
Generic Universal Forgery Attack on
Iterative Hash-based MACs

Thomas Peyrin and Lei Wang

Division of Mathematical Sciences, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore

thomas.peyrin@gmail.com wang.lei@ntu.edu.sg

Abstract. In this article, we study the security of iterative hash-based
MACs, such as HMAC or NMAC, with regards to universal forgery attacks.
Leveraging recent advances in the analysis of functional graphs built from
the iteration of HMAC or NMAC, we exhibit the very first generic universal
forgery attack against hash-based MACs. In particular, our work implies
that the universal forgery resistance of an n-bit output HMAC construction
is not 2n queries as long believed by the community. The techniques we
introduce extend the previous functional graphs-based attacks that only
took in account the cycle structure or the collision probability: we show
that one can extract much more meaningful secret information by also
analyzing the distance of a node from the cycle of its component in the
functional graph.
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1 Introduction

A message authentication code (MAC) is a crucial symmetric-key cryptographic
primitive, which provides both authenticity and integrity for messages. It takes a
k-bit secret key K and an arbitrary long message M as inputs, and produces an
n-bit tag. In the classical scenario, the sender sends both a message M and a tag
T = MAC(K,M) to the receiver, where the secret key K is shared between the
sender and the receiver prior to the communication. Then, the receiver computes
another tag value T ′ = MAC(K,M) using her own key K, and matches T ′ to the
received T . If a match occurs, the receiver is ensured that M was indeed sent by
the sender and has not been tampered with by a third party.

There are several ways to build a MAC from other symmetric-key crypto-
graphic primitives, but a very popular approach is to use a hash function. In
particular, a well-known example is HMAC [2], designed by Bellare, Canetti and
Krawczyk in 1996. HMAC has been internationally standardized by ANSI, IETF,
ISO and NIST, and is widely implemented in various worldwide security proto-
cols such as SSL, TLS, IPSec, etc.

Being cryptographic objects, MACs should satisfy various security require-
ments and the classical notions are key recovery resistance and unforgeability:



• Key recovery resistance: it should be practically infeasible for an adversary
to recover the value of the secret key.

• Unforgeability : it should be practically infeasible for an adversary to generate
a message and tag pair (M,T ) such that T is a valid tag for M and such
that M has not been queried to MAC previously by the adversary.

In the case of an ideal MAC, the attacker should not be able to recover the key in
less than 2k computations, nor to forge a valid MAC in less than 2n computations.
Depending on the control of the attacker over the message, one discriminates
between two types of forgery attacks: existential forgery and universal forgery
attack. In the former case, the attacker can fully choose the message M for
which he will forge a valid tag T , while in the later case he will be challenged
to a certain message M and must find the MAC tag value T for this particular
message. In other words, universal forgery asks the attacker to be able to forge
a valid MAC on any message, and as such is a much more powerful attack than
existential forgery and would lead to much more damaging effects in practice.
Yet, because this security notion is easier to break, most published attacks on
MACs concern existential forgery.

Moreover, cryptographers have also proposed a few extra security notions
with respect to distinguishing games such as distinguishing-R and distinguishing-
H [12]. The goal of a distinguishing-R attack is to distinguish a MAC scheme from
a monolithic random oracle, while the goal of a distinguishing-H attack is to
distinguish hash function-based MACs (resp. block cipher and operating mode-
based MACs) instantiated with either a known dedicated compression function
(resp. a dedicated block cipher) or a random function (resp. a random block
cipher). While these distinguishers provide better understanding of the security
margin, the impact to the practical security of a MAC scheme would be rather
limited.

Given the importance of HMAC in practice, it is only natural that many re-
searchers have analyzed the security of this algorithm and of hash-based MACs
in general. On one hand, cryptographers are devoted to find reduction-based
security proofs to provide lower security bound. Usually a MAC based on a hash
function with a l-bit internal state is proven secure up to the bound O(2l/2).
Examples include security proofs for HMAC, NMAC and Sandwich-MAC [2, 1, 25].
Namely, it is guaranteed that no generic attack succeeds with a complexity be-
low the security bound O(2l/2) (when l ≤ 2n) in the single-key model.

On the other hand, cryptographers are also continuously searching for generic
attacks to get upper security bound for hash-based MACs, since the gap between
the 2l/2 lower bound and the best known generic attacks is still very large for sev-
eral security properties. The cases of existential forgery and distinguishing-R at-
tacks are tight: in [17], Preneel and van Oorschot proposed generic distinguishing-
R and existential forgery attacks with a complexity of O(2l/2) computations.
Their methods are based on the generation of internal collisions which are de-
tectable on the MAC output due to the length extension property of the inner
iterated hash function (one can generate an existential forgery by simply look-



ing for an internal collision in the hash chain and then, given any pair of messages
using this internal collision as prefix, it is easy to forge the tag for one message
by querying the other message to the tag oracle).

In [16] Peyrin et al. utilized the cycle property of HMAC in the related-key
model to distinguish it from a random mapping and eventually described generic
distinguishing-R attack with a complexity of only O(2n/2) computations (note
that these related-key attacks do not contradict the O(2l/2) security proof which
was provided in the single-key model only). A similar weakness was indepen-
dently pointed out by Dodis et al. in the context of indifferentiabiity of HMAC [5].
One year after, leveraging the ideas of cycle detection in functional graphs
from [16], Leurent et al. [14] showed that, contrary to the community belief,
there exists a generic distinguishing-H attack requiring only O(2l/2) computa-
tions on iterative hash-based MACs in the single-key model. All security bounds
on iterative hash-based MACs are therefore tight, except the case of universal
forgery for which the best generic attack still requires 2n computations and it
remains unknown exactly where the security lies between 2n and min{2l/2, 2n}
computations.

Besides generic attacks, cryptanalysts also evaluated MACs based on (stan-
dardized) dedicated hash functions, mainly by exploiting some weakness of the
compression function [3, 12, 8, 23, 19, 20, 13, 24, 26, 22, 9]. The details of such at-
tacks will be omitted in the rest of this article, since we deal with generic attacks
irrespective to the specifications of the internal compression function.

Our contribution. In this article, we describe the first generic universal forgery
attack on iterative hash-based MACs, requiring less then 2n computations. More
precisely, our attack complexity is O(max(2l−s, 25l/6, 2s)), where 2s represents
the block length of the challenge message. In other words, for reasonable mes-
sage sizes, the complexity directly decreases along with an increase of s, up to a
message size of 2l/6 where the complexity hits a plateau at 25l/6 computations.
Previously known attacks and proven bounds are summarized in Table 1 and we
emphasize that this is the first generic universal forgery attack on HMAC in the
single key model (except the trivial 2n brute force attack). For example, a corol-
lary to our work is that HMAC instantiated with the standardized hash function
RIPEMD-160 [4] (or MD5 [21] and RIPEMD-128 [4]), which allows arbitrarily
long input messages (this conditions is needed since even though the challenge
message can have a small length, we will need to be able to query 2l/2-block long
messages during the attack), only provides a 2133.3 (resp. 2106.7) computations
security with regards to universal forgery attacks, while it was long believed that
the full 2160 (resp. 2128) was holding for this strong security property.

Moreover, our techniques are novel as they show that one can extract much
more meaningful secret information than by just analyzing the cycle structure
or the collision probability of the functional graphs of the MAC algorithm, as
was done previously [16, 14]. Indeed, the distance of a node from the cycle of
its components in the functional graph is a very valuable information to know



Table 1. We summarize the security state of HMAC (with n ≤ l ≤ 2n) including previous
results and our universal forgery attacks. Notation max() is to choose the largest value.

security notion
single key setting related-key setting

provable security generic attack generic attack

Distinguishing-R O(2l/2) [2, 1] O(2l/2) [17] O(2n/2) [16]

Distinguishing-H O(2l/2) [2, 1] O(2l/2) [14] O(2n/2 + 2l−n) † [16]

Existential forgery O(2l/2) [2, 1] O(2l/2) [17] O(2n/2 + 2l−n) † [16]

Universal forgery O(2l/2) [2, 1]
previous: O(2n)

new: O(max(2l−s, 25l/6, 2s)) ‡

†: the attacks have complexity advantage with n < l < 2n;
‡: 2s is the blocks length of the challenge message. The attack has complexity advantage
with n ≤ l < 6n/5.

for an attacker, and we expect even more complex types of information to be
exploitable by attackers against iterative hash-based MACs.

2 Description of NMAC and HMAC

A hash function H maps arbitrarily long messages to an n-bit digest. It is
usually built by iterating a fixed input length compression function f , which
maps inputs of l+ b bits to outputs of l bits (note that l ≥ n). In details, H first
pads an input message M to be a multiple of b bits, then splits it into blocks
of b bits m0||m1|| · · · ||ms−1, and calls the compression function f iteratively to
process these blocks. Finally, H might use a finalization function g that maps l
bits to n bits in order to produce the hash digest.

x0 = IV xi+1 = f(xi,mi) hashdigest = g(xs)

Each of the chaining variables xi are l bits long, and IV (initial value) is a public
constant.

NMAC algorithm [2] keys a hash function H by replacing the public IV with
a secret key K, which is denoted as HK . It then uses two l-bit secret keys Kin

and Kout referred to as the inner and the outer keys respectively, and makes two
calls to the hash function H. NMAC is simply defined to process an input message
M as:

NMAC(Kout,Kin,M) = HKout
(HKin

(M)).

The keyed hash functions HKin
and HKout

are referred to as the inner and the
outer hash functions respectively.



HMAC algorithm [2] is a single-key variant of NMAC, depicted in Figure 1. It
derives Kin and Kout from the single secret key K as:

Kin = f(IV,K ⊕ ipad) Kout = f(IV,K ⊕ opad)

where ipad and opad are two distinct public constants. HMAC is then simply
defined to process an input message M as:

HMAC(K,M) = H(K ⊕ opad‖H(K ⊕ ipad‖M)))

where ‖ denotes the concatenation operation. It is interesting to note that HMAC
can use any key size. If the key K is shorter than b bits, then it is padded
with 0 bits to reach the size b of an entire message block. Otherwise, if the
key K is longer than b bits, then it is hashed and then padded with 0 bits:
K ← H(K)‖0b−n.

IV

m0 = K ⊕ ipad

fl

m1

x1

fl

m2

x2

fl

m3

x3 x4

lf g

IV

K ⊕ opad

f f g n

T

Fig. 1. HMAC with an iterated hash function with compression function f , and output
function g.

For simplicity, in the rest of this article we will describe the attacks based on
the utilization of the HMAC algorithm. However, we emphasize that our methods
apply similarly to hash-based MACs such as NMAC [2], Sandwich-MAC [25], etc.

3 Previous functional-graph-based attacks for HMAC

Our universal forgery attack is based on recent advances in hash-based MACs
cryptanalysis [16, 14] and in this section we quickly recall these methods and
explain how we extend them. First of all, we need to introduce the notion of
functional graph and the various properties that can be observed from it.

The functional graph Gf of a function f : {0, 1}l → {0, 1}l is simply the
directed graph in which the vertices (or nodes) are all the values in {0, 1}l and
where the directed edges are the iterations of f (i.e. a directed edge from a



vertex a to a vertex b exists iff f(a) = b). The functional graph of a function is
composed of one or several components, each having its own internal cycle.

For a random function, the functional graph will possess several statistical
properties that have been extensively studied. For example, it is to be noted that
with high probability the functional graph of a random function will have a log-
arithmic number of components and among them there is one giant component
that covers most of the nodes. In addition, this giant component will contain a
giant tree in which are present about a third of the nodes of Gf . Theorems 1
and 2 state these remarks in a more formal way.

Theorem 1 ([6, Th. 2]). The expectations of the number of components, num-
ber of cyclic nodes (a node belonging to the cycle of its component), number of
terminal nodes (a node without a preimage), and number of image nodes (a node
with a preimage) in a random mapping of size N have the asymptotic forms, as
N →∞:

(i) #Components: 1
2 logN

(ii) #Cyclic nodes:
√
πN/2

(iii) #Terminal nodes: e−1N

(iv) #Image nodes: (1− e−1)N

Starting from any node x, the iteration structure of f is described by a simple
path that connects to a cycle. The length of the path (measured by the number
of edges) is called the tail length of x (or the height of x) and is denoted by
λ(x). The length of the cycle is called the cycle length of x and is denoted µ(x).
Finally, the rho-length of x is denoted ρ(x) and represents the length of the non
repeating trajectory of x: ρ(x) = λ(x) + µ(x).

Theorem 2 ([6, Th. 3]). Seen from a random node in a random mapping of
size N , the expectations of the tail length, cycle length, rho length, tree size,
component size, and predecessors size have the following asymptotic forms:

(i) Tail length (λ):
√
πN/8

(ii) Cycle length (µ):
√
πN/8

(iii) Rho length (ρ = λ+ µ):
√
πN/2

(iv) Tree size: N/3

(v) Component size: 2N/3

(vi) Predecessors size:
√
πN/8

Moreover, the asymptotic expectations of the giant component and its giant tree
have been provided in [7].

Theorem 3 ([7, VII.14]). In a random mapping of size N , the largest tree
and the largest component have expectations asymptotic, respectively, of 0.48∗N
and 0.7582 ∗N .

Knowing all these statistical properties for the functional graph of a random
function, Peyrin et al. [16] studied the successive iterations of HMAC with a fixed
small message block for two related-keys K and K = K ⊕ ipad⊕ opad. Thanks
to a small weakness of HMAC in the related-key setting, they observed that the
two corresponding functional graphs are exactly the same (while ideally they
should look like the functional graphs of two independent random functions)



and this can be detected on the output of HMAC by measuring the cycle lengths.
They used this property to derive generic distinguishing-R, distinguishing-H and
existential forgery attacks in the related-key setting.

Later, Leurent et al. [14] extended the scope of cycle detection by provid-
ing a single-key utilization of this technique. Namely, they show how to craft
two special long messages (mainly composed of identical message blocks), both
following two separate cycle loops in the functional graph of the internal com-
pression function. This trick allows the two messages to collide after the last pro-
cessed message block, but also to have the same length (and thus the processing
of the final padding block would not reintroduce differences). Such a collision
can therefore be detected on the output of HMAC, and they use this special in-
formation leakage (information is leaked on the unknown internal compression
function used) to derive a generic distinguishing-H attack in the single-key set-
ting. They also provide another attack that can trade extra complexity cost for
smaller message size, and in which the property scrutinized is the probability
distribution of the collisions in the functional graph.

From a high-level perspective, these two previous works mainly considered
as distinguishing properties the cycle nodes or the collisions distribution in a
functional graph. In this article, we consider a functional graph property which
seems not trivial to exploit: the height λ of a tail node, i.e. the distance of a
node from the cycle of its component. While not trivial and likely to be costly,
the potential outcome of analyzing such a property is that if one can extract this
information leakage from the HMAC output, he would get direct information on a
particular node of the computation. The attack can therefore be much sharper
(the size of the cycle is not a powerful property as it represents a footprint
equivalent for all the nodes of the component, while the height of a node is much
more discriminating), and that is the reason why it eventually allows us to derive
a generic universal forgery attack in the classical single-key setting.

4 General description of the universal forgery attack

Let Mt = m1‖m2‖ . . . ‖ms be the target message to forge given by the challenger
to the adversary (we start the counting from m1 since the first message block
m0 to be processed by the inner hash function call is m0 = K ⊕ ipad). In
order to forge the tag value corresponding to this message, we will construct a
different message M ′t which will collide with Mt in the inner hash function of
HMAC, namely HKin

(M ′t) = HKin
(Mt), and this directly leads to colliding tags

on the output of the HMAC: T = HKout
(HKin

(M ′t)) = HKout
(HKin

(Mt)). Then,
by simply querying the HMAC value T of M ′t , we eventually forge a valid tag
corresponding to Mt by outputting T .

Constructing such a message M ′t is in fact equivalent to finding a second
preimage of Mt on the keyed hash function HKin

. While second preimage attacks
have been published on public iterative hash functions [11], unfortunately they
cannot be applied to a keyed hash function as they depend on the knowledge of
the intermediate hash values when processing Mt. However, in our situation the



intermediate hash values for HKin
(Mt) are hidden since only the tag is given as

output and since Kin is unknown to the adversary, and so he will not be able
to guess them. We will overcome this issue by proposing a novel approach to
recover some intermediate hash value xi from the computation of HKin(Mt). We
stress that this is different from and much harder than previous so-called internal
state recovery in [14], which recovers some internal state of a message completely
chosen by the adversary himself. Note that once xi is recovered, we get to know
all the next intermediate hash values by simply computing xi+1 = f(xi,mi), . . .,
xs+1 = f(xs,ms) since H is an iterative hash function. Once these intermediate
hash values are known, we can apply the previous second preimage attacks [11]
in order to find M ′t .

In order to recover one value from the set of the intermediate chaining val-
ues X = {x1, x2, . . . , xs+1} of HKin

(M), we choose offline 2l/s values Y =
{y1, y2, . . . , y2l/s}, and one can see that with a good probability one element yj
of Y will collide with an element in X. We need to filter out this yj value and this
seems not easy since there is no previously published suitable property on the
intermediate hash values of HMAC that the adversary can detect on the output.

One may consider using internal collisions, which are detectable by searching
for colliding tags due to the length extension property: finding a message pair
(m,m′) for xi such that f(xi,m) = f(xi,m

′) by querying HMAC online and then
using this pair to determine if yj = xi holds by checking offline if f(yj ,m) =
f(yj ,m

′) holds. However, note that with this naive method only a single xi can
be tested at a time (since other xi′ with i′ 6= i are very likely not to collide with
the message pair (m,m′)) and we will therefore have to repeat this procedure
for each value of X independently. Thus, this attack fails as we would end up
testing 2l pairs and reaching a too high complexity.

Overall, it is essential to find a new property on the intermediate hash values
of HMAC such that it can be detected by the adversary and such that it can be
exploited to match a value of Y to all the values in X simultaneously. In our
attack, we will use a novel property, yet unexploited: the height λ(xi) of each
xi of X in the functional graph of fV , where fV stands for the compression
function with the message block fixed to a value V ; fV (·) = f(·, V ). In the rest
of this article, without loss of generality, we will let V be the message block
only composed of zero bits and we denote f[0](·) = f(·, [0]) the corresponding
compression function.

4.1 The height property of a node in a functional graph

In the functional graph of a random mapping on a finite set of size N , it is easy
to see that each node x has a unique path connecting it with a cycle node, and we
denoted the length of this path the height λ(x) of x (or tail length). Obviously,
for cycle nodes, we have λ = 0. The set of all nodes with the same height λ is
usually called the λ-th stratum of the functional graph and we denote it as
Sλ. Researchers have carried out extensive studies on the distribution of Sλ as
N →∞. In particular, Harris proved that the mean value of S0 is

√
πN/2 [10],



which is consistent with Theorem 1 as the number of the cycle nodes. After that,
Mutafchiev [15] proved the following theorem as an extension of Harris’s result.

Theorem 4 ([15, Lemma 2]). If N →∞ and λ = o(
√
N), the mean value of

the λ-th stratum Sλ is
√
πN/2.

Note that Mutafchiev’s result is no longer true for λ = O(
√
N) and, for interested

readers, we refer to [18] for the limit distribution of Sλ with λ = O(
√
N).

Interestingly, if the largest component is removed from the functional graph,
then the remaining components also form a functional graph of a random map-
ping on a finite set of size (1− 0.7582) ∗N = 0.2418 ∗N (since Theorem 3 tells
us that the largest component has an expected number of nodes of 0.7582 ∗N).
Thus we get the following corollary.

Corollary 1. If N → ∞ and λ = o(
√
N), the mean value of the λ-th stratum

Sλ in the largest component is 0.64
√
N =

√
πN/2−

√
πN ∗ 0.2418/2.

Now we move back to discuss about the height distribution in the functional
graph Gf[0] of f[0]. From Corollary 1, we can deduce that if l→∞ and λ = o(2l/2),

the mean value of Sλ in the largest component of f[0] is 0.64 ∗ 2l/2. In order to

illustrate the notion of λ = o(2l/2) more clearly, we rewrite the corollary into
the following equivalent one.

Corollary 2. Let δ(l) be any function such that δ(l) → ∞ as l → ∞. There
exists a positive value l0 such that for any l > l0, the mean value of λ-th stratum
Sλ with 0 ≤ λ ≤ 2l/2/δ(l) in the largest component is 0.64 ∗ 2l/2.

Next, we will utilize Corollary 2 to prove the lower bound on the number of
distinct height values of the intermediate chaining values in X, which we will
use in order to evaluate the attack complexity. Denote the set of all the nodes
with a height λ ∈ [0, 2l/2/δ(l)] as N ′, which covers in total 0.64 ∗ 2l/δ(l) nodes.
Thus, a random node belongs to N ′ with a probability 0.64/δ(l). Moreover,
from Corollary 2, for a random node in N ′, its height is uniformly distributed in
[0, 2l/2/δ(l)]. From these properties of N ′, we get that 0.64∗s/δ(l) elements in X
belong to N ′. Moreover, there is no collision on the height among these elements
with an overwhelming probability if s � 2l/4 holds. Note that in our forgery
attack, we will set s to be at most 2l/6 (see Section 5.1 for the details). Overall,
the lower bound on the number of distinct height values in X is 0.64 ∗ s/δ(l).
It is important and interesting to note that from Corollary 2, if l becomes very
large, δ(l) will become negligible compared to exponential-order computations
2Ω(l), e.g., δ(l) = log(l).

On the other hand, we performed experiments to evaluate the expected num-
ber of the distinct height values in X. More precisely, we used SHA-256 com-
pression function for small values of l. We prepend 0256−l to a l-bit value x,
then compute y=SHA-256 (0256−l‖x), and finally output the l LSBs of y. With
l ≤ 30, we generated random pairs and checked if their heights collide or not



in the functional graph of l-bit truncated SHA-256 compression function. The
experimental results show that a pair of random values has a colliding height
with a probability of around 2−l/2. Moreover, it is matched with a rough prob-
ability estimation as follows. Let x and x′ be two randomly chosen l-bit values.
Suppose x and x′ have the same height, then it implies that after i iterations
of f[0] (denoted as f i[0]), either one of the following two cases occurs. One is

f i[0](x) = f i[0](x
′), which has a probability of roughly 2−l for each i conditioned

on f i−1[0] (x) 6= f i−1[0] (x′). The other one is that f i[0](x) 6= f i[0](x
′) and both f i[0](x)

and f i[0](x
′) enter the component cycle simultaneously, which has a probability of

roughly (
√
π/2∗2−l/2)2 = π/2∗2−l for each i, since the number of cycle nodes is√

π/2∗2l/2. Note that Theorem 2 proved the expected tail length is
√
π/8∗2l/2.

Thus, if neither of the two cases occurs up to
√
π/8 ∗ 2l/2 iterations, we get that

f i(x) and f i
′
(x′) enter the component cycle with different i and i′, namely x and

x′ have different heights. So the total probability of randomly chosen x and x′

having the same height is at most 2−l∗
√
π/8∗2l/2+π/2∗2−l∗

√
π/8∗2l/2 ≈ 2−l/2.

Overall, we make a natural, conservative and confident conjecture as follows
(note that s is at most 2l/6 in our attacks. See Section 5.1 for the details).

Conjecture 1. With s ≤ 2l/6, there is only a negligible probability that a collision
exists among the heights of s random values in a functional graph of a l-bit
random mapping.

In the rest of the paper, we will describe our attacks based on the Conjec-
ture 1, namely the heights of the intermediate hash values in X are distinct.
However, if only taking in account the proven lower bound 0.64 ∗ s/δ(l) of the
number of the distinct heights in X, the number of offline nodes should be in-
creased by δ(l)/0.64 times, and the attack complexity is increased by a factor of
O(δ(l)). Note that O(δ(l)) is negligible compared to 2O(l), and thus it has very
limited influence to the complexity for large l.

4.2 Deducing online the height of a few intermediate hash values

We now explain how to deduce the height λ(xi) of a node xi in the functional
graph Gf[0] of f[0]. We start by finding the cycle length of the largest component
of Gf[0] , and we denote it by L. This can be done offline with a complexity of

O(2l/2) computations, as explained in [16]. Then, we ask for the MAC computation
of two messages M1 and M2:

M1 = m1‖m2‖ . . . ‖mi−1‖[0]2
l/2+L‖[1]‖[0]2

l/2

M2 = m1‖m2‖ . . . ‖mi−1‖[0]2
l/2

‖[1]‖[0]2
l/2+L

where [0]j represents j consecutive zero-bit message blocks, and we check if the
two tags collide. It is important to note that if the intermediate hash value xi is
located in the largest component of Gf[0] and has a height λ(xi) no larger than



2l/2, then the intermediate hash value after processing m1‖m2‖ . . . ‖mi−1‖[0]2
l/2

is in the cycle of the largest component. Also, the intermediate hash values after

processing m1‖m2‖ . . . ‖mi−1‖[0]2
l/2‖[1] and m1‖m2‖ . . . ‖mi−1‖[0]2

l/2+L‖[1] will
be equal (and we denote it by x) since in the latter we just make an extra cycle
walk before processing the message block [1]. Under a similar reasoning, if x is
also in the largest component1 and has a height λ(x) no larger than 2l/2, we get

that the intermediate hash values after processing m1‖m2‖ . . . ‖mi−1‖[0]2
l/2+L‖

[1]‖[0]2
l/2

and m1‖m2‖ . . . ‖mi−1‖[0]2
l/2‖[1]‖[0]2

l/2+L are equal. Moreover, since
M1 and M2 have the same block length, we get a collision on the inner hash func-
tion, which directly extends to a collision on the output tag. From the functional
graph properties of a random function given in Sections 3 and 4.1, a randomly
chosen node will be located in the largest component of Gf[0] with a probability of

about 0.7582 and will have a height no larger than 2l/2 with a probability roughly
0.5. Thus, M1 and M2 will collide with a probability (0.7582 ∗ 0.5)2 = 0.14.

In order to recover the height λ(xi) of one node xi in the functional graph Gf[0]
of f[0], we will test log(l) message pairs obtained from (M1,M2) by changing the
block [1] to other values. If (at least) one of these pairs collides, we can deduce
that with overwhelming probability2 xi is in the largest component, and has
a height λ(xi) of at most 2l/2. Otherwise, we give up on recovering the height
λ(xi) of xi, and move to find the height λ(xi+1) of the next intermediate hash
value xi+1.

In the former situation, we can start to search for the exact node height
λ(xi) of xi in Gf[0] , and we will accomplish this task thanks to a binary search.
Namely, we first check whether the intermediate hash value after processing

m1‖m2‖ . . . ‖mi−1‖[0]2
l/2−1

is in the cycle or not (note that we now have 2l/2−1

[0] blocks in the middle, instead of 2l/2 originally), and this can be done by
asking for the MAC computation of two messages M∗1 and M∗2

M∗1 = m1‖m2‖ . . . ‖mi−1‖[0]2
l/2−1

‖[1]‖[0]2
l/2+L

M∗2 = m1‖m2‖ . . . ‖mi−1‖[0]2
l/2−1+L‖[1]‖[0]2

l/2

and by checking if their respective tags collide. After testing log(l) such pairs
obtained from (M∗1 ,M

∗
2 ) by modifying the block [1] to other values, if (at least)

one pair collides, we can deduce that with overwhelming probability the inter-

mediate hash value after processing m1‖m2‖ . . . ‖mi−1 ‖[0]2
l/2−1

is in the cycle,
and the height λ(xi) of xi is no larger than 2l/2−1. Otherwise, we deduce that
λ(xi) lies between 2l/2−1 and 2l/2. Thus, the amount of possible height values

1 Since we processed a message block [1], different from [0], the last computation will
not follow the functional graph Gf[0] and we will be mapped to a random point in
Gf[0] .

2 Since the probability that xi is in the largest component and has a height λ(xi) ≤ 2l/2

is constant, choosing log(l) messages will ensure that the success probability of this
step is very close to one, see [14].



for xi are reduced by one half. We continue iterating this binary search proce-
dure log2(2l/2) = l/2 times, and we will eventually obtain the exact height value
λ(xi) of xi. By applying such a height recovery procedure, we get to know the
height value for 0.38 ∗ s values in X on average (one intermediate hash value xi
has probability 0.7582 to be located in the biggest component, and probability
about 1/2 to have a height not greater than 2l/2).

4.3 Deducing offline the height of many chosen values

Before we start to retrieve a value xi of X, we need to handle the set Y offline.
When we choose values to build the set Y = {y1, y2, . . . , y2l/s}, we also have
to compute their respective height in the functional graph of f[0]. One may
consider to use a trivial and random sampling, i.e. choosing random nodes first
and then computing their height. Note that such a procedure is very expensive,
since computing height for a random value requires around 2l/2 computations on
average, which renders the total complexity of building Y beyond 2l. We propose
instead to use an offline sampling procedure as follows.

We first initialize Y as an empty set and we start by choosing a new and
random value y1, namely y1 /∈ Y . Then, we apply f[0] to update it successively;
yi+1 = f(yi, [0]), and memorize all the yi’s in the computation chain. The itera-
tion terminates if yi+1 collides with a previous stored value y ∈ Y whose height
is already known (we denote it as λ), or if it collides with a previous node yj
(1 ≤ j ≤ i) in the current chain, namely a new cycle is generated. In the former
case, we naturally compute the height of nodes yp (1 ≤ p ≤ i) in the chain as
λ + i + 1 − p, and store all of them in Y . For the latter case, we set the height
of all the nodes from yj to yi as 0 (since they belong to the cycle of their own
component), and we then compute the height of tail nodes yp (0 ≤ p < j) as
j − p and store all of them in Y .

Using this procedure, we can select 2l/s values and obtain their height with
a complexity of only 2l/s computations. Moreover, from the functional graph
properties of a random function given in Sections 3 and 4.1, we know that on
average 38% values in Y are located in the largest components and have a height
no larger than 2l/2.

Note that Y is not a set of random values. We do not know the distribution
of height values of the elements in Y , which essentially makes Conjecture 1 be
necessary for our attack. The detailed discussion follows in next section.

4.4 Exploiting the height information leakage

At this point, the attacker built the sets X and Y and knows the height of almost
all their elements (for X, only the heights of 0.38 ∗ s elements are known). The
next step is to recover one value in X (which are still unknown to the attacker)
by matching between the elements in set X and the elements in set Y . However,
for each xi in X, we do not have to try to match every value in Y . Indeed, we
just need to pay attention to a smaller subset of Y in which the elements have



the same height value as xi. Moreover, since the elements in the set X have
distinct heights (see details in Section 4.1), these subsets of Y are all disjoint.
Thus in total we need to match at most 2l/s pairs, namely the size of Y . This
point is precisely where the adversary will get a complexity advantage during
his attack.

4.5 Attack summary

Finally, let us wrap everything up and describe the universal forgery attack from
the very beginning. The adversary is given a target messageMt = m1‖m2‖ . . . ‖ms

by the challenger, for which he has to forge a valid tag. He splits Mt into two
parts Mt1‖Mt2 :

Mt1 = m1‖m2‖ . . . ‖ms1 will be used for the intermediate hash value recovery,

Mt2 = ms1+1‖ms1+2‖ . . . ‖ms will be used in the second preimage attack.

During the online phase, the adversary applies the height recovery procedure
from Section 4.2 for each xi (1 ≤ i ≤ s1+1), and stores them in X. Moreover, he
produces a filter (m,m′) for each xi such that f(xi,m) = f(xi,m

′) holds. Dur-
ing the offline phase, the adversary chooses 2l/s1 values following the sampling
procedure from Section 4.3 and stores them in Y .

Then, he recovers the value of one of the xi’s by matching the sets X and Y :
for each xi, he checks if f(y,m) = f(y,m′) holds or not for all y’s that have the
same height as xi in Y . If a collision is found, then y is equal to xi with a good
probability. Once one xi (1 ≤ i ≤ s1+1) is recovered, the adversary gets to know
the value of xs1+1 by computing the iteration xi+1 = f(xi,mi+1), . . . , xs1+1 =
f(xs1 ,ms1), which induces that the latter half of the inner hash function when
processing Mt is equivalent to a public hash function by regarding xs1+1 as the
public IV . Thus, the adversary is able to apply previous second preimage attacks
on public hash functions [11] to find a second preimage M ′t2 for Mt2 . In the end,
the adversary queries Mt1‖M ′t2 to the MAC oracle and receives a tag value T . This
tag T is also a valid tag for the challenge Mt and the universal forgery attack
succeeds.

5 Full procedure of the universal forgery attack

In this section, we provide the entire procedure of this complex attack and we first
recall the notations used. Let Mt = m1‖m2‖ . . . ‖ms be the challenge message
(we start the counting fromm1, sincem0 = K⊕ipad during the first compression
function call of the inner hash call of HMAC) and we denote by x1, x2, . . . , xs+1 the
successive intermediate hash values of HKin(Mt) when processing Mt. During
the attack, Mt is divided into Mt1‖Mt2 , where Mt1 is m1‖m2‖ . . . ‖ms1 and Mt2

is ms1+1‖ms1+2‖ . . . ‖ms. As an example, we will use the functional graph Gf[0]
of the hash compression function f when iterated with a fixed message block [0]
and we denote by L the cycle length of the largest component of Gf[0] .



Phase 1 (online). Recover the height of x1, x2, . . ., and xs1+1 in Gf[0] and
store them in a set X. The procedure is detailed as below.

1. Initialize an index counter c as 1, and the set X as empty.
2. Query to the MAC oracle and receive the corresponding tag pairs of log(l) dis-

tinct message pairs m1‖ . . . ‖ mc−1‖ [0]2
l/2+L‖[i]‖[0]2

l/2

and m1‖ . . . ‖ mc−1‖
[0]2

l/2‖[i]‖[0]2
l/2+L , where [i] 6= [0] and [i]s are distinct among pairs.

3. If there is no tag pair that collides, increment the index counter c ← c + 1
and if c ≤ s1 + 1 then go to step 2, otherwise terminate this phase. If there
is (at least) one tag pair that collides, then just execute the following steps.
(a) Set two integer variables z1 = 0 and z2 = 2l/2.
(b) Set z = (z1 + z2)/2. Query to the MAC oracle and receive the cor-

responding tag pairs of log(l) distinct message pairs m1‖ . . . ‖ mc−1‖
[0]2

z+L‖[i]‖[0]2
l/2

and m1‖ . . . ‖ mc−1‖ [0]2
z‖[i]‖[0]2

l/2+L , where [i] 6= [0]
and [i]s are distinct among pairs.

(c) If (at least) one tag pair collides, set z2 = z. Otherwise, set z1 = z.
(d) If z2 6= z1 + 1 holds, go to step 3-b. Otherwise, set the height of xc as

λ(xc) = z2, store z2 in position c in X and increment the index counter
c← c+1. If c ≤ s1 +1 then go to step 2, otherwise terminate this phase.

Phase 2 (online). Generate a pair of one-block messages (m,m′) for each
xi ∈ X, which is used as a filter in Phase 4. The procedure is detailed as below.

1. For all xi ∈ X do the following steps.
(a) Select 2l/2 distinct one-block messages, append them to m1‖ . . . ‖mi−1,

and send these newly formatted messages to the MAC oracle. Find the
pairs m1‖ . . . ‖mi−1‖m and m1‖ . . . ‖mi−1‖m′ that collides on the output
of the MAC.

(b) For all the found pairs (m,m′), choose another random one-block mes-
sage m′′, and query m1‖ . . . ‖mi−1‖m‖m′′ and m1‖ . . . ‖mi−1‖m′‖m′′ to
the MAC oracle in order to check if their corresponding tags collide again
or not. If none collide, go to step 1-a. Otherwise, store a colliding pair
(m,m′) as the filter for xi in X and go to the next xi in step 1.

Phase 3 (offline). Choose 2l/s1 values with their height in Gf[0] , and store them
in a set Y (sorted according to the height values). The procedure is detailed as
below.

1. Initialize a counter c as 0 and the set Y as empty.
2. Choose a new random value y1 such that y1 /∈ Y , and set the chain counter
cc to 1.

3. Compute ycc+1 = f[0](ycc)
4. Check if ycc+1 matches a value y stored in Y . If it does, then set the height
λ(yi) of yi (with 1 ≤ i ≤ cc) as λ(y) + cc + 1 − i and store the (yi, λ(yi))
pairs (with 1 ≤ i ≤ cc) in Y .



5. Check if ycc+1 matches a previously computed chain value yi (with 1 ≤ i ≤
cc). If it does, then set the height λ(yj) of all values yj (with i ≤ j ≤ cc)
as 0, and the height λ(yj) of yj (with 1 ≤ j < i − 1) as i − j. Store the
(yj , λ(yj)) pairs (with 1 ≤ j ≤ cc) in Y .

6. If no match was found in step 4 or 5, then increment the chain counter
cc← cc+ 1 and go to step 3. Otherwise, update the counter c by c← c+ cc
and if c < 2l/s1 then go to step 2, otherwise terminate this phase.

Phase 4 (offline). Recover one intermediate hash value xi in set X. The pro-
cedure is detailed as below.

1. For all xi ∈ X do the following steps.
(a) Get the height λ(xi) of xi and its filter pair (m,m′) from the set X. Get

all the (y, λ(y)) pairs in set Y such that λ(y) = λ(xi).
(b) For each y, we check if f(y,m) = f(y,m′) holds or not. If it holds for a

yj , then output yj as the value of xi and terminate this phase. If there
is no such a yj , then go to the next xi in step 1.

Phase 5 (offline). Find a second preimage for the processing of Mt2 as the
second message part of HKin

(Mt). The block length of Mt2 is denoted s2 = s−s1.
The procedure is briefly described below. For the complete algorithm please refer
to [11].

1. Compute the intermediate hash values xs1 , xs1+1, . . ., xs from the value xi
recovered at Phase 4, i.e. xi+1 = f(xi,mi), . . ., xs = f(xs−1,ms−1). Note
that it is not necessary to compute until xs.

2. Build a [log(s2), s2]-expandable message starting from xs1 to a value denoted
as x. More precisely, for any integer i between log(s2) and s2, there is a
message m′s1‖m

′
s1+1‖ · · · ‖m′s1+i from the expandable message such that it

has i blocks and links from xs1 to x:

x = f(. . . f(f(xs1 ,m
′
s1),m′s1+1), . . . ,m′s1+i).

3. Choose 2l/(s2 − log(s2)) random one-block messages m, compute f(x,m),
and check if this matches to an element of the intermediate hash values set
{xs1+log(s2), xs1+1+log(s2), . . . , xs}.

4. If a match to xi (with s1 + log(s2) ≤ i ≤ s) is found, derive the (i −
s1)-block long message m′s1+1‖m′s1+2‖ · · · ‖m′i from the expandable message,
append the blocks mi+1‖mi+2‖ · · · ‖ms to it to produce M ′t2 , namely M ′t2 =
m′s1+1‖m′s1+2‖ · · · ‖m′i‖mi+1‖mi+2‖ · · · ‖ms.

Phase 6 (online). Forge a valid tag for the challenge Mt.

1. Query message M ′t = Mt1‖M ′t2 to the MAC oracle, and receive its tag T .
2. Output (Mt, T ) where T is a valid tag for Mt.



5.1 Complexity and success probability analysis

Complexity analysis. We use a single compression function call as complexity
unit. We evaluated the complexity of each phase as below.

Phase 1: O(s1 · l · log(l) · 2l/2) Phase 2: s21 · 2l/2 Phase 3: 2l/s1

Phase 4: 2l/s1 Phase 5: 2l/s2 Phase 6: s

The overall complexity of our generic universal forgery attack therefore depends
on the block length s of the target message Mt:

• For the case s ≤ 2l/6, the overall complexity is dominated by Phase 3 and
Phase 5. So we set s1 = s2 = s/2, and get the overall complexity of O(2l/s)
computations.

• For the case 2l/6 < s ≤ 25l/6, the overall complexity is dominated by Phase 2.
So we set s1 = 2l/6, and get the overall complexity of O(25l/6) computations.

• For the case s > 25l/6, the overall complexity is dominated by Phase 6. So we
set s1 = 2l/6, and get the overall complexity of O(s) = 25l/6 computations.

Success probability analysis. First, note that we only need to pay attention
to the phases that dominate the complexity, since the other phases can be re-
peated enough times to approach a success probability of 1. For the case s ≤ 2l/6,
we note that Phase 3 always succeeds with probability 1 and the success prob-
ability of Phase 5 is 0.63. For the case 2l/6 < s ≤ 25l/6, the success probability
of Phase 2 is approximately 1. For the case s > 25l/6, the success probability of
Phase 6 is approximately 1 after previous phases were repeated enough times.
Therefore, the overall success probability of our attack tends to 1 when repeating
a constant time the corresponding complexity dominating phases.

5.2 Experimental verification

For verification purposes, we have implemented the attack by using HMAC-SHA-256
on a desktop computer. Due to computational and memory limitations, we short-
ened the input/output bits of the SHA-256 compression function to 32 bits. In
more details, we input a 32-bit value x to the compression function, and the com-
pression function expands it to 256 bits by prepending 0 bits: 0224‖x. Then, the
compression function also shortens its outputs by only outputting the 32 LSBs.
Particularly for Phase 4, we paid attentions to the average number of pairs
left after matching the heights between the elements in X and the elements in
Y , since it is essential for the complexity advantages. The experiments results
confirmed that the universal forgery attack works with the claimed complexity.

6 Conclusion

In this article, we presented the very first generic universal forgery attack against
hash-based MACs, and we reduced the gap between the HMAC security proof and the



best known attack for this crucial security property. We leave as an open problem
if better attacks can be found to further reduce this gap. Our cryptanalysis
method is new and uses the information leaked by the distance of a node from
the cycle (its height) in the functional graph of the compression function with
a fixed message block. We believe other graph properties, even more complex,
might be exploitable and could perhaps further improve the generic complexity
of universal forgery attacks against hash-based MACs.
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