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Abstract. Our main result gives a way to instantiate the random ora-
cle with a concrete hash function in “full domain hash” applications.
The term full domain hash was first proposed by Bellare and Rog-
away [BR93,BR96] and referred to a signature scheme from any trapdoor
permutation that was part of their seminal work introducing the random
oracle heuristic. Over time the term full domain hash has (informally)
encompassed a broader range of notable cryptographic schemes includ-
ing the Boneh-Franklin [BF01] IBE scheme and Boneh-Lynn-Shacham
(BLS) [BLS01] signatures. All of the above described schemes required
a hash function that had to be modeled as a random oracle to prove
security. Our work utilizes recent advances in indistinguishability obfus-
cation to construct specific hash functions for use in these schemes. We
then prove security of the original cryptosystems when instantiated with
our specific hash function.
Of particular interest, our work evades the impossibility results of Dodis,
Oliveira, and Pietrzak [DOP05], who showed that there can be no black-
box construction of hash functions that allow Full-Domain Hash Signa-
tures to be based on trapdoor permutations, and its extension by Dodis,
Haitner, and Tentes [DHT12] to the RSA Full-Domain Hash Signatures.
This indicates our techniques applying indistinguishability obfuscation
may be useful for circumventing other black-box impossibility proofs.
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1 Introduction

Since Bellare and Rogaway [BR93] introduced the Random Oracle Model, a ma-
jor effort in cryptography has been to understand when and if random oracles can
be instantiated with families of actual hash functions while maintaining security.
Over the years, we have seen real progress in this effort: Firstly we have seen the
discovery of alternative schemes that do not require random oracles but achieve
the same security properties as earlier schemes that do require random oracles.
For example, Cramer and Shoup [CS98] achieved efficient chosen ciphertext se-
curity from DDH hard groups. As another example Canetti, Halevi, and Katz
[CHK07] achieved secure IBE without random oracles, following the seminal
work of [BF01] giving IBE in the Random Oracle Model. More recently, we have
seen the discovery of schemes that not only work in the standard model with-
out random oracles, but work in a manner very similar to the original schemes
that used random oracles (e.g. [HSW13,FHPS13] following schemes in the ran-
dom oracle model [BF01,BLS01]). However, all of these schemes proven secure
without random oracles required changing the underlying cryptographic scheme
in addition to instantiating the random oracle with a concrete hash function.
Thus, despite these advances, the following basic question has remained open:

Can we instantiate the random oracle with an actual family of hash functions
for existing cryptographic schemes in the random oracle model, such as Full

Domain Hash signatures?

In other words, can we achieve security without changing the underlying cryp-
tographic scheme at all, but only by replacing the random oracle with a specific
family of hash functions? In this work, we give the first positive answer to this
question. We do this by leveraging the notion of indistinguishability obfusca-
tion [BGI+01,BGI+12] that was recently achieved in the work of [GGH+13].

Our result is particularly interesting in light of negative results on the Ran-
dom Oracle Model [CGH98,GK03,BBP04] which have called into question the
secure applicability of the Random Oracle Model. Our work is the first to show
natural examples of schemes that were originally invented with the Random Or-
acle Model in mind, that nevertheless remain secure when the random oracle is
specifically instantiated.

In particular, our work evades the impossibility result of Dodis, Oliveira, and
Pietrzak [DOP05], who showed that there can be no black-box construction of
hash functions that allow Full-Domain Hash Signatures to be based on trapdoor
permutations. Because we make use of obfuscation, our constructions are inher-
ently non-black-box, and thus are not ruled out by this type of black-box impos-
sibility result. This indicates that our techniques applying indistinguishability
obfuscation may be useful in the future for circumventing other such black-box
impossibility proofs.

Our Result. Our main result gives a way to instantiate the random oracle with
a concrete hash function in “full domain hash” (FDH) signatures. The FDH



signature scheme was first proposed4 in the original Bellare-Rogaway [BR93]
paper as a way to build a signature scheme from any trapdoor permutation us-
ing the introduced random oracle heuristic. This work was very influential and
formed the foundation for part of the PKCS#1 standard [KS98]. While the ter-
minology of “full-domain hash” originally applied to the trapdoor permutation
signature scheme of Bellare and Rogaway, over time it has (informally) encom-
passed a broader range of notable cryptographic schemes including the Boneh-
Franklin [BF01] IBE scheme, the Cock’s IBE scheme [Coc01], and Boneh-Lynn-
Shacham (BLS) [BLS01] signatures. Although these schemes exist in different
algebraic domains and have different aims, they share common construction and
proof structures that uses random oracle programming in very similar ways.

Our work develops a methodology for replacing the programming of a ran-
dom oracle in these construction using indistinguishable obfuscation in a novel
manner. We begin by describing a scheme that replaces the RO hash function
in the original Bellare-Rogaway trapdoor permutation (TDP) signature scheme.
Our newly instantiated scheme is then proven to be selectively secure.

Let’s begin by informally recalling the Bellare-Rogaway TDP-based FDH
scheme. The signature setup algorithm generates a trapdoor permutation pair of
functions gPK, g

−1
SK. It chooses a hash function H(·) that maps from the message

space to the domain (and co-domain) of the permutation. The permutation gPK

and hash function are published as the verification key and the inverse g−1SK is
kept secret. To sign a message m, the signer computes g−1SK(H(m)). To verify a

signature σ on message m, the verifier simply checks whether gPK(σ)
?
= H(m).

The proof of the Bellare-Rogaway FDH system uses the random oracle heuris-
tic to model H(·) as a programmable random oracle. Suppose a poly-time at-
tacker makes at most QH oracle queries. One can create a reduction algorithm
to the security of the trapdoor permutation as follows. For all but one of the
(unique) queries of a message m to the oracle, the reduction algorithm chooses a
random value t from the domain and outputs gPK(t) as the result of the query.
For any of these messages, the reduction algorithm can easily generate a signa-
ture by outputting t. However, at one query point m∗ it programs the output of
the random oracle to be z∗ = gPK(t∗) where z∗ was given from the trapdoor per-
mutation challenger. If the attacker forges at this message, then the forgery will
be t∗ which is immediately the solution for the trapdoor permutation inversion.

Our first result is creating a replacement hash function for the oracle H(·)
and developing a security proof without relying on the random oracle heuristic.
To keep with our original goals, our only modifications will be to H(·) and
we will use the signature system construction as is, with no changes to the
underlying trapdoor permutation family. The two main tools we use to build
H(·) are an indistinguishability obfuscator [BGI+01,GGH+13] and a recently
introduced primitive called constrained PRFs [BW13,BGI14,KPTZ13]. In short,
a constrained PRF key is a secret key K that allows the evaluator to evaluate

4 The terminology “full-domain hash” was actually introduced by Bellare-Rogaway in
1996 [BR96]. They applied this label to the noted signature scheme of their earlier
work.



the a PRF at a limited set of points, while the rest will appear pseudorandom
to him. For our results, we only need a simple form of constrained PRFs called
“punctured PRFs” [SW13]. In this setting a private key will be associated with
a polynomial set S, where a key K(S) can evaluate the PRF F (K,x) at all x
except when x ∈ S. For our proofs we only ever need S to be a singleton set.

We now overview the hash function construction and how we prove it to be
selectively secure. (One could use the usual complexity leveraging arguments to
claim adaptive security, but we will address adaptive security in a direct way
shortly.) To create the hash function the reduction algorithm first chooses a
puncturable PRF key K (note this “master key” can evaluate the PRF at all
points). Next, the hash function itself will be an obfuscation of the program which
on input m computes gPK(F (K,m)). That is the program simply computes the
PRF at pointm and then applies the trapdoor permutation. We call this program
Full Domain Hash. To prove security we will apply the “punctured programs”
method of Sahai and Waters [SW13], where we surgically remove a key element
of a program, but in a way that does not alter input/output functionality.

Our security proof is formed from a sequence of hybrids. In the first hybrid,
we replace the obfuscation of the program Full Domain Hash with an obfuscation
of an equivalent program called Full Domain Hash*. This program operates the
same as the original except on input m∗, where m∗ is the message the attacker
selectively chose to attack (before seeing the verification key). At this point
instead of computing F (K,m∗) the program is simply hardwired to output a
constant z∗ to output where z∗ is set to be F (K,m∗). Since z∗ = F (K,m∗), the
input/output behavior is identical. In addition, the program is not given the full
PRF key K, but instead is given a punctured PRF key K({m∗}). By the security
of indistinguishable obfuscation the advantage of any poly-time attacker must be
negligibly close between these hybrids. In the next hybrid experiment we replace
z∗ with a random value chosen from the domain/range of the permutation. The
advantage between of this hybrid must also be close due to the constrained PRF
security. Now we are finally in a position where we can reduce to the security
of the trapdoor permutation. The reduction algorithm receives a TDP challenge
z∗ and hardcodes that in as the output of H(m∗). It can use a signature on
this to invert the challenge. At all other points it knows the punctured PRF key
and can therefore compute valid signatures without knowing the inverse of the
trapdoor permutation.

Our reduction actually shares some of the spirit of the original random oracle
reduction, where a challenge is programmed in at one point and signatures are
made by knowing the pre images at all others. A key aspect is that the obfusca-
tion hides the fact that at a certain hybrid m∗ is treated differently. If an attacker
were able to see inside the obfuscation it could actually see the preimages and
break the scheme. Another interesting aspect is that our proof does not leverage
the fact that the function gPK(·) is a permutation. It would go through equally
well if we only assumed that it was an injective trapdoor function.

In our construction and proof, there is a hash function created as part of
each public key. Taking things further, we might want to have one hash function



built as a common reference string that could serve as part of many public keys.
Creating similar results in this setting will require further work.

There is also a connection between the proof techniques we use and the proof
technique for the selectively secure signature scheme of Sahai and Waters [SW13].
In the Sahai-Waters work, the verification key is an obfuscated program that
evaluates the punctured PRF on a message and then outputs the evaluation of
a one-way function on that. A signer signs by evaluating the punctured PRF
on the message. In comparison, in our case, the hash function is the obfuscated
program that evaluates the punctured PRF on a message and then outputs the
evaluation of a trapdoor permutation on that. Here in contrast, the signing is
done by applying the inverse permutation and the signer isn’t necessarily “aware”
of the punctured PRF.

Overcoming the black-box impossibility We now see more precisely why our work
evades the impossibility result of Dodis, Oliveira, and Pietrzak [DOP05] and
Dodis, Haitner, and Tentes [DHT12]. Our hash function is obfuscation of code
that runs the underlying permutation. The obfuscation will intuitively hide the
evaluation of this code. In particular, no attacker can tell if the trapdoor per-
mutation was actually computed on an input or whether it was a special point
where the output was hardcoded in. In the DOP negative result, they build
an attack oracle that specifically leverages the black box access to the TDP to
watch whenever it is called. It is interesting to see this very strong correlation
between the negative result and how non-black box access to a primitive and
indistinguishability obfuscation can combine to circumvent it.

Getting Adaptive Security. For our next result we show how to get adaptive (or
standard) signature security without complexity leveraging for the case where
the trapdoor permutation is the RSA function. The use of RSA as a trapdoor
permutation candidate was suggested in Bellare-Rogaway’93 [BR93] and explic-
itly given in Bellare-Rogaway’96 [BR96]. The public parameters in their scheme
are an RSA modulus N = pq for hidden primes p, q and an RSA exponent e
chosen such that gcd(φ(N), e) = 1. The secret key is the integer d where d ·e = 1
mod φ(N). A signature on message m is of the form H(m)d mod N and one

verifies a signature σ by checking if H(m)
?
= σe mod N .

We develop a different set of techniques that can leverage the particular
structure of the RSA function. The first new ingredient is use of admissible hash
functions first introduced in the context of Identity-Based Encryption by Boneh-
Boyen [BB04a]. We use a simplification due to Freire et. al. [FHPS13]. At a high
level the system is a pair of a hash function h : {0, 1}`(λ) → {0, 1}n(λ) that hashes
from the message space to n bit strings and an efficient randomized algorithm
AdmSample. The sampling algorithm takes in the security parameter as well as
second parameter Q which intuitively corresponds to the number of signature
queries an attacker makes. It outputs a string u ∈ {0, 1,⊥}n. Informally, we
say that the system is admissible if the following conditions hold. Consider any
sequence of Q values x1, . . . , xQ and x∗ 6= xi. The event we consider is where the
string h(xi) has a bit in common with u in at least one position, but h(x∗) is



different from u at all positions. (Note, if uj = ⊥ then it is different at position
j from all bit strings.) If this event occurs with non-negligible probability, we
say it is an admissible system. Intuitively, when used in a proof of a signature
scheme, the admissible hash function is utilized to partition the message space
into messages that can be signed in the query phase and those that can be used
in the challenge phase. A sampled string u corresponds to a particular partition.
When running a reduction, one hopes that the actual signature oracle queries
and forgery message align with a partition, and the reduction aborts otherwise.

To build the hash function candidate, the setup first chooses a random v ∈ Z∗N
as well as exponents ai,b chosen randomly in [0, φ(N)], for all i ∈ [1, n], b ∈ {0, 1}.
Next, it builds the hash function as an obfuscation of the program RSA Hash.
The program will first compute m′ = h(m). Then, it computes and outputs

v
∏

i∈[n] ai,m′
i .

Our proof proceeds in a few hybrid steps. In the first hybrid experiment the
challenger creates a partition internally by calling AdmSample(1λ, Q) → u for
an attacker that makes at most Q = Q(λ) queries. The game aborts and declares
the attacker unsuccessful if any of the query messages or forgery message violates
the partition. The property of admissible hashes states any attacker with non-
negligible advantage in the real game will also have non-negligible advantage
here. In the next hybrid, we change the way we sample the exponents ai,b. One
first chooses random yi,b ∈ [1, N ]. Then for when ui = b we set ci,b = e · yi,b.
If ui 6= b we set ci,b = e · yi,b + 1. Note in the first case ci,b is a multiple of e
and in the second case e - ci,b. The values ai,b = ci,b mod φ(N). We show that
this way of choosing a values is statistically close to the previous uniform way,
because gcd(φ(N), e) = 1.

Next, we use an alternative program where we directly use the ci,b values
in place of the ai,b values. Since the group Z∗N is of order φ(N) we have that

v
∏

i∈[n] ai,m′
i = v

∏
i∈[n] ci,m′

i for all m′. Therefore the input/output behavior is the
same between the two programs and we can argue the advantage in the hybrids
for poly-time attackers must be close by indistinguishability obfuscation. This
is the critical hybrid experiment in that it most radically departs from previous
such proofs, by leveraging indistinguishability obfuscation. Observe that this
hybrid experiment eliminates the need for the reduction to know φ(N), which is
crucial to the reduction, since it uses ci,b values instead of ai,b values. However,
if the values ci,b were completely visible to an attacker, they would be trivially
distinguishable from the “true” uniform ai,b values. However, indistinguishability
obfuscation guarantees that these values are hidden from the attacker, and that
indeed the attacker cannot distinguish this hybrid from the previous one.

Finally, we show that any attacker that is successful in the last hybrid can
be used to break the RSA assumption. For any signature query message m that
respects the partition, the reduction will view H(m) as v raised to some integer
that is a multiple of e and taking the e-th root is then easy. Any forgery on
m∗ that respects the partition, the reduction will view H(m∗) as vz for some z
where gcd(e, z) = 1 and from this can derive v1/e.



BLS Signatures and More We extend our techniques to replacing the random or-
acle in the BLS [BLS01] signature scheme. In Section 5 we give a candidate that
has a selective proof of security based on the computational Diffie-Hellman prob-
lem (along with indistinguishability obfuscation). In the full version [HSW14],
we give an adaptive proof of security based on an assumption equivalent to the
n-Diffie-Hellman inversion assumption. The high level structures of these are
similar to the respective selective and adaptive construction and proof methods
above. The lower level mechanisms are adapted to the context of bilinear groups.
In Section 7, we sketch how the BLS ideas extend to the Boneh-Franklin IBE
scheme.

1.1 Other Related Work

Early work on replacing random oracles for the problem of obfuscating point
functions under entropy conditions began with the work of Canetti [Can97].

Recently, the work of Bellare, Hoang and Keelveedhi [BHK13] looked at a
complementary question of identifying a definitional abstraction to replace the
random oracle heuristic in several random oracle-based constructions. The ab-
straction is a notion of security called UCE (Universal Computational Extrac-
tor). The authors emphasize that a random oracle is known not to exist and
“behaves like a random oracle” is not a rigorously defined property, whereas
UCE is a well defined property of a hash function. They then show how several
previous constructions proven secure in the random schemes can be proven se-
cure if we assume the hash functions are UCE secure. One can then conjecture
that standard cryptographic hash functions like SHA-256 may satisfy the UCE
security notion. In contrast, our work is focused on providing new candidate
constructions for hash functions, that allow for a security proof to work with
the original constructions in the random oracle model. Interestingly, the work
of [BHK13] does not encompass the case of Full Domain Hash signatures, ar-
guably one of the most natural and well-studied constructions in the Random
Oracle Model, that we address here.

Dodis, Haitner, and Tentes [DHT12] show how to give an FDH signature
that is secure for at most q queries when the hash function grows with q.

2 Preliminaries

We define indistinguishability obfuscation, and variants of pseudo-random func-
tions (PRFs) that we will make use of. All the variants of PRFs that we consider
will be constructed from one-way functions.

2.1 Indistinguishability Obfuscation

The definition below is from [GGH+13]; there it is called a “family-indistinguishable
obfuscator”. They show that this notion follows immediately from their standard
definition of indistinguishability obfuscator using a non-uniform argument.



Definition 1 (Indistinguishability Obfuscator (iO)). A uniform PPT ma-
chine iO is called an indistinguishability obfuscator for a circuit class {Cλ} if
the following conditions are satisfied:

– For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have
that

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

– For any (not necessarily uniform) PPT adversaries Samp, D, there exists a
negligible function α such that the following holds: if Pr[∀x,C0(x) = C1(x) :
(C0, C1, τ)← Samp(1λ)] > 1− α(λ), then we have:

∣∣∣Pr
[
D(τ, iO(λ,C0)) = 1 : (C0, C1, τ)← Samp(1λ)

]
−Pr

[
D(τ, iO(λ,C1)) = 1 : (C0, C1, τ)← Samp(1λ)

]∣∣∣ ≤ α(λ)

In this paper, we will make use of such indistinguishability obfuscators for
all polynomial-size circuits:

Definition 2 (Indistinguishability Obfuscator for P/poly). A uniform PPT
machine iO is called an indistinguishability obfuscator for P/poly if the fol-
lowing holds: Let Cλ be the class of circuits of size at most λ. Then iO is an
indistinguishability obfuscator for the class {Cλ}.

Such indistinguishability obfuscators for all polynomial-size circuits were con-
structed under novel algebraic hardness assumptions in [GGH+13].

2.2 Constrained PRFs

We first consider some simple types of constrained PRFs [BW13,BGI14,KPTZ13],
where a PRF is only defined on a subset of the usual input space. We focus on
puncturable PRFs, which are PRFs that can be defined on all bit strings of a
certain length, except for any polynomial-size set of inputs:

Definition 3. A puncturable family of PRFs F mapping is given by a triple
of Turing Machines KeyF , PunctureF , and EvalF , and a pair of computable
functions n(·) and m(·), satisfying the following conditions:

– [Functionality preserved under puncturing] For every PPT adversary
A such that A(1λ) outputs a polynomial-size set S ⊆ {0, 1}n(λ), then for all
x ∈ {0, 1}n(λ) where x /∈ S, we have that:

Pr
[
EvalF (K,x) = EvalF (KS , x) : K ← KeyF (1λ),KS = PunctureF (K,S)

]
= 1

– [Pseudorandom at punctured points] For every PPT adversary (A1, A2)
such that A1(1λ) outputs a polynomial-size set S ⊆ {0, 1}n(λ) and state τ ,



consider an experiment where K ← KeyF (1λ) and KS = PunctureF (K,S).
Then we have∣∣∣Pr

[
A2(τ,KS , S,EvalF (K,S)) = 1

]
−Pr

[
A2(τ,KS , S, Um(λ)·|S|) = 1

]∣∣∣ = negl(λ)

where EvalF (K,S) denotes the concatenation of EvalF (K,x1)), . . . ,EvalF (K,xk))
where S = {x1, . . . , xk} is the enumeration of the elements of S in lexico-
graphic order, negl(·) is a negligible function, and U` denotes the uniform
distribution over ` bits.

For ease of notation, we write F (K,x) to represent EvalF (K,x). We also
represent the punctured key PunctureF (K,S) by K(S).

The GGM tree-based construction of PRFs [GGM84] from one-way functions
are easily seen to yield puncturable PRFs, as observed by [BW13,BGI14,KPTZ13].
Thus we have:

Theorem 1. [GGM84,BW13,BGI14,KPTZ13] If one-way functions exist, then
for all efficiently computable functions n(λ) and m(λ), there exists a puncturable
PRF family that maps n(λ) bits to m(λ) bits.

2.3 RSA Assumption and Shamir’s Lemma

We begin by recalling (one of the) standard versions of the RSA assumption [RSA78].

Assumption 1 (RSA) Let λ be the security parameter. Let positive integer N
be the product of two λ-bit, distinct odd primes p, q. Let e be a randomly chosen
positive integer less than and relatively prime to φ(N) = (p − 1)(q − 1). Given
(N, e) and a random y ∈ Z∗N , it is hard to compute x such that xe ≡ y mod N .

We also make use of the following lemma due to Shamir.

Lemma 1 (Shamir [Sha83]). Given x, y ∈ ZN together with a, b ∈ Z such
that xa = yb (mod N) and gcd(a, b) = 1, there is an efficient algorithm for
computing z ∈ ZN such that za = y (mod N).

2.4 Bilinear Groups and the CDH Assumption

Let G and GT be groups of prime order p. A bilinear map is an efficient mapping
e : G×G→ GT which is both: (bilinear) for all g ∈ G and a, b← Zp, e(ga, gb) =
e(g, g)ab; and (non-degenerate) if g generates G, then e(g, g) 6= 1.

Assumption 2 (Computational Diffie-Hellman) Let g generate a group G
of prime order p ∈ Θ(2λ). For all p.p.t. adversaries A, the following probability
is negligible in λ:

Pr[a, b← Zp; z ← A(g, ga, gb) : z = gab].



2.5 The n-Diffie-Hellman Inversion Assumption

Our full version [HSW14] contains a construction of adaptively secure BLS sig-
natures that makes use of the n-Diffie-Hellman Inversion assumption [BB04b].
This is a parameterized family of assumptions, where the number of group ele-
ments involved increases with n. (For our application, n will be dependent only
on the security parameter.)

Assumption 3 (n-Diffie-Hellman Inversion) Let h generate a group G of
prime order p ∈ Θ(2λ). For all p.p.t. adversaries A, the following probability is
negligible in λ:

Pr[b← Zp; z ← A(h, hb, hb
2

, . . . , hb
n

) : z = g1/b].

3 Full-Domain Hash Signatures (Selectively Secure)

In this section, we revisit the Bellare-Rogaway Full-Domain Hash (FDH) sig-
nature scheme [BR93,BR96], and show how to make it selectively secure in the
standard model by instantiating the random oracle in a specific way. We stress
that we do not modify the Bellare-Rogaway FDH signature scheme in any way;
the only new aspect of our construction is our instantiation of the random oracle
with a specific function whose description becomes part of the public key.

Recall that the Bellare-Rogaway FDH signature scheme required a trapdoor
permutation family. Our method, in fact, not only applies to trapdoor permu-
tation families, but indeed to any injective trapdoor function family. We prove
the selective security of the FDH signature scheme based on the security of the
indistinguishability obfusctor, the security of a puncturable PRF family, and the
security of an injective trapdoor function family.

For simplicity of exposition, we assume that there is a polynomial `(λ) which
denotes the length of messages to be signed; we denote this message space by
M = {0, 1}`(λ). More generally, a collision-resistant hash function may be used
to hash messages to this size.

- Setup(1λ) : The setup algorithm first runs TDFSetup(1λ) and that produces a
public index PK along with a trapdoor SK, yielding the map gPK : {0, 1}n →
{0, 1}w together with its inverse. Next, the setup algorithm chooses a punc-
turable PRF key K for F where F (K, ·) : {0, 1}`(λ) → {0, 1}n. Then, it
creates an obfuscation of the of the program Full Domain Hash Figure 1.
The size of the program is padded to be the maximum of itself and the pro-
gram Full Domain Hash* of Figure 2. We refer to the obfuscated program as
the function H : {0, 1}`(λ) → {0, 1}w, which acts as the random oracle type
hash function in the Bellare-Rogaway scheme.
The verification key VK consists of the trapdoor index PK as well as the
hash function H(·). The secret key is the trapdoor SK as well as H(·).

- Sign(SK,m ∈ M) : The signature algorithm outputs σ = g−1SK(H(m)) ∈
{0, 1}n.



Full Domain Hash

Constants: PRF key K, trapdoor function index PK.
Input: Message m.

1. Output gPK(F (K,m)).

Fig. 1. Full Domain Hash

Full Domain Hash*

Constants: Punctured PRF key K({m∗}), m∗ ∈ M, z∗ ∈ {0, 1}w,
trapdoor function index PK.
Input: Message m.

1. If m = m∗ output z∗ and exit.
2. Else output gPK(F (K,m)).

Fig. 2. Full Domain Hash*

- Verify(VK,m, σ) The verification algorithm tests if gPK(σ)
?
= H(m) and

outputs accept if and only if this holds.

Theorem 2. If our obfuscation scheme is indistingishuably secure, F is a secure
punctured PRF, and the injective trapdoor function is secure, then the above
signature scheme is selectively secure.

We describe a proof as a sequence of hybrid experiments where the first
hybrid corresponds to the original signature security game. We prove that a
poly-time attacker’s advantage must be negligibly close between each successive
one. Then, we show that any poly-time attacker in the final experiment that
succeeds in forging with non-negligible probability can be used to invert the
injective trapdoor function.

– Hyb0 : In the first hybrid the following game is played:
1. The attacker selectively gives the challenger the message m∗.
2. The TDF index is chosen by the challenger running TDFSetup(1λ).
3. K is chosen as a key for the puncturable PRF.
4. The hash function H(·) is created as an obfuscation of the program Full

Domain Hash.
5. The attacker queries the sign oracle a polynomial number of times on

messages m 6= m∗. It receives back g−1SK(H(m)) = F (K,m). (Note the
equality holds since the function gPK is injective.)

6. The attacker sends a forgery σ∗ and wins if Verify(VK,m∗, σ∗) = 1.
– Hyb1 : Is the same as Hyb0 except we let z∗ = gPK(F (K,m∗)) and let VK

be the obfuscation of the program Verify Signature* of Figure 2.
– Hyb2 : Is the same as Hyb1 except z∗ = gPK(t) for t chosen uniformly at

random in {0, 1}n.



The following three lemmas together yield our result in Theorem 2 that the
full domain hash signature scheme in Section 3 is selectively secure.

Lemma 2. If our obfuscation scheme is indistinguishability secure, then the
advantage of a poly-time attacker in Hyb0 is negligibly close to the advantage
in Hyb1.

Proof. We prove this lemma by giving a reduction to the indistinguishability
security of the obfuscator. To do so, we must build the two algorithms Samp
and D.

Samp(1λ) behaves as follows: It invokes the adversary to obtain m∗ and
the adversary’s state τ ′. It runs TDFSetup(1λ) to obtain PK and SK. It then
chooses K as a key for the puncturable PRF. It sets z∗ = gPK(F (K,m∗)). It sets
τ = (m∗,PK,SK,K, τ ′) and builds C1 as the program for Full Domain Hash,
and C2 as the program for Full Domain Hash*.

Before describing D, we observe that by construction and the functionality
preservation property of puncturable PRFs, the circuits C1 and C2 always be-
have identically on every input. Because of padding, both C1 and C2 have the
same size. Thus, Samp satisfies the conditions needed for invoking the indistin-
guishability property of the obfuscator.

Now, we can describe the algorithm D, which takes as input τ as given above,
and either the obfuscation of C1, which is the program Full Domain Hash, or
C2, which is the program Full Domain Hash*. D creates the verification key for
the signature scheme by combining PK with the obfuscated program as the hash
function description. It then invokes the adversary on this verification key, and
the adversary then makes requests for signatures on messages m 6= m∗. For each
such message, D constructs the signatures g−1SK(H(m)) = F (K,m), through its
knowledge of K within τ . Finally, the attacker sends a forgery σ∗ and wins if
Verify(m∗, σ∗) = 1. If the attacker wins, D outputs 1.

By construction, if D receives an obfuscation of C1, then the probability that
D outputs 1 is exactly the probability of the adversary winning in hybrid Hyb0.
On the other hand, if D receives an obfuscation of C2, then the probability that
D outputs 1 is the probability of the adversary winning in hybrid Hyb1.

The lemma follows.

Lemma 3. If our confined PRF is secure, then the advantage of a poly-time
attacker in Hyb1 is negligibly close to the advantage in Hyb2.

Proof. We prove this lemma by giving a reduction to the pseudorandomness
property at punctured points for punctured PRFs. To do so, we must build the
algorithms A1 and A2.

A1(1λ) simply invokes the adversary to obtain the challenge message m∗ and
state τ ′, and outputs the singleton set S = {m∗} and τ = (1λ, τ ′).

A2 obtains as input τ , the punctured key KS , the singleton set S = {m∗},
and either a value t∗ = F (K,m∗) or a uniformly random value t∗. Then, A2

invokes TDFSetup(1λ) to obtain PK and SK. Now given t∗, it can compute
z∗ = gPK(t∗). Note that this yields either the z∗ value computed in hybrid Hyb1



or in hybrid Hyb2. Since it knows KS , now A2 can obfuscate the program Full
Domain Hash*, and then execute the adversary and answer its signature queries
using the punctured key KS . Finally, A2 outputs 1 if the adversary succeeds.

By construction, the pseudorandomness property for punctured PRFs implies
the lemma.

Lemma 4. If our injective trapdoor function is hard to invert, then the advan-
tage of a poly-time attacker in Hyb2 is negligible.

Proof. We prove this lemma by giving a reduction to the one-wayness of the
injective trapdoor function. To do so, we build an inverting algorithm Inv.

Inv takes as input a public index PK for an injective trapdoor function, and
a target z∗ = gPK(t∗) for some (as yet unknown) random value t∗. The algorithm
Inv then invokes the adversary to obtain m∗, and chooses a PRF key K and
builds the punctured key K(S) where S = {m∗}. It uses this key, together with
PK and z∗, to obfuscate the program Full Domain Hash*. It can then execute
the adversary, and use its knowledge of K(S) to answer all adversary signing
queries. The adversary then terminates with an attempted forgery σ∗ on message
m∗. By the definition of the program Full Domain Hash*, this forgery can only
be valid if gPK(σ∗) = z∗, and because gPK is injective, this can only happen
if σ∗ = t∗. Thus if the adversary is successful, Inv can output σ∗ as a valid
pre-image of z∗.

We observe that by construction of Inv, the probability of success of Inv is
exactly the probability that the attacker succeeds in hybrid Hyb2. The lemma
follows.

4 Adaptively Secure RSA Full Domain Hash Signatures

We first overview what advantage indistinguishability obfuscation gives us in this
situation: In several previous constructions of adaptively secure schemes in the
plain model starting with the adaptively secure IBE scheme of [BB04a], a special
hash function was chosen that allowed for a “partitioning” proof of security. In
essence, for this to work, the hash function should have two “modes”:

– In the “normal” mode, the hash function’s parameters are typically just
chosen at random, and it behaves like an ordinary hash function.

– In the “partitioning” mode, the hash function parameters are chosen accord-
ing to a special distribution. This special distribution allows for the efficient
computation of the inverse of the hash value for a large fraction of points,
but it has the property that computing the inverse of the hash value at any
other point is computationally hard.

It is crucial that the input/output functionality of the hash function should
be identical in the two modes, and we will also use this property. However, in
previous proofs (like [BB04a]), it was also critical that the hash function pa-
rameters in “partitioning” mode be information theoretically indistinguishable



from the parameters in “normal” mode, and thus the partition should be hid-
den from the adversary even when given the hash function parameters. This
restriction significantly limited the applicability of this technique, as it could
only be applied with algebraic structures that allowed for such “pseudorandom”
hash parameters. Thanks to indistinguishability obfuscation, however, we can
avoid this restriction by obfuscating the hash function description. Thus, even
if the natural hash function parameters in “partitioning” mode clearly reveal
the partition and thus are distinguishable from normal parameters, because the
resulting hash function is functionally identical to a hash function in “normal”
mode, the obfuscated hash function must hide the partition, and this allows the
proof of adaptive security to go through.

In describing our signature scheme, For simplicity of exposition, we assume
that there is a polynomial `(λ) which denotes the length of messages to be signed;
we denote this message space by M = {0, 1}`(λ). More generally, a collision-
resistant hash function may be used to hash messages to this size. Below, for
any polynomial in λ, after the first mention of this polynomial, we will often
suppress the dependence on λ for ease of notation. Thus, below often we will
simply refer to the size of messages to be signed by `.

Before describing our construction, we first recall a (simplified) description
of the notion of admissible hash functions due to [BB04a]. Our definition is a
slight variation of the simplified definition due to [FHPS13].

Definition 4. Let `, n and θ be efficiently computable univariate polynomials.
We say that an efficiently computable function h : {0, 1}`(λ) → {0, 1}n(λ), and
an efficient randomized algorithm AdmSample, is θ-admissible if the following
condition holds:

For any u ∈ ({0, 1}∪{⊥})n, define Pu : {0, 1}` → {0, 1} as follows: Pu(x) = 0
iff ∀i : h(x)i 6= ui, and otherwise (if ∃i : h(x)i = ui) we have Pu(x) = 1.

Then we require that for any efficiently computable polynomial Q(λ), for all
x1, . . . , xQ, z ∈ {0, 1}`, where z /∈ {xi}, we have that

Pr
[
Pu(x1) = Pu(x2) = · · · = Pu(xQ) = 1 ∧ Pu(z) = 0

]
≥ 1/θ(Q)

where the probability is taken only over u← AdmSample(1λ, Q).

Theorem 3 (Admissible Function Families [BB04a], see also [FHPS13]
for a simple proof). For any efficiently computable polynomials `, n, there
exists an efficiently computable polynomial θ such that there exist θ−admissible
function families mapping ` bits to n bits.

We leverage the structure of the RSA trapdoor permutation to prove adaptive
security. The use of RSA as a candidate for a trapdoor permutation was first dis-
cussed in the original Bellare-Rogaway [BR93] paper, however, it was in [BR96]
that Bellare and Rogaway gave an explicit full domain hash RSA construction.
This construction formed the basis for part of the standard PKCS#1 [KS98].

- Setup(1λ) : The setup algorithm first runs an RSA type setup. It chooses
random primes p, q of λ bits each. We define N = p · q and φ(N) = (p −



1)(q−1). We let e be a random chosen integer between 1 and φ(N) such that
gcd(φ(N), e) = 1. Next, it chooses integers (a1,0, a1,1), . . . , (an,0, an,1) each
uniformly at random from the range [1, φ(N)− 1]. In addition, it chooses a
group element v ∈ Z∗N . It then creates an obfuscation of the of the program
RSA Hash of Figure 3. The size of the program is padded to be the maximum
of itself and the program RSA Hash* of Figure 4. We refer to the obfuscated
program as the function H(·). This function H(·) will replace the random
oracle in the RSA FDH scheme, but no other part of the scheme is modified.
The verification key VK is the integers N, e and the hash function H :
{0, 1}`(λ) → Z∗N . The secret key is the integer d where e · d ≡ 1 mod φ(N).

- Sign(SK,m ∈M) : The signature algorithm outputs σ = H(M)d mod N .
- Verify(VK,m, σ) The verification algorithm tests if σe ≡ H(m) mod N and

outputs accept if and only if this holds.

RSA Hash

Constants: RSA modulus N , integers (a1,0, a1,1), . . . , (an,0, an,1)
each in [1, φ(N)− 1], and v ∈ Z∗N .
Input: Message m.

1. Compute m′ = h(m).
2. Compute the integer π(m′) =

∏
i∈[n] ai,m′

i
.

3. Output vπ(m
′) (mod N).

Fig. 3. RSA Hash

RSA Hash*

Constants: RSA modulus N , integers (c1,0, c1,1), . . . , (cn,0, cn,1) each
chosen as in Hyb2, and v ∈ Z∗N .
Input: Message m.

1. Compute m′ = h(m).
2. Compute the integer π(m′) =

∏
i∈[n] ci,m′

i
.

3. Output vπ(m
′) (mod N).

Fig. 4. RSA Hash*

Remark 1. For simplicity of exposition we describe computing the programs
output by first computing a integer π(m′) as a product of n integers and then
raising v to this mod N . In practice, it might be more efficient to incrementally
raise an accumulated value to each ai,m′

i
.



Theorem 4. If our obfuscation scheme is indistingishuably secure and the RSA
assumption holds, the above signature scheme is existentially unforgeable against
chosen message attacks.

In the full version [HSW14], we describe a proof as a sequence of hybrid ex-
periments where the first hybrid corresponds to the original signature security
game. In the first hybrid step we do a “partitioning” of the message space. Con-
sider a poly-time attacker that makes Q = Q(λ) signature queries m1, . . . ,mQ

and attempts to forge on message m∗ 6= mi for all i. Roughly, at the beginning
of Hyb1 the challenger will now (behind the scenes) partition the message space
such that a large fraction of messages will fall into a “query” space and a much
smaller, but still non-negligible fraction of messages will fall into the “challenge”
space. Furthermore, in this new game the attacker is only considered to have won
if he both forged a signature and all his signature queries m1, . . . ,mn fall into
the query space and m∗ falls into the challenge space. We can show that if an at-
tacker succeeds in the original security game (that does not have these additional
restrictions on winning) with non-negligible advantage, then if will succeed in
Hyb1 with non-negligible advantage. Our system uses the Boneh-Boyen [BB04a]
admissible hash function defined above, where if an attacker has advantage ε
in Hyb0, he will have advantage ε/θ(Q) in Hyb1. After the first proof step we
prove that a poly-time attacker’s advantage must be negligibly close between
each successive hybrid experiment. We finally show that any poly-time attacker
in the final experiment that succeeds with non-negligible probability can be used
to break the RSA assumption.

5 Selectively Secure BLS Signatures

We now give a concrete construction for the hash function modeled as a random
oracle in the Boneh-Lynn-Shacham (BLS) signature scheme. BLS signatures fall
into a broad interpretation (see e.g., [Boy08]) of the full domain hash paradigm
of Bellare and Rogaway. Below we give the BLS signature scheme with a con-
crete hash function built from an indistinguishability obfuscator. We prove the
signature scheme selectively secure based on the computational Diffie-Hellman
problem in bilinear groups and a indistinguishability obfuscator.

On a technical level this selective proof of security follows a very similar
structure to that of our selectively secure scheme from trapdoor functions from
Section 3. The main difference is that here we deal with the mechanics of an
algebraic bilinear group instead of a trapdoor function. We present the scheme
for simplicity in terms of a symmetric bilinear group, however, moving to asym-
metric groups is straightforward. As in Section 3, we assume that there is a
polynomial `(λ) which denotes the length of messages to be signed; we denote
this message space by M = {0, 1}`(λ). More generally, a collision-resistant hash
function may be used to hash messages to this size.

- Setup(1λ) : The setup algorithm first runs the group generator on input 1λ to
produce a description of groups G,GT of prime order p along with generator



g ∈ G. These groups are related by a bilinear map e : G × G → GT . Next,
it chooses a random exponent a ∈ Zp. Then, the setup algorithm chooses a
puncturable PRF key K for F where F (K, ·) : {0, 1}`(λ) → Zp. Finally, it
creates an obfuscation of the program BLS Selective Hash of Figure 5. The
size of the program is padded to be the maximum of itself and the program
BLS Selective Hash* of Figure 6. We refer to the obfuscated program as
the function H : {0, 1}` → G, which acts as the random oracle type hash
function in the BLS scheme.

The verification key VK consists of the group descriptions G,GT , the order
p, the generator g and A = ga as well as the hash function H(·). The secret
key is a ∈ Zp as well as H(·).

- Sign(SK,m ∈M) : The signature algorithm outputs σ = H(M)a ∈ G.

- Verify(VK,m, σ) The verification algorithm tests if e(σ, g)
?
= e(A,H(m)) and

outputs accept if and only if this holds.

BLS Selective Hash

Constants: PRF key K, group generator g ∈ G.
Input: Message m.

1. Output gF (K,m).

Fig. 5. BLS Selective Hash

BLS Selective Hash*

Constants: Punctured PRF key K({m∗}), m∗ ∈ M, z∗ ∈ G and
group generator g ∈ G.
Input: Message m.

1. If m = m∗ output z∗ and exit.
2. Output gF (K,m).

Fig. 6. BLS Selective Hash*

Remark 2. The confined PRFs from [BW13] use the GGM tree and get PRFs
in range {0, 1}n for some n, whereas our PRFs need to hash to Zp. One can
achieve a punctured PRF for the proper range by simply setting n > 2 lg(p) and
taking interpreting the GGM output as an integer that is then mod by p. This
is sufficient since sampling an integer in [0, 2n − 1] and then reducing it mod p
is statistically close to choosing an integer in [0, p− 1].



Theorem 5. If our obfuscation scheme is indistingishability secure, F is a se-
cure punctured PRF, and the computational Diffie-Hellman problem holds in
bilinear groups, then the above signature scheme is selectively secure.

In the full version [HSW14], we describe a proof as a sequence of hybrid
experiments where the first hybrid corresponds to the original signature security
game. We prove that a poly-time attacker’s advantage must be negligibly close
between each successive one. Then, we show that any poly-time attacker in the
final experiment that succeeds in forging with non-negligible probability can be
used to break the computational Diffie-Hellman assumption in bilinear groups.

6 Adaptively Secure BLS Signatures

In the full version [HSW14], we give a hash function for BLS signatures that can
be used to prove adaptive (or standard) security. Our construction is identical
to that given in Section 5 with the exception of how the setup creates the hash
function. Our proof structure will follow in a similar path to that of our adap-
tively secure RSA full domain hash signatures in Section 4. In particular, we
will again apply an admissible hash function to partition the message space in
our proof. At the same time, there are important distinctions and corresponding
challenges that arise in this setting as discussed in [HSW14]. Our proof of secu-
rity relies on indistinguishability obfuscation and the Diffie-Hellman Inversion
Assumption.

7 Extensions to Boneh-Franklin IBE and Aggregate
Signatures

Boneh-Franklin IBE We can adapt our techniques for proving security of BLS
signatures to the Boneh-Franklin [BF01] Identity-Based Encryption system. BLS
signatures directly correspond to IBE private keys in the BF scheme. The proof
for the BF adapts with a few minor changes:

– For proving BF selectively secure we can use the Decisional Bilinear Diffie-
Hellman assumption.

– The second random oracle in the BF IBE can be replaced with an extractor.
– For proving adaptive security we use the following assumption. Namely that

given g, gs, ga, ga
2

, . . . , ga
n

it is hard to distinguish e(g, g)a
n+1s from a ran-

dom group element in GT . We note this assumption is weaker than the
decision Bilinear Diffie-Hellman Exponent assumption [BGW05].

BGLS Aggregate Signatures Boneh, Gentry, Lynn and Shacham [BGLS03] showed
that the BLS signatures are aggregateable by reduction to the BDH assumption.
Later Bellare, Namprempre and Neven [BNN07] showed how an aggregate sig-
nature scheme could built directly from and reduced to the security of BLS sig-
natures. Using their results we immediately get an aggregate signature scheme.
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