Why Proving HIBE Systems Secure is Difficult

Allison Lewko! * and Brent Waters? **

1 Columbia University
alewko@cs.columbia.edu
2 University of Texas at Austin
bwaters@cs.utexas.edu

Abstract. Proving security of Hierarchical Identity-Based Encryption
(HIBE) and Attribution Based Encryption scheme is a challenging prob-
lem. There are multiple well-known schemes in the literature where the
best known (adaptive) security proofs degrade exponentially in the maxi-
mum hierarchy depth. However, we do not have a rigorous understanding
of why better proofs are not known. (For ABE, the analog of hierarchy
depth is the maximum number of attributes used in a ciphertext.)

In this work, we define a certain commonly found checkability property
on ciphertexts and private keys. Roughly the property states that any
two different private keys that are both “supposed to” decrypt a cipher-
text will decrypt it to the same message. We show that any simple black
box reduction to a non-interactive assumption for a HIBE or ABE sys-
tem that contains this property will suffer an exponential degradation of
security.

1 Introduction

In recent years, there has been emerging interest in increasing the expressiveness
of encryption systems in terms of targeting ciphertexts to certain groups of users.
First examples included Hierarchical Identity-Based Encryption (HIBE) [HL02]
and Attribute-Based Encryption (ABE) [SWO05]. The early difficulty in HIBE
and ABE research was to obtain systems that were provably secure under robust
security definitions. Initial constructions of HIBE [GS02,CHK03,BB04,BBGO05]
and ABE [SW05,GPSWO06] had the drawback that their security reductions de-
graded exponentially in the depth of the hierarchy when encrypting an HIBE
ciphertext or number of attributes used when creating an ABE ciphertext. For
this reason, the first (standard model) security proofs were done in the selec-
tive model, a term coined by Canetti, Halevi and Katz [CHKO03]. In this weaker

* Work done while this author was at Microsoft Research.

** Supported by NSF CNS-0915361 and CNS-0952692, CNS-1228599 DARPA through
the U.S. Office of Naval Research under Contract N00014-11-1-0382, DARPA
N11AP20006, Google Faculty Research award, the Alfred P. Sloan Fellowship, Mi-
crosoft Faculty Fellowship, and Packard Foundation Fellowship. Any opinions, find-
ings, and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the Department of Defense or
the U.S. Government.

model, an attacker (artificially) declared the challenge identity he was attacking
before seeing the public parameters of the system.

At the time, researchers identified achieving standard (sometimes called adap-
tive or full) security for these systems as an important open problem. However, it
was not well understood whether there existed full security reductions for the al-
ready proposed constructions without exponential decay, and if not, why. While
there was general intuition about the limitations of what were called partition-
ing proofs (e.g., see discussion in [Wat09]), there was no rigorous explanation
of these difficulties.

In 2009, Gentry and Halevi [GH09] gave an HIBE construction and proved
it fully secure without an exponential degradation in the depth. Their construc-
tion made use of projective hash techniques from [CS02,Gen06]. One tradeoff
is that it required the use of non-static or g-type assumptions to prove secu-
rity where the size of the assumption grew with the number of key queries.
Later, Waters [Wat09] described a new and more systematic approach to prov-
ing full security called dual system encryption. Using dual system encryption,
he proved an HIBE system fully secure under simple assumptions. Dual system
encryption was subsequently used to prove full security of ABE and other related
systems [LOST10,0T10,LW12].

While these new proof techniques represent an advance in proving security,
they still leave us with an incomplete picture about the security of the initial
selectively secure constructions. Can these systems only be proven selectively
secure? If so, why? Coming to a better understanding is important for multiple
reasons. First, the earlier systems are typically more practically efficient than the
recent dual system encryption counterparts. If they could be proven fully secure,
they might be more desirable to use. Second, it is valuable to have a more rigorous
characterization of what properties of a construction make it difficult to prove
security, as identifying these properties can potentially inspire new construction
and proof methods for encryption systems.

Understanding Partitioning Proofs We organize our investigation around the
goal of understanding partitioning proofs. Intuitively, these are proofs where a
reduction algorithm (when creating a set of public parameters) splits ciphertext
descriptors or “identities” into two disjoint sets. Those it can leverage for the
challenge ciphertext (we call this the “challenge set”) and those it cannot. If
a certain identity x is in the challenge set, then the reduction cannot issue a
private key for y if a private key for y should be allowed to decrypt a ciphertext
associated with z.
We begin by asking the following two questions:

1. Are there functionalities where a partitioning proof cannot work? (I.e. No
reduction with a polynomial security loss exists.)
2. Under what circumstances are we stuck with a partitioning proof ?

To begin to answer the first question, we try to think of a basic case where
partitioning will fail. To this end, we introduce a prefix encryption functionality.
In a prefix encryption system, a private key is associated with a binary string y

and a ciphertext with a binary string x. One can decrypt the ciphertext to reveal
a hidden message M if and only if y is a prefix of x. The point of introducing this
primitive is to describe a simple primitive which distills the core features needed
for our impossibility result. HIBE and most expressive ABE systems imply prefix
encryption in a straightforward way.

To be successful, any partitioning reduction algorithm must have the set of
challenge ciphertext descriptors cover at least a non-negligible fraction of the
descriptors, else one would almost never get chosen by an attacker. In addition,
there must be some non-negligible chance that the private keys requested by
the attacker do not violate this partition. Immediately, we see this cannot work
with a prefix encryption system. Consider an attacker A that chooses a random
length n string x (for security parameter n) to be associated with the challenge
ciphertext. In addition, it asks for private keys for strings y1, .. ., y», where string
vy; is the length i string that matches x in the first i—1 bits and is different in the
last bit. This small number of private keys can be used to decrypt a ciphertext
associated with any string except x. Thus, any partitioning reduction that has
more than one string in its challenge set will not be able to answer all the key
queries for this attacker. Consequently, its best strategy is to pick one string for
its challenge set, which will match A’s choice with only 27" probability.

Next, we want to understand what properties of a construction force us to
be “stuck with” a partitioning proof, in the sense that there is nothing to be
gained from considering different reduction techniques. For prefix encryption,
it was problematic for a partitioning proof that a large number of ciphertexts
types could be covered by a small number of keys. Intuitively, one might be
stuck with a partitioning proof if any authorized key can “equally decrypt” a
ciphertext. We consider prefix encryption constructions that implicitly allow a
pair of efficient algorithms for respectively checking an acceptability condition of
a key and a ciphertext. If a ciphertext associated with a string x is determined
to be acceptable by this check, then all acceptable keys for any prefix y will
decrypt to the same message (or all fail decryption). We refer to constructions
that allow such decisive checks as “checkable” schemes.

Essentially, this says that all keys that should be able to decrypt an accept-
able ciphertext will decrypt it the same way. It is notable that early construc-
tions of HIBE [GS02,CHK03,BB04,BBG05] and ABE [SW05,GPSW06] which
were only proved selectively secure all have this property when instantiated un-
der typically used prime order bilinear groups. This matches our intuition that
they are in some sense stuck with partitioning proofs. However, constructions
using the techniques of Gentry [Gen06] and dual system encryption do not meet
this criteria. For example, in dual system encryption proofs, a normal secret
key will decrypt a semi-functional ciphertext differently than a semi-functional
secret key will.

Our Result In this work, we formalize this intuition by showing that there are no
simple black box reductions from the full security of checkable prefix encryption

schemes to non-interactive decisional assumptions 3. This result extends to HIBE
and ABE as we show that these both can embed prefix encryption systems. (For
the ABE case, see the full version.)

We capture our result in a somewhat similar manner to Coron [Cor02] and
Hofheinz, Jager, and Knapp [HJK12] who showed that no unique [Cor02] or
rerandomizable [HJK12] signatures can have black box proofs to non-interactive
assumptions. While their focus was on showing the necessity of a polynomial
loss (in the number of signature queries) for a class of signatures, we show the
necessity of a drastic exponential loss of security for HIBE and ABE schemes.

At a high level, we construct an algorithm B that runs the reduction algo-
rithm R, where B acts as an computationally unbounded attacker. Since B is
actually not a “real” attacker it will need to find a way to look like one.

To do this, B will first wait for the reduction algorithm to commit to a set of
public parameters. Next, it will run R with the same public parameters multiple
times (we specify more precisely the number of times in Section 3), each time
choosing a random string x and collecting private keys y1, .. ., y, for the n strings
that are prefixes of x except in their last bits. After each run, B rewinds R to the
point where it published the system parameters. The point of these runs is to
collect private key information relative to the committed public parameters. If
any of these runs for a particular « value does not abort, then 55 has the private
key information to decrypt a ciphertext for any string but x.

Finally, B will request a challenge ciphertext for a new random string z. If
x # z for some z used in a prior run where B successfully collected keys, then
B has a private key that allows it to decrypt the challenge ciphertext and act
as an attacker. If R is an efficient reduction, it will then break the assumption
with non-negligible advantage. We can generalize this to reductions that run the
attacker a polynomial number of times in sequence, but like [Cor02,HJK12] we
do not cover reductions that concurrently run executions of the attack algorithm.

Future Directions Multiple interesting questions arise from this work. Perhaps
the most exciting direction is to see if limitations of our impossibility result can
lead to new proof techniques in the positive direction. For example, in the course
of this work we discovered that one can build prefix encryption from any IBE
scheme. The proof is an easy hybrid reduction. This construction lies outside of
impossibility result since two keys for different prefixes y and 3’ of some string
z might decrypt a (malformed) ciphertext to different values. This is different
than dual system encryption techniques, which rely on giving a different key
structure for the same key value. A parallel goal is of course to strengthen our
impossibility results. An natural target is to see if either our impossibility results
can be extended to handle reductions that run attack algorithms concurrently or
alternatively if building reductions that run attack algorithms concurrently can

3 The restriction to non-interactive assumptions is natural and arguably necessary.
Any scheme can be proven secure under the (possibly interactive) assumption that
it is secure. The work of [BSWO7] essentially does this, but with the mitigating
factor of proving generic group security.

be leveraged for new positive results. By expanding our knowledge from both
ends of the spectrum, we can hope to get a more complete understanding of the
space of possible security proofs for functional encryption systems.

Another direction is to examine how recent selectively secure lattice HIBE
[CHKP10,ABBI10] constructions fit into this framework. These constructions al-
low some form of key rerandomization in that an algorithm can sample a new
short basis, however, the “quality” of this basis is not as good as the original and
in general higher quality private keys are not reachable from lower quality pri-
vate keys. One possibility is that this quality of key difference can be leveraged
to prove full security of these existing schemes.

2 Preliminaries

2.1 Prefix Encryption

We present the functionality of prefix encryption as the simplest functionality
that captures the core structure of hierarchical identity-based encryption. Es-
sentially, we strip off the usual trappings of HIBE schemes that are not relevant
to our purposes. In particular, we do not require explicit delegation capabilities,
and we do not use “identity vectors” with large sets of potential values for each
coordinate. Instead, keys and ciphertexts in a prefix encryption scheme will be
associated with binary strings, and a key will be able to decrypt a ciphertext if
and only if the binary string associated to the key is a prefix of the binary string
associated to the ciphertext. We observe that such a functionality can be easily
derived from any HIBE scheme by designating fixed identities in each coordinate
to play the role of “0” and “1”.

We formally define a Prefix Encryption scheme as having the following algo-
rithms:

Setup(\) — PP,MSK The setup algorithm takes in the security parameter A
and outputs the public parameters PP and a master secret key MSK.

Encrypt(x, M,PP) — CT The encryption algorithm takes in a binary string z,
a message M, and the public parameters PP. It outputs a ciphertext CT.

KeyGen(MSK,y) — SK The key generation algorithm takes in the master secret
key MSK and a binary string y. It outputs a secret key SK.

Decrypt(CT,SK) — M The decryption algorithm takes in a ciphertext CT and
a secret key SK. If the binary string y of the secret key is a prefix of the binary
string x of the ciphertext, it outputs the message M.

As we will study how security reductions behave as the binary strings involved
grow longer, we will allow public parameters to specify a maximum length, g,
for the indexing strings of the keys and ciphertexts. Our lower bound on the
provable security degradation as an exponential function of the maximum string
length will only apply to schemes that are suitably “checkable.” In order to define

this precisely, we will restrict our consideration to schemes can be augmented
with two additional algorithms:

CTCheck(PP,CT,z) — {True, False} The ciphertext checking algorithm takes
in public parameters PP, a ciphertext CT, and a binary string x. It outputs
either True or False.

KeyCheck(PP,SK, y) — {True, False} The key checking algorithm takes in pub-
lic parameters PP, a secret key SK, and a binary string y. It outputs either True
or False.

We note that these additional algorithms are required to be efficient (just like
the more standard algorithms above). We also require them to be deterministic.

For correctness, we require that CTCheck(PP, CT, z) outputs True whenever
PP is honestly generated and CT is an honestly generated ciphertext for x
from PP. Similarly, we require that KeyCheck(PP, SK, y) outputs True whenever
PP, MSK are honestly generated and SK is an honestly generated key for y from
MSK.

Definition 1. We say a prefix encryption scheme is checkable if for any PP, CT,
x, SK1, 41, SKa, y2 such that CTCheck(PP,CT, z) = True, KeyCheck(PP,SK;,y1) =
True, KeyCheck(PP,SKs,y2) = True, and y1,y2 are both prefizes of x, then
Decrypt(CT,SK1) = Decrypt(CT, SKs).

Security Definition We now define full security for a prefix encryption scheme
in terms of the following game between a challenger and an attacker. This is
essentially the definition of full IND-CPA security for HIBE schemes, but the
case of prefix encryption is a bit simpler as there is no need to track the delegation
of keys. The game proceeds in the following phases:

Setup Phase The challenger runs Setup(A) to produce MSK and PP. It gives
PP to the attacker.

Key Query Phase I The attacker adaptively chooses binary strings y and queries
the challenger for corresponding secret keys. For each queried string y, the chal-
lenger runs KeyGen(MSK, y) to produce a secret key SK, which it gives to the
attacker.

Challenge Phase The attacker declares to equal length messages My, M;, and a
binary string x. It is required that for all strings y queried in the previous phase,
y is not a prefix of z. The challenger chooses a uniformly random bit b € {0,1}
and creates a ciphertext CT by running Encrypt(x, My, PP). It gives CT to the
attacker.

Key Query Phase II This is the same as the first key query phase, except that
any queried y must not be a prefix of the challenge string x.

Guess The attacker submits a guess b’ for the bit b.

Definition 2. We define the advantage of an attacker in this game to be | Pr[b =
b - %| We say an algorithm A (t,€,q)-breaks a prefiz encryption scheme if it
runs in time t, achieves advantage €, and makes at most q total key queries.
We say a prefix encryption scheme is secure if no algorithm (t,€,q)-breaks for
parameters t,q,e where t,q are polynomial in the security parameter and € is
non-negligible.

The weaker notion of selective security would be obtained by modifying the
security game above by having the attacker declare the binary string x for the
challenge at the very beginning of the game, before seeing the public parameters.

2.2 Hierarchical Identity-Based Encryption

The relevant definitions for HIBE schemes are standard, and can be found in the
full version. As we will study how security reductions behave as the identity vec-
tors involved grow longer, we will allow public parameters to specify a maximum
length, ¢, for the identity vectors associated with the keys and ciphertexts.

Similarly to our definitions for Prefix Encryption schemes, we consider HIBE
schemes equipped with two additional algorithms:

CTCheck(PP,CT, I) — {True,False} The ciphertext checking algorithm takes
in public parameters PP, a ciphertext CT, and an identity vector I. It outputs
either True or False.

KeyCheck(PP,SK,I) — {True,False} The key checking algorithm takes in
public parameters PP, a secret key SK, and an identity vector I. It outputs
either True or False.

We note that these additional algorithms are required to be efficient (just like
the more standard algorithms above). We also require them to be deterministic.

For correctness, we require that CTCheck(PP, CT, I') outputs True whenever
PP is honestly generated and CT is an honestly generated ciphertext for I
from PP. Similarly, we require that KeyCheck(PP, SK, I') outputs True whenever
PP, MSK are honestly generated and SK is an honestly generated key for I from
MSK.

Definition 3. We say a HIBE scheme is checkable if for any PP, CT, I'*,SK;,
I',SKy, I? such that CTCheck(PP,CT, I*) = True, KeyCheck(PP,SK;,I') =
True, KeyCheck(PP,SKo, I?) = True, and I',I? are both prefizes of I*, then
Decrypt(CT,SK;) = Decrypt(CT, SKs).

We note the full security definition for a HIBE scheme can be found in
[SWO08].

2.3 Non-interactive Decisional Problems and Simple Black Box
Reductions

We now formally define the kinds of decisional problems and reductions we
will consider. We start by describing the non-interactive decisional problems we
allow:

Definition 4. A non-interactive decisional problem II = (C, D) is described by
a set C' and a distribution D on C. We refer to C' as the set of challenges, and
each ¢ € C is associated with a bit b(c) € {0,1}. We say that an algorithm A
(e,t)-solves IT if A runs in time t and

PriA(c) =b(c) : c L C] > % +e.

Here, c £ C denotes that c is chosen randomly from C' according to the distri-
bution D.

Decisional problems used as cryptographic hardness assumptions are actually
families of such problems, parameterized by a security parameter \. Below, we
will abuse notation mildly and write only II while X is implicit. We will write
poly(A) and neg(\) to denote functions that are polynomial functions of A and
negligible functions in A, respectively.

We next define the type of reductions we will address. We do not consider
reductions in full generality - instead we restrict our consideration to black box
reductions that satisfy additional requirements. Namely, we require simple re-
ductions that only run the attacker once in a straight line fashion - meaning that
the reduction simulates the security game exactly once with the attacker, who
it interacts with as a black box. Note that this does not allow the reduction to
rewind the attacker or supply its randomness, etc.

Definition 5. An algorithm R is a simple (t,¢,q,9,t")-reduction from a deci-
sional problem II to breaking the security of a prefix encryption scheme Prefix
if, when given black box access to any attacker A that (t, €, q)-breaks the scheme
Prefiz, the algorithm R (6,t')-solves the problem II after simulating the security
game once for A.

We note that the original selective security reductions given for prior HIBE
and ABE schemes are simple reductions in the sense of Definition 5 (e.g.
[BB04,GPSW06)).

Remark 1. Many security proofs for cryptographic systems also employ a hybrid
technique, where the proof is broken into several smaller steps and the attacker’s
inability to distinguish in each hybrid step is proven from a computational as-
sumption (typically with a simple reduction). At first glance, hybrid arguments
might seem slightly incongruous with our setting where we consider showing that
no single reduction can be performed for an attacker. However, we note that any
fixed attacker (in particular, the hypothetical attacker we simulate in our proof)

will be successful in distinguishing between (at least) one particular hybrid step.
Thus, there will be a single (simple) reduction for such an attacker. Or looked at
another way, a proof of security using the hybrid method is actually a collection
of reductions, where the reduction used will depend on the particular attacker.

2.4 Obtaining Prefix Encryption from HIBE

Given a HIBE scheme with algorithms Setupyrpg, KeyGenggg, Encryptyrse,
Delegatey g, and Decrypt g gE, we will derive a prefix encryption scheme with
algorithms Setupp,., KeyGenp,., Encryptp.., and Decryptp,.. To accomplish
this, we only require that there are at least two possible values for each compo-
nent of the identity vectors allowed in the HIBE scheme.

We let Setupp,. := Setupgrzr. We then suppose that {19, 11}, {19, I3}, ...,
{19,1}} are sets of values such that taking any combination (1o 12 ,LI;")
for bits b, ...,b, € {0,1} forms a valid identity vector (and I # I} for all j).
We define KeyGenp,. to generate a key for a binary string vy = (y1,v2,- .-, k)
for k < ¢ by running KeyGengpg on the identity (I{*,15,...,I/*). We sim-

ilarly define Encryptp,. to encrypt to a binary vector = (z1,...,z;) by run-
ning Encryptyrpg to encrypt to (I7',. .., Ifj). We can then set Decryptp,. =
DecryptHIBE.

We now observe that if we start with a checkable HIBE, then the derived
prefix encryption scheme will also be checkable:

Lemma 1. If Setuppyipe, KeyGengrpr, Encryptyrpe, Delegateyrpr, and
Decrypty g is a checkable HIBE scheme, than Setuppy., KeyGenpre, Encryptpre,
and Decryptp,. obtained from it as described above is a checkable prefiz encryp-
tion scheme.

Finally, we observe that simple security reductions for the initial HIBE
scheme can be translated into simple security reductions for the derived pre-
fix encryption scheme:

Lemma 2. If Ryrpg is a simple (t,¢,q,0,t")-reduction from a decisional prob-
lem II to breaking the security of a HIBE encryption scheme, then we can obtain
from R a new reduction Rpy. that is a simple (t,€,q,d,t')-reduction from the
same decisional problem II to breaking the security of the derived prefix encryp-
tion scheme.

The proofs of these lemmas are relatively straightforward and can be found
in the full version.

3 Main Result

We now prove our main result, establishing that any polynomial time simple
black box reduction between the security of a checkable prefix encryption scheme
and a hard, non-interactive decisional problem can only achieve an advantage

that degrades exponentially in ¢, where ¢ is the maximum string length of the
scheme.

Essentially, we leverage the fact that the reduction can be run to obtain secret
keys and then be rewound to “forget” these keys were produced. We can then
use the secret keys obtained during the first runs of the reduction to simulate
a successful attacker against a different challenge in a final run. The checking
algorithms play a pivotal role in ensuring that the unorthodox manner in which
these keys are obtained does not compromise their effectiveness. Intuitively, for
keys and ciphertexts that pass the (publicly computable) checks, the result of a
successful decryption is guaranteed to be independent of the origins of the key.

It is interesting to consider what happens if one tries to apply such tech-
niques to more complicated reductions. A first example would be reductions
that sequentially run the attacker a bounded number of times. In such a case,
our result should extend easily via an application of the union bound, anal-
ogously to the extensions in [Cor02,HJK12]. However, it is not clear how to
extend our argument to reductions that may run interleaved instances of the
attacker, using concurrency in an arbitrary way. We observe that the arguments
in [Cor02,HJK12] also do not address this case.

Theorem 1. Let Prefixz = (Setup, Encrypt, KeyGen, Decrypt, CTCheck, Key-
Check) denote a checkable prefiz encryption scheme, and let II(X) denote a de-
cisional problem such that no algorithm running in time t = poly(\) can obtain
an advantage that is non-negligible in A. Then any simple (t, €, q, d,t')-reduction
R from II to the security of Prefix with t = poly()\), t' = poly(\) must have
a value of § such that § vanishes exponentially as a function of q (up to terms
that are negligible in).

Proof. We let Prefix = (Setup, Encrypt, KeyGen, Decrypt, CTCheck, Key-
Check) denote a checkable prefix encryption scheme. We suppose that R is a
simple (¢, €, g, d,t')-reduction from a decisional problem IT to breaking the secu-

rity of this prefix encryption scheme. We now design an algorithm B to solve
1.

A Hypothetical Attacker We first define a hypothetical attacker A that (¢, €, q)-
breaks the security of the prefix encryption scheme for some time ¢. A proceeds
as follows: it first receives PP as input (we assume this also implicitly includes
A). It chooses a random binary string « of length ¢. In the first key query phase,
it requests keys for strings y1, ..., y, where each y; is the binary string of length
i formed by taking the first i — 1 bits of x and then the opposite of the i*" bit
of x. Note that each y; is not a prefix of z. It receives the corresponding keys
SKi,...,SK, from the challenger. For each, it runs KeyCheck(PP, SK;,y;). If
any of these checks outputs False, it quits.

Next, the attacker A declares two messages My, M7 (we suppose these are
fixed, distinct messages) and = as the challenge string. It receives the ciphertext
CT from the challenger. It then runs CTCheck(PP, CT, z). If this outputs False,
it quits. Otherwise, it samples SK* uniformly from the set of all values of SK

such that KeyCheck(PP, SK, x;) = True for any prefix z; of x. (Of course, this
step may not be efficient.) After obtaining SK*, it decrypts CT with SK*. If the
result is My for some b € {0, 1}, it guesses b’ with probability %Jre and guesses
the opposite with probability % — €. If the result is not My or My, it guesses
randomly.

For ease of analysis we will view the hypothetical attacker’s set of coins as
drawn from a space Z x F'. The set Z is the set of possible choices of the challenge
string x, and we let F' denote the set of all other random coins used.

We now verify that attacker A has advantage € in the real security game.
In this case, since the public parameters and ciphertext are honestly generated,
then SK* properly decrypts the challenge ciphertext, and hence the result will
always be Mj. A then guesses b correctly with probability % + e

Using the Reduction We are assuming that the reduction R runs the attacker
once in a straight-line fashion (e.g. no rewinding). We now create an algorithm
B to solve IT by using R. (Note that B can rewind R: we just do not allow R to
rewind the attacker.)

B first receives a problem instance ¢, which it gives as input to R. R then
outputs public parameters PP. Now B will simulate the hypothetical attacker
described above as follows. First, it will run R several times in an attempt to
collect secret keys. Then it will use the collected keys to simulate the attacker
on a new run of R.

More precisely, we let 7 be a parameter to be specified later (it will be
polynomial in the string length ¢ and the security parameter). B will choose 7
independent random binary strings x', 22, ..., 27 of length ¢. It will then query
keys for strings yi, ..., y; derived from ! as described above (note this behavior
is identical to the hypothetical attacker A). After receiving each key, it runs the
KeyCheck algorithm. If this check ever outputs False, then B considers this run
to be an “aborting run”. In addition, B receives a challenge ciphertext CT. If the
CTCheck algorithm run on CT returns false, then it is is also considered to be
an “aborting run.”? If the run was not aborting, then B successfully received a
corresponding key SK} for each i from 1 to g such that KeyCheck(PP, SK}, y}) =
True. It then stores these SK%, ey SK; values.

Next, it rewinds the reduction R to the point just after it output the public
parameters. It will then run R again (using fresh random coins) and querying
keys for strings y7,...,y2 derived from . It continues in this way until it has
run R exactly 7 times on these same PP. If all 7 runs were aborting runs, then
B stops and guesses randomly. Otherwise, it continues.

Next, it chooses a new random binary string z of length ¢. If z = 2 for
any ¢ from 1 to 7, then B stops and guesses randomly. Otherwise, it runs R
one more time on these same PP with fresh random coins, querying keys for
strings ws, ..., w, derived from z. Upon receiving each key for wy,...,wyq, it

4 We observe that for the purposes of collecting private keys, it is not important for
the reduction algorithm to return a valid challenge ciphertext. However, we choose
to require this to maintain a uniform definition of an “aborting run” in our analysis.

runs the KeyCheck algorithm as before. If any of these checks fail, it stops and
guesses randomly. Otherwise, B submits the fixed, distinct messages My, M;
and the challenge string z to the reduction. B receives CT in return. It runs
the CTCheck algorithm. If this check fails, B stops and guesses randomly. If the
check passes, it fixes and index j from 1 to 7 such that the 4t run was not
aborting. Then, it considers the unique y; that is a prefix of z (note that the
index i is defined as the first bit where z and 27 differ).

B now decrypts CT with SK]. If the result is M, for some &’ € {0,1}, it
guesses b’ with probability % + € and guesses the opposite with probability % —€.
If the result is not My or M7, it guesses randomly. It gives b’ to R, and finally
copies the output of R as its own output.

It is crucial to observe here that B is decrypting the challenge ciphertext
with a secret key that may not be equivalently distributed to the key that the
hypothetical attacker A would use. Nonetheless, since decryption only occurs
when the key SK? and the challenge ciphertext CT have passed their respective
checks, it must be the case that the decryption of CT by SK{ produces the
same result as decryption of CT by any other acceptable key, hence B correctly
simulates the decryption output that A would obtain, despite the fact that it is
not simulating the proper key distribution.

Analyzing Algorithm B We recall that C denotes the set of challenges. We let
R denote the set of possible random coins chosen by R for a single run. We
introduce the following notation for the coins used by B during its final run of
the reduction algorithm R. Recall, that in a single run the hypothetical attacker’s
coins is draw from a space Z x F, Z is the choice of possible challenge strings
and I is the set of other coins used. For the final run, we let z € Z and f € F
denote the simulated choice of these coins.

Fixingce C,r € R, z € Z, and f € F, we define that the tuple (c,r, z, f)
belongs to the event W if running the reduction once with this ¢ and these coins
r and an attacker using coins z, f results in all the key and ciphertext checks
passing and the reduction correctly solving the challenge. (I.e. W is the set of
coins for the final run where the final run does not abort and it gives the correct
answer.)

We partition the tuples (c,r, z, f) € W into two disjoint sets. For notational
convenience, we split 7 € R into substrings r; and ry such that ry are the coins
used to determine PP and 79 are the remaining coins used by the reduction.
We let U denote the set of tuples in W such that, fixing ¢ and r1, replacing the
remaining coins for R and the attacker with freshly sampled coins results in a
non-aborting run with probability > p (where p is a threshold we will specify
later). We let V' denote the set of tuples in W such that this results in a non-
aborting run with probability < p. Note that by definition, W is a disjoint union
of U and V. Hence P[W] = P[U] + P[V].

Note that any two runs that share the same ¢ and r; coins also share the
same challenge and public parameters generated by the reduction. This is the
point to which B rewinds when conducting multiple runs. We can think of these
are being “neighboring” sets of runs. Intuitively, we are partitioning the set W

into the set U where a neighbor of u € U is more likely to be non-aborting and
the set V' where a neighbor of v € V' is less likely to be non-aborting.

Claim. P[V] < p.

The proof of this claim follows in a similar vein to the heavy row lemma [O098].
Proof. Given ¢, ry, we can define p(c,71) to be the probability of a non-aborting
run when independent random values of 79, 2, f are chosen and p’(c, r1) to be the

probability of a non-aborting and correct run when independent random values
of ro, z, f are chosen. Then we observe:

PViI= Y Perbem< 3 PBlenlplen)
c,r1 s.t. p/(e,r1)<p c,r1 s.t. ple,r1)<p
which is < p)__ . Ple,r1] <p.

We define the event A to be the collection of tuples (c,r, z, f) such that an
aborting run is produced (here, we consider an aborting run to include any key
check or ciphertext check failure). We note that A is disjoint from W. We let S
denote the event that the reduction solves the challenge correctly.

Claim. If IT is computationally hard, then P[A] | (P[S|A] — 1)| = negl()).

Proof. Suppose that P[A] (P[S|A] — 1) = € > 0. We then define the following
algorithm B’ to solve II. B’ chooses random coins for the attacker and runs R
once until either an abort occurs or it reaches the end where the attacker should
provide a response. If an abort occurs, then B’ copies the output of the reduction
as its own. Otherwise, it guesses randomly.

The success probability of B is 1 (1-P[A])+P[A]P[S|A] = 1+P[A] (P[S|A] — 1) =
5+ €. Thus, we must have ¢’ = negl()) if IT is computationally hard. The case
when P[A] (3 —P[S|A]) = ¢ > 0 is analogous, except that B’ should flip the
output of the reduction in the case of an abort.

We observe that the success probability of the reduction (with one run of

the hypothetical attacker) is = P[A]P[S|A] + P[W] = i + 4. Combining this with
Claim 3 and Claim 3, we see that

-P[A] + P[U] > % + 9 — p—negl(A). (1)

N | =

We let X;, F; denote the sets of possible coins for the attacker that B will
use during the " run of R, and we let R} denote the set of possible coins the
reduction will use for the i** run. For each i, we define A; to be the event that
(e,r1,75, 2;, fi) produces an aborting run. We define E; to be the event that
z = ;. We let A; and E; denote their complements.

We now consider the probability that B solves the decisional problem I7. We
observe that this is:

>

-P[A] + Z Ple,r, z, f] - P

(e,r,2,f)EU

O&ﬂEﬂc,r,z,f}. (2)

i=1

N | =

We consider a tuple (e, 7, z, f) € U. We observe

UEi|CaTaZ7f‘| —-P
=1

P

Ux‘liﬂE‘i|C,T,Z,f‘| >1-P

i=1

ﬁ Aile,r, z, f] .
i=1

By the union bound, P [JI_; E;le,r] < 7277 Since the events A; are independent
once ¢,r, z, f are fixed, we have P[[_, A;le,r, z, f] < (1—p)7 (here we have also
used that (c,r, 2z, f) € U). Thus, P [U;_; AN E; | ¢,r, 2, f] > 1-1279—(1—p)".

Combining this with (2), we see that B solves the decisional problem IT with
probability > 1 - P[A] + P[U](1 — 7277 — (1 — p)7). Considering (1), we see this
is > % +0—p—mnegl(A\)—7277—(1—p)". Hence, if we set p = %7 the advantage
of B is at least

%5 —negl(\) — 7277 — (1 - i)T . 3)

1
We now set 7 = %. We observe that (1 — %) ° is upper bounded by a constant
strictly less than 1, since lim, o (1 — %)n = 1. Hence we see that (3) is =
35— %2_‘1 —negl(X). This shows that § must be exponentially small as a function

of ¢ when II is computationally hard.

4 Implications for Existing Constructions

Our result can be applied to explain why the first HIBE schemes that were
proven secure in the standard model relied on the weaker notion of selective
security. Of course, one can easily translate selective security into full security
for the same schemes while incurring a loss that is exponential as a function
of the hierarchy depth, as we have shown to be inherent for checkable schemes
when using a typical class of reductions.

As an illustrative example, we show that the selectively secure HIBE scheme
of Boneh and Boyen [BB04] is checkable. We first review the scheme. Below, A
denotes the security parameter and ¢ denotes the maximum depth. The scheme
will be constructed in a bilinear group G of prime order p. We will assume that
identities I are vectors of length < ¢ whose components are elements of Z, and
that messages M are elements of Gp. We will also assume that G comes equipped
with group membership tests for G and its target group Gr.

4.1 The Boneh-Boyen HIBE Construction

Setup (A, ¢) = MSK, PP The setup algorithm chooses a bilinear group G of suffi-
ciently large prime order p. We let g denote a generator of Gand e : GXG — G

denote the bilinear map. The algorithm chooses a uniformly random expo-
nent a € Z, and sets g1 = ¢g¢. The algorithm also chooses random gener-
ators go,h1,...,hg € G. The MSK is g5, while the public parameters are:

PP := {G7p7679791792ah17"'7hq}'

Encrypt(M,I = (I,...,I;)) — CT The encryption algorithm chooses a uni-
formly random exponent s € Z,, and forms the ciphertext as:

CT := {M6(91792)sa gs’ (g{lhl) PRI (g{khk) } .

KeyGen(I = (I1,...,1I;),MSK) — SK; The key generation algorithm chooses
uniformly random exponents T1,...,7, and produces a secret key for identity I
as: SKp = {5 T1IS, (ofh) g7, s g7}

We note that delegation here is rather natural, as one can add on a new
coordinate I to the identity vector by sampling a new exponent ;41 € Zp,

Tht1
multiplying (g{k+lhk+1) into the first group element, and appending the

extra element ¢g"++! to the current key. However, we will not need to refer to
delegation in order to apply our result.

Decrypt(CT,SKy) — {M, L} The decryption algorithm takes in a ciphertext
encrypted to an identity vector I* = (I7,...,I]*) and a secret key for an identity
vector I = (I,...,I}). If I is not a prefix of I*, it outputs L. Otherwise, it
computes the message as follows. We let {C, Cy, C1, ..., C;} denote the elements
of the ciphertext, ordered as in the description above. We let {K, K, ..., K}
similarly denote the elements of the secret key. Then the decryption algorithm
computes: M = C - 71_[%%(;5%)&).

To show this HIBE scheme is checkable, we must specify appropriate efficient
algorithms for ciphertext checking and key checking. Our checking algorithms
will assume that the bilinear group G comes equipped with an efficient member-

ship testThis test is assumed to be perfect (error-free).

CTCheck(PP,CT, I) The ciphertext check algorithm first tests that PP and CT
are comprised of the appropriate number and type of group elements (using the
group membership tests for G and Gr). If any of these tests fail, it outputs
False. Otherwise, we let C, Cy, C1, ..., C; denote the group elements comprising
the ciphertext (where I has length j) and we let g, g1, g2, h1, ..., hy denote the
group elements contained in PP. It is checked that none of PP elements are the
identity element. It is then checked that e(Cj, g) = e(Co, gi*h;) for each i from
1 to j. If any of these checks fail, output False. Otherwise, output True.

KeyCheck(PP,SKy,I = (Iy,...,1;)) The key check algorithm tests that PP
and the secret key each contain the correct number of elements, and that all the
elements of both are in fact elements of the group G by performing membership
tests. If any of these tests fail, the algorithm outputs False. Otherwise, we let
K, K, ..., K denote the group elements comprising the secret key, and we let

9,91, 92, h1, ..., hq denote the group elements contained in PP. It is checked
that none of PP elements are the identity element. Since each of Ki,..., K is
an element of the cyclic group G and g is a generator, there must exists values
T1,...,7k € Zp such that K; = g™, ..., K = g"*. It remains to check that K is
properly formed with respect to these r;’s. To test this, the algorithm computes
A:=e(9,K), B:=e(g1,92) Hle e(Ki, glihy). If A= B, the algorithm outputs
True. Otherwise, it outputs F'alse.

Proposition 1. The HIBE scheme in Section 4.1 is checkable.

Proof. We observe that the checking algorithms always output True when pa-
rameters, keys, and ciphertexts are honestly generated. Furthermore, when the
public parameters and a secret key pass all of the checks, it must be the case that
the secret key is correctly formed for some values of ry,...,r; € Z,. Thus, the
secret key will correctly decrypt any honestly generated ciEhertext. To see this,
note that A = B in the key check if and only if K = ¢g§ Hizl(g{i h;)" for the r;
values defined from K7, ..., K. This again relies on the fact that G is a cyclic
group generated by g and Gr is also a cyclic group, generated by e(g, g). Hence,
A, B € Gr can only be equal if there discrete logarithms base e(g, g) modulo p
are equal. Similarly, a ciphertext can only pass the check if it is properly formed
for some value of s € Z,,.

Hence, for any PP that pass the checks, the set of possible secret keys that
pass the key check for a given identity vector is indexed precisely by the p*
possible values of r1,...,7,, and the possible ciphertexts for a given identity
vector are indexed precisely by the p possible vales of s. As a consequence, we
see that any two acceptable keys for authorized identity vectors decrypt any
acceptable ciphertext to the same message.

Other Schemes The reasoning employed above to analyze the checking algo-
rithms of the Boneh-Boyen HIBE scheme is also applicable to other schemes
with similar structure. More specifically, we can apply the same kind of analy-
sis to any scheme with perfect correctness where the sets of possible keys and
ciphertexts output by the key generation and encryption algorithms are param-
eterized by discrete log relationships that can be tested by pairing with public
group elements. Other schemes displaying these properties include the Waters
IBE and HIBE schemes in [Wat05], the HIBE construction by Boneh, Boyen,
and Goh in [BBGO05] that achieves compact ciphertexts, the HIBE scheme of
Canetti, Halevi, and Katz [CHK03], the HIBE scheme of Gentry and Silverberg
[GS02], and the ABE schemes of Goyal, Pandey, Sahai, and Waters [GPSWO06]
and Waters [Wat11]. Thus, all of these schemes are checkable. (A checkable ABE
scheme can be defined analogously to a checkable HIBE scheme, and we show in
the full version that a checkable ABE scheme can be used to build a checkable
prefix encryption scheme.)

The HIBE construction of Gentry and Halevi [GH09] does not conform to
this structure and is not checkable (under some computational assumption) -
this is why it can avoid exponential degradation in security as the hierarchy

depth grows. The later HIBE constructions in [Wat09,LW10] and ABE con-
structions in [LOST10,0T10,LW12] that are proven fully secure through the
dual system encryption methodology also avoid the basic structure that leads to
checkability, even though they can be viewed as alternate instantiations of the
intuitive mechanisms of the prior Boneh-Boyen, Boneh-Boyen-Goh, and Goyal-
Pandey-Sahai-Waters schemes. More concretely, schemes designed for dual sys-
tem encryption come equipped with additional dimensions that complicate the
landscape of possible keys and ciphertexts. As a consequence of this alteration
to the scheme structure, they fall outside the rubric of simple discrete log rela-
tionships between pairs of elements in a prime order cyclic group that can be
checked by pairing with public elements. (Some dual system constructions use
composite order groups for this purpose, and some replace single group elements
with larger tuples of group elements.) The additional dimensions that prevent
such checks are designed to enable a simulator to produce “semi-functional”
keys that still function like honestly generated keys when decrypting honestly
generated ciphertexts, but behave differently when decrypting “semi-functional”
ciphertexts that cannot be efficiently distinguished from honestly generated ones.
This circumvents our lower bound. The situation for the lattice-based HIBE con-
structions [ABB10,CHKP10] and recent ABE construction [Boy13] is not clear:
it would be interesting to determine if they are checkable or not.

In the full version, we additionally show a result in the positive direction;
that prefix encryption can actually be built from the simpler primitive of IBE.
We prove the reduction secure relative to the IBE scheme with a polynomial loss
of security. Since there are known IBE constructions [BF01,Wat05] that are both
checkable and have polynomial security reductions to decision assumptions, this
might at first seem like a contradiction to our main result. The catch is that
our IBE to prefix encryption will not preserve the checkability property (if it
existed) of the underlying IBE system.

5 Acknowledgements

We thank the anonymous reviewers for their important points regarding our
analysis.

References

[ABB10] S. Agrawal, D. Boneh, and X. Boyen. Efficient lattice (h)ibe in the standard
model. In EUROCRYPT, pages 553-572, 2010.

[BB04] D. Boneh and X. Boyen. Efficient selective-id secure identity based encryp-
tion without random oracles. In EUROCRYPT, pages 223 — 238, 2004.

[BBG05] D. Boneh, X. Boyen, and E. Goh. Hierarchical identity based encryption
with constant size ciphertext. In EUROCRYPT, pages 440-456, 2005.

[BFO1] D. Boneh and M. Franklin. Identity based encryption from the weil pairing.
In CRYPTO, pages 213-229, 2001.

[Boy13] X. Boyen. Attribute-based encryption from lattices. In TCC, pages 122-142,
2013.

[BSW07]

[CHKO03)
[CHKP10]
[Cor02]

[CS02]

[Gen06]

[GHOY)]

J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-based
encryption. In Proceedings of the IEEE Symposium on Security and Privacy,
pages 321-334, 2007.

R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption
scheme. In FUROCRYPT, pages 255—271, 2003.

D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. Bonsai trees, or how to
delegate a lattice basis. In FUROCRYPT, pages 523-552, 2010.

J. Coron. Optimal security proofs for pss and other signature schemes. In
EUROCRYPT, pages 272-287, 2002.

R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption. In FUROCRYPT, pages
45-64, 2002.

C. Gentry. Practical identity-based encryption without random oracles. In
EUROCRYPT, pages 445-464, 2006.

C. Gentry and S. Halevi. Hierarchical identity based encryption with poly-
nomially many levels. In TCC, pages 437-456, 2009.

[GPSWO06] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute based encryption

[GS02]
[HIK12]
[HLO2]

[LOS™10]

[LW10]

[LW12]

[0098]

[OT10]

[SWO5]

[SWOS]

[Wat05]
[Wat09)]

[Wat11]

for fine-grained access control of encrypted data. In ACM conference on
Computer and Communications Security, pages 89-98, 2006.

C. Gentry and A. Silverberg. Hierarchical id-based cryptography. In ASI-
ACRYPT, pages 548-566, 2002.

D. Hotheinz, T. Jager, and E. Knapp. Waters signatures with optimal
security reduction. In Public Key Cryptography, 2012.

J. Horwitz and B. Lynn. Toward hierarchical identity-based encryption. In
EUROCRYPT, pages 466-481, 2002.

A. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters. Fully
secure functional encryption: Attribute-based encryption and (hierarchical)
inner product encryption. In EUROCRYPT, pages 62-91, 2010.

A. Lewko and B. Waters. New techniques for dual system encryption and
fully secure hibe with short ciphertexts. In TCC, pages 455-479, 2010.

A. Lewko and B. Waters. New proof methods for attribute-based encryp-
tion: Achieving full security through selective techniques. In CRYPTO,
pages 180-198, 2012.

Kazuo Ohta and Tatsuaki Okamoto. On concrete security treatment of
signatures derived from identification. In CRYPTO, pages 354-369, 1998.
T. Okamoto and K. Takashima. Fully secure functional encryption with
general relations from the decisional linear assumption. In CRYPTO, pages
191-208, 2010.

A. Sahai and B. Waters. Fuzzy identity based encryption. In EUROCRYPT,
pages 457-473, 2005.

E. Shi and B. Waters. Delegating capabilities in predicate encryption sys-
tems. In Automata, Languages and Programming, volume 5126 of LNCS,
pages 560-578. Springer, 2008.

B. Waters. Efficient identity-based ecnryption without random oracles. In
EUROCRYPT, pages 114-127, 2005.

B. Waters. Dual system encryption: realizing fully secure ibe and hibe under
simple assumptions. In CRYPTO, pages 619-636, 2009.

B. Waters. Ciphertext-policy attribute-based encryption: An expressive,
efficient, and provably secure realization. In PKC| pages 53-70, 2011.

