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Abstra
t. Timed-release en
ryption is a kind of en
ryption s
heme that a

re
ipient 
an de
rypt only after a spe
i�ed amount of time T (assuming that

we have a moderately pre
ise estimate of his 
omputing power). A revo
able

timed-release en
ryption is one where, before the time T is over, the sender


an �give ba
k� the timed-release en
ryption, provably loosing all a

ess to the

data. We show that revo
able timed-release en
ryption without trusted parties

is possible using quantum 
ryptography (while trivially impossible 
lassi
ally).

Along the way, we develop two proof te
hniques in the quantum random ora
le

model that we believe may have appli
ations also for other proto
ols.

Finally, we also develop another new primitive, unknown re
ipient en
ryption,

whi
h allows us to send a message to an unknown/unspe
i�ed re
ipient over an

inse
ure network in su
h a way that at most one re
ipient will get the message.

1 Introdu
tion

We present and 
onstru
t revo
able timed-release en
ryption s
hemes (based on

quantum 
ryptography). To explain what revo
able timed-release en
ryption is,

we �rst re
all the notion of timed-release en
ryption (also known as a time-lo
k

puzzle); we only 
onsider the setting without trusted parties in this paper. A

timed-release en
ryption (TRE) for time T is an algorithm that takes a message

m and �en
rypts� it in su
h a way that the message 
annot be de
rypted in time

T but 
an be de
rypted in time T ′ > T . (Here T ′
should be as 
lose as possible

to T , preferably o� by only an additive o�set.)

The 
ru
ial point here is that the re
ipient 
an open the en
ryption without

any intera
tion with the sender. (E.g., [21℄ publishes a se
ret message that is

supposed not to be openable before 2034.) Example use 
ases 
ould be: mes-

sages for posterity [22℄; data that should be provided to a re
ipient at a given

time, even if the sender goes o�ine; A sells some information to B that should

be revealed only later, but B wants to be sure that A 
annot withdraw this

information any more;
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ex
hange of se
rets where none of the parties should be

able to abort depending on the data re
eived by the other; fair 
ontra
t signing

[6℄; ele
troni
 au
tions [6℄; mortgage payments [22℄; 
on
urrent zero-knowledge

proto
ols [6℄; et
.

Physi
ally, one 
an imagine TRE as follows: The message m is put in a

strongbox with a timer that opens automati
ally after time T ′
. The re
ipient


annot get the message in time T be
ause the strongbox will not be open by

then.
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In this 
ase, zero-knowledge proofs 
ould be used to show that the TRE indeed


ontains the right plaintext.



It turns out, however, that a physi
al TRE is more powerful than a digital

one. Consider the following example setting: Person P goes to a meeting with

a 
riminal organization. As a safe guard, he leaves 
ompromising information

m with his friend F , to be released if P does not resurfa
e after one day. (Wik-

iLeaks/Assange seems to have done something similar [19℄.) As P assumes F to

be 
urious, P puts m in a physi
al TRE, to be opened only after one day. If P
returns before the day is over, P asks the TRE ba
k. If F hands the TRE over

to P , P will be sure that F did not and will not read m. (Of 
ourse, F may

refuse to hand ba
k the TRE, but F 
annot get m without P noti
ing.)

This works �ne with physi
al TRE, but as soon as P uses a digital TRE, F

an 
heat. F just 
opies the TRE before handing it ba
k and 
ontinues de
rypt-

ing. After one day, F will have m, without P noti
ing.

So physi
al TREs are �revo
able�. The re
ipient 
an give ba
k the en
ryption

before the time T has passed. And the sender 
an 
he
k that this revo
ation was

performed honestly. In the latter 
ase, the sender will be sure that the re
ipient

does not learn anything. Obviously, a digital TRE 
an never have that property,

be
ause it 
an be 
opied before revo
ation.

However, if we use quantum information in our TRE, things are di�erent.

Quantum information 
annot, in general, be 
opied. So it is 
on
eivable that a

quantum TRE is revo
able.

1.1 Example appli
ations

We sket
h a few more possible appli
ations of revo
able TREs. Some of them are

far beyond the rea
h of 
urrent te
hnology (be
ause they need reliable storage

of quantum states for a long time). In some 
ases, however, TREs with very

short time T are used, this might be within the rea
h of 
urrent te
hnology.

The appli
ations are not worked out in detail (some are just �rst ideas), and

we do not 
laim that they are ne
essarily the best options in their respe
tive

setting, but they illustrate that revo
able TREs 
ould be a versatile tool worth

investigating further.

Deposits. A 
lient has to provide a deposit for some servi
e (e.g., 
ar rental).

The dealer should be able to 
ash in the deposit if the 
lient does not return.

Solution: The 
lient produ
es a T -revo
able TRE 
ontaining a signed transa
tion

that empowers the dealer to withdraw the deposit. When the 
lient returns the


ar within time T , the 
lient 
an make sure the dealer did not keep the deposit.
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One 
hallenge: The 
lient needs to 
onvin
e the dealer that the TRE indeed 
ontains

a signature on a transa
tion. I.e., we need a way to prove that a TRE V 
ontains a

given value (and the running time of this proof should not depend on T ). At least for

our 
onstru
tions (see below), this 
ould be a
hieved as follows: The 
lient produ
es

a 
ommitment c on the 
ontent of the 
lassi
al inner TRE V0 and proves that c


ontains the right 
ontent (using a SNARK [4℄ so that the veri�
ation time does not

depend on T ). Then 
lient and dealer perform a quantum two-party 
omputation

[12℄ with inputs c, V , and opening information for c, and with dealer outputs V and

b where b is a bit indi
ating whether the message in V satis�es P .



Su
h deposits might also be part of a 
ryptographi
 proto
ol where deposits

are revoked or redeemed automati
ally depending on whether a party is 
aught


heating (to produ
e an in
entive against 
heating). In this 
ase, the time T
might well be in the range of se
onds or minutes, whi
h 
ould be within the

rea
h of near future quantum memory [15℄.

Data retention with veri�able deletion. Various 
ountries have laws re-

quiring the retention of tele
ommuni
ation data, but mandate the deletion of

the data after a 
ertain period (e.g., [14℄). Using revo
able TREs, 
lients 
ould

provide their data within revo
able TREs (together with a proof of 
orre
tness,


f. footnote 2). At the end of the pres
ribed period, the TRE is revoked, unless

it is needed for law-enfor
ement. This way, the 
lients 
an verify that their data

is indeed erased from the storage.

Unknown re
ipient en
ryption. An extension of revo
able TREs is �unknown

re
ipient en
ryption� (URE) whi
h allows a sender to en
rypt a message m in

su
h a way that any re
ipient but at most one re
ipient 
an de
rypt it. That is,

the sender 
an send a message to an unknown re
ipient, and that re
ipient 
an,

after de
rypting, be sure that only he got the message, even if the 
iphertext

was transferred over an inse
ure 
hannel. Think, e.g., of a 
lient 
onne
ting to

a server in an anonymous fashion, e.g., through (a quantum variant of) TOR

[11℄, and re
eiving some data m. Sin
e the 
onne
tion is anonymous and the


lient has thus no 
redentials to authenti
ate with the server, we 
annot avoid

that the data gets �stolen� by someone else. However, with unknown re
ipient

en
ryption, it is possible to make sure that the 
lient will dete
t if someone else

got his data. This appli
ation shows that revo
able TREs 
an be the basis for

other unexpe
ted 
ryptographi
 primitives. Again, the time T may be small in

some appli
ations, thus in the rea
h of the near future. We stress that URE is

non-intera
tive, so this works even if no bidire
tional 
ommuni
ation is possible.

It 
ould be used for a 
ryptographi
 dead letter box where a �spy� deposits

se
ret information, and the re
ipient 
an verify that no-one found it. Unknown

re
ipient en
ryption is formalized in the full version [27℄.

A variant of this is �one-shot� quantum key distribution: Only a single mes-

sage is sent from Ali
e to Bob, and as long as Bob re
eives that message within

time T , he 
an be sure no-one else got the key. (This is easily implemented by

en
rypting the key with a URE.)

1.2 Our 
ontribution

De�nitions. We give formal de�nitions of TREs and revo
able TREs (Se
-

tion 2). These de�nitions 
ome in two �avors: T -hiding (no information is leaked

before time T ) and T -one-way (before time T , the plaintext 
annot be guessed


ompletely).)

One-way revo
able TREs. Then we 
onstru
t one-way revo
able TREs (Se
-

tion 3). Although one-wayness is too weak a property for almost all purposes, the


onstru
tion and its proof are useful as a warm-up for the hiding 
onstru
tion,



and also useful on their own for the random ora
le based 
onstru
tions (see be-

low). The 
onstru
tion itself is very simple: To en
rypt a message m, a quantum

state |Ψ〉 is 
onstru
ted that en
odes m in a random BB84 basis B.
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Then B is

en
rypted in a (non-revo
able) T -hiding TRE V0. The resulting TRE (|Ψ〉, V0)
is sent to the re
ipient. Revo
ation is straightforward: the re
ipient sends |Ψ〉
ba
k to the sender, who 
he
ks that |Ψ〉 still en
odes m in basis B. Intuitively,

|Ψ〉 
annot be reliably 
opied without knowledge of basis B, hen
e before time T
the re
ipient 
annot 
opy |Ψ〉 and thus looses a

ess to |Ψ〉 and thus to m upon

revo
ation.

The proof of this fa
t is not as easy as one might think at the �rst glan
e (�use

the fa
t that B is unknown before time T , and then use that a state |Ψ〉 
annot
be 
loned without knowledge of the basis�) be
ause information-theoreti
al and


omplexity-theoreti
 reasoning need to be mixed 
arefully.

The resulting s
heme even enjoys everlasting se
urity (
f., e.g., [17,10,1,7,20℄):

after su

essful revo
ation, the adversary 
annot break the TRE even given

unlimited 
omputation.

We hope that the ideas in the proof bene�t not only the 
onstru
tion of

revo
able TREs, but might also be useful in other 
ontexts where it is ne
es-

sary to prove un
loneability of quantum-data based on 
ryptographi
 and not

information-theoreti
al se
re
y (quantum-money perhaps?).

Revo
ably hiding TREs. The next step is to 
onstru
t revo
ably hiding TREs

(Se
tion 4). The 
onstru
tion des
ribed before is not hiding, be
ause if the ad-

versary guesses a few bits of B 
orre
tly, he will learn some bits of m while still

passing revo
ation. A natural idea would be to use priva
y ampli�
ation: the

sender pi
ks a universal hash fun
tion F and in
ludes it in the TRE V0. The

a
tual plaintext is XORed with F (m) and transmitted. Surprisingly, we 
annot

prove this 
onstru
tion se
ure, see the beginning of Se
tion 4 for a dis
ussion.

Instead, we prove a 
onstru
tion that is based on CSS 
odes. The resulting

s
heme uses the same te
hnologi
al assumptions as the one-way revo
able one:

sending and measuring of individual qubits, quantum memory. Unfortunately,

the redu
tion in this 
ase is not very e�
ient; as a 
onsequen
e the underlying

non-revo
able TRE needs to be exponentially hard, at least if we want to en-


rypt messages of superlogarithmi
 length. Noti
e that the random ora
le based

solutions des
ribed below do not have this drawba
k.

Like the previous s
heme, this s
heme enjoys everlasting se
urity.

Random ora
le transformations. We develop two transformations of TREs

in the quantum random ora
le model. The �rst transformation takes a revo
ably

one-way TRE and transforms it into a revo
ably hiding one (by sendingm⊕H(k)
and putting k into the revo
ably one-way TRE; Se
tion 5.1). This gives a simpler

and more e�
ient alternative to the 
omplex 
onstru
tion for revo
ably hiding

TREs des
ribed above, though at the 
ost of using the random-ora
le model

and loosing everlasting se
urity. The se
ond transformation allows us to assume
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I.e., ea
h bit of m is randomly en
oded either in the 
omputational or the diagonal

basis.



without loss of generality that the adversary performs no ora
le queries before

re
eiving the TRE, simplifying other se
urity proof (Se
tion 5.2).

For both transformations we prove general lemmas that allow us to use anal-

ogous transformations also on s
hemes unrelated to TREs (e.g., to make an

en
ryption s
heme semanti
ally se
ure). We believe these to be of independent

interest, be
ause the quantum random ora
le model is notoriously di�
ult to

use, and many existing 
lassi
al 
onstru
tions are not known to work in the

quantum 
ase.

Classi
al TREs. Unfortunately, only very few 
onstru
tions of 
lassi
al TRE

are known. Rivest, Shamir, and Wagner [22℄ present a 
onstru
tion based on

RSA; it is obviously not se
ure in the quantum setting [23℄. Other 
onstru
tions

are iterated hashing (to send m, we send H(H(H(. . . (r) . . . )))⊕m) and preim-

age sear
h (to de
rypt, one needs to invert H(k) where k ∈ {1, . . . , T}); with
suitable ampli�
ation this be
omes a TRE [26℄). Preimage sear
h is not a good

TRE be
ause it breaks down if the adversary 
an 
ompute in parallel. This leaves

iterated hashing.
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We prove that (a slight variation of) iterated hashing is hiding

even against quantum adversaries and thus suitable for plugging into our 
on-

stru
tions of revo
able TREs (Se
tion 5.3). (Note, however, that the hardness of

iterated hashing 
ould also be used as a very reasonable assumption on its own.

The random ora
le model is thus not stri
tly ne
essary here, it just provides

additional justi�
ation for that assumption.)

We leave it as an open problem to identify more pra
ti
al 
andidates for

iterated hashing, perhaps following the ideas of [22℄ but not based on RSA or

other quantum-easy problems.

For spa
e reasons, details and full proofs are deferred to the full version [27℄

of this paper.

1.3 Preliminaries

For the ne
essary ba
kground in quantum 
omputing, see, e.g., [18℄.

Let ω(x) denote the Hamming weight of x. By [q + n]q we denote the set of

all size-q subsets of {1, . . . , q + n}. I.e., S ∈ [q + n]q i� S ⊆ {1, . . . , q + n} and
|S| = q. By ⊕ we mean bitwise XOR (or equivalently, addition in GF(2)n). Given
a linear 
ode C, let C⊥

be the dual 
ode (C⊥ := {x : ∀y ∈ C. x, y orthogonal}).
Let X,Y, Z denote the Pauli operators. Let |βij〉 denote the four Bell states,

namely |β00〉 := 1√
2
|00〉+ 1√

2
|11〉 and |βfe〉 = (ZfXe⊗I)|β00〉 = (I⊗XeZf )|β00〉.

In slight abuse of notation, we 
all |β00〉 an EPR pair (originally, [13℄ used

|β11〉). And a state 
onsisting of EPR pairs we 
all an EPR state. H denotes

4

Iterated hashing has the downside that produ
ing the TRE takes as long as de
rypt-

ing it. However, this long 
omputation 
an be moved into a pre
omputation phase

that is independent of the message m, making this TRE suitable at least for some

appli
ations. [16℄ present a sophisti
ated variant of iterated hashing that 
ir
umvents

this problem; their 
onstru
tion, however, does not allow the sender to predi
t the

re
ipient's output and is thus not suitable for sending a message into the future.



the Hadamard gate, and In the identity on C2n
(short I if n is 
lear from the


ontext). Let |m〉B denote m ∈ {0, 1}n en
oded in basis B ∈ {0, 1}n, where 0
stands for the 
omputational and 1 for the diagonal basis.

Given an operator A and a bitstring x ∈ {0, 1}n, we write Ax
for Ax1 ⊗· · ·⊗

Axn
. E.g., Xx|y〉 = |x⊕ y〉, and HB |x〉 = |x〉B .
Given f, e ∈ {0, 1}n, we write |f̃ e〉 for |βf1e1〉 ⊗ · · · ⊗ |βfnen〉, ex
ept for the

order of qubits: the �rst qubits of all EPR pairs, followed by the last qubits of

all EPR pairs. In other words, |0̃n0n〉 = ∑
x∈{0,1}n |w〉|w〉 and |f̃ e〉 = (ZfXe ⊗

I)|0̃n0n〉.
Let ‖·‖ be the Eu
lidean norm (i.e., ‖|Ψ〉‖2 = |〈Ψ |Ψ〉|) and let · denote the


orresponding operator norm (i.e., A: = supx 6=0‖Ax‖/‖x‖).
By TD(ρ1, ρ2) we denote the tra
e distan
e between density operators ρ1, ρ2.

We write short TD(|Ψ1〉, |Ψ2〉) for TD(|Ψ1〉〈Ψ1|, |Ψ2〉〈Ψ2|).
Whenever we speak about algorithms, we mean quantum algorithms. (In

parti
ular, adversaries are always assumed to be quantum.)

2 De�ning revo
able TREs

A timed-release en
ryption (TRE) 
onsists of: An en
ryption algorithm TRE(m)
that returns a (possibly quantum) 
iphertext V 
ontaining m. A de
ryption algo-

rithm that 
omputes m from V (without using any key). Possibly: a revo
ation

algorithm in whi
h the re
ipient gives ba
k V to the sender and the sender

performs some 
he
k on V . We have two basi
 se
urity properties for TREs:

T -hiding means that within time T , an adversary 
annot learn anything about

m, and T -one-way means that within time T , an adversary 
annot guess m.

(These basi
 se
urity properties do not refer to the revo
ation algorithm.) For

formal de�nitions of these basi
 properties, and a dis
ussion on timing-models

and de�nitions in related work, see the full version [27℄.

We now de�ne the revo
able hiding property. A TRE is revo
ably T -hiding
if an adversary 
annot both su

essfully pass the revo
ation proto
ol within

time T and learn something about the message m 
ontained in the TRE.

When formalizing this, we have to be 
areful. A de�nition like: �
onditioned

on revo
ation su

eeding, p0 := Pr[adversary outputs 1 given TRE(m0)] and
p1 := Pr[adversary outputs 1 given TRE(m1)] are 
lose (|p0 − p1| is negligi-

ble)� does not work: if Pr[revo
ation su

eeds] is very small, |p0 − p1| 
an be-


ome large even if the adversary rarely su

eeds in distinguishing. (Consider,

e.g., an adversary that intentionally fails revo
ation ex
ept in the very rare


ase that he guesses an en
ryption key that allows to de
rypt the TRE im-

mediately.) Also, a de�nition like �|p0 − p1| · Pr[revo
ation su

eeds]� is prob-

lemati
: Does Pr[revo
ation su

eeds] refer to an exe
ution with TRE(m0)
or TRE(m1)?. Instead, we will require � |p0 − p1| is negligible with pi :=
Pr[adversary outputs 1 and revo
ation su

eeds given TRE(mi)]�. This de�ni-

tion avoids the 
ompli
ations of a 
onditional probability and additionally

implies as side e�e
t that also Pr[revo
ation su

eeds given TRE(m0)] and

Pr[revo
ation su

eeds given TRE(m1)] are 
lose.



De�nition 1 (Revo
ably hiding timed-release en
ryption). Given a re-

vo
able timed-release en
ryption TRE with message spa
e M , and an adversary

(A0, A1, A2) (that is assumed to be able to keep state between a
tivations of

A0, A1, A2) 
onsider the following game G(b) for b ∈ {0, 1}:
� (m0,m1)← A0().
� V ← TRE(mb).
� Run the revo
ation proto
ol of TRE, where the sender is honest, and the

re
ipient is A1(V ). Let ok be the output of the sender (i.e., ok = 1 if the

sender a

epts).

� b′ ← A2().
A timed-release en
ryption TRE with message spa
e M is T -revo
ably hiding,

if for any adversary (A0, A1, A2) where A1 is sequential-polynomial-time and T -
time and A0, A2 are sequential-polynomial-time,

∣

∣Pr[b′ = 1 ∧ ok = 1 : G(0)] −

Pr[b′ = 1 ∧ ok = 1 : G(1)]
∣

∣

is negligible.

Note that although revo
ably hiding seems to be a stronger property than

hiding, we are not aware of any proof that a T -revo
ably hiding TRE is also T -
hiding. (It might be that it is possible to extra
t the message m in time≪ T , but
only at the 
ost of making a later revo
ation impossible. This would 
ontradi
t

T -hiding but not T -revo
ably hiding.) Therefore we always need to show that

our revo
able TREs are both T -hiding and T -revo
ably hiding.

Again, we de�ne the weaker property of revo
able one-wayness whi
h only

requires the adversary to guess the message m. We need this weaker property for

intermediate 
onstru
tions. Like for hiding, we stress that revo
able one-wayness

does not seem to imply one-wayness.

De�nition 2 (Revo
ably one-way TRE). Given a revo
able timed-release

en
ryption TRE with message spa
e M , and an adversary (A0, A1, A2) (that is

assumed to be able to keep state between a
tivations of A0, A1, A2) 
onsider the

following game G:

� Run A0().

� Pi
k m
$

←M , run V ← TRE(m).
� Run the revo
ation proto
ol of TRE, where the sender is honest, and the

re
ipient is A1(V ). Let ok be the output of the sender (i.e., ok = 1 if the

sender a

epts).

� m′ ← A2().
A timed-release en
ryption TRE with message spa
e M is T -revo
ably one-way,

if for any quantum adversary (A0, A1, A2) where A1 is sequential-polynomial-

time and T -time and A0, A2 are sequential-polynomial-time, we have that Pr[m =
m′ ∧ ok = 1 : G] is negligible.

3 Constru
ting revo
ably one-way TREs

In this se
tion, we present our 
onstru
tion RTREow for revo
ably one-way

TREs. Although one-wayness is too weak a property, this serves as a warm-



up for our 
onsiderably more involved revo
ably hiding TREs (Se
tion 4), and

also as a building blo
k in our random-ora
le based 
onstru
tion (Se
tion 5.1).

The following proto
ol is like we sket
hed in the introdu
tion, ex
ept that

we added a one-time pad p. That one-time pad has no e�e
t on the revo
able

one-wayness, but we introdu
e be
ause it makes the proto
ol (non-revo
ably)

hiding at little extra 
ost.

De�nition 3 (Revo
ably one-way TRE RTREow).

� Let n be an integer.

� Let TRE0 be a T -hiding TRE with message spa
e {0, 1}2n.
We 
onstru
t a revo
able TRE RTREow with message spa
e {0, 1}n.
En
ryption of m ∈ {0, 1}n:
� Pi
k p,B

$← {0, 1}n.
� Constru
t the state |Ψ〉 := |m⊕ p〉B. (Re
all that |x〉B is x en
oded in basis

B, see page 6.)

� Compute V0 ← TRE0(B, p).
� Send V0 and |Ψ〉.

De
ryption:

� De
rypt V0.

� Measure |Ψ〉 in basis B; 
all the out
ome γ.
� Return m := γ ⊕ p.

Revo
ation:

� The re
ipient sends |Ψ〉 ba
k to the sender.

� The sender measures |Ψ〉 in basis B; 
all the out
ome γ.
� If γ = m⊕ p, revo
ation su

eeds (sender outputs 1).

Naive proof approa
h. (In the following dis
ussions, for 
larity we omit all

o

urren
es of the one-time pad p.) At a �rst glan
e, it seems the se
urity of this

proto
ol should be straightforward to prove: We know that without knowledge

of the basis B, one 
annot 
lone the state |Ψ〉, not even approximately.
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We also

know that until time T , the adversary does not know anything about B (sin
e

TRE0 is T -hiding). Hen
e the adversary 
annot reliably 
lone |Ψ〉 before time T .
But the adversary would need to do so to pass revo
ation and still keep a state

that allows him to measure m later (when he learns B).

Unfortunately, this argument is not sound. It would be 
orre
t if TRE0 were

implemented using a trusted third party (i.e., if B is sent to the adversary after

time T ).6 However, the adversary has a

ess to V0 = TRE0(B) when trying

to 
lone |Ψ〉. From the information-theoreti
al point of view, this is the same

as having a

ess to B. Thus the no-
loning theorem and its variants 
annot be

applied be
ause they rely on the fa
t that B is information-theoreti
ally hidden.

5

This fa
t also underlies the se
urity of BB84-style QKD proto
ols [3℄.

6

Again, this is impli
it in proofs for BB84-style QKD proto
ols: there the adversary

gets a state |Ψ〉 = |m〉B from Ali
e (key m en
oded in a se
ret base B), whi
h he

has to give ba
k to Bob un
hanged (be
ause otherwise Ali
e and Bob will dete
t

tampering). And he wishes to, at the same time, keep information to later be able

to 
ompute the key m when given B.



One might want to save the argument in the following way: Although V0 =
TRE0(B) information-theoreti
ally 
ontains B, it is indistinguishable from V̂0 =
TRE0(B̂) whi
h does not 
ontain B but an independently 
hosen B̂. And if the

adversary is given V̂0 instead of V0, we 
an use information-theoreti
al arguments

to show that he 
annot learn m. But although this argument would work if

TRE0 were hiding against polynomial-time adversaries (e.g., if TRE0 were a


ommitment s
heme). But TRE0 is only hiding for T -time adversaries! This

only guarantees that all observable events that happen with V0 before time T
also happen with V̂0 before time T and vi
e versa. In parti
ular, sin
e with V̂0, the

adversary 
annot learn m before time T , he 
annot learn m before time T with

V0. But although with V̂0, after su

essful revo
ation, the adversary provably


annot ever learn m, it might be possible that with V0, he 
an learn m right

after time T has passed.

Indeed, it is not obvious how to ex
lude that there is some �en
rypted-
loning�

pro
edure that, given |Ψ〉 = |m〉B and TRE0(B), without disturbing |Ψ〉, pro-
du
es a state |Ψ ′〉 that for a T -time distinguisher looks like a random state, but

still |Ψ ′〉 
an be transformed into |Ψ〉 in time ≫ T . Su
h an �en
rypted-
loning�

would be su�
ient for breaking RTREow . (Of 
ourse, it is a dire
t 
orollary from

our se
urity proof that su
h en
rypted-
loning is impossible.)

7

Proof idea. As we have seen in the pre
eding dis
ussion, we 
an prove that

the property �the adversary 
annot learn m ever� holds when sending V̂0 =
TRE0(B̂) for an independent B̂ instead of V0 = TRE0(B). But we 
annot prove
that this property 
arries over to the V0-setting be
ause it 
annot be tested in

time T . Examples for properties that do 
arry over would be �the adversary


annot learn m in time T � or �revo
ation su

eeds� or �when measured in basis

B, the adversary's revo
ation-message does not yield out
ome m�. But we would

like to have a property like �the entropy of m is large (or revo
ation fails)�. That

property 
annot be tested in time T , so it does not 
arry over. Yet, we 
an use

a tri
k to still guarantee that this property holds in the V0-setting.

For this, we �rst modify the proto
ol in an (information-theoreti
ally) indis-

tinguishable way: Normally, we would pi
k m at random and send |Ψ〉 := |m〉B

7

To illustrate that �en
rypted-
loning� is not a far fet
hed idea, 
onsider the follow-

ing quite similar revo
able TRE: Let EK(|Ψ〉) denote the quantum one-time pad

en
ryption of |Ψ〉 ∈ C2n
using key K ∈ {0, 1}2n, i.e., EK(|Ψ〉) = ZK1XK2 |Ψ〉 with

K = K1‖K2 [2℄. RTRE(m) := (EK(|m〉B), B,TRE0(K)). For revo
ation, the sender
sends EK(|m〉B) ba
k, and the re
ipient 
he
ks if it is the right state. Again, if K

is unknown, it is not possible to 
lone EK(|m〉B) as it is e�e
tively a random state

even given B. But we 
an break RTRE as follows:

The re
ipient measures |Φ〉 := EK(|m〉B) in basis B. Using XH = HZ and

ZH = HX, we have |Φ〉 = ZK1XK2HB |m〉 = HBXK1∗BZK1∗B̄ZK2∗BXK2∗B̄ |m〉 =
±|m⊕ (K2 ∗ B̄)⊕ (K1 ∗B)〉B where ∗ is the bit-wise produ
t and B̄ the 
omplement

of B. Thus the measurement of |Φ〉 in basis B does not disturb |Φ〉, and the re
ipient

learns m ⊕ (K1 ∗ B) ⊕ (K2 ∗ B̄). He 
an then send ba
k the undisturbed state |Φ〉
and pass revo
ation. After de
rypting TRE0(K), he 
an 
ompute m, and re
onstru
t

the state |Φ〉 = EK(|m〉B) using known K,m,B. Thus he performed an �en
rypted


loning� of |Φ〉 before de
rypting TRE0(K).



to the adversary. Instead, we initialize two n-bit quantum registers X,Y with

EPR pairs and send X to the adversary. The value m is 
omputed by mea-

suring Y in basis B. Now we 
an formulate a new property: �after revo
ation

but before measuring m, XY are still EPR pairs (up to some errors) or revo
a-

tion fails�. This property 
an be shown to hold in the V̂0-setting using standard

information-theoreti
al tools. And the property tested in time T , all we have

to do is a measurement in the Bell basis. Thus the property also holds in the

V0-setting. And �nally, due to the monogamy of entanglement ([9℄; but we need

a 
ustom variant of it) we have that this property implies �the entropy of m is

high (or revo
ation fails)�.

We have still to be 
areful in the details, of 
ourse. E.g., the revo
ation 
he
k

itself 
ontains a measurement in basis B whi
h would destroy the EPR state

XY ; this 
an be �xed by only measuring whether the revo
ation 
he
k would

su

eeds, without a
tually measuring m.

Theorem 1 (RTREow is revo
ably one-way). Let δowT be the time to 
ompute

the following things: a measurement whether two n-qubit registers are equal in a

given basis B, a measurement whether two n-qubit registers are in an EPR state

up to t :=
√
n phase �ips and t bit �ips, and one NOT- and one AND-gate.

Assume that the proto
ol parameter n is superlogarithmi
.

The proto
ol RTREow from De�nition 3 is (T−δowT )-revo
ably one-way, even

if adversary A2 is unlimited (i.e., after revo
ation, se
urity holds information-

theoreti
ally).

A 
on
rete se
urity bound is derived in the full version [27℄.

Sin
e revo
able one-wayness does not imply (non-revo
able) one-wayness, we

additionally show the hiding property of RTREow . Due to the presen
e of the

one-time pad p, the proof is unsurprising.

4 Revo
ably hiding TREs

We now turn to the problem of 
onstru
ting revo
ably hiding TREs. The 
on-

stru
tion from the previous se
tion is revo
ably one-way, but it is 
ertainly not

revo
ably hiding be
ause the adversary might be lu
ky enough to guess a few

bits of the basis B, measure the 
orresponding bits of the message m without

modifying the state, and su

essfully pass revo
ation. So some bits of m will

ne
essarily leak. The most natural approa
h for dealing with partial leakage (at

least in the 
ase of QKD) is to use priva
y ampli�
ation. That is, we pi
k a

fun
tion F from a suitable family of fun
tions (say, universal hash fun
tions

with suitable parameters), and then to send m, we en
rypt a random x using

the revo
ably one-way TRE, and additionally transmit F (x) ⊕m. If x has suf-

�
iently high min-entropy, F (x) will look random, and thus F (x) ⊕m will not

leak anything about m. Additionally, we need to transmit F to the re
ipient, in a

way that the adversary does not have a

ess to it when measuring the quantum

state. Thus, we have to in
lude F in the 
lassi
al TRE. So, altogether, we would

send (m ⊕ F (x),TRE0(B, f)) and |m〉B . In fa
t, this s
heme might be se
ure,



we do not have an atta
k. Yet, when it 
omes to proving its se
urity, we fa
e

di�
ulties: In the proof of RTREow , to use the hiding property of TRE0, we

identi�ed a property that 
an be 
he
ked in time T , and that guarantees that m

annot be guessed. (Namely, we used that the registers XY 
ontain EPR pairs

up to some errors whi
h implies that the adversary 
annot predi
t the out
ome

m of measuring Y .) In the present 
ase, we would need more. We need a prop-

erty P that guarantees that F (x) is indistinguishable from random given the

adversary's state when x is the out
ome of measuring Y . Note that here it is not

su�
ient to just use that x has high min-entropy and that F is a strong random-

ness extra
tor; at the point when we test the property P , F is already �xed and

thus not random. Instead, we have to �nd a measurable property P ′
that guar-

antees: For the parti
ular value F 
hosen in the game, F (x) is indistinguishable
from randomness. (And additionally, we need that P ′

holds with overwhelming

probability when TRE0(B, f) is repla
ed by a fake TRE not 
ontaining B, f .)
We were not able to identify su
h a property.

8

Using CSS 
odes. This dis
ussion shows that, when we try to use priva
y

ampli�
ation, we en
ounter the 
hallenge how to transmit the hash fun
tion F .
Yet, in the 
ontext of QKD, there is a se
ond approa
h for ensuring that the

�nal key does not leak any information: Instead of �rst ex
hanging a raw key

and then applying priva
y ampli�
ation to it, Shor and Preskill [24℄ present a

proto
ol where Ali
e and Bob �rst 
reate shared EPR pairs with a low number

of errors. In our language: Ali
e and Bob share a superposition of states |f̃ e〉

with ω(f), ω(e) ≤ t. Then they use the fa
t that, roughly speaking, |0̃n0n〉 is an

en
oding of |0̃ℓ0ℓ〉 for some ℓ < n using a random CSS 
ode 
orre
ting t bit/phase
error. (Calderbank-Shor-Steane 
odes [8,25℄.) So if Ali
e and Bob apply error


orre
tion and de
oding to |f̃ e〉, they get the state |0̃ℓ0ℓ〉. Then, if Ali
e and Bob

measure that state, they get identi
al and uniformly distributed keys, and the

adversary has no information. Furthermore, the resulting proto
ol 
an be seen

to be equivalent to one that does not need quantum 
odes (and thus quantum

8

To illustrate the di�
ulty of identifying su
h a property: Call a fun
tion F s-good

if F (x) is uniformly random if all bits xi with si = 0 are uniformly random (and

independent). In other words, F tolerates leakage of the bits with si = 1. For suitable
families of fun
tions F , and for s with low Hamming weight, a random F will be

s-good with high probability. Furthermore, when using a fake TRE0, XY is in state

|f̃ e〉 with s := (f ∨ e) of low Hamming weight with overwhelming probability after

su

essful revo
ation (this we showed in the se
urity proof for RTREow ). In this 
ase,

all bits of Y with si = 0 will be �untampered� and we expe
t that F (x) is uniformly

random for s-good F (when x is the out
ome of measuring Y ). So we are tempted

to 
hoose P ′
as: �XY is in a superposition of states |f̃ e〉 su
h that the 
hosen F is

(f ∨ e)-good�. This property holds with overwhelming property using a fake TRE0.

But unfortunately, this fails to guarantee that f(x) is random. E.g., if F (ab) = a⊕ b,

then F is 10-good and 01-good. Thus a superposition of |1̃0 00〉 and |0̃1 00〉 satis�es

property P ′
for that F . But

1√
2
|1̃0 00〉 + 1√

2
|0̃1 00〉 = 1√

2
|0000〉 − 1√

2
|1111〉, so x ∈

{00, 11} with probability 1 and thus F (x) = 0 always. So P ′
fails to guarantee that

F (x) is random.




omputers) but only transmits and measures individual qubits (BB84-style). It

turns out that we 
an apply the same basi
 idea to revo
ably hiding TREs.

For understanding the following proof sket
h, it is not ne
essary to under-

stand details of CSS 
odes. It is only important to know that for any CSS 
ode C,

there is a family of disjoint 
odes Cu,v su
h that

⋃
u,v Cu,v forms an orthonormal

basis of C{0,1}n

.

Consider the following proto
ol (simpli�ed):

De�nition 4 (Simpli�ed proto
ol RTRE′
hid). Let C be a CSS 
ode on {0, 1}n

that en
odes plaintexts from a set {0, 1}m and that 
orre
ts t phase and bit �ips.

Let q be a parameter.

� En
ryption: Create q + n EPR pairs in registers X,Y . Pi
k a set Q =
{i1, . . . , iq} ∈ [q + n]q of qubit pair indi
es and a basis B ∈ {0, 1}q, and

designate the qubit pairs in XY sele
ted by Q as �test bits� in basis B. (The

remaining pairs in XY will be 
onsidered as an en
oding of EPR pairs using

C.) Send X together with the des
ription of C and a hiding TRE TRE0(Q)
to the re
ipient.

The plaintext 
ontained in the TRE is x where x results from: Consider the

bits of Y that are not in Q as a 
odeword from one of the 
odes Cu,v. Measure

what u, v are (this is possible sin
e the Cu,v are orthogonal). De
ode the 
ode

word. Measure the result in the 
omputational basis.

� De
ryption: De
rypt TRE0(Q). Considering the bits of X that are not in

Q as a 
odeword from Cu,v and de
ode and measure as in the en
ryption.

� Revo
ation: Send ba
k X. The sender measures the bit pairs from XY

sele
ted by Q using bases B, yielding r, r′. If r = r′, revo
ation su

eeds.

Note that this simpli�ed proto
ol is a �randomized� TRE whi
h does not

allow us to en
rypt an arbitrary message, but instead 
hooses the message x.

The obvious approa
h to transform it to a normal TRE for en
rypting a given

message m is to send m⊕ x in addition to the TRE. This is indeed what we do,

but there are some di�
ulties that we dis
uss below.

Entanglement-free proto
ol. The proto
ol RTRE′
hid

requires Ali
e to prepare

EPR pairs and apply the de
oding operation of CSS 
odes. While our proto
ol

may not be feasible with 
urrent te
hnology anyway due to the required quantum

memory, we wish to redu
e the te
hnologi
al requirements as mu
h as possible.

Fortunately, CSS 
odes have the ni
e property that de
oding with subsequent

measurement in the 
omputational basis is equivalent to a sequen
e of individual

qubit measurements. Using these properties, we 
an rewrite Ali
e so that she

only sends and measures individual qubits in BB84 bases, and Bob stores and

measures individual qubits in BB84 bases (i.e., like in RTREow ). See the �nal

proto
ol des
ription (De�nition 5) below for details. In the full proof, this 
hange

means that we have to add further games in front of the sequen
e of games to

rewrite the entanglement-free operations into EPR-pair based ones.

Early key revelation. One big problem remains: the se
urity de�nition used

for proving se
urity of De�nition 4 gives mb⊕x to A2, and not to A1 as a natural

de�nition of randomized TREs would do. (We 
all this late key revelation) The



e�e
t of this is that RTRE′
hid is only se
ure if the plaintext x is not used before

time T . This limitation, of 
ourse, 
ontradi
ts the purpose of TREs and needs to

be removed. We need early key revelation where the adversary A1 is given mb⊕x.
As our proof needs the fa
t that x is pi
ked only after A1 runs, our solution is

to redu
e se
urity with early key revelation to se
urity with late key revelation.

This is done by guessing what x will be when invoking A1. If that guess turns out

in
orre
t in the end, we abort the game. Unfortunately, this redu
tion multiplies

the advantage of the adversary by a fa
tor of 2|x| = 2ℓ; the e�e
t is that our �nal
proto
ol will need an underlying s
heme TRE0 with se
urity exponential in ℓ.

We 
an now present the pre
ise proto
ol and its se
urity:

De�nition 5 (The proto
ol).

� Let C1, C2 be a CSS 
ode with parameters n, k1, k2, t. (n is the bit length of

the 
odes, k1, k2 refer to the parameters of the 
odes C1, C2, and t to the

number of 
orre
ted errors.)

� Let q be an integer.

� Let TRE0 be a TRE with message spa
e {0, 1}q × [q + n]q ×C1/C2. (Re
all,

[q + n]q refers to q-size subsets of {1, . . . , q + n}, see page 5. C1/C2 denotes

the quotient of 
odes.)

We 
onstru
t a revo
able TRE RTREhid with message spa
e C1/C2 (isomorphi


to {0, 1}ℓ with ℓ := k1 − k2).

We en
rypt a message m ∈ C1/C2 as follows:

� Pi
k uniformly B ∈ {0, 1}q, Q ∈ [q + n]q, p ∈ C1/C2. u ∈ {0, 1}n/C1,

r ∈ {0, 1}q, x ∈ C1/C2, w ∈ C2.

� Constru
t the state |Ψ〉 := U †
Q(H

B⊗ In)(|r〉⊗ |x⊕w⊕u〉). Here UQ denotes

the unitary that permutes the qubits in Q into the �rst half of the system.

(I.e., UQ|x1 . . . xq+n〉 = |xa1
. . . xaq

xb1 . . . xbn〉 with Q =: {a1, . . . , aq} and

{1, . . . , q + n} \ Q =: {b1, . . . , bn}; the relative order of the ai and of the bi
does not matter.)

9

� Compute V0 ← TRE0(B,Q, r, p).
� The TRE 
onsists of (V0, u,m⊕ x⊕ p) and |Ψ〉.
De
ryption is performed as follows:

� De
rypt V0, this gives B,Q, r, p.
� Apply UQ to |Ψ〉 and measure the last n qubits in the 
omputational basis;


all the out
ome γ.10

� Return m := (γ ⊕ u) mod C2.

The revo
ation proto
ol is the following:

� The re
ipient sends |Ψ〉 ba
k to the sender.

9

Noti
e that, sin
e U
†
Q is just a reordering of qubits, and HB

is a sequen
e of

Hadamards applied to a known basis state, the state |Ψ〉 
an also dire
tly be pro-

du
ed by en
oding individual qubits in the 
omputational or diagonal basis, whi
h

is te
hnologi
ally simpler.

10

Sin
e UQ is just a reordering of qubits, this just 
orresponds to measuring a subset

of the qubits in the 
omputational basis.



� The sender applies (HB ⊗ In)UQ to |Ψ〉 and measures the �rst q qubits, 
all

the out
ome r′.11

� If r = r′, revo
ation su

eeds (sender outputs 1).

Noti
e that in this proto
ol (and in 
ontrast to the simpli�ed des
ription

above), we have in
luded B, r in the TRE V0, even though they are not needed

by the re
ipient. In fa
t, the proto
ol would still work (and be se
ure with almost

unmodi�ed proof) if we did not in
lude these values. However, when 
onstru
ting

unknown re
ipient en
ryption, the in
lusion of B, r will turn out to be useful.

Theorem 2 (RTREhid is revo
ably hiding). Let δhidT be the time to 
om-

pute the following things: q 
ontrolled Hadamard gates, applying an already


omputed permutation to n + q qubits, a q-qubit measurement in the 
ompu-

tational basis (
alled MR in the proof), a 
omparison of two q-qubit strings, the
error-
orre
tion/de
oding operations UEC

uv , Udec
uv of the CSS 
ode, a measurement

whether two n-qubit registers are in the state

∑
x∈C1/C2

|x〉|x〉 (
alled PEPR

C1/C2
in

the proof), one AND-gate, and one NOT-gate.

Assume that TRE0 is T -hiding with (2−2(k1−k2) · negligible)-se
urity.12 As-

sume that tq/(q + n)− 4(k1 − k2) ln 2 is superlogarithmi
.

Then the TRE from De�nition 5 is (T − δhidT )-revo
ably hiding even if A2 is

unlimited (i.e., after revo
ation, se
urity holds information-theoreti
ally).

A 
on
rete se
urity bound is derived in the full version [27℄.

Those parameters 
an always be instantiated [27℄, leading to a revo
able

TRE for logarithmi
 length messages, and a TRE for arbitrary length messages

if TRE0 has exponential se
urity. Furthermore, RTREhid is also T -hiding.

5 TREs in the random ora
le model

We present 
onstru
tions and transformations of TREs in the random ora
le

model. (We use the quantum random ora
le that 
an be a

essed in superposi-

tion, 
f. [5℄.)

The results in this se
tion will be formulated with respe
t to two di�erent

timing models. In the sequential ora
le-query timing model, one ora
le query

is one time step. I.e., if we say an adversary runs in time T , this means he

performs at most T random ora
le queries. In the parallel ora
le-query timing

model, an arbitrary number of parallel ora
le-queries 
an be performed in one

time step. However, in time T , at most T ora
le queries that depend on ea
h

other may be performed.

13

More formally, if the ora
le is H, the adversary 
an

query H(x1), . . . , H(xq) for arbitrarily large q and arbitrary x1, . . . , xn in ea
h

11

Sin
e UQ is just a reordering of the qubits, this is equivalent to measuring a subset

of the qubits in the bases spe
i�ed by B.

12

I.e., in De�nition 1, we require that the advantage is not only negligible, but a
tually

≤ 2−2(k1−k2)µ for some negligible µ.
13

In [16℄, this is 
alled �T levels of adaptivity�.



time step. (Of 
ourse, if the adversary is additionally sequential-polynomial-time,

then q will be polynomially bounded.)

Se
urity in those timing models implies se
urity in timing models that 
ount

a
tual (sequential/parallel) 
omputation steps be
ause in ea
h step, at most one

ora
le 
all 
an be made.

5.1 One-way to hiding

In the previous se
tion, we have seen how to 
onstru
t revo
ably hiding TREs.

However, the 
onstru
tion was relatively 
omplex and 
ame with an exponential

se
urity loss in the redu
tion. As an alternative, we present a transformation

takes a TRE that is (revo
ably) one-way and transforms it into one that is

(revo
ably) hiding in the random ora
le model. The basi
 idea is straightforward:

we en
rypt a key k in a one-way TRE, and useH(k) as a one-time-pad to en
rypt

the message:

Theorem 3 (Hiding TREs). Let H be a random ora
le and let TRE be a

(revo
able or non-revo
able) TRE (not using H).

Then the TRE TRE′
en
rypts m as follows: Run k

$← {0, 1}n, V ′ ← TRE(k),
and then return V := (V ′,m⊕H(k)). (De
ryption is analogous, and revo
ation

is un
hanged from TRE.)
Then, if TRE is T -oneway and T -revo
ably one-way then TRE′

is T -revo
ably
hiding. And if TRE is T -oneway then TRE′

is T -hiding. (The same holds �with-

out o�ine-queries�; see Se
tion 5.2 below.)

This holds both for the parallel and the sequential ora
le-query timing

model.

14

Noti
e that we assume that TRE does not a

ess H. Otherwise simple 
oun-

terexamples 
an be 
onstru
ted. (E.g., TRE(k) 
ould in
lude H(k) in the TRE

V ′
.) However, TRE may a

ess another random ora
le, say G, and TRE′

then

uses both G and H.

In a 
lassi
al setting, this theorem would be straightforward to prove (us-

ing lazy sampling of the random ora
le). Yet, in the quantum setting, we need

a new te
hnique for dealing with this. We present a generi
 lemma for redu
-

ing hiding-style properties (semanti
 se
urity) to a one-wayness-style properties

(unpredi
tability) from whi
h we 
an derive Theorem 3.

5.2 Pre
omputation

We will now develop a se
ond transformation for TREs in the random ora
le

model. The se
urity de�nition for TREs permit the adversary to run an arbi-

trary (sequential-polynomial-time) 
omputation before re
eiving the TRE. In

parti
ular, we do not have a good upper bound on the number of ora
le queries

performed in this pre
omputation phase (�o�ine queries�). This 
an make proofs

harder be
ause even if the adversary runs in time T , this does not allow us to


on
lude that only T ora
le queries will be performed. Our transformation will



allow us to transform a TRE that is only se
ure when the adversary makes no

o�ine queries (su
h as the one presented in Se
tion 5.3 below) into a TRE that

is se
ure without this restri
tion.

We 
all a TRE T -hiding without o�ine-queries if the hiding property holds

for adversaries were A0 makes no random ora
le queries. Analogously we de�ne

T -revo
ably hiding without o�ine-queries and T -one-way without o�ine-queries.

To transform a TRE that is se
ure without o�ine-queries into a fully se
ure

one, the idea is to make sure that the o�ine-queries are useless for the adversary.

We do this by using only a part H(a‖·) of the random ora
le where a is 
hosen

randomly with the TRE. Intuitively, sin
e during the o�ine-phase, the adversary

does not know a, none of his o�ine-queries will be of the form H(a‖·), thus they
are useless.

Theorem 4 (TREs with o�ine-queries). Let G and H be random ora
les

and ℓ superlogarithmi
. Let TRE be a revo
able TRE using G. Let TRE′
be the

result of repla
ing in TRE all ora
le queries G(x) by queries H(a‖x), where a
is 
hosen by the en
ryption algorithm of TRE′

and is in
luded in the message

send to the re
ipient.

If TRE is T -revo
ably hiding without o�ine-queries then TRE′
is T -revo
ably

hiding (and analogously for T -hiding). This holds both for the parallel and the

sequential ora
le-query timing model.
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To prove this, we develop a general lemma for this kind of transformations.

(In the 
lassi
al setting this is simple using the lazy sampling proof te
hnique,

but that is not available in the quantum setting.)

5.3 Iterated hashing

In all 
onstru
tions so far we assumed that we already have a (non-revo
able)

TRE. In the 
lassi
al setting, only two 
onstru
tions of TREs are known. The

one from [22℄ 
an be broken by fa
toring, this leaves only repeated hashing as a


andidate for the quantum setting. We prove that the following 
onstru
tion to

be one-way without o�ine queries:

De�nition 6 (Iterated hashing). Let n and T be polynomially-bounded in-

tegers (depending on the se
urity parameter), and assume that n is superloga-

rithmi
. Let H : {0, 1}n → {0, 1}n denote the random ora
le. The timed-release

en
ryption TREih with message spa
e {0, 1}n en
rypts m as V := HT+1(0n)⊕m.

We 
an prove that TREih is T -one-way without o�ine queries. TREih is obvi-

ously not one-way with o�ine queries, the adversary 
an pre
ompute HT+1(0n).
Yet, using the random-ora
le transformations from Theorems 3 and 4, we 
an

transform it into a hiding TRE. This is plugged into RTREow , to get a revo
a-

bly one-way TRE, and using Theorem 3 again, we get a revo
ably hiding TRE

14

For other timing models, the redu
tion des
ribed in the proof may in
ur a overhead,

leading to a smaller T for TRE
′
.



in the random ora
le model. (The resulting proto
ol is spelled out in the full

version [27℄.)

An alternative 
onstru
tion is to plug TREih (after transforming it using

Theorems 3 and 4) into RTREhid . This results in a more 
omplex yet everlast-

ingly se
ure s
heme.

And �nally, if we wish to avoid the random ora
le model altogether, we 
an

take as our basi
 assumption that a suitable variant of iterated hashing

15

is a

hiding TRE, and get a revo
ably hiding, everlastingly se
ure TRE by plugging

it into RTREhid .
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