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Abstract. Timed-release encryption is a kind of encryption scheme that a
recipient can decrypt only after a specified amount of time 7' (assuming that
we have a moderately precise estimate of his computing power). A revocable
timed-release encryption is one where, before the time T is over, the sender
can “give back” the timed-release encryption, provably loosing all access to the
data. We show that revocable timed-release encryption without trusted parties
is possible using quantum cryptography (while trivially impossible classically).
Along the way, we develop two proof techniques in the quantum random oracle
model that we believe may have applications also for other protocols.

Finally, we also develop another new primitive, unknown recipient encryption,
which allows us to send a message to an unknown/unspecified recipient over an
insecure network in such a way that at most one recipient will get the message.

1 Introduction

We present and construct revocable timed-release encryption schemes (based on
quantum cryptography). To explain what revocable timed-release encryption is,
we first recall the notion of timed-release encryption (also known as a time-lock
puzzle); we only consider the setting without trusted parties in this paper. A
timed-release encryption (TRE) for time T is an algorithm that takes a message
m and “encrypts” it in such a way that the message cannot be decrypted in time
T but can be decrypted in time 7" > T'. (Here T” should be as close as possible
to T, preferably off by only an additive offset.)

The crucial point here is that the recipient can open the encryption without
any interaction with the sender. (E.g., [2I] publishes a secret message that is
supposed not to be openable before 2034.) Example use cases could be: mes-
sages for posterity [22]; data that should be provided to a recipient at a given
time, even if the sender goes offline; A sells some information to B that should
be revealed only later, but B wants to be sure that A cannot withdraw this
information any more exchange of secrets where none of the parties should be
able to abort depending on the data received by the other; fair contract signing
[6]; electronic auctions [6]; mortgage payments [22]; concurrent zero-knowledge
protocols [6]; etc.

Physically, one can imagine TRE as follows: The message m is put in a
strongbox with a timer that opens automatically after time 7’. The recipient
cannot get the message in time T because the strongbox will not be open by
then.

! In this case, zero-knowledge proofs could be used to show that the TRE indeed
contains the right plaintext.



It turns out, however, that a physical TRE is more powerful than a digital
one. Consider the following example setting: Person P goes to a meeting with
a criminal organization. As a safe guard, he leaves compromising information
m with his friend F', to be released if P does not resurface after one day. (Wik-
iLeaks/Assange seems to have done something similar [19].) As P assumes F' to
be curious, P puts m in a physical TRE, to be opened only after one day. If P
returns before the day is over, P asks the TRE back. If F' hands the TRE over
to P, P will be sure that F' did not and will not read m. (Of course, F' may
refuse to hand back the TRE, but F' cannot get m without P noticing.)

This works fine with physical TRE, but as soon as P uses a digital TRE, F
can cheat. F' just copies the TRE before handing it back and continues decrypt-
ing. After one day, F' will have m, without P noticing.

So physical TREs are “revocable”. The recipient can give back the encryption
before the time T" has passed. And the sender can check that this revocation was
performed honestly. In the latter case, the sender will be sure that the recipient
does not learn anything. Obviously, a digital TRE can never have that property,
because it can be copied before revocation.

However, if we use quantum information in our TRE, things are different.
Quantum information cannot, in general, be copied. So it is conceivable that a
quantum TRE is revocable.

1.1 Example applications

We sketch a few more possible applications of revocable TREs. Some of them are
far beyond the reach of current technology (because they need reliable storage
of quantum states for a long time). In some cases, however, TREs with very
short time T are used, this might be within the reach of current technology.
The applications are not worked out in detail (some are just first ideas), and
we do not claim that they are necessarily the best options in their respective
setting, but they illustrate that revocable TREs could be a versatile tool worth
investigating further.

Deposits. A client has to provide a deposit for some service (e.g., car rental).
The dealer should be able to cash in the deposit if the client does not return.
Solution: The client produces a T-revocable TRE containing a signed transaction
that empowers the dealer to withdraw the deposit. When the client returns the
car within time T, the client can make sure the dealer did not keep the deposit

2 One challenge: The client needs to convince the dealer that the TRE indeed contains
a signature on a transaction. l.e., we need a way to prove that a TRE V contains a
given value (and the running time of this proof should not depend on T). At least for
our constructions (see below), this could be achieved as follows: The client produces
a commitment ¢ on the content of the classical inner TRE Vi and proves that c
contains the right content (using a SNARK [4] so that the verification time does not
depend on T'). Then client and dealer perform a quantum two-party computation
[12] with inputs ¢, V, and opening information for ¢, and with dealer outputs V' and
b where b is a bit indicating whether the message in V satisfies P.



Such deposits might also be part of a cryptographic protocol where deposits
are revoked or redeemed automatically depending on whether a party is caught
cheating (to produce an incentive against cheating). In this case, the time T
might well be in the range of seconds or minutes, which could be within the
reach of near future quantum memory [I5].

Data retention with verifiable deletion. Various countries have laws re-
quiring the retention of telecommunication data, but mandate the deletion of
the data after a certain period (e.g., [14]). Using revocable TREs, clients could
provide their data within revocable TREs (together with a proof of correctness,
cf. Footnote 2)). At the end of the prescribed period, the TRE is revoked, unless
it is needed for law-enforcement. This way, the clients can verify that their data
is indeed erased from the storage.

Unknown recipient encryption. An extension of revocable TREs is “unknown
recipient encryption” (URE) which allows a sender to encrypt a message m in
such a way that any recipient but at most one recipient can decrypt it. That is,
the sender can send a message to an unknown recipient, and that recipient can,
after decrypting, be sure that only he got the message, even if the ciphertext
was transferred over an insecure channel. Think, e.g., of a client connecting to
a server in an anonymous fashion, e.g., through (a quantum variant of) TOR
[11], and receiving some data m. Since the connection is anonymous and the
client has thus no credentials to authenticate with the server, we cannot avoid
that the data gets “stolen” by someone else. However, with unknown recipient
encryption, it is possible to make sure that the client will detect if someone else
got his data. This application shows that revocable TREs can be the basis for
other unexpected cryptographic primitives. Again, the time 7' may be small in
some applications, thus in the reach of the near future. We stress that URE is
non-interactive, so this works even if no bidirectional communication is possible.
It could be used for a cryptographic dead letter box where a “spy” deposits
secret information, and the recipient can verify that no-one found it. Unknown
recipient encryption is formalized in the full version [27].

A variant of this is “one-shot” quantum key distribution: Only a single mes-
sage is sent from Alice to Bob, and as long as Bob receives that message within
time T, he can be sure no-one else got the key. (This is easily implemented by
encrypting the key with a URE.)

1.2 Owur contribution

Definitions. We give formal definitions of TREs and revocable TREs (Sec-
tion 2). These definitions come in two flavors: T-hiding (no information is leaked
before time T') and T-one-way (before time T, the plaintext cannot be guessed
completely).)

One-wax revocable TREs. Then we construct one-way revocable TREs (Sec-

tion 3). Although one-wayness is too weak a property for almost all purposes, the
construction and its proof are useful as a warm-up for the hiding construction,



and also useful on their own for the random oracle based constructions (see be-
low). The construction itself is very simple: To encrypt a message m, a quantum
state |¥) is constructed that encodes m in a random BB84 basis Bl Then B is
encrypted in a (non-revocable) T-hiding TRE Vj. The resulting TRE (|¥), Vb)
is sent to the recipient. Revocation is straightforward: the recipient sends |¥)
back to the sender, who checks that @) still encodes m in basis B. Intuitively,
|&) cannot be reliably copied without knowledge of basis B, hence before time T
the recipient cannot copy |?) and thus looses access to |¥) and thus to m upon
revocation.

The proof of this fact is not as easy as one might think at the first glance (“use
the fact that B is unknown before time T, and then use that a state |¥) cannot
be cloned without knowledge of the basis”) because information-theoretical and
complexity-theoretic reasoning need to be mixed carefully.

The resulting scheme even enjoys everlasting security (cf., e.g., [T7UTO/TI7I20] ):
after successful revocation, the adversary cannot break the TRE even given
unlimited computation.

We hope that the ideas in the proof benefit not only the construction of
revocable TREs, but might also be useful in other contexts where it is neces-
sary to prove uncloneability of quantum-data based on cryptographic and not
information-theoretical secrecy (quantum-money perhaps?).

Revocably hiding TREs. The next step is to construct revocably hiding TREs
(Section 4l). The construction described before is not hiding, because if the ad-
versary guesses a few bits of B correctly, he will learn some bits of m while still
passing revocation. A natural idea would be to use privacy amplification: the
sender picks a universal hash function F' and includes it in the TRE V. The
actual plaintext is XORed with F(m) and transmitted. Surprisingly, we cannot
prove this construction secure, see the beginning of [Section 4] for a discussion.
Instead, we prove a construction that is based on CSS codes. The resulting
scheme uses the same technological assumptions as the one-way revocable one:
sending and measuring of individual qubits, quantum memory. Unfortunately,
the reduction in this case is not very efficient; as a consequence the underlying
non-revocable TRE needs to be exponentially hard, at least if we want to en-
crypt messages of superlogarithmic length. Notice that the random oracle based
solutions described below do not have this drawback.
Like the previous scheme, this scheme enjoys everlasting security.

Random oracle transformations. We develop two transformations of TREs
in the quantum random oracle model. The first transformation takes a revocably
one-way TRE and transforms it into a revocably hiding one (by sending ma® H (k)
and putting k into the revocably one-way TRE;[Section 5.1)). This gives a simpler
and more efficient alternative to the complex construction for revocably hiding
TREs described above, though at the cost of using the random-oracle model
and loosing everlasting security. The second transformation allows us to assume

3 Le., each bit of m is randomly encoded either in the computational or the diagonal
basis.



without loss of generality that the adversary performs no oracle queries before
receiving the TRE, simplifying other security proof (Section 5.2)).

For both transformations we prove general lemmas that allow us to use anal-
ogous transformations also on schemes unrelated to TREs (e.g., to make an
encryption scheme semantically secure). We believe these to be of independent
interest, because the quantum random oracle model is notoriously difficult to
use, and many existing classical constructions are not known to work in the
quantum case.

Classical TREs. Unfortunately, only very few constructions of classical TRE
are known. Rivest, Shamir, and Wagner [22] present a construction based on
RSA; it is obviously not secure in the quantum setting [23]. Other constructions
are iterated hashing (to send m, we send H(H(H(...(r)...))) @ m) and preim-
age search (to decrypt, one needs to invert H(k) where k € {1,...,T}); with
suitable amplification this becomes a TRE [26]). Preimage search is not a good
TRE because it breaks down if the adversary can compute in parallel. This leaves
iterated hashingE We prove that (a slight variation of) iterated hashing is hiding
even against quantum adversaries and thus suitable for plugging into our con-
structions of revocable TREs (Section 5.3). (Note, however, that the hardness of
iterated hashing could also be used as a very reasonable assumption on its own.
The random oracle model is thus not strictly necessary here, it just provides
additional justification for that assumption.)

We leave it as an open problem to identify more practical candidates for
iterated hashing, perhaps following the ideas of [22] but not based on RSA or
other quantum-easy problems.

For space reasons, details and full proofs are deferred to the full version [27]
of this paper.

1.3 Preliminaries

For the necessary background in quantum computing, see, e.g., [1§].

Let w(z) denote the Hamming weight of x. By [¢ + n], we denote the set of
all size-q subsets of {1,...,g+n}. Le., S € [g+n|, iff S C{L,...,¢+n} and
|S| = ¢. By & we mean bitwise XOR (or equivalently, addition in GF(2)™). Given
a linear code C, let C* be the dual code (C* := {z : Vy € C. x,y orthogonal}).

Let X,Y, Z denote the Pauli operators. Let |3;;) denote the four Bell states,
namely [foo) := 5[00)+J5[11) and [Bf) = (Z/ X @1)|Boo) = (1&X°Z7)|Boo).-
In slight abuse of notation, we call |Soo) an EPR pair (originally, [13] used
|811)). And a state consisting of EPR pairs we call an EPR state. H denotes

4 Tterated hashing has the downside that producing the TRE takes as long as decrypt-
ing it. However, this long computation can be moved into a precomputation phase
that is independent of the message m, making this TRE suitable at least for some
applications. [16] present a sophisticated variant of iterated hashing that circumvents
this problem; their construction, however, does not allow the sender to predict the
recipient’s output and is thus not suitable for sending a message into the future.



the Hadamard gate, and I,, the identity on C?" (short I if n is clear from the
context). Let |m)p denote m € {0,1}" encoded in basis B € {0,1}", where 0
stands for the computational and 1 for the diagonal basis.

Given an operator A and a bitstring « € {0,1}", we write A® for A" ® - -- ®
A B.g., X%|ly) = |z @y), and HE|x) = |7)p.

Given f,e € {0,1}", we write |?é> for |Bfie,) ® - @ |Bf e, ), except for the
order of qubits: the first qubits of all EPR pairs, followed by the last qubits of
all EPR pairs. In other words, |(T"\67“b> =2 sefo1n[W)|w) and [fe) = (Z'Xe®
1)|0m0m).

Let ||-|| be the Euclidean norm (i.e., |||¥)||> = [(¥|¥)|) and let - denote the
corresponding operator norm (i.e., A: = sup, o || Az||/||z[[).

By TD(p1, p2) we denote the trace distance between density operators py, ps.
We write short TD(|#), |P2)) for TD(|&1)(¥1], |F=2)(Pa]).

Whenever we speak about algorithms, we mean quantum algorithms. (In
particular, adversaries are always assumed to be quantum.)

2 Defining revocable TREs

A timed-release encryption (TRE) consists of: An encryption algorithm TRE(m)
that returns a (possibly quantum) ciphertext V' containing m. A decryption algo-
rithm that computes m from V (without using any key). Possibly: a revocation
algorithm in which the recipient gives back V' to the sender and the sender
performs some check on V. We have two basic security properties for TREs:
T-hiding means that within time 7', an adversary cannot learn anything about
m, and T-one-way means that within time 7', an adversary cannot guess m.
(These basic security properties do not refer to the revocation algorithm.) For
formal definitions of these basic properties, and a discussion on timing-models
and definitions in related work, see the full version [27].

We now define the revocable hiding property. A TRE is revocably T-hiding
if an adversary cannot both successfully pass the revocation protocol within
time 7" and learn something about the message m contained in the TRE.
When formalizing this, we have to be careful. A definition like: “conditioned
on revocation succeeding, py := Pr[adversary outputs 1 given TRE(my)] and
p1 := Prladversary outputs 1 given TRE(m,)] are close (|po — p1| is negligi-
ble)” does not work: if Pr[revocation succeeds] is very small, |pg — p1| can be-
come large even if the adversary rarely succeeds in distinguishing. (Consider,
e.g., an adversary that intentionally fails revocation except in the very rare
case that he guesses an encryption key that allows to decrypt the TRE im-
mediately.) Also, a definition like “|py — p1| - Pr[revocation succeeds]” is prob-
lematic: Does Pr[revocation succeeds| refer to an execution with TRE(my)
or TRE(m;)?. Instead, we will require “|pg — p1| is negligible with p; :=
Pr[adversary outputs 1 and revocation succeeds given TRE(m;)]”. This defini-
tion avoids the complications of a conditional probability and additionally
implies as side effect that also Prlrevocation succeeds given TRE(mg)] and
Pr[revocation succeeds given TRE(m;)] are close.



Definition 1 (Revocably hiding timed-release encryption). Given a re-
vocable timed-release encryption TRE with message space M, and an adversary
(Ao, A1, As) (that is assumed to be able to keep state between activations of
Ap, A1, As) consider the following game G(b) for b € {0,1}:

- (mo,ml) — Ao()

— V < TRE(my).

— Run the revocation protocol of TRE, where the sender is honest, and the
recipient is A1(V'). Let ok be the output of the sender (i.e., ok = 1 if the
sender accepts).

— b« Ay().

A timed-release encryption TRE with message space M is T-revocably hiding,
if for any adversary (Ao, A1, As) where Ay is sequential-polynomial-time and T -
time and Ay, As are sequential-polynomial-time, }Pr[b’ =1Ao0k =1:G(0)] -
Pr[b' = 1 A ok =1: G(1)]] is negligible.

Note that although revocably hiding seems to be a stronger property than
hiding, we are not aware of any proof that a T-revocably hiding TRE is also T-
hiding. (It might be that it is possible to extract the message m in time < T', but
only at the cost of making a later revocation impossible. This would contradict
T-hiding but not T-revocably hiding.) Therefore we always need to show that
our revocable TREs are both T-hiding and T-revocably hiding.

Again, we define the weaker property of revocable one-wayness which only
requires the adversary to guess the message m. We need this weaker property for
intermediate constructions. Like for hiding, we stress that revocable one-wayness
does not seem to imply one-wayness.

Definition 2 (Revocably one-way TRE). Given a revocable timed-release
encryption TRE with message space M, and an adversary (Ag, A1, Aa) (that is
assumed to be able to keep state between activations of Ag, A1, As) consider the
following game G:

— Run Ag().

— Pickm & M, run V + TRE(m).

— Run the revocation protocol of TRE, where the sender is honest, and the
recipient is A1(V'). Let ok be the output of the sender (i.e., ok = 1 if the
sender accepts).

- m AQ()

A timed-release encryption TRE with message space M is T-revocably one-way,
if for any quantum adversary (Ao, A1, As) where Ay is sequential-polynomial-
time and T-time and Ay, As are sequential-polynomial-time, we have that Prim =
m’' A ok = 1: G] is negligible.

3 Constructing revocably one-way TREs

In this section, we present our construction RTRE,, for revocably one-way
TREs. Although one-wayness is too weak a property, this serves as a warm-



up for our considerably more involved revocably hiding TREs (Section 4)), and
also as a building block in our random-oracle based construction (Section 5.1]).

The following protocol is like we sketched in the introduction, except that
we added a one-time pad p. That one-time pad has no effect on the revocable
one-wayness, but we introduce because it makes the protocol (non-revocably)
hiding at little extra cost.

Definition 3 (Revocably one-way TRE RTRE,,,).
— Let n be an integer.
— Let TREq be a T-hiding TRE with message space {0,1}".
We construct a revocable TRE RTRE,,, with message space {0,1}™.
Encryption of m € {0,1}":
Pick p, B & {0,1}™.
— Construct the state |U) := |m @ p)p. (Recall that |z)p is © encoded in basis
B, see[page 6 )
— Compute Vo + TREy(B, p).
— Send Vy and |¥).
Decryption:
— Decrypt V.
— Measure |¥) in basis B; call the outcome ~y.
— Return m := v & p.
Revocation:
— The recipient sends |¥) back to the sender.
— The sender measures |¥) in basis B; call the outcome .
— If vy = m @ p, revocation succeeds (sender outputs 1).

Naive proof approach. (In the following discussions, for clarity we omit all
occurrences of the one-time pad p.) At a first glance, it seems the security of this
protocol should be straightforward to prove: We know that without knowledge
of the basis B, one cannot clone the state [¥), not even approximatelyﬁ We also
know that until time T, the adversary does not know anything about B (since
TRE( is T-hiding). Hence the adversary cannot reliably clone |&) before time T.
But the adversary would need to do so to pass revocation and still keep a state
that allows him to measure m later (when he learns B).

Unfortunately, this argument is not sound. It would be correct if TREy were
implemented using a trusted third party (i.e., if B is sent to the adversary after
time T)[ However, the adversary has access to Vo = TRE((B) when trying
to clone |¥). From the information-theoretical point of view, this is the same
as having access to B. Thus the no-cloning theorem and its variants cannot be
applied because they rely on the fact that B is information-theoretically hidden.

5 This fact also underlies the security of BB84-style QKD protocols [3].

6 Again, this is implicit in proofs for BB84-style QKD protocols: there the adversary
gets a state @) = |m)p from Alice (key m encoded in a secret base B), which he
has to give back to Bob unchanged (because otherwise Alice and Bob will detect
tampering). And he wishes to, at the same time, keep information to later be able
to compute the key m when given B.



One might want to save the argument in the following way: Although Vy =
TREy(B) information-theoretically contains B, it is indistinguishable from V; =
T REO(B) which does not contain B but an independently chosen B. And if the
adversary is given Vp instead of Vb, we can use information-theoretical arguments
to show that he cannot learn m. But although this argument would work if
TRE( were hiding against polynomial-time adversaries (e.g., if TREq were a
commitment scheme). But TREq is only hiding for T-time adversaries! This
only guarantees that all observable events that happen with V, before time T
also happen with Vo before time T and vice versa. In particular, since with VO, the
adversary cannot learn m before time 7', he cannot learn m before time T with
Vo. But although with Vj, after successful revocation, the adversary provably
cannot ever learn m, it might be possible that with Vj, he can learn m right
after time T has passed.

Indeed, it is not obvious how to exclude that there is some “encrypted-cloning”
procedure that, given |¥) = |m)p and TREq(B), without disturbing |¥), pro-
duces a state |¥’) that for a T-time distinguisher looks like a random state, but
still |&’) can be transformed into |¥) in time > T. Such an “encrypted-cloning”
would be sufficient for breaking RTRE,,,. (Of course, it is a direct corollary from
our security proof that such encrypted-cloning is impossible.)ﬂ

Proof idea. As we have seen in the preceding discussion, we can prove that
the property “the adversary cannot learn m ever” holds when sending Vo =
TREy(B) for an independent B instead of Vy = TRE(B). But we cannot prove
that this property carries over to the Vj-setting because it cannot be tested in
time T. Examples for properties that do carry over would be “the adversary
cannot learn m in time T” or “revocation succeeds” or “when measured in basis
B, the adversary’s revocation-message does not yield outcome m”. But we would
like to have a property like “the entropy of m is large (or revocation fails)”. That
property cannot be tested in time 7', so it does not carry over. Yet, we can use
a trick to still guarantee that this property holds in the V{-setting.

For this, we first modify the protocol in an (information-theoretically) indis-
tinguishable way: Normally, we would pick m at random and send |¥) := |m)p

" To illustrate that “encrypted-cloning” is not a far fetched idea, consider the follow-
ing quite similar revocable TRE: Let Ex(|¥7)) denote the quantum one-time pad
encryption of [¥) € C?" using key K € {0,1}>", i.e., Ex(|¥)) = 25 X2 |@) with
K = K1||K2 [2]. RTRE(m) := (Ex(|m)B), B, TREq(K)). For revocation, the sender
sends Ex (|m)p) back, and the recipient checks if it is the right state. Again, if K
is unknown, it is not possible to clone Ex (|m)g) as it is effectively a random state
even given B. But we can break RTRE as follows:

The recipient measures |®) := Ex(|m)p) in basis B. Using XH = HZ and
ZH = HX, we have |®) = ZF1 X521 B|m) = HBXK1*B 7818 782 B x KaxB )y —
+|m @ (K2 * B) @ (K1 % B)) g where # is the bit-wise product and B the complement
of B. Thus the measurement of |®) in basis B does not disturb |®), and the recipient
learns m @ (K1 * B) & (K2 * B). He can then send back the undisturbed state |®)
and pass revocation. After decrypting TRE(K), he can compute m, and reconstruct
the state |®) = Fk(|m)g) using known K, m, B. Thus he performed an “encrypted
cloning” of |®) before decrypting TREq(K).



to the adversary. Instead, we initialize two n-bit quantum registers X,Y with
EPR pairs and send X to the adversary. The value m is computed by mea-
suring Y in basis B. Now we can formulate a new property: “after revocation
but before measuring m, XY are still EPR pairs (up to some errors) or revoca-
tion fails”. This property can be shown to hold in the %—setting using standard
information-theoretical tools. And the property tested in time T, all we have
to do is a measurement in the Bell basis. Thus the property also holds in the
Vo-setting. And finally, due to the monogamy of entanglement ([9]; but we need
a custom variant of it) we have that this property implies “the entropy of m is
high (or revocation fails)”.

We have still to be careful in the details, of course. E.g., the revocation check
itself contains a measurement in basis B which would destroy the EPR state
XY this can be fixed by only measuring whether the revocation check would
succeeds, without actually measuring m.

Theorem 1 (RTRE,, is revocably one-way). Let 03 be the time to compute
the following things: a measurement whether two n-qubit registers are equal in a
given basis B, a measurement whether two n-qubit registers are in an EPR state
up to t := \/n phase flips and t bit flips, and one NOT- and one AND-gate.

Assume that the protocol parameter n is superlogarithmic.

The protocol RTRE,,, from[Definition 3 is (T — 65" )-revocably one-way, even
if adversary As is unlimited (i.e., after revocation, security holds information-
theoretically).

A concrete security bound is derived in the full version [Z7].

Since revocable one-wayness does not imply (non-revocable) one-wayness, we
additionally show the hiding property of RTRE,,. Due to the presence of the
one-time pad p, the proof is unsurprising.

4 Revocably hiding TREs

We now turn to the problem of constructing revocably hiding TREs. The con-
struction from the previous section is revocably one-way, but it is certainly not
revocably hiding because the adversary might be lucky enough to guess a few
bits of the basis B, measure the corresponding bits of the message m without
modifying the state, and successfully pass revocation. So some bits of m will
necessarily leak. The most natural approach for dealing with partial leakage (at
least in the case of QKD) is to use privacy amplification. That is, we pick a
function F from a suitable family of functions (say, universal hash functions
with suitable parameters), and then to send m, we encrypt a random z using
the revocably one-way TRE, and additionally transmit F'(xz) & m. If x has suf-
ficiently high min-entropy, F'(x) will look random, and thus F(z) & m will not
leak anything about m. Additionally, we need to transmit F' to the recipient, in a
way that the adversary does not have access to it when measuring the quantum
state. Thus, we have to include F in the classical TRE. So, altogether, we would
send (m @ F(z), TREq(B, f)) and |m)p. In fact, this scheme might be secure,



we do not have an attack. Yet, when it comes to proving its security, we face
difficulties: In the proof of RTRE,,, to use the hiding property of TREj, we
identified a property that can be checked in time 7', and that guarantees that m
cannot be guessed. (Namely, we used that the registers XY contain EPR pairs
up to some errors which implies that the adversary cannot predict the outcome
m of measuring Y.) In the present case, we would need more. We need a prop-
erty P that guarantees that F(z) is indistinguishable from random given the
adversary’s state when z is the outcome of measuring Y. Note that here it is not
sufficient to just use that z has high min-entropy and that F' is a strong random-
ness extractor; at the point when we test the property P, F is already fixed and
thus not random. Instead, we have to find a measurable property P’ that guar-
antees: For the particular value F' chosen in the game, F'(x) is indistinguishable
from randomness. (And additionally, we need that P’ holds with overwhelming
probability when TRE (B, f) is replaced by a fake TRE not containing B, f.)
We were not able to identify such a property

Using CSS codes. This discussion shows that, when we try to use privacy
amplification, we encounter the challenge how to transmit the hash function F'.
Yet, in the context of QKD, there is a second approach for ensuring that the
final key does not leak any information: Instead of first exchanging a raw key
and then applying privacy amplification to it, Shor and Preskill [24] present a
protocol where Alice and Bob first create shared EPR pairs with a low number
of errors. In our language: Alice and Bob share a superposition of states |fe)
with w(f),w(e) < t. Then they use the fact that, roughly speaking, |W) is an

encoding of |0¢0¢) for some £ < n using a random CSS code correcting ¢ bit/phase
error. (Calderbank-Shor-Steane codes [8I25].) So if Alice and Bob apply error

correction and decoding to |/f\;>, they get the state |0£0¢). Then, if Alice and Bob
measure that state, they get identical and uniformly distributed keys, and the
adversary has no information. Furthermore, the resulting protocol can be seen
to be equivalent to one that does not need quantum codes (and thus quantum

8 To illustrate the difficulty of identifying such a property: Call a function F s-good
if F(z) is uniformly random if all bits z; with s; = 0 are uniformly random (and
independent). In other words, F tolerates leakage of the bits with s; = 1. For suitable
families of functions F', and for s with low Hamming weight, a random F will be
s-good with high probability. Furthermore, when using a fake TREo, XV is in state
|fe) with s := (f V e) of low Hamming weight with overwhelming probability after
successful revocation (this we showed in the security proof for RTRE,,,). In this case,
all bits of Y with s; = 0 will be “untampered” and we expect that F(z) is uniformly
random for s-good F' (when x is the outcome of measuring Y'). So we are tempted
to choose P’ as: “XY is in a superposition of states |};> such that the chosen F is
(f V e)-good”. This property holds with overwhelming property using a fake TREo.
But unfortunately, this fails to guarantee that f(z) is random. E.g., if F'(ab) = a®b,
then F is 10-good and 01-good. Thus a superposition of |1000) and |0100) satisfies
property P’ for that F. But —5[1000) + 25(0100) = 25[0000) — J5|1111), so & €
{00, 11} with probability 1 and thus F(z) = 0 always. So P’ fails to guarantee that
F(zx) is random.



computers) but only transmits and measures individual qubits (BB84-style). It
turns out that we can apply the same basic idea to revocably hiding TREs.

For understanding the following proof sketch, it is not necessary to under-
stand details of CSS codes. It is only important to know that for any CSS code C,
there is a family of disjoint codes C, , such that Uu’v Cy,v forms an orthonormal
basis of C10:1}",

Consider the following protocol (simplified):

Definition 4 (Simplified protocol RTRE),;). Let C be a CSS code on {0,1}"
that encodes plaintexts from a set {0,1}™ and that corrects t phase and bit flips.
Let q be a parameter.

— Encryption: Create ¢ + n EPR pairs in registers X,Y. Pick a set Q =

{ir,...,iq} € [q + n]y of qubit pair indices and a basis B € {0,1}9, and
designate the qubit pairs in XY selected by Q as “test bits” in basis B. (The
remaining pairs in XY will be considered as an encoding of EPR pairs using
C.) Send X together with the description of C and a hiding TRE TREy(Q)
to the recipient.
The plaintext contained in the TRE is x where x results from: Consider the
bits of Y that are not in Q) as a codeword from one of the codes C,, ,,. Measure
what w,v are (this is possible since the C,, , are orthogonal). Decode the code
word. Measure the result in the computational basis.

— Decryption: Decrypt TREq(Q). Considering the bits of X that are not in
Q as a codeword from C,, , and decode and measure as in the encryption.

— Revocation: Send back X. The sender measures the bit pairs from XY
selected by Q using bases B, yielding r,r'. If r = r’, revocation succeeds.

Note that this simplified protocol is a “randomized” TRE which does not
allow us to encrypt an arbitrary message, but instead chooses the message x.
The obvious approach to transform it to a normal TRE for encrypting a given
message m is to send m @ x in addition to the TRE. This is indeed what we do,
but there are some difficulties that we discuss below.

Entanglement-free protocol. The protocol RTRE},, requires Alice to prepare
EPR pairs and apply the decoding operation of CSS codes. While our protocol
may not be feasible with current technology anyway due to the required quantum
memory, we wish to reduce the technological requirements as much as possible.
Fortunately, CSS codes have the nice property that decoding with subsequent
measurement in the computational basis is equivalent to a sequence of individual
qubit measurements. Using these properties, we can rewrite Alice so that she
only sends and measures individual qubits in BB84 bases, and Bob stores and
measures individual qubits in BB84 bases (i.e., like in RTRE,,,). See the final
protocol description (Definition b)) below for details. In the full proof, this change
means that we have to add further games in front of the sequence of games to
rewrite the entanglement-free operations into EPR-pair based ones.

Early key revelation. One big problem remains: the security definition used
for proving security of [Definition 4l gives my ®x to Ao, and not to A; as a natural
definition of randomized TREs would do. (We call this late key revelation) The



effect of this is that RTRE},, is only secure if the plaintext z is not used before
time 7T'. This limitation, of course, contradicts the purpose of TREs and needs to
be removed. We need early key revelation where the adversary A; is given m, @ x.
As our proof needs the fact that x is picked only after A; runs, our solution is
to reduce security with early key revelation to security with late key revelation.
This is done by guessing what = will be when invoking A;. If that guess turns out
incorrect in the end, we abort the game. Unfortunately, this reduction multiplies
the advantage of the adversary by a factor of 21#1 = 2¢; the effect is that our final
protocol will need an underlying scheme TRE; with security exponential in /.
We can now present the precise protocol and its security:

Definition 5 (The protocol).

— Let C1,C5 be a CSS code with parameters n, ky, ko, t. (n is the bit length of
the codes, ki,ko refer to the parameters of the codes Cy,Cs, and t to the
number of corrected errors.)

— Let q be an integer.

— Let TREq be a TRE with message space {0,1}9 X [q +n]y x C1/Cs. (Recall,
l[q + n)q refers to g-size subsets of {1,...,q+n}, see[page I C1/Cs denotes
the quotient of codes.)

We construct a revocable TRE RTREy;q with message space C1/Cq (isomorphic
to {0, 1} with £ :=ky — ko).
We encrypt a message m € C1/Cs as follows:

— Pick uniformly B € {0,1}7, Q € [¢ + n]g, p € C1/Ca. u € {0,1}"/C4,
re {O,l}q, S 01/02, w € Cy.

— Construct the state |¥) := UCTQ(HB @I)(|r)@|lrPweu)). Here Ug denotes
the unitary that permutes the qubits in Q into the first half of the system.
(Le., Ugley ... 2g4n) = |Zay -+ Ta, Tp, - Tp,) with Q =: {ay,...,aq} and
{1,...,¢g+n}\Q =: {b1,...,b,}; the relative order of the a; and of the b;
does not matter.

— Compute Vy + TREy(B,Q,r,p).

— The TRE consists of (Vo,u,m @ x @& p) and |¥).

Decryption is performed as follows:

— Decrypt Vi, this gives B,Q,r,p.

— Apply Ug to |¥) and measure the last n qubits in the computational basis;
call the outcome 7

— Return m := (v @ u) mod Cs.

The revocation protocol is the following:
— The recipient sends |¥) back to the sender.

9 Notice that, since Ué is just a reordering of qubits, and H? is a sequence of
Hadamards applied to a known basis state, the state |[¥) can also directly be pro-
duced by encoding individual qubits in the computational or diagonal basis, which
is technologically simpler.

10 Since Ugq is just a reordering of qubits, this just corresponds to measuring a subset
of the qubits in the computational basis.



— The sender applies (HP @ I,,)Uq to |¥) and measures the first q qubits, call
the outcome r' [
— Ifr =1’ revocation succeeds (sender outputs 1).

Notice that in this protocol (and in contrast to the simplified description
above), we have included B, in the TRE V;, even though they are not needed
by the recipient. In fact, the protocol would still work (and be secure with almost
unmodified proof) if we did not include these values. However, when constructing
unknown recipient encryption, the inclusion of B, r will turn out to be useful.

Theorem 2 (RTRE;; is revocably hiding). Let 6% be the time to com-
pute the following things: q controlled Hadamard gates, applying an already
computed permutation to n + q qubits, a q-qubit measurement in the compu-
tational basis (called My in the proof), a comparison of two q-qubit strings, the
error-correction,/decoding operations UEC, Ude of the CSS code, a measurement

uv
whether two n-qubit registers are in the state 3 o /o, |x)|x) (called ng;]éz in

the proof), one AND-gate, and one NOT-gate.

Assume that TREq is T-hiding with (272(F1—k2) . negligible)—security As-
sume that tq/(q + n) — 4(k1 — k2) In2 is superlogarithmic.

Then the TRE from[Definition 3 is (T — 6%¢)-revocably hiding even if As is
unlimited (i.e., after revocation, security holds information-theoretically).

A concrete security bound is derived in the full version [27].

Those parameters can always be instantiated [27], leading to a revocable
TRE for logarithmic length messages, and a TRE for arbitrary length messages
if TRE( has exponential security. Furthermore, RTREp;, is also T-hiding.

5 TREs in the random oracle model

We present constructions and transformations of TREs in the random oracle
model. (We use the quantum random oracle that can be accessed in superposi-
tion, cf. [5].)

The results in this section will be formulated with respect to two different
timing models. In the sequential oracle-query timing model, one oracle query
is one time step. Le., if we say an adversary runs in time 7', this means he
performs at most 7" random oracle queries. In the parallel oracle-query timing
model, an arbitrary number of parallel oracle-queries can be performed in one
time step. However, in time T, at most T oracle queries that depend on each
other may be performed More formally, if the oracle is H, the adversary can
query H(x1),...,H(z,) for arbitrarily large ¢ and arbitrary z1,...,z, in each

11 Since Ugq is just a reordering of the qubits, this is equivalent to measuring a subset
of the qubits in the bases specified by B.

12 T e., in[Definition 1l we require that the advantage is not only negligible, but actually
< 272(’“7’“2);1 for some negligible p.

'3 In [16], this is called “T levels of adaptivity”.



time step. (Of course, if the adversary is additionally sequential-polynomial-time,
then ¢ will be polynomially bounded.)

Security in those timing models implies security in timing models that count
actual (sequential /parallel) computation steps because in each step, at most one
oracle call can be made.

5.1 One-way to hiding

In the previous section, we have seen how to construct revocably hiding TREs.
However, the construction was relatively complex and came with an exponential
security loss in the reduction. As an alternative, we present a transformation
takes a TRE that is (revocably) one-way and transforms it into one that is
(revocably) hiding in the random oracle model. The basic idea is straightforward:
we encrypt a key k in a one-way TRE, and use H (k) as a one-time-pad to encrypt
the message:

Theorem 3 (Hiding TREs). Let H be a random oracle and let TRE be a
(revocable or non-revocable) TRE (not using H ).

Then the TRE TRE' encrypts m as follows: Run k - {0,1}™, V' + TRE(k),
and then return V := (V',;m @® H(k)). (Decryption is analogous, and revocation
is unchanged from TRE.)

Then, if TRE is T-oneway and T-revocably one-way then TRE' is T-revocably
hiding. And if TRE is T-oneway then TRE' is T-hiding. (The same holds “with-
out offline-queries”; see[Section 5.9 below.)

This holds both for the parallel and the sequential oracle-query timing
model[™]

Notice that we assume that TRE does not access H. Otherwise simple coun-
terexamples can be constructed. (E.g., TRE(k) could include H (k) in the TRE
V'.) However, TRE may access another random oracle, say G, and TRE' then
uses both G and H.

In a classical setting, this theorem would be straightforward to prove (us-
ing lazy sampling of the random oracle). Yet, in the quantum setting, we need
a new technique for dealing with this. We present a generic lemma for reduc-
ing hiding-style properties (semantic security) to a one-wayness-style properties
(unpredictability) from which we can derive [Theorem 3l

5.2 Precomputation

We will now develop a second transformation for TREs in the random oracle
model. The security definition for TREs permit the adversary to run an arbi-
trary (sequential-polynomial-time) computation before receiving the TRE. In
particular, we do not have a good upper bound on the number of oracle queries
performed in this precomputation phase (“offline queries”). This can make proofs
harder because even if the adversary runs in time 7', this does not allow us to
conclude that only T oracle queries will be performed. Our transformation will



allow us to transform a TRE that is only secure when the adversary makes no
offline queries (such as the one presented in below) into a TRE that
is secure without this restriction.

We call a TRE T'-hiding without offline-queries if the hiding property holds
for adversaries were Ay makes no random oracle queries. Analogously we define
T-revocably hiding without offline-queries and T-one-way without offline-queries.

To transform a TRE that is secure without offline-queries into a fully secure
one, the idea is to make sure that the offline-queries are useless for the adversary.
We do this by using only a part H(a||-) of the random oracle where a is chosen
randomly with the TRE. Intuitively, since during the offline-phase, the adversary
does not know a, none of his offline-queries will be of the form H(al|-), thus they
are useless.

Theorem 4 (TREs with offline-queries). Let G and H be random oracles
and ¢ superlogarithmic. Let TRE be a revocable TRE using G. Let TRE' be the
result of replacing in TRE all oracle queries G(x) by queries H(al|z), where a
is chosen by the encryption algorithm of TRE' and is included in the message
send to the recipient.

If TRE is T-revocably hiding without offline-queries then TRE' is T-revocably
hiding (and analogously for T-hiding). This holds both for the parallel and the
sequential oracle-query timing model

To prove this, we develop a general lemma for this kind of transformations.
(In the classical setting this is simple using the lazy sampling proof technique,
but that is not available in the quantum setting.)

5.3 Iterated hashing

In all constructions so far we assumed that we already have a (non-revocable)
TRE. In the classical setting, only two constructions of TREs are known. The
one from [22] can be broken by factoring, this leaves only repeated hashing as a
candidate for the quantum setting. We prove that the following construction to
be one-way without offline queries:

Definition 6 (Iterated hashing). Let n and T be polynomially-bounded in-
tegers (depending on the security parameter), and assume that n is superloga-
rithmic. Let H : {0,1}"™ — {0,1}"™ denote the random oracle. The timed-release
encryption TRE;;, with message space {0,1}" encrypts m asV := HTT1(0")@m.

We can prove that TRE;, is T-one-way without offline queries. TRE;;, is obvi-
ously not one-way with offline queries, the adversary can precompute H+1(0").
Yet, using the random-oracle transformations from [Theorems 3] and @, we can
transform it into a hiding TRE. This is plugged into RTRE,,,, to get a revoca-
bly one-way TRE, and using [Theorem 3| again, we get a revocably hiding TRE

14 For other timing models, the reduction described in the proof may incur a overhead,
leading to a smaller T for TRE'.



in the random oracle model. (The resulting protocol is spelled out in the full
version [27].)

An alternative construction is to plug TRE;, (after transforming it using
[Theorems 3] and M) into RTRE;4. This results in a more complex yet everlast-
ingly secure scheme.

And finally, if we wish to avoid the random oracle model altogether, we can
take as our basic assumption that a suitable variant of iterated hashin is a
hiding TRE, and get a revocably hiding, everlastingly secure TRE by plugging
it into RTREth
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