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Abstract. Physically Uncloneable Functions (PUFs) [28] are noisy phys-
ical sources of randomness. As such, they are naturally appealing for
cryptographic applications, and have caught the interest of both the-
oreticians and practitioners. A major step towards understanding and
securely using PUFs was recently taken in [Crypto 2011] where Brzuska,
Fischlin, Schröder and Katzenbeisser model PUFs in the Universal Com-
position (UC) framework of Canetti [FOCS 2001]. A salient feature of
their model is that it considers trusted PUFs only; that is, PUFs which
have been produced via the prescribed manufacturing process and are
guaranteed to be free of any adversarial influence. However, this does not
accurately reflect real-life scenarios, where an adversary could be able to
create and use malicious PUFs.
The goal of this work is to extend the model proposed in [Crypto 2011]
in order to capture such a real-world attack. The main contribution of
this work is the study of the Malicious PUFs model. To this end, we
first formalize the notion of “malicious” PUFs, and extend the UC for-
mulation of Brzuska et al. to allow the adversary to create PUFs with
arbitrary adversarial behaviour. Then, we provide positive results in this,
more realistic, model. We show that, under computational assumptions,
it is possible to UC-securely realize any functionality.

1 Introduction

The impossibility of secure computation in the universal composability frame-
work was proved first by Canetti and Fischlin [9], and then strengthened by
Canetti et al. in [10]. Impossibility of even weaker notions has been proved
in [1, 5, 16].

As a consequence, several setup assumptions, and relaxations of the UC
framework have been proposed to achieve UC security [4, 11,19,29].

In recent years, researchers have started exploring the use of secure hardware
in protocol design. The idea is to achieve protocols with strong security guar-
antees (like UC) by allowing parties to use hardware boxes that have certain
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security properties. An example of the kind of security required from such a
hardware box is that of tamper-proofness; i.e., the receiver of the box can only
observe the input/output behaviour of the functionality that the box imple-
ments. This property was formalized by Katz in [20], and it was shown that UC
security is possible by relying on the existence of tamper-proof programmable
hardware tokens, and computational assumptions. Smart cards are well under-
stood examples of such tokens, since they have been used in practice in the last
decades. Several improvements and variations of Katz’s model have been then
proposed in follow up papers (e.g., [17]).

Spurred by technological advances in manufacturing, recently a new hard-
ware component has gained a lot of attention: Physically Uncloneable Functions
(PUFs) [27,28]. A PUF is a hardware device generated through a special physical
process that implements a “random” function4 that depends upon the physical
parameters of the process. These parameters can not be “controlled”, and pro-
ducing a clone of the device is considered infeasible5 . Once a PUF has been
constructed, there is a physical procedure to query it, and to measure its an-
swers. The answer of a PUF depends on the physical behavior of the PUF itself,
and is assumed to be unpredictable, or to have high min-entropy. Namely, even
after obtaining many challenge-response pairs, it is infeasible to predict the re-
sponse to a new challenge.

Since their introduction by Pappu in 2001, PUFs have gained a lot of atten-
tion for cryptographic applications like anti-counterfeiting mechanisms, secure
storage, RFID applications, identification and authentication protocols [14, 15,
18, 18, 22, 33, 34]. More recently PUFs have been used for designing more ad-
vanced cryptographic primitives. In [31] Rührmair shows the first construction
of Oblivious Transfer, the security proof of which is later provided in [32]. In [3],
Armknecht et al. deploy PUFs for the construction of memory leakage-resilient
encryption schemes. In [23] Maes et al. provide construction and implementation
of PUFKY, a design for PUF-based cryptographic key generators. There exist
several implementations of PUFs, often exhibiting different properties. The work
of Armknecht et al. [2] formalizes the security features of physical functions in
accordance to existing literature on PUFs and proposes a general security frame-
work for physical functions. A survey on PUF implementations is given in [24].
Very recently in [21] Katzenbeisser et al. presented the first large scale evaluation
of the security properties of some popular PUFs implementations (i.e., intrinsic
electronic PUFs).

Modeling PUFs in the UC framework. Only very recently, Brzuska et al. [7]
suggested a model for using PUFs in the UC setting that aims at abstracting
real-world implementations. The unpredictability and uncloneability properties
are modeled through an ideal functionality. Such functionality allows only the

4 Technically, a PUF does not implement a function in the mathematical sense, as the
same input might produce different responses.

5 SRAM PUFs (memory-based PUFs) might be cloneable according to recent find-
ing [6].
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creation of trusted PUFs. In [7] PUFs are thought as non-PPT setup assump-
tions. As such, a PPT simulator cannot simulate a PUF, that is, PUFs are non-
programmable. Although non-programmable, PUFs are not modeled as global
setup [8]. [7] shows how to achieve unconditional UC secure Oblivious Transfer,
Bit Commitment and Key Agreement with trusted PUFs.

1.1 Our Contribution

We observe that the UC formulation of PUFs proposed by Brzuska et al. makes
the following crucial assumption: the model considers trusted PUFs only, that
is, adversaries are assumed to be unable to produce fake/malicious PUFs. As
we argue below, we feel that assuming that an adversary cannot misbehave by
creating fake/malicious PUFs, might be unrealistic in the real world. Given that
the study of PUFs is still in its infancy, it is risky to rely on assumptions on the
impossibility of the adversaries in generating and accessing PUFs adversarially.
The main contribution of this work is to study security models that capture
such plausible real-world attacks, and provide protocols that are secure in the
presence of such adversaries.

Modeling malicious PUFs. We augment the UC framework so to enable the
adversary to create untrusted (malicious) PUFs. But what exactly are malicious
PUFs? In real life, an adversary could tamper with a PUF in such a way that
the PUF loses any of its security properties. Or the adversary may introduce
new behaviours; for example, the PUF may start logging its queries. To keep the
treatment of malicious behaviour as general as possible, we allow the adversary
to send as PUF any hardware token that meets the syntactical requirements of
a PUF. Thus, an adversary is assumed to be able to even produce fake PUFs
that might be stateful and programmed with malicious code. We assume that
a malicious PUF however cannot interact with its creator once is sent away to
another party. If this was not the case, then we are back in the standard model
(see the Introduction in the full version [26]).

UC secure computation with malicious PUFs. The natural question is whether
UC security can be achieved in such a much more hostile setting. We give a pos-
itive answer to this question by constructing a computational UC commitment
scheme in the malicious PUFs model. Our commitment scheme needs two PUFs
that are transferred only once (PUFs do not go back-and-forth), at the beginning
of the protocol and it requires computational assumptions. We avoid that PUFs
go back-and-forth by employing a technique that requires OT. The results of
Canetti, et al. [11] shows how to achieve general UC computation from com-
putational UC commitments. Whether unconditional UC secure computation is
possible in the malicious PUF model, is still an open problem.

Hardness assumptions with PUFs. Notice that as correctly observed in [7], since
PUFs are not PPT machines, it is not clear if standard complexity-theoretic
assumptions still hold in presence of PUFs. We agree with this observation.
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However the critical point is that even though there can exist a PUF that helps
to break in polynomial time a standard complexity-theoretic assumptions, it is
still unlikely that a PPT adversary can find such a PUF. Indeed a PPT machine
can only generate a polynomial number of PUFs, therefore obtaining the one that
allows to break complexity assumptions is an event that happens with negligible
probability and thus it does not effect the concrete security of the protocols.

In light of the above discussion, only one of the following two cases is possi-
ble. 1) Standard complexity-theoretic assumptions still hold in presence of PPT
adversaries that generate PUFs; in this case our construction is secure. 2) There
exists a PPT adversary that can generate a PUF that breaks standard assump-
tions; in this case our construction is not secure, but the whole foundations of
complexity-theoretic cryptography would fall down (which is quite unlikely to
happen) with respect to real-world adversaries. We elaborate on this issue in
Section 3.1.

Additional results. We now mention additional results that can be found in the
full version of this paper [26] but have been omitted from the present confer-
ence version due to lack of space. Firstly, we further investigate the feasibility
of achieving unconditional security in the malicious PUF model. We leave the
important question of unconditional UC open, but provide a construction of an
unconditional commitment scheme in the malicious PUF model. Secondly, we
propose and study another modification to the original model of Brzuska et al.
In the new model which we call “oblivious-query model”, all parties (and the
adversary) use trusted PUFs, but in the security proofs, the simulator is not
allowed to observe the adversary’s queries to its PUF. The main motivation for
studying this modification is that the ability of the simulator to observe adver-
sary’s queries stems from the assumption that there is only a single, prescribed
procedure for evaluating a PUF. As we discuss in detail in the full version, this
assumption is not well-justified in the real world. Our main contribution in the
oblivious-query model is the construction of an unconditional UC protocol for
OT. Lastly, we show that if both adversarial modes discussed above are com-
bined, viz., adversaries can create malicious PUFs and may query honest PUFs
via non-prescribed processes, then UC security is impossible.

Independent work. Very recently and independently of us, van Dijk and Rührmair [36]
also study the use of PUFs in cryptographic protocols. Among other things, they
consider the “bad” PUF model where PUFs can be augmented with malicious
behaviour like keeping a log of queries, etc. They show that unconditional OT is
impossible using bad PUFs, but their setting is very different from ours. For a de-
tailed discussion about the work of van Dijk and Rührmair, see the Introduction
of the full version [26].
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2 Definitions

Notation. We let n be the security parameter and PPT be the class of proba-

bilistic polynomial time Turing machines. We use v
$← A() when the algorithm

A is randomized. We denote by disham(a, b) the Hamming distance of a and b.

Physically uncloneable functions. We follow definitions given in [7]. A PUF is
a noisy physical source of randomness. The randomness property comes from
an uncontrollable manufacturing process. A PUF is evaluated with a physical
stimulus, called the challenge, and its physical output, called the response, is
measured. Because the processes involved are physical, the function implemented
by a PUF can not (necessarily) be modeled as a mathematical function, neither
can be considered computable in PPT. Moreover, the output of a PUF is noisy,
namely, querying a PUF twice with the same challenge, could yield to different
outputs. The mathematical formalization of a PUF due to [7] is the following.

A PUF-family P is a pair of (not necessarily efficient) algorithms Sample
and Eval, and is parameterized by the bound on the noise of PUF’s response
dnoise and the range of the PUF’s output rg. Algorithm Sample abstracts the
PUF fabrication process and works as follows. On input the security parameter,
it outputs a PUF-index id from the PUF-family satisfying the security prop-
erty (that we define soon) according to the security parameter. Algorithm Eval
abstracts the PUF-evaluation process. On input a challenge q, it evaluates the
PUF on q and outputs the response a of length rg. The output is guaranteed to
have bounded noise dnoise, meaning that, when running Eval(1n, id, q) twice, the
Hamming distance of any two responses a1, a2 is smaller than dnoise(n). Wlog,
we assume that the challenge space of a PUF is a full set of strings of a certain
length.

Definition 1 (Physically Uncloneable Functions). Let rg denote the size
of the range of the PUF responses of a PUF-family and dnoise denote a bound of
the PUF’s noise. P = (Sample,Eval) is a family of (rg, dnoise)-PUF if it satisfies
the following properties.

Index Sampling. Let In be an index set. On input the security parameter n,
the sampling algorithm Sample outputs an index id ∈ In following a not
necessarily efficient procedure. Each id ∈ In corresponds to a set of distribu-
tions Did. For each challenge q ∈ {0, 1}n, Did contains a distribution Did(q)
on {0, 1}rg(n). Did is not necessarily an efficiently sampleable distribution.

Evaluation. On input the tuple (1n, id, q), where q ∈ {0, 1}n, the evaluation
algorithm Eval outputs a response a ∈ {0, 1}rg(n) according to distribution
Did(q). It is not required that Eval is a PPT algorithm.

Bounded Noise. For all indexes id ∈ In, for all challenges q ∈ {0, 1}n, when
running Eval(1n, id, q) twice, the Hamming distance of any two responses
a1, a2 is smaller than dnoise(n).

In the paper we use PUFid(q) to denote Did(q). When not misleading, we omit
id from PUFid, using only the notation PUF.
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Security of PUFs. We assume that PUFs enjoy the properties of uncloneability
and unpredictability. Unpredictability is modeled via an entropy condition on the
PUF distribution. Namely, given that a PUF has been measured on a polynomial
number of challenges, the response of the PUF evaluated on a new challenge has
still a significant amount of entropy. Formally,

Definition 2 (Unpredictability). A (rg, dnoise)-PUF family P = (Sample,Eval)
for security parameter n is (dmin(n),m(n))-unpredictable if for any q ∈ {0, 1}n
and challenge list Q = (q1, . . . , qpoly(n)), one has that, if for all 1 ≤ k ≤
poly(n) the Hamming distance satisfies disham(q, qk) ≥ dmin(n), then the aver-
age min-entropy satisfies H̃∞(PUF(q)|PUF(Q)) ≥ m(n), where PUF(Q) denotes
a sequence of random variables PUF(q1), . . . ,PUF(qpoly(n)) each corresponding
to an evaluation of the PUF on challenge qk. Such a PUF-family is called a
(rg, dnoise, dmin,m)-PUF family.

Fuzzy extractors. Fuzzy extractors of Dodis et al. [13] are applied to the outputs
of the PUF, to convert such noisy, high-entropy measurements into reproducible
randomness. Very informally, a fuzzy extractor is a pair of efficient randomized
algorithms (FuzGen,FuzRep). FuzGen takes as input an `-bit string, that is the
PUF’s response a, and outputs a pair (p, st), where st is a uniformly distributed
string, and p is a public helper data string. FuzRep takes as input the PUF’s
noisy response a′ and the helper data p and generates the very same string st
obtained with the original measurement a. The security property of fuzzy extrac-
tors guarantees that, if the min-entropy of the PUF’s responses are greater than
a certain parameter m, knowledge of the public data p only, without the mea-
surement a, does not give any information on the secret value st. The correctness
property, guarantees that, all pairs of responses a, a′ that are close enough, i.e.,
their hamming distance is less then a certain parameter t, will be recovered by
FuzRep to the same value st generated by FuzGen. In order to apply fuzzy ex-
tractors to PUF’s answers, it is sufficient to pick an extractor whose parameters
match with the parameter of the PUF being used.

3 UC Security with Malicious PUFs

In Section 1 we have motivated the need of a different formulation of UC security
with PUFs that allows the adversary to generate malicious PUFs. In this section
we first show how to model malicious PUFs in the UC framework, and then
show that as long as standard computational assumptions still hold when PPT
adversaries can generate (even malicious) PUFs, there exist protocols for UC
realizing any functionality with (malicious) PUFs.

3.1 Modeling Malicious PUFs

We allow our adversaries to send malicious PUFs to honest parties6. As discussed
before, the motivation for malicious PUFs is that the adversary may have some

6 Throughout this section, we assume the reader is familiar with the original UC PUF
formulation of Brzuska et al. [7] (Section 4.2).
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control over the manufacturing process and may be able to produce errors in the
process that break the PUF’s security properties. Thus, we would like parties
to rely only on the PUFs that they themselves manufacture (or obtain from a
source that they trust), and not on the ones they receive from other (possibly
adversarial) parties.

Malicious PUFs families. In the real world, an adversary may create a malicious
PUF in a number of ways. For example, it can tamper with the manufacturing
process for an honestly-generated PUF to compromise its security properties
(unpredictability, for instance). It may also introduce additional behaviour into
the PUF token, like logging of queries. Taking inspiration from the literature
on modeling tamper-proof hardware tokens, one might be tempted to model
malicious PUFs analogously in the following way: to create a malicious PUF,
the adversary simply specifies to the ideal functionality, the (malicious) code
it wants to be executed instead of an honest PUF. Allowing the adversary to
specify the malicious code enables the simulator to “rewind” the malicious PUF,
which is used crucially in security proofs in the hardware token model. However,
modeling malicious PUFs in this way would disallow the adversary from modi-
fying honest PUFs (or more precisely, the honest PUF manufacturing process).
To keep our treatment as general as possible, we do not place any restriction
on a malicious PUF, except that it should have the same syntax as that of an
honest PUF family, as specified in Definition 1. In particular, the adversary is
not required to know the code of malicious PUFs it creates, and thus our sim-
ulator can not rely on rewinding in the security proofs. Formally, we allow the
adversary to specify a “malicious PUF family”, that the ideal functionality uses.
Of course, in the protocol, we also want the honest parties to be able to obtain
and send honestly generated PUFs. Thus our ideal functionality for PUFs, FPUF

(Fig. 1) is parameterized by two PUF families: the normal (or honest) family
(Samplenormal,Evalnormal) and the possibly malicious family (Samplemal,Evalmal).
When a party Pi wants to initialize a PUF, it sends a initPUF message to FPUF in
which it specifies the mode ∈ { normal, mal }, and the ideal functionality uses the
corresponding family for initializing the PUF. For each initialized PUF, the ideal
functionality FPUF also stores a tag representing the family (i.e., mal or normal)
from which it was initialized. Thus, when the PUF needs to be evaluated, FPUF

runs the evaluation algorithm corresponding to the tag.
As in the original formulation of Brzuska et al., the ideal functionality FPUF

keeps a list L of tuples (sid, id, mode, P̂ , τ). Here, sid is the session identifier of
the protocol and id is the PUF identifier output by the Samplemode algorithm. As
discussed above mode ∈ { normal, mal } indicates the mode of the PUF, and P̂
identifies the party that currently holds the PUF. The final argument τ specifies
transition of PUFs: τ = notrans indicates the PUF is not in transition, while τ =
trans(Pj) indicates that the PUF is in transition to party Pj . Only the adversary
may query the PUF during the transition period. Thus, when a party Pi hands
over a PUF to party Pj , the corresponding τ value for that PUF is changed from
notrans to trans(Pj), and the adversary is allowed to send evaluation queries to
this PUF. When the adversary is done with querying the PUF, it sends a readyPUF
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message to the ideal functionality, which hands over the PUF to Pj and changes
the PUFs transit flag back to notrans. The party Pj may now query the PUF.
The ideal functionality now waits for a receivedPUF message from the adversary,
at which point it sends a receivedPUF message to Pi informing it that the hand
over is complete. The ideal functionality is described formally in Fig. 1.

Allowing adversary to create PUFs. We deviate from the original formulation of
FPUF of Brzuska et al. [7] in one crucial way: we allow the ideal-world adversary S
to create new PUFs. That is, S can send a initPUF message to FPUF. In the original
formulation of Brzuska et al., S could not create its own PUFs, and this has
serious implications for the composition theorem. We thank Margarita Vald [35]
for pointing out this issue. We elaborate on this in Appendix H in the full
version [26]. Also, it should be noted that the PUF set-up is non-programmable,
but not global [8]. The environment must go via the adversary to query PUFs,
and may only query PUFs in transit or held by the adversary at that time.

We remark that the OT protocol of [7] for honest PUFs, fails in the presence
of malicious PUFs. Consider the OT protocol in Fig. 3 in [7]. The security
crucially relies on the fact that the receiver Pj can not query the PUF after
receiving sender’s first message, i.e., the pair (x0, x1). If it could do so, then it
would query the PUF on both x0 ⊕ v and x1 ⊕ v and learn both s0 and s1. In
the malicious PUF model however, as there is no guarantee that the receiver can
not learn query/answer pairs when a malicious PUF that he created is not in its
hands, the protocol no longer remains secure.

PUFs and computational assumptions. The protocol we present in the next
section will use computational hardness assumptions. These assumptions hold
against probabilistic polynomial-time adversaries. However, PUFs use physical
components and are not modeled as PPT machines, and thus, the computa-
tional assumptions must additionally be secure against PPT adversaries that
have access to PUFs. We remark that this is a reasonable assumption to make,
as if this is not the case, then PUFs can be used to invert one-way functions,
to find collisions in CRHFs and so on, therefore not only our protocol, but any
computational-complexity based protocol would be insecure. Note that PUFs
are physical devices that actually exist in the real world, and thus all real-world
adversaries could use them.

To formalize this, we define the notion of “admissible” PUF families. A PUF
family (regardless of whether it is honest or malicious) is called admissible with
respect to a hardness assumption if that assumption holds even when the ad-
versary has access to PUFs from this family. We will prove that our protocol
is secure when the FPUF ideal functionality is instantiated with admissible PUF
families. In particular, all the cryptographic tools that we use to construct our
protocol can be based on the DDH assumption. From this point on in this paper,
a “PUF family” would be taken to mean a PUF family which is admissible with
respect to DDH.
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FPUF uses PUF families P1 = (Samplenormal,Evalnormal) with parameters
(rg, dnoise, dmin,m), and P2 = (Samplemal,Evalmal).
It runs on input the security parameter 1n, with parties P = {P1, . . . , Pn } and
adversary S.

– When a party P̂ ∈ P∪{S } writes (initPUF, sid, mode, P̂ ) on the input tape of FPUF,
where mode ∈ { normal, mal }, then FPUF checks whether L already contains a
tuple (sid, ∗, ∗, ∗, ∗):
• If this is the case, then turn into the waiting state.
• Else, draw id ← Samplemode(1

n) from the PUF family. Put
(sid, id, mode, P̂ , notrans) in L and write (initializedPUF, sid) on the com-
munication tape of P̂ .

– When party Pi ∈ P writes (evalPUF, sid, Pi, q) on FPUF’s input tape, check if there
exists a tuple (sid, id, mode, Pi, notrans) in L.

• If not, then turn into waiting state.
• Else, run a← Evalmode(1

n, id, q). Write (responsePUF, sid, q, a) on Pi’s commu-
nication input tape.

– When a party Pi sends (handoverPUF, sid, Pi, Pj) to FPUF, check if there exists a
tuple (sid, ∗, ∗, Pi, notrans) in L.

• If not, then turn into waiting state.
• Else, modify the tuple (sid, id, mode, Pi, notrans) to the updated tuple (sid, id,

mode, ⊥, trans(Pj)). Write (invokePUF, sid, Pi, Pj) on S’s communication input
tape.

– When the adversary sends (evalPUF, sid,S, q) to FPUF, check if L contains a tuple
(sid, id, mode, ⊥, trans(∗)) or (sid, id, mode,S, notrans).
• If not, then turn into waiting state.
• Else, run a← Evalmode(1

n, id, q) and return (responsePUF, sid, q, a) to S.

– When S sends (readyPUF, sid,S) to FPUF, check if L contains the tuple (sid, id, mode,
⊥, trans(Pj)).

• If not found, turn into the waiting state.
• Else, change the tuple (sid, id, mode, ⊥, trans(Pj)) to (sid, id, mode, Pj , notrans)

and write (handoverPUF, sid, Pi) on Pj ’s communication input tape and store
the tuple (receivedPUF, sid, Pi).

– When the adversary sends (receivedPUF, sid, Pi) to FPUF, check if the tuple
(receivedPUF, sid, Pi) has been stored. If not, return to the waiting state. Else,
write this tuple to the input tape of Pi.

Fig. 1. The ideal functionality FPUF for malicious PUFs.

3.2 Constructions for UC Security in the Malicious PUFs Model

In this section we present a construction for UC-secure commitment scheme in
the malicious PUFs model, which yields UC-security for any PPT functionality
via the [11] compiler.
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We first recall some of the peculiarities of the PUFs model. A major difficulty
when using PUFs, in contrast to say tamper-proof tokens, is that PUFs are not
programmable. That is, the simulator can not simulate the answer of a PUF, and
must honestly forward the queries to the FPUF functionality. The only power of
the simulator is to intercept the queries made by the adversary to honest PUFs.
Thus, in designing the protocol, we shall force parties to query the PUFs with
the critical private information related to the protocol, therefore allowing the
simulator to extract such information in straight-line. In the malicious PUFs
model the behaviour of a PUF created and sent by an adversary is entirely in
the adversary’s control. A malicious PUF can answer (or even abort) adaptively
on the query according to some pre-shared strategy with the malicious creator.
Finally, a side effect of the unpredictability of PUFs, is that the creator of a
honest PUF is not able to check the authenticity of the answer generated by
its own PUF, without having the PUF in its hands (or having queried the PUF
previously on the very same value).

Techniques and proof intuition. Showing UC security for commitments requires
obtaining straight-line extraction against a malicious sender and straight-line
equivocality against a malicious receiver. Our starting point is the equivocal
commitment scheme of [12] which builds upon Naor’s scheme [25]. Naor’s scheme
consists of two messages, where the first message is a randomly chosen string r
that the receiver sends to the sender. The second message is the commitment
of the bit b, computed using r. More precisely, to commit to bit b, the second
message is G(s)⊕ (r ∧ b|r|), where G() is a PRG, and s a randomly chosen seed.
The scheme has the property that if the string r is crafted appropriately, then
the commitment is equivocal. [12] shows how this can be achieved by adding a
coin-tossing phase before the commitment. The coin tossing of [12] proceeds as
follows: the receiver commits to a random string α (using a statistically hiding
commitment scheme), the sender sends a string β, and then the receiver opens
the commitment. Naor’s parameter r is then set as α⊕ β.

Observe that if the simulator can choose β after knowing α, then it can control
the output of the coin-tossing phase, and therefore equivocate the commitment.
Thus, to achieve equivocality against a malicious receiver, the simulator must
be able to extract α from the commitment. Similarly, when playing against a
malicious sender, the simulator should be able to extract the value committed
in the second message of Naor’s commitment.

Therefore, to construct a UC-secure commitment, we need to design an ex-
tractable commitment scheme for both directions. The extractable commitment
of α that we construct for the receiver, must be statistically-hiding (this is nec-
essary to prove binding). We denote such commitment as Comsh = (Ssh,Rsh). On
the other hand, the commitment sent by the sender, must be extractable and
allow for equivocation. We denote such commitment as Comeq = (Seq,Req). As
we shall see soon, the two schemes require different techniques as they aim to
different properties. However, they both share the following structure to achieve
extractability.
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The receiver creates a PUF and queries it with two randomly chosen chal-
lenges (q0, q1), obtaining the respective answers (a0, a1). The PUF is then sent
to the sender. To commit to a bit b, the sender first needs to obtain the value
qb. This is done by running an OT protocol with the receiver. Then the sender
queries the PUF with qb and commits to the response ab. Note that the sender
does not commit to the bit directly, but to the answer of the PUF. This ensures
extractability. To decommit to b, the sender simply opens the commitment of the
PUF-answer sent before. Note that the receiver can check the authenticity of the
PUF-answer without having its own PUF back. The simulator can extract the
bit by intercepting the queries sent to the PUF and taking the one that is close
enough, in Hamming distance, to either q0 or q1. Due to the security of OT, the
sender can not get both queries (thus confusing the simulator), neither can the
receiver detect which query has been transferred. Due to the binding property of
the commitment scheme used to commit qb, a malicious sender cannot postpone
querying the PUF to the decommitment phase (thus preventing the simulator to
extract already in the commitment phase). Due to the unpredictability of PUFs,
the sender cannot avoid to query the PUF to obtain the correct response.

This protocol achieves extractability. To additionally achieve statistically hid-
ing and equivocality, protocol Comsh and Comeq develop on this basic structure
in different ways accordingly to the different properties that they achieve. The
main difference is in the commitment of the answer ab.

In Protocol Comsh, Ssh commits to the PUF-response ab using a statisti-
cally hiding commitment scheme. Additionally, Ssh provides a statistical zero-
knowledge argument of knowledge of the message committed. This turns out to
be necessary to argue about binding (that is only computational). Finally, the
OT protocol executed to exchange q0, q1 must be statistically secure for the OT
receiver. The formal description of protocol Comsh is provided in Fig. 2.

In Protocol Comeq the answer ab is committed following Naor’s commitment
scheme. The input of Seq is the Naor’s parameter decided in the coin-flipping
phase, and is the vector r̄ of strings r1, . . . , rl (ab is a l-bit string, where l is
the range of the PUF). Earlier we said that the simulator can properly craft r̄,
so that it will be able equivocate the commitment of ab. However, due to the
structure of the extractable commitment shown above, being able to equivocate
the commitment of ab is not enough anymore. Indeed, in the protocol above,
due to the OT protocol, the simulator will be able to obtain only one of the
PUF-queries among (q0, q1), and it must choose the query qb already in the
commitment phase (when the secret bit b is not known to the simulator). Thus,
even though the simulator has the power to equivocate the commitment to any
string, it might not know the correct PUF-answer to open to. We solve this
problem by asking the receiver to reveal both values (q0, q1) played in the OT
protocol (along with the randomness used in the OT protocol), obviously only
after Seq has committed to the PUF-answer. Now, the simulator can: play the
OT protocol with a random bit, commit to a random string (without querying
the PUF), and then obtain both queries (q0, q1). In the decommitment phase,
the simulator gets the actual bit b. Hence, it can query the PUF with input
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qb, obtain the PUF-answer, and equivocate the commitment so to open to such
PUF-answer. There is a subtle issue here and is the possibility of selective abort of
a malicious PUF. If the PUF aborts when queried with a particular string, then
we have that the sender would abort already in the commitment phase, while the
simulator aborts only in the decommitment phase. We avoid such problem by
requiring that the sender continues the commitment phase by committing to a
random string in case the PUF aborts. The above protocol is statistically binding
(we are using Naor’s commitment), straight-line extractable, and assuming that
Naor’s parameter was previously ad-hoc crafted, it is also straight-line equivocal.
To commit to a bit we are committing to the l-bit PUF-answer, thus the size
of Naor’s parameter r̄, is N = (3n)l. Protocol Comeq is formally described in
Fig. 3.

The final UC-secure commitment scheme Comuc = (Suc,Ruc) consists of the
coin-flipping phase, and the (equivocal) commitment phase. In the coin flipping,
the receiver commits to α using the statistically hiding straight-line extractable
commitment scheme Comsh. The output of the coin-flipping is the Naor’s param-
eter r̄=α⊕ β used as common input for the extractable/equivocal commitment
scheme Comeq. Protocol Comuc = (Suc,Ruc) is formally described in Fig. 4.

Both protocol Comsh,Comeq require one PUF sent from the receiver to the
sender. We remark that PUFs are transferred only once at the beginning of the
protocol. We finally stress that we do not assume authenticated PUF delivery.
Namely, the privacy of the honest party is preserved even if the adversary inter-
feres with the delivery process of the honest PUFs (e.g., by replacing the honest
PUF).

Theorem 1. If Comsh = (Ssh,Rsh) is a statistically hiding straight-line extractable
commitment scheme in the malicious PUFs model, and Comeq = (Seq,Req) is a
statistically binding straight-line extractable and equivocal commitment scheme
in the malicious PUFs model, then Comuc = (Suc,Ruc) in Fig. 4, is a UC-secure
commitment scheme in the malicious PUFs model.

The above protocol can be used to implement the multiple commitment func-
tionality Fmcom by using independent PUFs for each commitment. Note that in
our construction we can not reuse the same PUF when multiple commitments are
executed concurrently7. The reason is that, in both sub-protocols Comsh,Comeq,
in the opening phase the sender forwards the answer obtained by querying the
receiver’s PUF. The answer of a malicious PUF can then convey information
about the value committed in concurrent sessions that have not been opened
yet.

When implementing Fmcom one should also deal with malleability issues. In
particular, one should handle the case in which the man-in-the-middle adversary
forwards honest PUFs to another party. However such attack can be ruled out by
exploiting the unpredictability of honest PUFs as follows. Let Pi be the creator
of PUFi, running an execution of the protocol with Pj . Before delivering its own

7 Note that however our protocol enjoys parallel composition and reuse of the same
PUF, i.e., one can commit to a string reusing the same PUF.
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Sender’s Input: b ∈ {0, 1}.

Commitment Phase

Rsh : (Initialization and PUF exchange)

1. Create PUFR; obtain a0 ← PUFR(q0), a1 ← PUFR(q1), for (q0, q1)
$← {0, 1}n.

2. (st0, p0)← FuzGen(a0), (st1, p1)← FuzGen(a1).
3. Handover PUFR to Ssh.

Rsh ⇔ Ssh : (Statistical OT phase)
Rsh runs as the OT Sender with input (q0, q1), and Ssh runs as the OT Receiver
with input b. Let q′b be the local output of Ssh.

Ssh ⇔ Rsh : (Statistically Hiding Commitment)

Ssh queries PUFR on input q′b and obtains a′b. If PUFR aborts, set a′b
$← {0, 1}l.

Ssh commits to a′b using a statistically-hiding commitment scheme. Let c be the
transcript of the commitment phase.

Ssh ⇔ Rsh : (Proof of knowledge of the Decommitment)
Ssh proves that he knows the decommitment of c running a statistical ZK Argu-
ment of Knowledge protocol. If the proof is not accepting, Rsh aborts.

Decommitment Phase

Ssh : if PUFR did not abort, send opening to a′b to Rsh.
Rsh : if the opening for a′b is accepting and FuzRep(a′b, pb) = stb then accept b.

Otherwise reject.

Fig. 2. Statistically Hiding Straight-Line Extractable Bit Commitment Comsh.

PUF, Pi queries it with the identity of Pj concatenated with a random nonce.
Then, at some point during the protocol execution with Pj it will ask Pj to
evaluate PUFi on such nonce (and the identity). Due to the unpredictability of
PUFs, and the fact that nonce is a randomly chosen value, Pj is able to answer
to such a query only if it possesses the PUF. The final step to obtain UC security
for any functionality consists in using the compiler of [11], which only needs a
UC secure implementation of the Fmcom functionality.

4 Conclusion

We introduce the Malicious PUF model which models the very realistic attack
of an adversary replacing a proper PUF with a “PUF-looking” device that im-
plements an arbitrary malicious functionality. We show that in this model is
possible to achieve UC-security relying on complexity-theoretic assumptions, by
providing an implementation of UC-secure commitment scheme.
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Sender’s Input: Bit b ∈ {0, 1}.
Common Input: r̄ = (r1, . . . , rl).

Commitment Phase

Req : (Initialization and PUF exchange)

1. Create PUFR. Obtain a0 ← PUFR(q0), a1 ← PUFR(q1), for (q0, q1)
$← {0, 1}n.

2. (st0, p0)← FuzGen(a0), (st1, p1)← FuzGen(a1).
3. Handover PUFR to Seq;

4. Choose random tape ranOT
$← {0, 1}∗.

Req ⇔ Seq : (Statistical OT phase)
Req runs as the OT Sender with input (q0, q1) using randomness ranOT, and Seq

runs as the OT Receiver with input b. Let q′b be the local output of Seq. Let τOT

be the transcript of the execution of the OT protocol.
Seq: (Statistically Binding Commitment)

1. a′b ← PUFR(q′b). If PUFR aborts, a′b
$← {0, 1}l.

2. for 1 ≤ i ≤ l, pick si
$← {0, 1}n, ci = G(si)⊕ (ri ∧ a′b[i]). a

3. send c1, . . . , cl to Req.
Req: upon receiving c1, . . . , cl, send ranOT, q0, q1 to Seq.
Seq: check if transcript τOT is consistent with (ranOT, q0, q1, b). If the check fails abort.

Decommitment Phase

Seq : if PUFR did not abort, send ((s1, . . . , sl), a
′
b), b to Rsh.

Req : if for all i, it holds that (ci = G(si)⊕ (ri ∧ a′b[i])) ∧ (FuzRep(a′b, pb) = stb) then
accept. Else reject.

a where (ri ∧ a′b[i])[j] = ri[j] ∧ a′b[i].

Fig. 3. Statistically Binding Straight-line Extractable/Equivocal Commitment Comeq.
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Sender’s Input: Bit b ∈ {0, 1}.

Commitment Phase

Ruc ⇔ Suc : (Coin Flipping)

1. Ruc picks α
$← {0, 1}N ; commit to α by running as sender in protocol Comsh

while Suc runs as receiver.
2. Suc sends β

$← {0, 1}N to Ruc.
3. Ruc sends decommitment for α to Suc.
4. Suc: if the decommitment is not accepting, abort. Else Ruc and Suc set r̄ =

α⊕ β.
Suc ⇔ Ruc : (Equivocal Commitment)

Suc commit to b by running as sender in Comeq where Ruc runs as receiver, and
the common input is r̄.

Decommitment Phase

Suc runs the decommitment phase of Comeq to open b.
Ruc accepts if the decommitment of b is accepting.

Fig. 4. Computational UC Commitment Scheme (Suc,Ruc).
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