌈1/w⌉. Then for any adversaryA it holds that

Adv
mr

HE,pm,pk
(A) ≤ w(1 + δ) + (1 + α)

(

1− 1

3ℓ

)t−1

whereδ = α2

2⌈2ℓ−1/ℓ⌉
+
(

eα4

27⌈2ℓ−1/ℓ⌉2

)

·
(

1− eα2

⌈2ℓ−1/ℓ⌉2

)−1

.

The proof is much like that of Theorem 4 (the full version): apply Theorem 2; plug
in the advantage upper bound for the RSA rejection sampling DTE (Theorem 1); ap-
ply Lemma 1 to get independent ball tosses; majorize to get uniform-weighted balls
(Theorem 3); apply a union bound to move frompd back to uniform bin selection; and
then finally apply the balls-and-bins analysis for uniform bins (Lemma 3).

The termδ is small when− logw ≪ ℓ. For example, withℓ = 1024 andw =
1/100 and settingt = 35,393, we have thatδ ≈ 0 and the overall MR advantage is
upper bounded by1.1%. The ciphertext size will still be somewhat large, at about 4.5
megabytes; one might use instead the DTEs discussed in the full version for which
similar MR bounds can be derived yet ciphertext size ends up short.

7 Obviously an active attacker can sniff the keyboard or otherwise capture the secret key. We also
are ignoring the role of network attackers that may also gainaccess to transcripts dependent
on the true secret key. See [26] for discussion.



7.3 Deployment considerations

A number of considerations and design options arise in the implementation and use of
HE. Here we briefly mention a couple involving the use of checksums.

Typo-safety. Decryption of an HE ciphertextC∗ under an incorrect password / keyK
yields a fake but valid-looking messageM . This is good for security, but can be bad for
usability if a fake plaintext appears valid to a legitimate user.

One possible remedy, proposed in [28], is the use of error-detecting codes or check-
sums, such as those for ISBN book codes. For example, a checksum on the password
/ key K∗ might be stored with the ciphertextC∗. Such checksums would reduce the
size of the key spaceK and cause some security degradation, and thus require care-
ful construction and application. Another option in some cases is online verification of
plaintexts. For example, if a credit-card number is rejected by an online service after
decryption, the user might be prompted to re-enter her password.

Honeytokens without explicit sharing. In [10], it is suggested that fake passwords
/ honeytokens be shared explicitly between password vault applications and service
providers. Application of error-correcting codes to plaintexts in HE can createhoney-
tokens without explicit sharing. As a naı̈ve example (and crude error-correcting code),
an HE scheme for credit-card numbers might explicitly storethe first two digits of the
credit-card account number. If a service provider then receives an invalid credit-card
number in which these digits are correct, it gains evidence of a decryption attempt on
the HE ciphertext by an adversary. This approach degrades security slightly by reducing
the message space, and must be applied with care. But it offers an interesting way of
coupling HE security with online security checks.

8 Conclusion

Low-entropy secrets such as passwords are likely to persistin computer systems for
many years. Their use in encryption leaves resources vulnerable to offline attack. Honey
encryption can offer valuable additional protection in such scenarios. HE yields plau-
sible looking plaintexts under decryption with invalid keys (passwords), so that offline
decryption attempts alone are insufficient to discover the correct plaintext. HE also of-
fers a gracefully degrading hedge against partial disclosure of high min-entropy keys,
and, by simultaneously meeting standard PBE security notions should keys be high
entropy, HE never provides worse security than existing PBEschemes.

We showed applications in which HE security upper bounds areequal to an ad-
versary’s conditional knowledge of the key distribution, i.e., they min-entropy of keys.
These settings have message space entropy greater than the entropy of keys, but our
framework can also be used to analyze other settings.

A key challenge for HE—as with all schemes involving decoys—is the generation
of plausible honey messages through good DTE construction.We have described good
DTEs for several natural problems. For the case where plaintexts consist of passwords,
e.g., password vaults, the relationship between password-cracking and DTE construc-
tion mentioned above deserves further exploration. DTEs offer an intriguing way of



potentially repurposing improvements in cracking technology to achieve improvements
in encryption security by way of HE.

More generally, for human-generated messages (password vaults, e-mail, etc.), esti-
mation of message distributions via DTEs is interesting as anatural language processing
problem. Similarly, the reduction of security bounds in HE to the expected maximum
load for balls-and-bins problems offers an interesting connection with combinatorics.
The concrete bounds we present can undoubtedly be tightenedfor a variety of cases.
Finally, a natural question to pursue is what kinds of HE bounds can be realized in the
standard model via, e.g.,k-wise independent hashing.
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