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Abstract. The indifferentiability framework by Maurer, Renner and Holenstein
(MRH; TCC 2004) formalizes a sufficient condition to safely replace a random
oracle by a construction based on a (hopefully) weaker assumption such as an
ideal cipher. Indeed, many indifferentiable hash functions have been constructed
and could since be used in place of random oracles. Unfortunately, Ristenpart,
Shacham, and Shrimpton (RSS; Eurocrypt 2011) discovered that for a large class
of security notions, the MRH composition theorem actually does not apply. To
bridge the gap they suggested a stronger notion called reset indifferentiability
and established a generalized version of the MRH composition theorem. How-
ever, as recent works by Demay et al. (Eurocrypt 2013) and Baecher et al. (Asi-
acrypt 2013) brought to light, reset indifferentiability is not achievable thereby
re-opening the quest for a notion that is sufficient for multi-stage games and
achievable at the same time.
We present a condition on multi-stage games called unsplittability. We show that
if a game is unsplittable for a hash construction then the MRH composition theo-
rem can be salvaged. Unsplittability captures a restricted yet broad class of games
together with a set of practical hash constructions including HMAC, NMAC and
several Merkle-Damgård variants. We show unsplittability for the chosen distri-
bution attack (CDA) game (Bellare et al., Asiacrypt 2009), a multi-stage game
capturing the security of deterministic encryption schemes; for message-locked
encryption (Bellare et al.; Eurocrypt 2013) a related primitive that allows for se-
cure deduplication; for universal computational extractors (UCE) (Bellare et al.,
Crypto 2013), a recently introduced standard model assumption to replace ran-
dom oracles; as well as for the proof-of-storage game given by Ristenpart et al. as
a counterexample to the general applicability of the indifferentiability framework.

1 Introduction

The notion of indifferentiability, introduced by Maurer, Renner and Holenstein (MRH)
[25] can be regarded as a generalization of indistinguishability tailored to situations
where internal state is publicly available. It has found wide applicability in the do-
main of iterative hash functions which are usually built from a fixed-length compres-
sion function together with a scheme that describes how arbitrarily long messages are
to be processed [26,16,30,23,11]. The MRH composition theorem formalizes a suffi-
cient condition under which such a construction can safely instantiate a random oracle:
namely indifferentiability of a random oracle. A different view on this is that with in-
differentiability one can transfer proofs of security from one idealized setting into a
different (and hopefully simpler) idealized setting. For example, proofs in the random
oracle model (ROM) [8] imply proofs in the ideal cipher model if a construction from
an ideal cipher that is indifferentiable from a random oracle exists.
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Fig. 1: Security Games. From left to right: the chosen distribution attack (CDA) game [4] cap-
turing security in deterministic encryption schemes [3], the proof-of-storage challenge-response
game (CRP) due to Ristenpart et al. [29] given as counter-example of the general applicability of
the indifferentiability composition theorem, message locked encryption (MLE) [7], and universal
computational extractors (UCE) [6] a standard model security assumption on hash-functions.

Ristenpart, Shacham and Shrimpton (RSS) [29] gave the somewhat surprising re-
sult that the MRH composition theorem only holds in single-stage settings and does not
necessarily extend to multi-stage settings where disjoint adversaries are split over sev-
eral stages. As counterexample they present a simple challenge-response game (CRP,
depicted in Figure 1): a file server that is given a file M can be engaged in a simple
proof-of-storage protocol where it has to respond with a hash value H(M‖C) for a
random challenge C while only being able to store a short state st (with |st| � |M |).
The protocol can easily be proven secure in the ROM since, without access to file M ,
it is highly improbable for the server to correctly guess the hash value H(M ||C). The
server can, however, “cheat” if the random oracle is replaced by one of several indiffer-
entiable constructions. Here the server exploits the internal structure by computing an
intermediate chaining value which allows it to later compute extended hash values of
the form Hh(M‖·). We refer to [29] for a detailed discussion.

To circumvent the problem of composition in multi-stage settings, RSS propose a
stronger form of indifferentiability called reset indifferentiability [29], which intuitively
states that simulators must be stateless and pseudo-deterministic [2]. While this notion
allows composition in any setting, no domain extender can fulfill this stronger form
of indifferentiability [17,24,2]. Demay et al. [17] present a second variant of indiffer-
entiability called resource-restricted indifferentiability which models simulators with
explicit memory restrictions and which lies somewhere in between plain indifferen-
tiability and reset indifferentiability. However, they do not present any positive results
such as constructions that achieve any form of resource-restricted indifferentiability or
security games for which a resource-restricted construction allows composition.

The only positive results, we are aware of, is the analysis of RSS of the non-adaptive
chosen-distribution attack (CDA) game [4], depicted in Figure 1. CDA captures a secu-
rity notion for deterministic public-key encryption schemes [3], where the randomness
does not have sufficient min-entropy. In the CDA game, the first-stage adversary A1

outputs two message vectors m0 and m1 together with a randomness vector r which,
together, must have sufficient min-entropy independent of the hash functionality. Ac-



cording to a secret bit b one of the two message vectors is encrypted and given, together
with the public key, to the second-stage adversaryA2. The adversary wins if it correctly
guesses b. For the non-adaptive CDA game, RSS give a direct security proof for the sub-
class of indifferentiable hash functions of the NMAC-type [18], i.e., hash functions of
the form Hh(M) := g(fh(M)) where function g is a fixed-length random oracle in-
dependent of fh which is assumed to be preimage aware. Note, while this covers some
hash functions of interest, it does not, for example, cover chop-MD functions [15] (like
SHA-2 for certain parameter settings) or Keccak (aka. SHA-3).

In the lights of the negative results on stronger notions of indifferentiability, we
aim at salvaging the current notion; that is, we present tools and techniques to work
with plain indifferentiability in multi-stage settings. For this, let us have a closer look
at what goes wrong when directly applying the MRH composition theorem in a multi-
stage setting.

Plain Indifferentiability in Multi-stage Settings. Consider the basic Merkle-Damgård
construction1 and consider a two stage game with adversaries A1 and A2. If adversary
A1 makes an h-query y1 ← h(m1, IV) and passes on this value to adversary A2, then
A2 can compute arbitrary hash values of the form m1‖ . . . without having to know m1.
The trick in the MRH composition theorem is to exchange access to h with access to a
simulator S when placing the adversary in a setting where it plays against the game with
random oracleR. If we apply this trick to our two-stage game we need two independent
instances of this simulator, one for A1 and one for A2. Let’s call these S(1) and S(2).
The problem is now, that if A1 and A2 do not share sufficient state the same applies to
the two simulator instances: they share exactly the same state that is shared between the
two adversaries. Thus, if adversary A2 makes the query (y,m2) simulator S(2) does
not know that y corresponds to query (m1, IV) from A1 and it will thus not be able to
answer with a value y′ such that g(y′) = R(m1‖m2). This is, however, expected byA2

and would be the case if A1 and A2 had had access to the deterministic compression
function h.

Contributions. Our first contribution (Section 3) is to develop a model of hash functions
based on directed, acyclic graphs that is rich enough to pinpoint and argue about such
problematic adversarial h-queries while at the same time allowing us to consider many
different constructions simultaneously. Given this framework we define a property on
games and hash functions called UNSPLITTABILITY (Definition 10). If a game is UN-
SPLITTABLE for a hash construction, this basically means that problematic queries as
the one from the above example do not occur.

In Section 4 we then give a composition theorem for UNSPLITTABLE games which
intuitively says that if a game is UNSPLITTABLE for an indifferentiable hash construc-
tion, then security proofs in the random oracle model carry over if the random oracle is
implemented by that particular hash function. Assuming UNSPLITTABILITY, the main
technical difficulty in proving composition is to properly derandomize the various sim-
ulator instances and make them (nearly) stateless. Note that simulators for indifferen-
tiable hash constructions in the literature are mostly probabilistic and highly stateful.

1 The basic MD function Hh(m1, . . . ,m`) is computed as Hh(m1, . . . ,m`) := h(m`, x`)
where x1 := IV is some initialization vector and xi+1 := h(mi, xi).



In a multi-stage setting the various instances of the simulator must, however, answer
queries consistently, that is, in particular the same query by different adversaries must
always be answered with the same answer independent of the order of queries. For this,
we build on a derandomization technique developed by Bennet and Gill to show that the
complexity classes BPP andP are identical relative to a random oracle [10]. One inter-
esting intermediary result is that of a generic indifferentiability simulator that answers
queries in a very restricted way.

In Section 5 we show how to prove UNSPLITTABILITY for all multi-stage security
games depicted in Figure 1. We show that the CDA game (both, the non-adaptive and
adaptive) is UNSPLITTABLE for Merkle-Damgård-like functions as well as for HMAC
and NMAC (in the formulation of [5]) thereby complementing the results by RSS. Let
us note that, that our results on CDA require less restrictions on the public-key en-
cryption scheme (that is, the encryption scheme does not need to be IND-SIM [29]).
Similarly, we show UNSPLITTABILITY for message locked encryption (MLE), a secu-
rity definition for primitives that allow for secure deduplication [7]. MLE is closely
related to CDA with the additional complication that the two adversaries here can com-
municate “in the clear” via state value Z (see Figure 1). For the RSS proof-of-storage
(CRP) game given as counter-example for the general applicability of the MRH com-
position theorem, we show that it is UNSPLITTABLE for any so-called 2-round hash
function. These are hash functions, such as Liskov’s Zipper Hash [23] that process the
input message twice for computing the final hash value. Finally, we resolve an open
problem from [6]. Bellare, Hoang and Keelveedhi (BHK) introduce UCE a standard
model assumption for hash constructions which is sufficient to replace a random oracle
in a large number of applications [6]. At present the only instantiation of a UCE-secure
function is given in the random oracle model and BHK left as open problem whether
HMAC can be shown to meet UCE-security assuming an ideal compression function.
We show that this is not just the case for HMAC but also for many Merkle-Damgård
variants.

Finally, we want to note that we give the results for CDA, MLE and UCE via a meta-
result that considers security games for keyed hash functions where the hash function
key is only revealed at the very last stage. We show that all three security games can
be subsumed under this class and we show that games from this class are UNSPLIT-
TABLE for a large class of practical hash constructions including HMAC and NMAC
and several Merkle-Damgård-like functions such as prefix-free or chop-MD [15]. This
is particularly interesting as CDA and MLE are per se not using keyed hash functions,
but can be reformulated in this setting and it seems that with keyed hash functions it is
simpler to work with indifferentiability in a multi-stage scenario.

2 Preliminaries

If n ∈ N is a natural number then by 1n we denote the unary representation and by 〈n〉`
the binary representation of n (using ` bits). By [n] we denote the set {1, 2, . . . , n}.
By {0, 1}n we denote the set of all bit strings of length n while {0, 1}∗ denotes the
set of all finite bit strings. For bit strings m,m′ ∈ {0, 1}∗ we denote by m||m′ their
concatenation. IfM is a set then bym←M we denote thatm was sampled uniformly



from M. If A is an algorithm then by X ← A(m) we denote that X was output
by algorithm A on input m. As usual |M| denotes the cardinality of set M and |m|
the length of bit string m. Logarithms are to base 2. By H∞ (X) we denote the min-
entropy of variable X , defined as H∞ (X) := minx log(1/Pr[X = x ]). We assume
that any algorithm, game, etc. is implicitly given a security parameter as input, even
if not explicitly stated. We call an algorithm efficient if its run-time is polynomial in
the security parameter. Probability statements of the form Pr[ step1; step2 : condition ]
should be read as the probability that condition holds after the steps are executed in
consecutive order. We use standard boolean notation and denote by ∧ the AND by ∨
the OR of two values.

Hash Functions. A hash function is formally defined as a keyed family of functions
H(1λ) where each key k defines a function Hk : {0, 1}∗ → {0, 1}n. “Practical”
hash functions are usually built via domain extension from an underlying function
h : {0, 1}d × {0, 1}k → {0, 1}s that is iterated through an iteration scheme H to
process arbitrarily long inputs [26,16,30,23,1,21,31,11,20], with widely varying speci-
fications. The underlying function h usually is a compression function— the first input
taking message blocks and the second an intermediate chaining value—and we will
state our results relative to compression functions. As an exception to this rule, the
Sponge construction [12] (the design principle behind SHA-3, aka. Keccak [11]) iter-
ates a permutation instead of a compression function. We discuss, how this fits into our
model in the full version [27].

Indifferentiability. A hash function is called indifferentiable from a random oracle if no
distinguisher can decide whether it is talking to the hash function and its ideal compres-
sion function or to an actual random oracle and a simulator. We here give the definition
of indifferentiability from [15].

Definition 1. A hash constructionHh : {0, 1}∗ → {0, 1}n, with black-box access to an
ideal function h : {0, 1}d×{0, 1}k → {0, 1}s, is called indifferentiable from a random
oracleR if there exists an efficient simulator SR such that for any distinguisherD there
exists a negligible function negl, such that∣∣∣Pr[DHh,h(1λ) = 1

]
− Pr

[
DR,S

R
(1λ) = 1

]∣∣∣ ≤ negl(λ) .

Game Playing. We use the game-playing technique [9,29] and present here a brief
overview of the notation used. A game GF,A1,...,Am gets access to adversarial proce-
dures A1, . . . ,Am and to one or more so called functionalities F which are collections
of two proceduresF .hon andF .adv, with suggestive names “honest” and “adversarial”.
Adversaries (i.e., adversarial procedures) access a functionality F via the interface ex-
ported by F .adv, while all other procedures access the functionality via F .hon. In our
case, functionalities are exclusively hash functions which will be instantiated with itera-
tive hash constructions Hh. The adversarial interface exports the underlying function h,
while the honest interface exports plain access toHh. We thus, instead of writingF .hon
and F .adv usually directly refer to Hh and h, respectively. Adversarial procedures can
only be called by the game’s main procedure.



By GF,A1,...,Am ⇒ y we denote that the game outputs value y. If the game is
probabilistic or any adversarial procedure is probabilistic thenGF,A1,...,Am is a random
variable and Pr

[
GF,A1,...,Am ⇒ y

]
denotes the probability that the game outputs y.

By GF,A1,...,Am(r) we denote that the game is run on random coins r.
For this paper we only consider the sub-class of functionality-respecting games as

defined in [29]. A game is called functionality respecting if only adversarial proce-
dures can call the adversarial interface of functionalities. We define LG to be the set
of all functionality-respecting games. Note that this restriction is a natural restriction
if a game is used to specify a security goal in the random oracle model since random
oracles do not provide any adversarial interface.

3 A Model for Iterative Hash Functions

In the following we present a new model for iterated hash functions that allows to argue
about many functions at the same time. A similar endeavor has been made by Bhat-
tacharyya et al. [13] who introduce generalized domain extension. For our purpose, we
need a more explicit model that allows us to talk about the execution of hash functions
in great detail. Still, our model is general enough to capture many different types of con-
structions, ranging from the plain Merkle-Damgård over variants such as chop-MD [15]
to more complex constructions such as NMAC, HMAC [5] or even hash trees. We give
an overview over several hash constructions that are captured by our model in the full
version of this paper [27].

Execution Graphs - An Introduction. We model iterative hash functions Hh as directed
graphs where each message M is mapped to an execution graph which is constructed
independently of a particular choice of function h. Figure 2 presents the execution graph
for a message M := m1‖ . . . ‖m` for the NMAC construction [5]. For each input mes-
sage M the corresponding execution graph represents how the hash value would be
computed relative to some oracle h, that is, we require that, relative to an oracle h, a
generic algorithm EVALh on input the execution graph for M can then compute value
Hh(M). Nodes in the execution graph are either value-nodes or function-nodes. A value
node (indicated by dotted boxes) does not have ingoing edges and the outgoing edge is
always labeled with the node’s label (possibly prefixed by a constant). Function nodes
represent functions and the outgoing edges are labeled with the result of the evaluation
of the corresponding function taking the labels of the ingoing edges as input. An h-node
represents the evaluation of the underlying function h. Outgoing edges can, thus, only
be labeled relative to h. Nodes labeled mp, hp or hmp correspond to preprocessing func-
tions (defined by the hash construction) which ensure that the input to the next h-node
is of correct length: mp processes message blocks, hp processes h-outputs and hmp, like-
wise, processes the output of h-nodes but such that it can go into the “message slot” of
an h-node (see Figure 2). An execution graph contains exactly one g-node with an un-
bound outgoing edge which corresponds to an (efficiently) computable transformation
such as the identity or truncation.

Formalizing Hash Functions as Directed Graphs. We now formalize the above concept
to model an iterative hash construction Hh : {0, 1}∗ → {0, 1}n with a compression
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Fig. 2: Execution graph for NMAC for message m1‖ . . . ‖m` := M . Value IVkey1 is an initial-
ization vector representing the first key in the NMAC-construction. Value IVkey2 is a constant
representing the second key. The difference between initialization vectors and constants is that
constants are used within the execution graph, i.e., in conjunction with interim values, while
initialization vectors are used at the beginning of the graph.

function of the form h : {0, 1}d × {0, 1}k → {0, 1}s. For this let pad : {0, 1}∗ →
({0, 1}b)+ be a padding function (e.g. Merkle-Damgård strengthening [16,26]) that
maps strings to multiples of block size b. Let mp : {0, 1}∗ → {0, 1}d, hp : {0, 1}∗ →
{0, 1}k and hmp : {0, 1}∗ → {0, 1}d be “preprocessing” functions that allow to adapt
message blocks and intermediate hash values, respectively. We assume that pad, mp, hp,
and hmp are efficiently computable, injective, and efficiently invertible. Note that for
many schemes these functions will be the identity function and b = d and s = k.
Let g : {0, 1}s → {0, 1}n be an efficiently computable transformation (such as the
identity function, or a truncation function).2 Additionally we allow for a dedicated set
IV ⊂ {0, 1}∗ and containing initialization vectors and constants.

We give a formal definition of the graph structure in the full version [27] and give
here only a quick overview. Execution graphs consist of the following node types: IV-
nodes, message-nodes, h-nodes, mp, hp, and hmp-nodes and a single g-node. For each
message block m1‖ . . . ‖m` := pad(M) the graph contains exactly one message-node.
All outgoing edges must again be connected to a node, except for the single outgoing
edge of the single g-node. An h-node always has two incoming edges one from an hp-
node and one from either an mp or an hmp-node. Message nodes can be connected to
mp-nodes. The outbound edges from h can be connected to either hp or hmp-nodes.3

A valid execution graph is a non-empty graph that complies with the above rules. We
require that for each message M ∈ {0, 1}∗ there is exactly one valid execution graph
and that there is an efficient algorithm that given M constructs the execution graph.

Besides valid execution graphs we introduce the concept of partial execution graphs
which are non-empty graphs that comply to the above rules with the only exception that
they do not contain a g-node. Hence, they contain exactly one unbound outgoing edge
from an h-node. A partial execution graph is always a sub-graph of potentially many
valid execution graphs. Given a valid execution graph a partial execution graph can be
constructed by choosing an h-node and removing every node that can be reached via
directed path from that h-node and then remove all unconnected components that do
not have a directed path to the chosen h-node.

2 We stress that g is efficiently computable and not an independent (ideal) compression function.
3 The difference between hp and hmp is that hp outputs values in {0, 1}k which hmp outputs

values in {0, 1}d. Note that function h is defined as h : {0, 1}d × {0, 1}k → {0, 1}s.



We define EVAL to be a generic, deterministic algorithm evaluating execution graphs
relative to an oracle h. Let eg be a valid execution graph for some messageM ∈ {0, 1}∗.
To evaluate eg relative to oracle h, algorithm EVALh(eg) recursively performs the fol-
lowing steps: search for a node that has no inbound edges or for which all inbound
edges are labeled. If the node is a function-node then evaluate the corresponding func-
tion using the labels from the inbound edges as input. If the node is a value-node, use
the corresponding label as result. Remove the node from the graph and label all out-
going edges with the result. If the last node in the graph was removed stop and return
the result. Note that EVALh(eg) runs in time at mostO

(
|V 2|

)
assuming that eg contains

|V | many nodes. If pg is a partial execution graph then EVALh(pg), likewise, computes
the partial graph outputting the result of the final h-node. We denote by g(pg) the cor-
responding execution graph where the single outbound h-edge of pg is connected to a
g-node. We call this the completed execution graph for pg.

We can now go on to define iterative hash functions such as Merkle-Damgård-like
functions. Informally, an iterative hash function consists of the definitions of the prepro-
cessing functions, the padding function and the final transformation g(·). Furthermore,
we require (efficient) algorithms that construct execution graphs as well as parse an
execution graph to recover the corresponding message.

Definition 2. Let IV ⊂ {0, 1}∗ be a set of named initialization vectors and |IV| be
polynomial in the security parameter λ. We say Hh

g,mp,hp,hmp,pad : {0, 1}∗ → {0, 1}n is
an iterative hash function if there exist deterministic and efficient algorithms construct
and extract as follows:

construct: On input M ∈ {0, 1}∗, algorithm construct outputs a valid execution
graph containing one message-node for every block in m1‖ . . . ‖m` := pad(M).
For all messages M ∈ {0, 1}∗ it holds that Hh(M) = EVALh(construct(M)).
For any twoM,M ′ ∈ {0, 1}∗ with |M | = |M ′| it holds that graphs construct(M)
and construct(M ′) are identical but for labels of message-nodes.4

extract: On input a valid execution graph eg, algorithm extract outputs message
M ∈ {0, 1}∗ if, and only if, construct(M) is identical to eg. On input a partial
execution graph pg, algorithm extract outputs message M ∈ {0, 1}∗ if, and only
if, the completed execution graph g(pg) is identical to construct(M). Otherwise
extract outputs ⊥.

When functions g, mp, hp, hmp and pad are clear from context we simply write Hh.

We give a detailed description of valid execution graphs, extensions to the model
that, for example, cover keyed constructions, as well as several examples of hash con-
structions that are covered by Definition 2 in the full version [27].

3.1 Important h-Queries

Considering the execution of hash functions as graphs allows us to identify certain types
of “important” queries by their position in the graph relative to a function h. Assume that

4 This condition ensures that the graph structure does not depend on the content of messages but
only on its length.



Q = (mi, xi)1≤i≤p is an ordered sequence of h-queries to compression function h. If
we consider the i-th query qi = (mi, xi) then only queries appearing before qi in Q are
relevant for our upcoming naming conventions. We call qi an initial query if, and only
if, hp−1(xi) ∈ IV . Besides initial queries we are interested in queries that occur “in the
execution graph” and we call these chained queries. We call query qi a chained query
if given the queries appearing before qi there exists a valid (partial) execution graph
containing an h-node with its unbound edge labeled with value hp−1(xi). Finally, we
call query qi result query for message M , if g(qi) = Hh(M) and qi is a chained query.
We define result queries in a broader sense and independent of a specific message by
considering all possible partial graphs induced by query set Q and say that a query is a
result query if it is a chained query and if its induced partial graph pg can be completed
to a valid execution graph, that is, g(pg) is a valid execution graph. For a visualization
of the query types see Figure 3.

Definition 3. Let Q = (mi, xi)1≤i≤p be a sequence of queries to h : {0, 1}d ×
{0, 1}k → {0, 1}s. Let qi = (mi, xi) be the i-th query in Q and let Q|1,...,i denote the
sequenceQ up to and including the i-th query. Let the predicate init(qi) := init(mi, xi)
be true if, and only if, hp−1(xi) ∈ IV . We define the predicate chainedQ(mi, xi) to be
true if, and only if,

init(mi, xi) ∨ ∃ j ∈ [i− 1] :
(
chainedQ(mj , xj) ∧ hp(h(mj , xj)) = xi

)
.

Let pg[h, Q|1,...,i , qi] denote the set of partial graphs such that for all pg ∈ pg[h, Q|1,...,i , qi]
it holds that all h queries occurring during the computation of EVALh(pg) are inQ|1,...,i
and that the final h-query equals qi.5 We define the predicate resultQ(mi, xi) to be true
if, and only if,

chainedQ(mi, xi) ∧ ∃pg ∈ pg[h, Q|1,...,i , qi] : g(pg) is a valid execution graph .

We drop the reference to the query set Q if it is clear from context.
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Fig. 3: Denoting queries in the Merkle-Damgård construction where value x2 is computed as
x2 := h(mp(m1), hp(IV)) and value xl is computed recursively as x` := h(mp(m`), hp(x`−1)).

5 If h is modeled as an ideal function then set pg[h, Q|1,...,i , qi] contains with very high proba-
bility at most one partial graph as multiple graphs induce collisions on h.



3.2 Message Extractors and Missing Links

We now give two important lemmas concerning iterative hash functions. The first argues
that if an adversary does not make all h-queries in the computation of Hh(M) for some
message M , then its probability of computing the corresponding hash value is small.
To get an intuition note that each h-node has a directed path to the final g-node. As
we model the underlying function as ideal, an h-evaluation has s bits of min-entropy
which are, so to speak, sent down the network to the final g-node. We refer to the full
version [27] for the proof.

Lemma 1. Let function Hh : {0, 1}∗ → {0, 1}n be an iterative hash function and let
h : {0, 1}d×{0, 1}k → {0, 1}s be a fixed-length random oracle. LetAh be an adversary
that makes at most qA many queries to h. Let qryh(Ah(1λ; r)) denote the adversary’s
queries to oracle h when algorithm A runs on randomness r and by qryh(Hh(M))
denote the h-queries during the evaluation of Hh(M). Then it holds that

Prr,h

[
(M,y)← Ah(1λ; r) :

H
h
(M) = y ∧(

qryh(Hh
(M)) \ qryh(Ah

(1
λ
; r))

)
6= ∅

]
≤ qA

2s
+

1

2H∞(g(Us))

where \ denotes the simple complement of sets and Us denotes a random variable uni-
formly distributed in {0, 1}s. The probability is over the choice of random oracle h and
the coins of A.

Next, we show that given the sequence of h-queries and corresponding answers of
an adversary, there exists an efficient and deterministic extractor E that can reconstruct
precisely the set of messages for which the adversary “knows” the corresponding hash
value. We refer to the full version [27] for the proof.

Lemma 2. Let function Hh : {0, 1}∗ → {0, 1}n be an iterative hash function and
h : {0, 1}d × {0, 1}k → {0, 1}s a fixed-length random oracle. Let Ah be an adversary
making at most qA queries to h. Let qryh(Ah(1λ; r)) denote the adversary’s queries to
oracle h (together with the corresponding oracle answer) when algorithm A runs on
randomness r. Then there exists an efficient deterministic extractor E outputting sets
M and Y with |M| = |Y| ≤ 3qA, such that

Prr,h

[
(M, y)← Ah

(1
λ
; r);

(M,Y)← E(qryh(Ah
(1
λ
; r))

:
∃X ∈ M : H

h
(X) /∈ Y ∨(

H
h
(M) = y ∧M /∈ M

) ]
≤ 3q2A

2H∞(g(Us))
.

Value Us denotes a random variable uniformly distributed in {0, 1}s. The probability is
over the coins r of Ah and the choice of random oracle h.

3.3 h-Queries during Functionality Respecting Games

We now define various terms that allow us to talk about specific queries from adversarial
procedures to the underlying function h of iterative hash function Hh during game G.
Recall that, as do Ristenpart et al. [29], we only consider the class of functionality-
respecting games (see Section 2) where only adversarial procedures may call the adver-
sarial interface of functionalities (i.e., the underlying function h in our case).



Definition 4. Let GH
h,A1,...,Am be a functionality respecting game with access to hash

functionality Hh and adversarial procedures A1, . . . ,Am. We denote by qryG,h the
sequence of queries to the adversarial interface of Hh (that is, h) during the execution
of game G.

Note that qryG,h is a random variable over the random coins of game G. Thus, we can
regard the query sequence as a deterministic function of the random coins. In this light,
in the following we define subsequences of queries belonging to certain adversarial
procedures such as the i-th query of the j-th adversarial procedure.

Game GH
h,A1,...,Am can call adversarial procedures A1, . . . ,Am in any order and

multiple times. Thus, we first define a mapping from the sequence of adversarial pro-
cedure calls by the game’s main procedure to the actual adversarial procedure Ai. For
better readability, we drop the superscript identifying game G in the following defini-
tions and whenever the game is clear from context. We drop the superscript identifying
oracle h exposed by the adversarial interface of functionality Hh if clear from context.

Definition 5. We define AdvSeqi (for i ≥ 1) to denote the adversarial procedure cor-
responding to the i-th adversarial procedure call by gameG. We set |AdvSeq| to denote
the total number of adversarial procedure calls by G.

We define sequence of h-queries made by the i-th adversarial procedure AdvSeqi as:

Definition 6. By qryi we denote the sequence of queries to h by procedure AdvSeqi
during the i-th adversarial procedure call by the game’s main procedure. By qryi,j we
denote the j-th query in this sequence.

We also need a notion which captures all those queries executed before a specific ad-
versarial procedure AdvSeqi was called. For this, we will slightly abuse notation and
“concatenate” two (or more) sequences, i.e., if S1 and S2 are two sequences, then by
S1||S2 we denote the sequence that contains all elements of S1 followed by all elements
of S2 in their specific order.

Definition 7. By qry<i we denote the sequence of queries to h before the execution of
procedure AdvSeqi. By qry<i,j we denote the sequence of queries to h up to the j-th
query of the i-th adversarial procedure call. Formally,

qry<i :=

i−1∣∣∣∣∣∣
k=1

qryk and qry<i,j := qry<i ||
j−1∣∣∣∣∣∣
k=1

qryi,k

Finally, we define the sequence of h-queries by procedure AdvSeqi up-to the i-th
adversarial procedure call by the game’s main procedure. That is, in addition to queries
qryi we have all queries from previous calls to AdvSeqi by the game’s main procedure.

Definition 8. By qry<Ai,j we denote the sequence of queries to procedure h by the i-th
adversarial procedure AdvSeqi up-to query qry<i,j . Formally,

qry<Ai,j :=
∣∣∣∣∣∣

0<`<i,
AdvSeq`=AdvSeqi

qry` ‖
j−1∣∣∣∣∣∣
k=1

qryi,k .



Bad Result Queries. Having defined queries to the adversarial interface of the hash
functionality (i.e., underlying function h) occurring during a game G allows us to use
our notation established in Section 3.1 on h-queries: initial queries, chained queries and
result queries. For example, we can say that query qryi,j is an initial query. With this,
we now define a bad event corresponding to splitting up the evaluation of hash values
via several adversarial stages (also refer to the introduction).

Informally, we call a query (m,x) to function h(·, ·) badResult if it is a result query
(cp. Definition 3) with respect to all previous queries during the game, but it is not a
chained query (and thus not a result query) if we restrict the sequence of queries to
that of the current adversarial procedure. Note that, whether or not a query is bad only
depends on queries to h prior to the query in question and is not changed by any query
coming later in the game. (Note the change in the underlying sequence for the two
predicates in the following definition.)

Definition 9. Let GH
h,A1,...,Am be any game. Let (m,x) := qryi,j be the j-th query to

function h by adversary AdvSeqi. Then query (m,x) is called badResultAi(qryi,j) if,
and only if: resultqry<i,j (m,x) and ¬chainedqry<Ai,j (m,x).

4 Unsplittable Multi-stage Games

The formalization of hash functions together with terminology on particular queries
during a game allows us to define a property on games that will be sufficient to argue
composition similar to that of the MRH composition theorem for indifferentiability.
We call a game G ∈ LG UNSPLITTABLE for an iterative hash construction Hh, if two
conditions hold: 1) For any adversary A1, . . . ,Am there exists adversary A∗1, . . . ,A∗m
such that games GH

h,A1,...,Am and GH
h,A∗1 ,...,A

∗
m change only by a small factor, and 2)

During gameGH
h,A∗1 ,...,A

∗
m we have that bad result queries only occur with small prob-

ability. Intuitively, this means that it does not help adversaries to split up the computa-
tion of hash values over several distinct adversarial procedures. After formally defining
unsplittability we will then formulate the accompanying composition theorem which
informally states that if a game is UNSPLITTABLE for an indifferentiable hash construc-
tionHh, then security proofs in the ROM carry over if the random oracle is implemented
by that particular hash function.

Definition 10. Let Hh be an iterative hash function and let h : {0, 1}d × {0, 1}k →
{0, 1}s be an ideal function. We say a functionality respecting gameG ∈ LG is (tA∗ , qA∗ , εG, εbad)-
UNSPLITTABLE forHh if for every adversaryA1, . . . ,Am there exists algorithmA∗1, . . . ,A∗m
such that for all values y

Pr
[
GH

h,A1,...,Am ⇒ y
]
≤ Pr

[
GH

h,A∗1 ,...,A
∗
m ⇒ y

]
+ εG .

Adversary A∗i has run-time at most t∗Ai and makes at most q∗Ai queries to h. Moreover,
it holds for game GH

h,A∗1 ,...,A
∗
m that:

Pr
[
∃i ∈ [|AdvSeq|],∃j ∈ [q∗Ai ] : badResultAi(qryi,j)

]
≤ εbad .

The probability is over the coins of game GH
h,A∗1,...,A∗m and the choice of function h.



4.1 Composition for Unsplittable Multi-Stage Games

We here give the composition theorem for UNSPLITTABLE games in the asymptotic
setting. The full theorem with concrete advantages is given in the full version [27]. Due
to space limitations, we here also only present a much shortened proof sketch.

Theorem 1 (Asymptotic Setting). Let Hh : {0, 1}∗ → {0, 1}n be an iterative hash
function indifferentiable from a random oracleR and let h : {0, 1}d×{0, 1}k → {0, 1}s
be an ideal function. Let game G ∈ LG be any functionality respecting game that is
UNSPLITTABLE forHh and letA1, . . . ,Am be an adversary. Then, there exists efficient
adversary B1, . . . ,Bm and negligible function negl such that for all values y∣∣∣Pr[GHh,A1,...,Am ⇒ y

]
− Pr

[
GR,B1,...,Bm ⇒ y

]∣∣∣ ≤ negl(λ) .

Proof (Proof Sketch). The proof consists of two steps. In a first step we are going to
take the indifferentiability simulator for Hh and transform it into a simulator with a
special structure that we call Sd. Secondly, we take the UNSPLITTABILITY-property of
gameG to get a set of adversariesA∗1, . . . ,A∗m such that during gameGF,A

∗
1 ,...,A

∗
m bad

result queries (cp. Definition 9) occur only with negligible probability. This property,
together, with the structure of simulator Sd then allows to argue composition, similarly
to RSS in their composition theorem for reset-indifferentiability: Theorem 6.1 in [28].
(Theorem 4 in the proceedings version [29]).

Construction of Sd. We begin with the construction of simulator Sd. Since Hh is in-
differentiable from a random oracle there exists a simulator S such that no efficient
distinguisher D can distinguish between talking to (Hh, h) or (R,SR). From this sim-
ulator we are going to construct a generic simulator S∗ which keeps track of all queries
internally constructing any potential partial graph for the query-sequence. We give a
shortened description of simulator S∗ in Figure 4. If a query corresponds to a result
query (cp. Definition 3) it ensures to be compatible with the random oracle by picking
a value from the preimage of g−1(R(extract(pg))) uniformly at random (see line 8),
where pg is the corresponding partial graph. Note that this ensures consistency with the
answers of the random oracle. Otherwise, if the query is not a result query, it simply
responds with a random value (line 9). The full construction and proof of indifferentia-
bility is presented in the full version [27].

In a next step (the details are given in [27]) we derandomize simulator S∗ using the
random oracle and a derandomization technique by Bennet and Gill [10]. For any fixed
value tD, this yields simulator Sd such that for any distinguisher D that runs in time at
most tD it holds that∣∣∣Pr[DHh,h(1λ) = 1

]
− Pr

[
DR,S

R
d (1λ) = 1

]∣∣∣ ≤ negl(λ) .

Using Sd with UNSPLITTABLE Games. Let A∗1, . . . ,A∗m be such that during game
GF,A

∗
1 ,...,A

∗
m bad result queries occur only with negligible probability. We now set

Bi := A∗i
S(i)
d where every S(i)d denotes an independent copy of Sd. The structure of

Sd ensures that non-result queries (cp. Definition 3) are answered consistently over



Simulator S∗(m,x) :
1 ifM[m,x] 6= ⊥ then returnM[m,x]
2 T ← {}
3 if init(m,x) then
4 create partial graph from (m,x) and add to T
5 test all existing partial graphs, if any can be extended
6 by query(m,x). If so, add result to T
7 if ∃pg ∈ T : extract(pg) 6= ⊥ then
8 M[m,x]←$ g−1(R(extract(pg)))
9 elseM[m,x]←$ {0, 1}s
10 if |T | > 0 then
11 label output edge of any graph in T byM[m,x]
12 add all graphs in T to a list of partial graphs
13 returnM[m,x]

Fig. 4: Simulator S∗ for proof of Theorem 1.
S∗ maintains a list of partial graphs that can
be constructed from the query sequence. If
query (m,x) is an initial query it constructs
the corresponding partial graph and adds it
to the temporary set T . It then tries all exist-
ing partial graphs, if they can be extended by
the current query. A query is answered either
by a random value or (for result queries) by
sampling a value uniformly at random from
g−1(R(extract(pg)).

the several independent copies. Furthermore, the fact that result queries are with over-
whelming probability not bad ensures that also these are answered consistently. We,
thus, get that

Pr
[
GH

h,A1,...,Am ⇒ y
]
≈ Pr

[
GH

h,A∗1 ,...,A
∗
m ⇒ y

]
≈ Pr

[
GR,A

∗
1
S(1)
d

R
,...,A∗m

S(m)
d

R

⇒ y

]
which yields that Pr

[
GR,B1,...,Bm ⇒ y

]
≤ negl. ut

5 Applications

We turn to the task of proving UNSPLITTABILITY for the various multi-stage games
from the introduction: While for the RSS proof-of-storage game we will give a direct
proof (which appears only in the full version [27]) we prove the results for CDA, MLE
and UCE via a meta result on games using keyed hash functions (Theorem 2).

5.1 Unsplittability of Keyed-hash Games

Let qryH
h
[
GH

h,A1,...,Am(r)
]

be the list of queries by game G (running on random

coins r) to the honest interface of the functionality (i.e., Hh) and let

qryh
[
GH

h,A1,...,Am(r)
]
:=

{
(m,x) : ∃M ∈ qryH

h
[
GH

h,A1,...,Am(r)
]
, (m,x) ∈ qryh(Hh(M))

}
be the list of queries by game G, when run on random coins r, to h triggered by
queries to the honest interface of the functionality. (Note that the adversarial proce-
dures A1, . . . ,Am never query the honest interface.) For fixed random coins r and an
adversarial h-query qryi,j during game GH

h,A1,...,Am(r) we set

G-relevant(qryi,j ; r) ⇐⇒ qryi,j ∈ qryh
[
GH

h,A1,...,Am(r)
]

That is, we call an adversarial query G-relevant if the same query occurs during the
honest computation of an Hh query by game G.

Let us observe that we can replace the adversarial interface h given to an adversarial
procedure by one that differs from h on all points except for points that are also queried
indirectly by the game (i.e., queries which are G-relevant), without changing the out-
come of the game (or rather its distribution over the choice of ideal functionality h).



Keyed-Hash Games. Hash functions can be considered in a keyed setting, where a key
is included in the computation of every hash value. HMAC or NMAC were designed as
keyed functions, other hash functions like Merkle-Damgård variants can be adapted to
the keyed setting, for example, by requiring that the key is prepended to the message.
In the following we write Hh(κ,M) to denote an iterative hash construction with an
explicit key input (for further information on how keyed hash constructions are captured
by our framework we refer to the full version [27]).

Many keyed constructions are designed such that the key is used in all initial queries.
HMAC and NMAC are of that type, and also the adapted Merkle-Damgård variants such
as chop-MD or prefix-free-MD [15] can be regarded of that type, if the key is always
prepended to the message. We call such hash functions key-prefixed hash functions.

Definition 11. A keyed iterative hash function Hh is called key-prefixed, if for all κ ∈
K and all M ∈ {0, 1}∗

∀(m,x) ∈ qryh(Hh(κ,M)) : ¬init(m,x) ∨ mp−1(m) = κ ∨ hp−1(x) = κ

where K denotes the key-space of function Hh.

Now, consider games that only make keyed hash queries. By this we mean that
either the game is defined using keyed hash functions directly, or it can be restated as
such by identifying a part of each query as key, for example, because some parameter
is prepended to every hash query.

Definition 12. We call a game G ∈ LG a keyed-hash game, if G only makes keyed
hash queries. We denote by KG[Hh, r] the set of keys used by G when run on coins r
and with hash function Hh, and require that KG[Hh, r] is polynomially bounded and
chosen independently of the adversarial procedures.

We now show that an interesting sub-class of keyed-hash games are UNSPLITTABLE
for key-prefixed hash functions.

Theorem 2. LetG ∈ LG be a keyed-hash game where adversarial proceduresA1, . . . ,Am
are called exactly once and in this order. Let Hh be a key-prefixed iterative hash-
function, that is indifferentiable from a random oracle. Let h : {0, 1}d × {0, 1}k →
{0, 1}s be an ideal function. Denote by View[Ai;Hh, r] the view of adversary Ai, i.e.,
the random coins of Ai together with its input and answers to any of its oracle queries
when game G is run with coins r and function Hh.

If for every efficient extractor E and for every efficient adversary Ai (for i =
1, . . . ,m− 1) there exists negligible function negl such that

Prr
[
k ← E(View[Ai;Hh, r]) : k ∈ KG[Hh, r]

]
≤ negl(λ)

and adversaryAm getsKG[Hh, r] as part of its input thenG is UNSPLITTABLE forHh.

The theorem can be applied to the CDA, the MLE and the UCE game (see Figure 1).
Note that the CDA and the MLE game do not necessarily require keyed hash functions
but in most constructions explicitly make only keyed hash queries by embedding the
public key (for CDA) and the public parameter (for MLE) respectively in every hash



query.6 For the chosen distribution attack (CDA) game [3], which captures the secu-
rity of deterministic PKE schemes, the only assumption is that the public-key cannot be
guessed. For the adaptive version of the CDA game one needs the additional assumption
that the PKE scheme does not leak the public-key within its ciphertexts. We call the cor-
responding property PK-EXT (short for public key extractability) and introduce it in the
full version [27]. For message-locked encryption (MLE) [7] one needs to assume that
the public parameter P cannot be guessed. Finally, UCE is stated directly for keyed-
hash functions that is, here one needs to assume that the hash-key cannot be guessed.
Note that this shows that HMAC is UCE-secure when assuming idealized compression
functions which solves an open problem in [6]. We give introductions to the various no-
tions, as well as, formal statements listing under which assumptions Theorem 2 applies
to CDA, MLE and UCE in the full version of this paper [27].
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