
How to Garble RAM Programs3

Steve Lu1 and Rafail Ostrovsky2

1 Stealth Software Technologies, Inc. steve@stealthsoftwareinc.com
2 Department of Computer Science and Department of Mathematics, UCLA. Work done while

consulting for Stealth Software Technologies, Inc. rafail@cs.ucla.edu
3 Patent Pending

Abstract. Assuming solely the existence of one-way functions, we show how
to construct Garbled RAM Programs (GRAM) where its size only depends on
fixed polynomial in the security parameter times the program running time. We
stress that we avoid converting the RAM programs into circuits. As an example,
our techniques implies the first garbled binary search program (searching over
sorted encrypted data stored in a cloud) which is poly-logarithmic in the data size
instead of linear. Our result requires the existence of one-way function and enjoys
the same non-interactive properties as Yao’s original garbled circuits.

Keywords: Secure Computation, Oblivious RAM, Garbled Circuits.

2

1 Introduction

Often times, such as in cloud computation, one party wants to store some data remotely
and then have the remote server perform computations on that data. If the client does not
wish to reveal this data or the nature of the computation and the results of the computa-
tion to the remote server, then one must resort to using secure computation methods in
order to process this remotely stored data. In other words, suppose two parties want to
compute some program π on their private inputs without revealing to each other (or just
one party) anything but the output. The earliest research in secure two-party computa-
tion modeled π as a circuit and was accomplished under Yao’s Garbled Circuits [33]
or the Goldreich-Micali-Wigderson [10] paradigm. Both of these approaches require
the program π to be converted to a circuit. Even the recent work of performing secure
computation via fully homomorphic encryption requires representing the program π
as a circuit. However, many algorithms are more naturally and compactly represented
as RAM programs, and converting these into circuits may lead to a huge blowup in
program size and its running time.

Of course, there are known polynomial transformations between time-bounded RAM
programs, time-bounded Turing Machines and circuits [8,27]: Given a T -time RAM
program, [8] shows how one can transform it into a O(T 3)-time TM, and [27] shows
how to transform a T -time TM into circuits of size O(T log T), which results in a
O(T 3 log T) blowup. Our work aims at circumventing these transformation costs and
executing RAM programs directly in a private manner, while retaining the same nonin-
teractive properties as Yao’s Garbled circuits. This goal is especially important for the
case of complex real-world RAM programs with running time that is much larger than
the input size. Unrolling these complicated RAM programs with multiple execution
paths, recursion, multiple loops, etc. into a circuit makes the circuit size polynomially
larger and often prohibitive.

It should be noted that our work is also important in practical applications where
the sizes of the inputs are vastly different, such as database search, or where multi-
ple queries against the same large data-set must be executed. When compiling a RAM
program into a circuit, the compiled circuit must inherently be able to compute all exe-
cution paths of the RAM program. Thus, the circuit itself must be at least be as large as
the input size, which in some applications may be is exponentially larger than execution
path of the insecure solution (e.g. consider a binary search). One can argue that even if
the circuit is large, we can “charge” the large circuit cost to the large input size, but in
many cases this is unacceptable: consider the case where a large data is encrypted and
uploaded off-line, such as a large database, and multiple encrypted queries are made on-
line, where the insecure execution path is, for example, poly-logarithmic in the database
size and we do not want to “pay” an on-line cost of circuit size which is linear in the
database size.

An alternative approach for secure conversion of RAM programs into circuits is dy-
namic evaluation: even if the resulting circuit is large and the total size of the is resulting
circuit is prohibitive, one can execute and even compile the large circuit dynamically
and intelligently evaluate only parts of the circuit so as to “prune off” dead paths (e.g.
short-circuiting techniques) to make the evaluation efficient, even in the case of large in-
puts. However, until now it was not known how to convert RAM programs into circuits

3

which result in an efficient secure non-interactive execution in a way that does not re-
veal the execution path of the compiled RAM program. Naturally, using interaction, one
can use the Goldreich-Micali-Wigderson [10] paradigm along with revealing bits along
the way to help prune and determine execution path – however our ultimate goal is to
explore the non-interactive garbling solutions for RAM programs without revealing the
execution path.

Another alternative method for computing RAM programs without first convert-
ing them to circuits was proposed by Ostrovsky and Shoup [25] which used Oblivious
RAM [11] as a building block. The Ostrovsky-Shoup compiler allows parties to execute
Oblivious RAM programs directly, i.e., without first unrolling it into a circuit, which
provided an alternative approach to secure RAM computation. The method was further
improved by Gordon et al. [16] in order to perform sublinear amortized database search.
Lu and Ostrovsky [21] considered two-server Oblivious RAM inside the Ostrovsky-
Shoup compiler, which led to logarithmic overhead in both the computation and the
communication complexity. Note that these three works allow secure RAM evaluation
without having to unroll the program into a circuit and represent a different way to
perform secure computation that reveals only the program running time. Among these,
[21] is the best result for programs (instead of circuits) in terms of computation com-
plexity and communication complexity. However, in terms of round complexity, these
papers leave much to be desired: they all require at least one round for each CPU com-
putation step, even using the so-called non-interactive RAM solution of [31], which
reduces each read/write to one round between the client and the server. Since the run-
ning time of CPU is at least t steps for programs that run in time t, this leads to Ω(t)
round complexity. In contrast, in this paper, we show how to retain poly-log overhead
in communication and computation, and make the entire computation non-interactive
in the OT-hybrid model, just like Yao.

1.1 The Blueprint for RAM Program Garbling

We describe our approach at a high level: we start with an ORAM compiler (with certain
properties which we will describe later) that takes a program and converts it into an
oblivious one. We call this new program the “ORAM CPU” because it can be thought
of as a client running a CPU that performs a local computation followed by reading or
writing something on the remote server. As a conceptual segue, consider the following
change: instead of the ORAM CPU locally performing its computation, it creates a
garbled circuit representing that computation, and also garbles all the inputs for that
computation (the inputs are just the client state and the last fetched item, possibly with
some randomness) and sends it to the server who then evaluates the circuit. The output
of this computation is just the next state and the next read/write query, and the server
preforms the read/write query locally, and sends back the result of the read/write query
along with the state to the ORAM CPU. We emphasize that this is just a conceptual
intermediate step, since this step does not actually give us any savings and possibly
interferes with the security of the ORAM CPU by having its state revealed to the server.

Next, we change where the ORAM CPU state is stored: instead of letting the client
hold it, it is stored on the server in garbled format. That is to say, the garbled circuit
that the client sends to the server now outputs a garbled state instead of a regular state,

4

which can then be used as input for the next ORAM CPU step. As long as the garbled
circuit for the next CPU step uses the same input encoding as the one generated by our
current CPU step, then the client does not need to interact with the server. However, the
garbled CPU also performs read/write operations into ORAM memory that need to be
carefully interleaved with our computations. We need to describe how this is done next.

Let us suppose that the ORAM compiler had the property that the ORAM CPU
knows exactly when the contents of a memory location that it wants to read next was
last written to (which is the case for many ORAM schemes). We attempt to perform
the same strategy as we did with garbling the state: whenever the ORAM CPU wants to
write something to memory. We store memory bits as Yao’s garbled keys, based on the
actual location, and the time last written. Thus, the bit stored in some particular location
has one of the two garbled keys. However, this does not immediately work, because if
each memory location uses a different encoding, the CPU circuit does not know which
encoding to use when reading at some future time.

In order to resolve this, we construct a circuit that assists with this transition: the
circuit takes as input a time step and memory location computes (in a garbled form)
two possible encodings for 0/1 encoded in this location and outputs a garbled circuit
encoded for that time step to “translate” keys stored in memory to keys needed by the
CPU. Since this circuit does not require the knowledge of the memory location ahead of
time, the client can generate as many of these as needed at the start of the computation.
Indeed, if the ORAM program runs in t steps, the client can generate t of these circuits,
garble them, and send them all to the server, non-interactively.

Note that we need Oblivious RAM with poly-log overhead where the client size is
at most some fixed polynomial in the security parameter times some poly-log factor
in n. This is because for every ORAM fetch operation, we also need to emulate the
client’s internal computation of the Oblivious RAM using garbled circuit, which incurs
a multiplicative overhead in the size and the running time of the client. Thus, the smaller
the client of Oblivious RAM, the more efficient our solution is: in order to achieve
poly-log overhead, all Oblivious RAM schemes where client memory is larger than
poly-logarithmic (e.g. [9,6]) is not useful for our purposes. We expand on the intuition
in Section 3.1. In Section 3 we give the main construction for garbled RAM programs.
When combined with oblivious transfer, this gives a one-round secure two-party RAM
program computation in the semi-honest model (which can be extended to multi-party
using the Beaver-Micali-Rogaway paradigm[2]), which we discuss in Section 4. In the
full version [20], we also show how to construct a single-round ORAM.

1.2 Related Work on Secure RAM Computation.

Oblivious RAM was introduced in the context of software protection by Goldreich
and Ostrovsky [11]. In the original work by Goldreich [9], a solution was given with
O(
√
n) and communication overhead where lookups could be done in a single round

andO(2
√

log n log log n) communication overhead for a recursive solution. Subsequently,
Ostrovsky [23,24] gave a solution with only poly-log overhead and constant client mem-
ory (the so-called “hierarchical solution”).

Subsequent to Goldreich and Ostrovsky [23,24,9,11], works on Oblivious RAM
(e.g. [31,32,26,13,14,28,15,18,29]) looked at improving the concrete and asymptotic

5

parameters of Oblivious RAM. The notion of Private Information Storage introduced
by Ostrovsky and Shoup [25] allows for private storage and retrieval of data, and was
primarily concentrated in the information theoretic setting. This model differs from
Oblivious RAM in the sense that, while the communication complexity of the scheme
is sub-linear, the server performs a linear amount of work on the database. The work of
Ostrovsky and Shoup [25] gives a multi-server solution to this problem in both the com-
putational and the information-theoretic setting and introduces the Ostrovsky-Shoup
compiler of transforming Oblivious RAM into secure RAM computation. The notion of
single-server “PIR Writing” was subsequently formalized in Boneh, Kushilevitz, Ostro-
vsky and Skeith [5] where they provide a single-server solution. The case of amortized
“PIR Writing” of multiple reads and writes was considered in [7].

With regard to secure computation for RAM programs, the implications of the
Ostrovsky-Shoup compiler was explored in the work of Naor and Nissim [22] which
shows how to convert RAM programs into so-called circuits with “lookup tables” (LUT).
The Ostrovsky-Shoup compiler was further explored in the work of Gordon et al. [16]
in the case of amortized programs. Namely, consider a client that holds a small in-
put x, and a server that holds a large database D, and the client wishes to repeatedly
perform private queries f(x,D). In this model, an expensive initialization (depend-
ing only on D) is first performed. Afterwards, if f can be computed in time T with
space S with a RAM machine, then there is a secure two-party protocol computing f
in time O(T) · polylog(S) with the client using O(logS) space and the server using
O(S · polylog(S)) space. The secure RAM computation solution of Lu and Ostro-
vsky [21] can be viewed as a generalization of the [25] model where servers must also
perform sublinear work.

1.3 Our Results

In this paper, we show how to garble any Random Access Machine (RAM) Program πt

that runs in time upper bounded by t while keeping all the non-interactive advantages
of the Yao’s Garbled Circuit approach. More specifically, we present a program gar-
bling method which consists of a triple of polynomial-time algorithms (G,GI,GE).
G takes as input any RAM program πi that includes an upper bound t on its running
time and a pseudorandom function (PRF) family F and a seed s for PRF of size k (a se-
curity parameter) and outputs a garbled program Πt = G(πt, t, F, s), where all inputs
are polynomial in the security parameter. Just like gabled circuits, we provide a way to
garble any input x for πt into Garbled Input X = GI(x, s), and an algorithm to eval-
uate a garbled program on garbled inputs GE(Πt, t,X). The correctness requirement
is that for any x, πt, F, s it holds that πt(x) = GE(G(πt, t, F, s), GI(x, s)) with the
security guarantee that nothing about x is revealed except its running time t, expressed
in terms of computational indistinguishability (≈) between the simulator Sim and gar-
bled outputs. So far, the above description matches Yao’s garbled circuit description.
The difference is both in the running time and the size of garbled program for our new
garbling method.

Main Theorem Assume one-way functions exist, and let the security parameter be k
and let F be a PRF family based on the one-way function. Then, there exists a Program

6

Garbling triple of poly-time algorithms G,GI,GE such that for any t any πt and any
input x of length n we have the following.
Correctness: ∀x, πt, F, s: πt(x) = GE [G(πt, t, F, s), GI(x, s)].
Security: ∃ poly-time simulator Sim, such that ∀π, t, x, s, where |s| = k,

[G(πt, t, F, s), GI(x, s)] ≈ Sim
[
1k, t, |x|, πt(x)

]
.

Garbled Program Size: The size of the garbled program
|G(πt, t, F, s)| = O ((|π|+ t)· kO(1) · polylog(n)

)
.

Garbled Input Size: Let |x| = n and |s| = k. ∀x, s the garbled input size
|GI(x, s)| = O

(
n · kO(1) · polylog(n)

)
.

Our main construction is a garbled program based on any one-way function (or a
block-cipher), and is time-compact in the sense that if the original program runs in t
time and has size n, our garbled RAM runs in O(t · poly(k, log n)).

1.4 Remarks
– Making programs and outputs private. We note that similar to Yao, we can make
πt to be a time-bounded universal program ut, (i.e., an interpreter) and x =
(π′t, y) include both time-bounded program π′t and input y, so that ut(x) = π′t(y).
Part of the specification of π′t may also include masking its output – i.e. to have
output blinded (XORed) with a random string. That allows, just like Yao, to keep
both the program and the output hidden from a machine that evaluates the garbled
program. Such a modification has been utilized in the literature (see, e.g. [1]).

– Reactive functionalities. Our result shows that we can first garble a large input x,
|x| = n with garbled input size equal to O(|x| · kO(1) · polylog(n)) so that later,
given private programs π1

t1 , . . . , π
j
tj
, . . . for polynomially many programs where

program πj runs in time tj and potentially modifies x, (e.g., database updates)
we can garble and execute all of these programs just revealing running times ti,
and nothing else. The size of each garbled program remains O

(
(|πi|+ ti) · kO(1)·

polylog(n)). It is also easy to handle the case where the length of x changes, pro-
vided that an upper bound by how much each program changes the length of x is
known prior to garbling of next program.

– Cloud computing. As an example of the power of our result we outline secure
cloud computation/delegation. In this simple application one party has an input and
wants to store it remotely and then repeatedly run different private programs on this
data. Reactive functionalities allow us to do this with one important restriction: we
do not give the server a choice in adaptively selecting the inputs: but this is not an
issue as the server itself has no inputs to the program. The other possible problem
is if the programs themselves are contrived and circularly reference the code for the
garbling algorithm. Such programs would be highly unnatural to run on data and
so we disallow them in our setting.

– Two-party computation. Note that just like in Yao’s garbled circuits, in order to
transmit the garbled inputs corresponding to input bits held by a different party for
the sake of secure two-party computation, one relies on Oblivious Transfer (OT)
that can be done non-interactively in the OT-hybrid model. Here, we insist that the
OT-selected inputs to our garbled program are committed to prior to receiving the
RAM garbled program, i.e. non-adaptively [3].

7

– Optimizations. We remark that step two of our blueprint is applicable to almost all
ORAM schemes with small CPU as follows: instead of collapsing in the hierarchi-
cal Oblivious RAMs multiple rounds of a single read/write to a single round, we
can implement our step 2 directly for each round of each read/write (e.g. even inside
a single read/write simulation of Oblivious RAM that requires multiple rounds) of
the underlying Oblivious RAM: by implementing an oracle call for each Oblivious
RAM CPU read/write using our method of compiling memory fetch “on the fly”
into garbled circuits. Any Oblivious RAM where the CPU can tell precisely when
any memory location was overwritten last can be complied using our approach.
(We call such Oblivious RAMs “predictive memory” RAMs and explore this fur-
ther in the full version.) For example, this property holds for [18] ORAM. It also
allows a generic method to “collapse” all multi-round predictive memory Oblivious
RAM with small CPU into a single round. Observe that the overall complexity for
garbling programs depends both on the CPU complexity and the ORAM read/write
complexity.

– Tighter Input Compactness. Using an ORAM scheme that has small input encod-
ing and small size CPU (such as [18]) we can also make Input Compactness in our
main theorem tighter: for all programs we can make garbled inputs to be O(nk),
where recall that n is the input size and k is the security parameter. We remark that
if we wish to garble only “large” programs that run time at leastΩ(n · log n ·kO(1)),
we can make Input Compactness even better under the assumption that one can en-
code inputs to garbled circuits to be of size O(n+k) and have the garbled program
“unpack” the inputs to the full O(nk) size. Such packing techniques for have been
recently developed for garbling the inputs of garbled circuits by Ishai and Kushile-
vitz [17].

– Stronger Adversarial models. As already mentioned we describe the scheme in
the honest-but-curious model based on honest-but-curious Yao, and only in the non-
adaptively secure setting (see [3] for further discussion of adaptivity.) There is a
plethora of works that convert Yao’s garbled circuits from honest-but-curious to
malicious setting, as well strengthening its security in various settings. Since our
machinery is build on top of Yao’s garbled circuits (and Obvious RAMs that work
in the fully adaptive setting), many of these techniques for stronger guarantees for
Yao’s garbled circuit apply in a straightforward manner to our setting as well. We
postpone description of malicious models to the full version.

2 Preliminaries

2.1 Oblivious RAM

We work in the RAM model with stored programs, where there is a CPU that can
run a program that performs a sequence of reads or writes to locations stored on a large
memory. This machine, which we will refer to as the CPU or the client, can be viewed as
a stateful4 processor with only a few special data registers that store program counters,

4 We can consider a stateless version where all registers are stored in memory. For ease of
exposition, we let the client hold local state.

8

query counters, and cryptographic keys (primarily a seed for a PRF) and that CPU
can run small programs which model a single CPU step. Given the CPU state Σ and
the most recently read element x, CPU(Σ, x) does simple operations such as addition,
multiplication, updating program counter, or executing PRF followed by producing the
next read/write command as well as updating to the next state Σ′.

Because we wish to hide the type of access performed by the client, we unify both
types of accesses into a operation known as a query. A sequence of n queries can be
viewed as a list of (memory location, data) pairs (v1, x1), . . . , (vn, xn), along with a
sequence of operations op1, . . . , opn, where opi is a READ or WRITE operation. In
the case of READ operations, the corresponding x value is ignored. The sequence of
queries, including both the memory location and the data, performed by a client is
known as the access pattern.

In our model, we wish to obliviously simulate the RAM machine with a client,
which can be viewed as having limited storage, that has access to a server. However, the
server is untrusted and assumed to malicious. An oblivious RAM is secure if the view of
a any malicious server can be simulated in poly-time in a way that is indistinguishable
from the view of the server during a real execution. For concreteness, we focus on
sequence of buffersBk, Bk+1, . . . , BL of geometrically increasing sizes. Typically k =
O(1) (the first buffer is of constant size) and L = log n (the last buffer may contain
all n elements), where n is the total number of memory locations. These buffers are
standard bucketed hash tables, with buckets of size b. We refer the reader to [11] for
more information.

2.2 Yao’s Garbled Circuits

Garbled circuits were introduced by Yao [33]. A series of works looked at proving the
security and formalizing the notions of garbled circuits, including Lindell and Pinkas [19],
and recently, the work of Bellare et al. [4]. We refer the reader to the latter work for more
details, and we briefly summarize the key properties.

A circuit garbling scheme we view as a triple of algorithms (G,GI,GE) where
G(1k, C) takes as input a security parameter k and circuit C and outputs some garbled
circuit Γ and garbling key gsk.GI(x, gsk) converts an input x and a gsk into a garbled
input X , and GE(Γ,X) evaluates a garbled circuit on an garbled input.

We first make an observation that the labels (keys) on a given wire used in a garbled
circuit can be re-used in additional newly generated gates, as long as the value does
not change between the uses and it is not revealed whether this label represents 0 or 1.
(For example, assume that garbled circuit evaluator is given a label on some input wire,
which is a key representing a 0 or a 1. We claim that the same key can be used as input
key for other garbled circuits that are generated later.) This observation allows us to
execute garbled circuits in “parallel” or “sequentially” where some labels are re-used.
Indeed, this observation is implicitly used in classic garbled circuits in gates where the
fan-out is greater than 1: all outgoing wires share the same labels (see e.g. Footnote 8
in Lindell-Pinkas [19]).

Lemma 1. Suppose C and C′ are two circuits and suppose there is some input x for
which we want to compute C(x) and C′(x) (resp. C(C′(x))). Suppose the wiresw0, . . . , wn

9

in C represent the input wires for x and similarly define w′0, . . . , w
′
n represent the in-

put wires of x in C′ (resp. v′0, . . . , v
′
n be the output wires of C′). Let kb

wi
represent the

label indicating wire wi = b, and let C and C ′ be randomly garbled into GC(C)
and GC(C′) under the restriction that kb

wi
= kb

w′
i

(resp. kb
wi

= kb
v′

i
). Then the tuple

(GC(C), GC(C′), {kxi
wi
}ni=0) can be computationally simulated.

Proof. Consider the composite circuit D = C||C′ (resp. E = C ◦ C′) which is just
a copy of C and a copy of C′ in parallel (resp. sequence). Then every garbling of D
induces a garbling of C and C′ with the restriction exactly as above. By the security
of garbled circuits, there exists a simulator that can simulate (GC(D), {kxi

wi
}ni=0). We

can construct a simulator for our lemma by simply taking this simulator and taking the
output and separate out GC(C) and GC(C′), as the lemma requires.

Remark: If the data is encrypted bit by bit using Yao’s keys, Lemma 1 allows us to run
arbitrary garbled circuits on this data, akin to general purpose “function evaluation” on
encrypted data. This observation itself has a number of applications, we describe these
in the full version of the paper.

3 Non-interactive Garbled RAM Programs

3.1 Informal description of main ideas

We consider the RAM model of computation as in the works of [11,23,24] where a
RAM program along with data is stored in memory, and a small, stateful CPU with a
O(1) instruction set that can storeO(1) words that can be of size polylog(n) = poly(k)
where k is the security parameter. Our starting point is a ORAM model that can tolerate
fully malicious tampering adversary (see [24,11]). Each step of the CPU is simply a
read/write call to main memory followed by executing its next CPU instruction. We
now summarize our ideas for building Garbled RAM programs from an Oblivious RAM
program.

In order to garble a RAM program πt, we consider the two fundamental opera-
tions separately and show how to mesh them together: 1) Read/Write (v, x) from/to
memory. 2) Execute an instruction step to update state and produce next read/write
query: Σ′,READ/WRITE(v′, x′) ← CPU(Σ, x). Updating the state can include up-
dating local registers, incrementing program counters and query counters, and updating
cryptographic keys.

Our goal is to transform this into a non-interactive process by letting the client send
the server enough garbled information to evaluate the program up to t steps, where t
upper bounds the RAM program running time. We give some intuition as to how to con-
struct a circuit for each step, and then how to garble them. The first part will be modeled
as the circuit CORAM , and the second part will be modeled as the circuit CCPU . The cir-
cuits satisfy a novel property: the plain circuit CORAM emulates a query for the ORAM
client and outputs a bit representation of a garbled circuit GCORAM . This GCORAM

has output encodings that will be compatible with the garbled circuit GC(CCPU) to
evaluate a garbled the CPU’s next step. We remark that GCORAM actually contains

10

several sub-circuits, but is written as a single object for ease of exposition. If we gener-
ate t of these garbled circuits, then a party can evaluate a t-time garbled RAM program
by consuming one garbled CORAM and one garbled CCPU per time step.

We first consider the circuit CCPU , which is straightforward to describe. This circuit
takes as input Σ representing the internal state of the CPU, and x the last memory
contents read. Recall that the CPU performs a step CPU(Σ, x) and updates the state
to Σ′ and gives the next read/write query to memory location v′ and contents x′. In
order to turn this into a circuit, we can sacrifice some efficiency and have a “universal”
instruction in which we run every atomic instruction (from its constant sized instruction
set) and simply multiplex the actual results using the instruction opcode. This universal
instruction is modeled as a circuit which is of size kO(1). We remark that although this
circuit is simple, the complexity arises from when we want to garble this circuit: the
garbling must be done in a way so that the garbled inputs and outputs are compatible
with GCORAM .

The circuit CORAM must emulate the client in Oblivious RAM (we can think of it as
being a non-interactive client either by breaking out each individual step as a separate
circuit, or using a non-interactive ORAM). The input of the circuit is just an ORAM
read/write query5, and the output of the circuit is a bit representation that describes
a set of garbled circuits, equivalent to what would have been produced via the
ORAM client which we call GCORAM . We give full details on the construction in
Section 3.2. It is important that we argue that the result of this fetch can be combined
with the evaluation of the CPU step. Observe that since the labels in our ORAM are
generated as pseudo-random time-labeled encodings, so we know ahead of time only
the encoding of the output (but know neither the input nor output) of the i-th invocation
of the ORAM. Thus when garbling CCPU , the input encodings use exactly the output
encodings from the respective outputs of the ORAM. Recall in our ORAM protocol the
server sends back the encoded output to the client; here, we do not send it back, and
instead keep the result and use it as input in the next CPU step (which is secure and
correct via Lemma 1).

Then, putting it all together, to garble a RAM program πt that runs in time t, the
program garbling algorithm G generates t garbled CORAM and CCPU circuits, and also
encodes the initial state Σ0 of the CPU with the program initialized, counters set to
zero, and with fresh cryptographic keys. The full construction of G is given the next
section, Section 3.2.

3.2 Main Construction of Garbled Programs

We first describe how to construct the algorithms G,GI,GE. Given a program πt run-
ning in time t, we describe the algorithm G that converts it into a garbled program Πt.
In order to do so, we follow the two steps outlined above and we consider the construc-
tion of a circuit that performs an ORAM query CORAM and a circuit that runs one CPU
step CCPU .

5 Since the ORAM client uses randomness as well as time-labeled encodings (which are outputs
of the PRF), we will allow these to be inputs to CORAM , so that they may be pre-computed
“for free” rather than computed via the circuit. The circuit consumes these inputs in order to
generate the output garbled circuit without having to evaluate these itself.

11

Our garbling algorithm G will provide enough garbled circuits to execute t steps
of a program πt. Each step is a garbled RAM query (done obliviously via ORAM)
followed by a garbled CPU computation. It starts with a garbled encoding of the initial
state Σ0 of the CPU with the program πt initialized, counters set to zero, and with fresh
cryptographic keys. For each of the t time steps, it creates a garbled GC(CORAM) for
a read/write of that time step, then a garbled GC(CCPU) to perform a CPU step. We
show how to construct CORAM and CCPU such that they can be garbled and interleaved.
We will show that this garbling is independent of the actual program path, regardless of
what memory locations have been fetched, and is correct and secure.

First, we describe CORAM to mimic an oblivious read/write access to main mem-
ory. For this, it can just perform the steps in our Oblivious RAM, with one difference:
G does not know ahead of time which memory location will be used. Hence, in order
to overcome this, the circuit CORAM must take a memory location as input and inter-
nally formulate what the ORAM client computes. CORAM outputs what the “virtual”
ORAM client would have sent to the server: a garbled circuit GCORAM representing
a read/write query. The novelty in this construction is that when we feed a memory
location v into CORAM , the output precisely is a garbled ORAM read/write query rel-
ative to that memory location. In order to hide v, both CORAM and v are garbled into
GC(CORAM) and V respectively, and by the correctness of garbled evaluation, the out-
put is still GCORAM . By the security of the underlying ORAM, this output GCORAM

can actually be simulated.

Although it is a circuit that outputs another circuit, there is no circularity in this
construction: given a query location and some fixed randomness, the behavior of the
ORAM client is completely deterministic, straight-line, and takes kO(1) · polylog(n)
steps, so the output can be represented by a circuit also of that size. This ORAM client
is independent of the main program CPU which only uses ORAM as an “oracle”. We
emphasize this again, because G will most likely be ran by a client, G does not play the
role of the ORAM client but rather emulates the ORAM client via CORAM , so this is
not a client attempting to capture its own logic in a circuit. We provide a pseudocode
description of CORAM in Figure 1.

Looking ahead, G will garble this circuit and ensure that the output of an ORAM
query has the same encoding as that used to garble CCPU . The algorithm G can then
garble both CCPU and CORAM ahead of time, without having to know the memory
location.

Next, we consider building the circuit which performs a single CPU step in the RAM
program, CCPU that is supposed to perform Σ′,READ/WRITE(v′, x′)← CPU(Σ, x).
In order to hide which instruction is being executed, we build the circuit to take an
instruction opcode and we run every single-step instruction from its constant sized in-
struction set (not all possible program paths) of the CPU. The circuit multiplexes the
actual results using the instruction opcode. This universal instruction is modeled as a
circuit which is of size kO(1) and is independent of the ORAM circuit, independent of
the queried locations, and independent of the current running time.

One may ask the question: How can this circuit be interleaved with the CORAM

circuit if it is independent of it?

12

Inputs: An ORAM query to read/write (v, x) and a query number `. This circuit interprets the
client performing the `-th ORAM query, which uses randomness and time-labeled encodings
based on `. As such, this circuit also takes these randomness bits and pre-computed encodings
as inputs.
Output: A garbled circuit GCORAM representing a read/write ORAM query.
Circuit Description: We describe the functionality of the circuit CORAM . We recall our
algorithm for a ORAM query. Using time-labeled encodings via PRFs, it generates a set of
|B1|+ 2L− 2 garbled GC(Cmatch) which has hard-coded location information built into it,
with corresponding garbled GC(Cnext) circuits, and one final GC(Cwrite) garbled circuit for
writing the element back to the top level (and possibly an update circuit). Although the ORAM
client evaluates these PRFs internally, we do not encode this as part of our circuit CORAM , but
rather we “consume” them as input. Similarly, the ORAM client must use randomness, which
we also consume from the input of CORAM .

1. For the top level, B1, for each bucket, CORAM creates a time-labeled garbled circuit
GC(Cmatch) consuming the input encodings to be used as garbled labels.

2. For subsequent levels i = 2 . . . L:
(a) The circuit CORAM computes q0i = hi(v) and consumes q1i from the input (the input

itself is uniformly random)
(b) Consume two secret keys for encryption sk0

i and sk1
i from the input and create a

garbled circuit GC(Cnext)
(c) Create two time-labeled garbled circuits GC(Cmatch), one that searches for w in

bucket q0i encrypted under sk0
i , and one that searches for w in bucket q1i encrypted

under sk1
i , again consuming the encoding from the input to CORAM .

3. CORAM also creates a garbled GC(Cwrite) that writes the result back to the first empty
position the top level buffer Bk.

4. If ` is a multiple of |B1|, then a reshuffle step is performed using the time-labeled garbled
update circuit GC(Cupdate).

5. The combined set of garbled circuits is referred to as GCORAM .

We point out that throughout this entire process, every time a query circuit is created, G incre-
ments ` in order to keep track of the time-labeled encodings required by the CORAM circuits.

Fig. 1. The ORAM Client Circuit CORAM

The answer is that when G garbles CCPU , the encoding will depend on the output
of CORAM in the previous time-step. Note that this construction is not circular as each
garbling only depends on the previous one, leading up to a total of t time steps. This can
be done because G knows the encoding of the output encoding (but not the output) of
the Oblivious RAM query, which does not depend on the location queried. This output
encoding is then used for the input parameter encoding for GC(CCPU). We provide a
pseudocode description of G in Figure 2.

The algorithm GI for garbling an input of size n is just the time-labeled encodings
starting from wherever the RAM program expects the inputs to be located.

The algorithm GE used to evaluate a garbled program Πt on garbled inputs evalu-
ates the garbled circuitGC(CORAM), then executing the garbled instructionGC(CCPU)
one at a time, up to t times. The process is precisely performing the same steps as G

13

Inputs: A program πt with an upper bound on running time t, and a pseudo-random function
family F along with a key s.
Algorithm Description: The algorithm G is performed as follows. It creates an encoding of
the initial state of the CPU, Σ0 with the program πt initialized. It also encodes an initial
program counter and cryptographic keys. We show how to construct CORAM and CCPU such
that they can be garbled and interleaved across t time steps. We must argue that this garbling is
independent of the actual program path, regardless of what memory locations have been
fetched, and is correct and secure.
For each time step i = 1 . . . t, G creates:

1. A garbled read/write query circuit GC(CORAM) for performing query number i on some
(unknown variable) garbled location Vi (and Xi in the case of a write). G pre-computes
randomness and PRF evaluations and hardwires them. Although G does not know the
eventual output, it knows the encoding of it, which is independent of the queried location.
It uses this encoding for the following:

2. A garbled instruction circuit GC(CCPU) with input wires of Xi using the encoding from
above, and the input wires of Σi using the output encoding from the previous CPU step.
The output is a garbled location Vi+1 (and Xi+1 in the case of a write) to be used in the
next read/write query and an garbled updated state Σi+1.

Fig. 2. Program Garbling Algorithm G

except evaluating garbled circuits instead of generating them. In addition, once it gets
the garbled ORAM query, it must also execute it as well. We provide a pseudocode
description of G in Figure 3.

Inputs: A garbled program Πt with garbled input X .
Algorithm Description: The algorithm GE is performed as follows. It first stores the initial
encoded program state and inputs into memory. Then, for each time step i = 1 . . . t, GE
performs:

1. Evaluate the garbled query circuit GC(CORAM) on a garbled memory location Vi. The
output is GCORAM which itself is a garbled circuit that represents a read/write query in
our ORAM protocol. Execute the query playing the role of the server to obtain some
garbled output Xi which is kept locally instead of sent to the client.

2. Evaluate the garbled instruction circuit GC(CCPU) on garbled inputs Xi and Σi. Obtain a
new read/write query Vi+1.

After t steps, output the final value Xt+1.

Fig. 3. Garbled Program Evaluation Algorithm GE

3.3 Main Result

We now state our main result:

14

Theorem 1. Assume one-way functions exist, and let the security parameter be k and
let F be a PRF family based on the one-way function. Then, there exists an efficient
Program Garbling triple of algorithms G,GI,GE such that for any πt any t and any
input x of length n, we have the following.

Correctness: ∀x, πt, F, s:
πt(x) = GE [G(πt, t, F, s), GI(x, s)].
Security: ∃ poly-time simulator Sim, such that ∀π, t, x, s, where
|s| = k [G(πt, t, F, s), GI(x, s)] ≈ Sim

[
1k, t, |x|, πt(x)

]
.

Program Size: The size of the garbled program
|G(πt, t, F, s)| = O

(
(|π|+ t) · kO(1) · polylog(n)

)
.

Input Size: Let |x| = n and |s| = k. ∀x, s the garbled input size
|GI(x, s)| = O

(
n · kO(1) · polylog(n)

)
.

Proof.
We give an outline of the proof of security, and refer the reader to the full ver-

sion [20] for the full proofs.

Security. We design the simulator Sim as follows. We know that the server performs
the following:

1. Evaluate the garbled query circuit GC(CORAM) on a garbled memory location Vi.
The output isGCORAM which itself is a garbled circuit that represents a read/write
query in the underlying ORAM.

2. Execute the garbled ORAM queryGCORAM playing the role of the server to obtain
some garbled output Xi which is kept locally instead of sent to the client.

3. Evaluate the garbled instruction circuit GC(CCPU) on garbled inputs Xi and Σi.
Obtain a new read/write query Vi+1.

The underlying Oblivious RAM is secure and uses time-labeled garbled circuits
and encodings and can be simulated by some SimORAM . Furthermore, the underlying
Yao’s garbled circuits are secure, and can be simulated by some SimY ao. Thus, the
access pattern of the ORAM can be simulated even for tampering adversary, and we
need only show that the garbled circuit emulating the ORAM client GC(CORAM) and
garbled instructions GC(CCPU) can also be simulated. The garbled circuits can be
interleaved securely due to Lemma 1, and the time-labeled encodings themselves are
just outputs of a PRF. By the security of Yao’s garbled circuits and the underlying PRF,
these can be simulated securely.

4 Application to Secure RAM Computation

We give an example application in which only one party has input and wants to re-
peatedly run programs on this data. Such is the case of secure cloud computing, where
someone stores data in the cloud and then later runs computations against that data.
We emphasize that in this setting, there is no issue of adaptivity because the server has
no inputs. In the typical setting of two-party secure computation, we deal with this by
making the server first perform OTs to retrieve its inputs before the client sends the

15

garbled program. In the multi-party setting, the technique can be utilized in the Beaver-
Micali-Rogaway paradigm [2] to achieve constant-round MPC with the same approach
as in [2] but with garbled RAM programs. That is to say, in this application, a client
wishes to store some data x on a remote server and then run various RAM programs
on x without the server learning the results of the programs or x itself. Of course, the
client could always ignore the server altogether and run all the programs on x locally,
so we are envisioning a scenario in which the client does not want to carry around all of
its data locally and wants to only store a few cryptographic keys or counters. To apply
Garbled RAM programs to this application, the client first garbles the input x to get
X = GI(x) and sends it to the server. Then for each program the client wants to run,
it recalls the encoding of the previous output and creates a garbled program using the
labels of the previous output as inputs for the current program.

5 Conclusions and Open Problems

Recently, Goldwasser at. al. [12] have shown how to construct a reusable Garbled Yao.
It is tempting to plug it into our construction to achieve reusable GRAM with compact-
ness proportional to program size and independent of its running time. The idea is to
compute poly-many iterations of the CPU computation using reusable Yao (instead of
sending fresh garbled circuit for each CPU step) where CPU computes its own garbled
keys for each step. This is possible only if there exists poly-time reusable circular-secure
Garbled Yao with input encoding of size independent of the circuit size. Constructing
such a gadget is an interesting open problem even under non-standard assumptions.

6 Acknolwedgements

We thank Oded Goldreich and Daniel Wichs for very helpful discussions and the anony-
mous reviewers for their comments.

16

References

1. Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to soundness: Efficient
verification via secure computation. In ICALP (1), pages 152–163, 2010.

2. Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure proto-
cols (extended abstract). In STOC, pages 503–513, 1990.

3. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure garbling with
applications to one-time programs and secure outsourcing. In ASIACRYPT, pages 134–153,
2012.

4. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In
ACM Conference on Computer and Communications Security, pages 784–796, 2012.

5. Dan Boneh, Eyal Kushilevitz, Rafail Ostrovsky, and William E. Skeith III. Public key en-
cryption that allows PIR queries. In CRYPTO, pages 50–67, 2007.

6. Dan Boneh, David Mazieres, and Raluca Ada Popa. Remote oblivious storage: Making
oblivious RAM practical. CSAIL Technical Report, MIT-CSAIL-TR-2011-018, 2011.

7. Nishanth Chandran, Rafail Ostrovsky, and William E. Skeith III. Public-key encryption with
efficient amortized updates. In SCN, pages 17–35, 2010.

8. Stephen A. Cook and Robert A. Reckhow. Time bounded random access machines. Journal
of Computer and System Sciences, 7(4):354–375, 1973.

9. Oded Goldreich. Towards a theory of software protection and simulation by oblivious RAMs.
In STOC, pages 182–194, 1987.

10. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a
completeness theorem for protocols with honest majority. In STOC, pages 218–229, 1987.

11. Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious
RAMs. J. ACM, 43(3):431–473, 1996.

12. Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and Nickolai Zel-
dovich. Succinct functional encryption and applications: Reusable garbled circuits and be-
yond. Cryptology ePrint Archive, Report 2012/733, 2012.

13. Michael T. Goodrich and Michael Mitzenmacher. Privacy-preserving access of outsourced
data via oblivious RAM simulation. In ICALP, pages 576–587, 2011.

14. Michael T. Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto Tamassia.
Oblivious RAM simulation with efficient worst-case access overhead. In CCSW, pages 95–
100, 2011.

15. Michael T. Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto Tamassia.
Privacy-preserving group data access via stateless oblivious ram simulation. In SODA, pages
157–167, 2012.

16. S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal Malkin, Mariana
Raykova, and Yevgeniy Vahlis. Secure two-party computation in sublinear (amortized) time.
In ACM Conference on Computer and Communications Security, pages 513–524, 2012.

17. Yuval Ishai and Eyal Kushilevitz. Personal communication, 2012.
18. Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (in)security of hash-based oblivious

RAM and a new balancing scheme. In SODA, pages 143–156, 2012.
19. Yehuda Lindell and Benny Pinkas. A proof of security of yao’s protocol for two-party com-

putation. J. Cryptology, 22(2):161–188, 2009.
20. Steve Lu and Rafail Ostrovsky. How to garble RAM programs. Cryptology ePrint Archive,

Report 2012/601, 2012.
21. Steve Lu and Rafail Ostrovsky. Distributed oblivious ram for secure two-party computation.

In TCC, pages 377–396, 2013.
22. Moni Naor and Kobbi Nissim. Communication preserving protocols for secure function

evaluation. In STOC, pages 590–599, 2001.

17

23. Rafail Ostrovsky. Efficient computation on oblivious RAMs. In STOC, pages 514–523,
1990.

24. Rafail Ostrovsky. Software Protection and Simulation On Oblivious RAMs. PhD thesis, Mas-
sachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science,
June 1992.

25. Rafail Ostrovsky and Victor Shoup. Private information storage (extended abstract). In
STOC, pages 294–303, 1997.

26. Benny Pinkas and Tzachy Reinman. Oblivious RAM revisited. In CRYPTO, pages 502–519,
2010.

27. Nicholas Pippenger and Michael J. Fischer. Relations among complexity measures. J. ACM,
26(2):361–381, 1979.

28. Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious RAM with
O((logN)3) worst-case cost. In ASIACRYPT, pages 197–214, 2011.

29. Emil Stefanov, Elaine Shi, and Dawn Song. Towards practical oblivious RAM. In NDSS,
2012.

30. Daniel Wichs. Personal Communication. March 2013.
31. Peter Williams and Radu Sion. Single Round Access Privacy on Outsourced Storage. In

ACM CCS, pages 293–304, 2012.
32. Peter Williams, Radu Sion, and Bogdan Carbunar. Building castles out of mud: practical ac-

cess pattern privacy and correctness on untrusted storage. In ACM Conference on Computer
and Communications Security, pages 139–148, 2008.

33. Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In FOCS,
pages 160–164, 1982.

	How to Garble RAM Programs
	Introduction
	The Blueprint for RAM Program Garbling
	Related Work on Secure RAM Computation.
	Our Results
	Remarks

	Preliminaries
	Oblivious RAM
	Yao's Garbled Circuits

	Non-interactive Garbled RAM Programs
	Informal description of main ideas
	Main Construction of Garbled Programs
	Main Result

	Application to Secure RAM Computation
	Conclusions and Open Problems
	Acknolwedgements

