*

**

* K K

—

Quadratic Span Programs and Succinct NIZKs
without PCPs

Rosario Gennaro*, Craig Gentry**,
Bryan Parno***, and Mariana Raykoval

Abstract. We introduce a new characterization of the NP complexity
class, called Quadratic Span Programs (QSPs), which is a natural exten-
sion of span programs defined by Karchmer and Wigderson. Our main
motivation is the quick construction of succinct, easily verified arguments
for NP statements.

To achieve this goal, QSPs use a new approach to the well-known tech-
nique of arithmetization of Boolean circuits. Our new approach yields
dramatic performance improvements. Using QSPs, we construct a NIZK
argument — in the CRS model — for Circuit-SAT consisting of just 7
group elements. The CRS size and prover computation are quasi-linear,
making our scheme seemingly quite practical, a result supported by our
implementation. Indeed, our NIZK argument attains the shortest proof,
most efficient prover, and most efficient verifier of any known technique.
We also present a variant of QSPs, called Quadratic Arithmetic Programs
(QAPs), that “naturally” compute arithmetic circuits over large fields,
along with succinct NIZK constructions that use QAPs.

Finally, we show how QSPs and QAPs can be used to efficiently and
publicly verify outsourced computations, where a client asks a server to
compute F(z) for a given function F' and must verify the result provided
by the server in considerably less time than it would take to compute F
from scratch. The resulting schemes are the most efficient, general-purpose
publicly verifiable computation schemes.

City University of New York. rosario@ccny.cuny.edu. The research of this author

was sponsored by the U.S. Army Research Laboratory and the U.K. Ministry of
Defence and was accomplished under Agreement Number W911NF-06-3-0001. The
views and conclusions contained in this document are those of the author(s) and should
not be interpreted as representing the official policies, either expressed or implied,
of the U.S. Army Research Laboratory, the U.S. Government, the U.K. Ministry of
Defence or the U.K. Government. The U.S. and U.K. Governments are authorized
to reproduce and distribute reprints for Government purposes notwithstanding any
copyright notation hereon.

IBM T.J.Watson Research Center. cbgentry@us.ibm.com

Microsoft Research. parno@microsoft.com

IBM T.J.Watson Research Center, supported by NSF Grant No.1017660.
mariana@cs.columbia.edu

1 Introduction

Arithmetization of Boolean computations is a well known technique: it maps
a Boolean circuit to a set of polynomial (e.g., quadratic) equations over
a field. The celebrated result IP=PSPACE [35, 41] used arithmetization
as a crucial tool and set the stage for the PCP theorem [2-4, 20], which
provided a new characterization of NP that revolutionized the notion of
“proof” — in particular, it shows that NP statements have probabilistically
checkable proofs (PCPs) that can be verified in time polylogarithmic in
the size of a classical proof.

Cryptographers quickly seized on the potential applicability of PCPs
to secure computation. Kilian [32] showed how to use PCPs to construct
interactive arguments (i.e., computationally sound proof systems [14]) for
NP that are succinct — i.e., polylogarithmic in their communication com-
plexity. Micali [36] showed how to make these arguments non-interactive
in the random oracle model. Recent work [8, 19, 26] (see also [17]) has
improved Micali’s construction by removing the random oracle, which is
known to be uninstantiable [15], and replacing it with an “extractable
collision-resistant hash function” (ECRH), whose security relies on the
plausible, but non-falsifiable [37], assumption that for any algorithm that
computes an image of the ECRH, there is an extractor (that watches the
algorithm) that computes a pre-image.! These recent constructions have
been called succinct non-interactive arguments (SNARGs) of knowledge
(SNARKS), since, under the knowledge assumption, the SNARG permits
“knowledge” extraction of the entire hash preimage — i.e., the entire PCP.

PCPs are not the only arithmetization technique for creating SNARKSs.
Groth shows how to arithmetize a Boolean circuit so that a proof of
its satisfiability can be written using only a constant number of group
elements [27] (after a single pre-processing stage to establish a common
reference string (CRS) [9, 10]).

Our work provides a brand new form of arithmetization which we call
Quadratic Span Programs (QSPs), since it is a generalization of the notion
of Span Programs proposed by Karchmer and Wigderson [31]. We show
that our new arithmetization technique yields far more efficient SNARKSs
than either PCP-based or Groth-like proofs. Using QSPs, we construct
a NIZK argument in the CRS model for circuit SAT consisting of just 7
group elements. The CRS size and prover computation are quasi-linear

! 'We know that the security of succinct non-interactive arguments cannot be based
on falsifiable assumptions via black box reductions [1, 23]; hence non-falsifiable
“knowledge” assumptions seem unavoidable in this context.

in the circuit size, making our scheme quite practical, to the point where
we have implemented and evaluated it (see Section 5). A variant of our
technique works directly on arithmetic circuits over large fields, obtaining
Quadratic Arithmetic Programs (QAPs) and avoiding the complexity of a
Boolean description of an arithmetic computation (see Section 4).

1.1 Quadratic Span Programs

QSPs are a natural extension of span programs (SPs), a linear-algebraic
model of computation introduced by Karchmer and Wigderson [31].2 An
SP of size m over a field F' consists of a set V = {vo(z),vi(x),...,vm(x)}
of polynomials of degree d — 1, a partition of the indices Z = {1,...,m}
into two sets Zjgpeteq and ZLppee, and a further partition of Zjgpereq as
Uien],je{o,1)Zi; meant to represent n Boolean inputs. The SP is said to
“compute” a function f if the following is true for all input assignments
u € {0,1}": the polynomial vg(x) can be expressed as a linear combination
of the polynomials that “belong” to the input assignment v — namely, the
set of polynomials V,, with indices in Z,, = Ztyee U; Z; o, — iff f(u) = 1.

Functions with polynomial size SPs are in NC?, since linear algebra
is in NC2. Consequently, it is widely believed that SPs cannot efficiently
compute all functions in P (or verify all NP relations).

We define QSPs somewhat similarly to SPs.

Definition 1 (Quadratic Span Program). A quadratic span program
(QSP) Q over field F contains two sets of polynomials V = {vi(x) : k €
{0,...,m}} and W = {wg(z) : k €{0,...,m}} and a divisor polynomial
D(z), all from Flz]. Q also contains a partition of the indices T =
{1,...,m} into two sets Ligpeica and Lfyee, and a further partition of
Tiabeled @S Uie[n],jE{O,l}Iij-

For input u € {0,1}", let T, = Ltyee Ui L, be the set of indices that
“belong” to input u. Q accepts an input u € {0, 1} iff there exist tuples
(a1,...,am) and (b1,...,by) from F™, with ap = 0 = by for all k ¢ T,,:

D(z) divides (vo(:v) + Em: ay - ’Uk(.%')) . (wo(a;’) + i by, - wk(:v)> (1)
k=1 k=1

Q “computes” a Boolean function f:{0,1}"™ — {0,1} if it accepts exactly
those inputs u where f(u) = 1. Q has size m and degree deg(D(x)).

2 SPs were first defined [31] in terms of vectors {vo, V1, ..., Vi }, rather than polyno-
mials. The “target” vector vy must be expressible as a linear combination of the
vectors that “belong” to the input assignment u (as defined above). Our definition
in terms of polynomials is equivalent [22]: just think of each vector as the evaluation
of the corresponding polynomial on a fixed set of points.

QSPs are a natural extension of (linear) SPs. An SP accepts an input
u if and only if the target polynomial can be written as an affine linear
combination of polynomials that “belong” to u. A QSP accepts an input
u if and only if the divisor polynomial divides a product of two affine
linear combinations of polynomials that “belong” to u, where “product”
is polynomial multiplication.

Unlike SPs, QSPs can efficiently compute any function in P, and the
“canonical QSP” we build has performance parameters that yield faster
SNARKS, as stated in the two theorems below.

Theorem 1. (Informal) For any Boolean circuit C' with s gates and any
field F of size at least d = O(s), there is a QSP of size and degree O(s)
(with small constants) over F' that computes C'.

Theorem 2. (Informal) Given a circuit C with s gates, computing the
polynomials D(x), V and W of our “canonical” QSP, which computes
C, takes O(s) work (O(s) F operations). Given u € {0,1}"™ for which
C(u) = 1, computing suitable tuples (ay,...,am), (b1,...,by) € {0,1}™
that satisfy Equation 1 takes O(s) work. Given (ay,...,an), computing
v(z) = vo(x) + > pq ak - vg(x) takes O(s) work. (Similarly for w(z).)
Computing the quotient h(z) = v(x) - w(z)/D(z) takes O(s) work.

We obtain such performance by exploiting the sparseness of the polyno-
mials vg(z)’s and wg(z)’s in our canonical QSP. In particular, they behave
similarly to Lagrange basis polynomials ;(z) = [[, .;(z —ri)/(rj — i) in
that they each evaluate to 0 at almost all roots of D(x), which is a product
of linear terms. This makes it easy to compute v(z) and w(z) in linear
time by representing them by their evaluation at these roots. Computing
h(z) in purely linear, versus quasi-linear, time remains an open problem.

1.2 From QSPs to SNARKSs, NIZKs, & Verifiable Computing

We use QSPs to build SNARKs and NIZKs in the CRS model [9, 10].

SNARKS. Our SNARK for f uses a CRS in which the QSP polynomials
(e.g., {vp(x)}) are represented by terms g’#(?) (etc.), where g is a generator
of a bilinear group [12], and ¢ € F' is secret. The CRS size is linear in
the circuit size of f. To oversimplify, to compute a SNARK, the prover
uses its satisfying input to compute tuples (ai,...,an) and (b1,...,by),
and then uses them and the CRS to compute g, = ¢*(9), g, = ¢¥),
gn = g™ for v(zx), w(z), h(x) as defined in Theorem 2. The verifier

confirms that e(g,, gw) = €(gn, g"(?)), where e is the bilinear map. (The

actual scheme is more complicated — see Section 3.2.) For security, we
require a non-falsifiable “knowledge” assumption which, as noted above,
is necessary [1, 23].

NIZK. It is straightforward to randomize our public-verifier SNARK
to make it statistical zero knowledge and obtain a non-interactive zero-
knowledge (NIZK) argument [9, 10]. Details are in Section 3.3.

Verifiable Computation. In the full version [22], we use our QSP-
based SNARK to achieve a very efficient scheme for public verifiable
computation [21, 39].

Remark on Efficiency and Adaptivity. In the description above, the
CRS (the QSP polynomials) depend on a particular language or relation.
We can achieve an “adaptive” solution (where first the CRS is fixed,
and then the language or relation is selected) by applying our QSP
construction to the universal circuit, at the cost of expanding the circuit
by a logarithmic factor, yielding quasi-linear complexity for CRS size and
prover computation.

1.3 Comparisons to Other Work on Succinct Arguments

PCP-based Protocols. Ishai, Kushilevitz and Ostrovsky [30] were per-
haps the first to seriously investigate how to tweak PCP-techniques to yield
the best possible succinct arguments. However in their solution the prover’s
computation (and also the verifier’s computation in a pre-processing step)
is quadratic in the size of the classical proof.

Very recently, Ben-Sasson et al. present a new PCP scheme with quasi-
linear complexity for the prover and the CRS [7]. Our direct construction
of QSPs yields better asymptotic performance, even before these PCPs
are converted into SNARKSs.

Groth-like schemes. Groth et al. [28, 29] previously constructed NIZKs
over bilinear groups with various attractive properties, but with size linear
in the circuit. More recently, Groth essentially found a way to compress the
proof into a constant number of group elements [27] (still higher than ours
— 42 group elements versus 7 for ours). Security relies on a non-falsifiable
“knowledge of exponent” assumption, similar to the one we use.

The main drawbacks of Groth’s succinct NIZK are the prover com-
plexity and the CRS size, which are both quadratic in the circuit size.
Lipmaa [33] showed how to reduce the size of the CRS in Groth’s con-
struction from quadratic to quasi-linear in the circuit size, but prover
complexity remains quadratic.

2 Quadratic Span Programs (QSPs)

Above, we defined Quadratic Span Programs (QSPs) in a manner that
is superficially similar to that of span programs (SPs). The crucial differ-
ence is that QSPs can compute any efficiently computable function. We
demonstrate this via an explicit construction of a QSP for any circuit C.?
The construction uses two components: a gate checker and a wire checker.

2.1 A Gate Checker

While we do not know how to efficiently construct SPs for arbitrary
functions f € P, we can always efficiently construct an SP for a function
related to f, called the gate checker function for f, which ensures that a
set of wire values is consistent with the gates in a circuit for f.

Definition 2 (Gate Checker Function). Let f:{0,1}" — {0,1} be a
function whose Boolean circuit C' has s gates. Let N = n + s — the total
number of wires in C' (wires that fan out are considered one wire). Define
¢ : {0,131 — {0,1} to be a function that outputs ‘1’ iff the input is a
valid assignment of C'’s wires with output wire set to ‘1°. We say that ¢
is the gate checker function for f.

An SP for the gate checker function ¢ does not, however, compute the
function f; such an SP has labeled (non-free) polynomials even for the
interior wires of C, whereas an SP for f is only permitted to have labeled
polynomials for C’s input wires. If we simply move the polynomials for
the interior wires to the “free” set, then we might introduce additional
valid linear combinations that do not satisfy C'; in particular these lin-
ear combinations could use polynomials that correspond to conflicting
assignments (both ‘0’ and ‘1) for some interior wire in C.

What we prove however, is that these conflicting assignments are the
only possible problem we introduce by moving the polynomials for the
interior wires to the “free” set. In other words, if we restrict the linear
combination to use polynomials associated with at most one value per
wire, then the SP for ¢ can also be used to compute the function f. The
following lemma formalizes the property.

Lemma 1. Let S = ({Uo(.ﬁ), R ,’Um(l')},z'free,l.labeled = UiE[N],jE{O,l}Iij)
be an SP that computes the gate checker function ¢ of f. Then, for
all w € {0,1}", the following is true iff f(u) = 1: there exists a tuple
(a1,...,am) satisfying the following constraints:

3 The full version of the paper [22] gives a formal reduction from circuit SAT to a QSP
satisfiability problem, hence proving that QSP SAT is NP complete.

— Target in Span: vo(x) =), aj - v ().
— Correct Inputs: For all k € U} I;z,, we have aj, = 0.
— No Double Assignments: For alli € {n+1,...,N} and all k; € L
and ko € I;1, at most one of ay,, ai, s nonzero.
In particular, if f(u) # 1, then a linear combination that satisfies the first
and second constraints must violate the third — i.e., must make a “double
assignment” of some wire i € {n+1,...,N}.

Proof. (Lemma 1) If f(u) =1, then we can assign the wires of C' validly
with the output wire set to 1. Therefore, we can extend u € {0,1}" to an
input «’ € {0,1}" that satisfies ¢. Since u’ satisfies ¢, there is a linear
combination (a1,...,am) such that vo(z) = >, aj - vx(z) and a = 0 for
all k e Ul I i thus satisfying the constraints listed in the lemma.
Conversely, suppose that (aq,...,a,) satisfies the constraints. Then,
since S computes ¢, there is an extension v’ € {0, 1} of u € {0,1}" such
that ¢(u') = 1 and such that «’' “agrees” with the tuple (a1,...,an) in
the sense that a, = 0 for all k € I 7 , i € [N]. Since ¢(u’) = 1 where v’ is
an extension of u, and since ¢ tests the satisfaction of f’s Boolean circuit,
we must have f(u) = 1. |

Looking ahead, our construction will use the span program for ¢ to obtain
efficient proofs about the correct evaluation of f. The second component
of our construction, the wire checker, will efficiently verify that the No
Double Assignments property holds.

2.2 A Wire Checker

To prevent double wire assignments, we introduce some additional poly-
nomials in the form of a wire checker, defined as follows.*

Definition 3 (Aggregate Wire Checker). Let T = Ue|n),jefo,13Zij be

a partition of [m]. An aggregate wire checker for I consists of polynomials

D(x), V ={v(z) : k € I} and W = {wi(z) : k € I} such that

D(zx) divides (Z a - vk(a:)> : (Z by, - wk(x)) (2)

ke kel

if {ar} and {by} indicate consistent bit assignments of all N bits (i.e., for
each i € [N], for some bit B;, ar, = b, = 0 for all k € Z;5.), but not if
{ax} and {by} indicate inconsistent bit assignments of any of the N bits
in the following sense: For some i € [N],

4 While Definition 3 resembles a QSP, a wire checker is not, on its own, a QSP.

— There exist kq € Zyo and k|, € Zn and ky € Zio U I;1 such that ag, # 0,
ag: # 0 and by, # 0, or

— There exist k, € Lijo U I;1 and ky € Zjp and ké € Z;; such that ay, # 0,
bkb 75 0 and bkg 75 0.

The size of the wire checker is |Z|, and the degree is deg(D(x)).

To construct an aggregate wire checker, we first construct a checker
for a single wire. Let Zo = {1,..., Lo}, Zy = {Lo+ 1,..., Lo+ L1}, and
I = To UZ; be the indices associated with the wire.

Construction of a Wire Checker.

1. Let Lyge = max(Lg, L1). For L' = 3L4: — 2, select distinet roots
RO = {r§0)7 .. ,T(LO,)} and R = {r&l), . ,r(Ll,)} from F. Set R =
RO URM, Set D(x) = [Ler(z—r1).

2. Interpolate the polynomials in {vg(z)} and {wg(z)} to have degree
(L'+Lo—1)ifk€Zyand (L' + Ly — 1) if k € 73, and to satisfy:

(a) For k € Ty, vg(r) = 0 for all r € RO U {rgl),...,r(Llo)} except
vk(r,(cl)) =1, and wy(r) = 0 for all » € R U {r§0)7 . ,T‘(LOO)} except
wi(0y =1

k T’k)— .

(b) For k € Iy, vy(r) = 0 for all r € RM U {r§0),...,r(LO1)} except

Uk(rl(co—)Lo) =1, and wg(r) = 0 for all » € RO U {7“%1), . ,T(Lll)}

except wk(r,ileo) =1.

Lemma 2. The construction above is a wire checker.

Proof. (Lemma 2) Clearly, D(z) divides the product in Equation 2 - i.e.,
(X kez @k - V(1)) - gz br - wi(r)) = 0 for all r € R —if {ax}, {bx}
indicate consistent assignments.

If {ax} indicates a double assignment and {b;} is nonzero, then
Zkezo ay - vip(x) has at most Ly — 1 roots in RM) | since it is nonzero
of degree L' + Lo — 1 and already has R as roots. A similar analysis
shows that), 7 ai - vi(z) has at most Ly — 1 roots in RO, Note that
> ker ak - vi(z) has exactly the same roots in R that > ket, Ok - Vk(T)
does, since the other part of the sum — namely, » ;.7 ax - vg(z) — has
everything in R as a root. Similarly, > ker Ak - Vk(x) has exactly the
same roots in R() that > kez, @k - Vk(z) does. So, D rak - v(x) has
at most Lo + L1 — 2 < 2Lypa, — 2 roots in R. Since Y, 7 by, - wy(x) is
nonzero and degree-(L' + Lyq. — 1), it has at most L’ + L4, — 1 roots in
R. So, the overall product has at most L' + 3L,,qe — 3 < 2L’ roots, and is
therefore not divisible by D(x). |

Using the Chinese Remainder Theorem, we compose the wire checkers
for individual wires into an aggregate wire checker for the whole circuit.
Construction of an Aggregate Wire Checker.

1. Generate all of the roots and the divisor polynomial. For each wire
i € [N], select distinct roots for R(?) and RV from F as in the
single-wire checker. Note that the roots are distinct across the i’s as
well. Set R = U;R(9 U R, Set the aggregate wire checker’s divisor
polynomial to D(z) =[], Di(x) = [[,cr(z — 7).

2. Generate polynomials for the individual wire checkers. For each wire
i € [N], construct the sets of polynomials V() and W® as in the
single-wire checker.

3. Compose individual wire checkers via CRT. For i € [N], for k €
Zio U Z;1, interpolate vi(z) to be of degree at most deg(D(x)) — 1
and satisfy vg(z) = v,(:) (z) mod D;(x) and vg(x) = 0 mod D(x)/D;(x).
Analogously for wy(z). Set V = {vg(z)} and W = {wg(x)}.

Lemma 3. The above construction is an aggregate wire checker.

Proof. (Lemma 3) If {ar}, {bx} indicate consistent assignments, then
they are consistent on the i-th bit for k& restricted to Z;,o U Z;;. Hence,
D;(z) divides the product in Eqn.2 when the summations are restricted
to k € Zjp UZ;. Since vi(x) and wy(x) are divisible by D;(x) for all
k ¢ Tio UZ;1, the overall (unrestricted) product in Eqn.2 is divisible by
D;(x). Since this holds for all ¢, the product is divisible by D(z).

If, for some i, {ax} indicates a double assignment of the i-th bit and
{br} is nonzero over k € Z;yUZ;1, then, by Lemma 2, D;(x) does not divide
the product in Eqn.2 when the summations are restricted to k € Z;o U Z;1.
As above, D;(z) divides everything else, and thus the overall product in
Eqn.2 is not divisible by D;(x), and thus not divisible by D(x). [

2.3 Conscientious Span Programs

Notice that the aggregate wire checker definition above enforces a slightly
weaker condition than forbidding double assignments: it states that double
assigning a wire with the {ax} (i.e., using non-zero ay, values from both
Zio and Z;;) is forbidden, unless the {b;} indicate a non-assignment of
that wire — i.e., all the corresponding by, = 0 (and vice versa for a double
assignment in the {by}).

To compensate for the weakness of the wire checker, we require the SP
being checked to be conscientious, which guarantees that every satisfying

linear combination uses at least one polynomial from the sets associated
with its input. In our canonical QSP, we will use the wire checker above
on two instances of a conscientious SP for ¢. Conscientiousness guarantees
that each instance includes a non-zero coefficient for each wire used in
the satisfying assignment, and hence the wire checker will always catch
double assignments in either instance.

More formally, we define a conscientious SP as follows:

Definition 4. Let S = ({Uo({E), e ,vm(x)},If,,ee,Ilabeled = Uig[n),je{0,1}
Z;j) be an SP. We say that S is a conscientious SP for f : {0,1}" — {0,1}
if, for any tuple (a1, ..., an) that satisfies the usual SP requirements that
f(u) =1 foru e {0,1}" iff (1) vo(z) = > 4 ar - ve(x) and (2) for all
k e U Lz, we have ay, =0, we also have the property that for all i € [n],
there exists k € I, such that ap # 0. Let m be the size of the SP and
deg(vo(x)) + 1 be the degree of the SP.

To construct a conscientious SP for ¢, we first build a conscientious SP
for a single NAND gate.

Lemma 4. There is a degree-9 conscientious SP for NAND of size 12.

Proof. (Lemma 4) Choose a set of 9 distinct roots in F' to get R =
(057105 T]gs T115 7115 Tr0s Th» Tr1s Toq)- Define 9 “linearly independent” polyno-
mials {vo(z), vio(), Ufo(x)7 o (@), U{l (@), vro(), U;O(w)v vr1 (), U;1($)} to
be the corresponding Lagrange basis polynomials for R; that is, they are
the degree-8 polynomials obtained by interpolating such that Vr € R,
vo(r) = 0, except that vo(rg) = 1; vp(r) = 0, except that vy(ry) = 1,
and so on. We will use the convention that the pair of polynomials
Vio = (vio(z), vjy(x)) belongs to the assignment of 0 to the left wire, etc.

Set vo0(z) = vo(z) — v () — vr1(z) and Voo = {ve0(z)}, so that one
can express vg(z) as a linear combination of polynomials in Vi3 UV, U V.

Set v () = v0(x) — vio(x) — vro(), vy (2) = vo(w) — () — vl (@),
and vgy (z) = vo(x) — vy (z) — vpo(2), and Vo1 = {vo1(2), vey (@), vgy (@)},
so that one can express vp(x) as a linear combination of polynomials
associated to the other satisfying gate assignments.

That the above polynomials define a conscientious SP for NAND of the
claimed size and degree follows by inspection. The details are elaborated
in the full version. |

To obtain a conscientious SP for an entire circuit, we build a consci-
entious SP for each gate, using a distinct set of roots R; for each SP,
and then compose the gate SPs together using the Chinese Remainder
Theorem, just as we did when building the aggregate wire checker.

10

Lemma 5. Suppose a circuit C' consists of s Boolean gates from some
set I' —e.g, I' = {NAND}. Suppose that, for each gate g € I', there is
a conscientious SP of size m' and degree d’ that computes whether its
input is a satisfying assignment of g’s input/output wires. Then there is a
conscientious SP S of size m = s-m’ and degree d = s - d' that computes
the gate checker function ¢ for C. S is a straightforward composition of
SPs {Sy} for the individual gates g of C.

Intuition. The proof is constructive. For each gate ¢, build an SP S
following Lemma 4, obtaining from each a unique set of roots R(9) and
polynomials {v(()g) ()} UV, Let R = U;RWY. Let vo(x) be a polynomial
such that vo(r) = v(()g) (r) for all r € R and all gates ¢ in the circuit.
For each gate g, extend g’s polynomials such that for all v(z) € V9, and
rE R/R(g), v(r) = 0. The aggregate SP’s set of polynomials V will consist
of vo(x) along with all of the extended polynomials. Since the roots used
in each SP are unique across all SPs, this composition preserves all of the
local linearity relationships created by Lemma 4; it also does not introduce
any new relationships, since the unique roots prevent “interactions” across
the gate SPs. See the full version of the paper [22] for the full proof.

2.4 The Canonical Quadratic Span Program

We now describe how to take any polynomial-time computable function f,
and construct a polynomial-size QSP that computes f. The construction
uses the Chinese Remainder Theorem (CRT) to merge the two components
above, the gate checker and the wire checker, so that the quadratic
test (Eq. 1) checks both at once. The wire checker’s guarantee of no
double assignments relies on the fact that the SP for the gate checker is
conscientious, and hence must use at least one polynomial for each wire
to arrive at a satisfying linear combination. Thus, we can conclude that
the wire values are consistent with the circuit’s gates, and that no wire is
set to both 0 and 1.

More specifically, we build two copies of the conscientious SP for the
gate checker, ensuring that all of the roots used are distinct. One copy will
become the V polynomials in the QSP, while the other copy will become
the W polynomials. We then construct the polynomials for the aggregate
wire checker described above, using a third set of distinct roots. Since all
of the divisor polynomials from the different components have different
roots, they are relatively prime. Hence, we can use the CRT to define the
final QSP polynomials so that they match the value of the constituent
polynomials from each component.

11

The Canonical QSP: Qcan,f-

1. Take as input the Boolean circuit C for f : {0,1}" — {0,1}, which
has s gates.

2. Using disjoint sets of roots R(Y) and R™), construct two instances
of the conscientious gate checker SP for C' — namely, V) = (f} =
{@0(1')’ s @m(x)}?IfTeeaIlabeled) and S(W) = (W = {wO(x)v R @m(iL‘)},
Ifree; Ilabeled)-

3. Define DV (z) = [I,cron (z—7) and DM (g) = [I,crom (z—7). Note
that because we use distinct roots for each incarnation, the resulting
divisor polynomials D™ (z) and D) (z) are relatively prime.

4. Using disjoint sets of roots R = {R0 RED . j ¢ [N]} and the
partition of Zjgpeieq, construct the aggregate wire checker from Lemma 3,
which consists of the following polynomials: D'(z) = [],cr(z —),

={v1(),..., v, (@)} and W' = {w)(2), ..., wp,(2)}.

5. Define D(x) = DW)(x) DV)(z) - D'(z).

6. Finally, define V = {vg(z),...,vn(2)} and W = {wo(z),...,wn(x)}
using the CRT to interpolate v (z) and wy(x) as follows:

() mod DV (z) Wy (z) mod DY) (z)

vy, (x) mod D'(x) (2) = wy(x) mod D'(x)
1 mod DM)(z)if k=0 - 1 modDV(x) if k=0
0 mod D) (x)if k #0 0 mod DM (z) if k#0

7. Output Qcan,f =V, W, D(J;)aIfree?Ilabeled = Uie[n],je{o,l}Iij)7 where
the labeled indices Uje[,11,n5Zi; from the gate checker SP for C' have
been moved to Zgyce.

The proof of the following theorem is in the full version [22].

Theorem 3. For any Boolean circuit C with n inputs, s gates, and
N =n + s total wire values, the canonical QSP computes C'.

2.5 Performance and Technical Issues

By Lemmas 4 and 5, given a function f whose Boolean circuit has s
(NAND) gates, we have a conscientious SP of size 12s and degree 9s for
f’s gate-checker function. However, for performance and technical reasons,
we use a larger conscientious SP of size 36s and degree 27s.

The first reason we use a larger SP is that we transform f’s Boolean
circuit to one with fan-out two (except that one “dummy” input, set to

12

‘1", may feed into multiple gates). The resulting circuit may be larger
by a constant factor. We reduce fan-out to two before applying the SP
composition lemma (Lemma 5) because we want the evaluation vectors
{(vk(r1), .., ve(rq)), (Wi (r1), ..., wi(rq)) : k € [m],r € R} of our QSP to
be sparse — i.e., to have only constant nonzero support. Sparseness allows
us, for example, to compute v(z) = vo(z) + Y ag - vi(x) very quickly in
evaluation representation, in time linear in the degree of the QSP.
The second reason is that we obtain a strong QSP.

Definition 5 (Strong QSP). A QSP Q = (V, W, t(x), Ztrees Liabeled =
Uien),je{013Zij) is a strong QSP if |T;| = 1 for all i € [n],j € {0,1}
and the QSP divisibility requirement (Eq.1) holds only if {ax}, {bx} are
“unequivocally” bound to some input u € {0,1}"™ —in particular, a, = 1 = by,
for all {k =Ty, } and ap, =0 = by, for all {k = Z;y, }.

In a strong QSP, the labeled sets are singletons, and the QSP can be
satisfied only by applying an unequivocal 0/1 linear combination to the
labeled vectors. Ultimately, this property helps improve the performance
of our cryptographic constructions for NIZKs and verifiable computation,
since a verifier who knows part of the circuit input (e.g., the statement u
portion of the input to a relation) will be able to “predict” the portion
of the QSP linear combination that corresponds to u (and therefore this
portion does not need to be “sent” by the prover).

When it is applied to the partition Zigpeied = Uie[n],jef0,13Zij Of the
SP for the gate checker function, the size of the aggregate wire checker
is |Ziapeted) < 24s and the degree is 76s. (See full version [22] for details.)
Since the QSP has two SPs and one aggregate wire checker, and since
composing the SPs with the wire checker does not increase the size, the
QSP has size 36s and degree 130s.

3 Overview of Cryptographic Constructions and Security

We build SNARKs and NIZKs in the common reference string (CRS)
model [9, 10] for relations R(u,w) with n’-bit statements and (n — n')-bit
witnesses. We apply our QSPs for n-bit inputs to the circuit computing R.

Groth’s construction [27] specifically targets the circuit SAT relation;
in particular, he takes u to be a circuit that can be chosen adaptively
and uses R(u,w) = u(w). The CRS size and prover computation grow
quadratically with |u|. The verifier computation is O(|ul), but it can be
reduced to O(1) in an amortized sense with u-dependent pre-processing. To
compare directly with Groth, we can handle u being an adaptively-chosen
circuit by constructing R from a universal circuit. In this case, the size of

13

the circuit computing R may be larger than |u| by a logarithmic factor,
which correspondingly increases the CRS size and prover computation
to O(|u|). The verifier computation is O(|u|), but it can be reduced to
O(1) in an amortized sense just as in Groth. If u, or any part of u, can be
chosen non-adaptively, our scheme becomes more efficient.

We present our constructions with their proof intuition, deferring the
formal proofs to the full version [22].

3.1 Definitions

First, we define a SNARK for a Prover P who holds a witness w which he
can use to convince a Verifier V of a statement u.

Definition 6 (SNARK). We say that II = (Gen,P,V) is a succinct
non-interactive argument of knowledge (SNARK) with security parameter
k for an NP language L with a corresponding NP relation R with n'-bit
statements and (n—n')-bit witnesses , if it satisfies the following properties:

Perfect Completeness: For all A,

(crs, priv) < Gen(1¥)
(u, w) < A(crs) =1,
7« P(crs, u, w)

V(priv,u,m) =1

Pr if (u,w) € R

where P(crs, u,w) runs in time poly(k,n).
Soundness: For all efficient A,

V(priv,u,m) =1 | (crs,priv) < Gen(1%) |
Pri et () A(1%,crs) | — PegL(r):
Succinctness: The proof length is |w| = poly(k).
Extraction: For any poly-size prover P*, there exists a poly-size extractor
Ep+, such that for any auziliary information z € {0,1}", the following
holds

(crs, priv) < Gen(1"%)
(u,m) <= P*(crs,z) | = negl(k).
w < Ep«(crs, z)

V(priv,u,m) =1

Pr (u,w) ¢ R

We omit the standard definition of NIZKs. Note that, to build a NIZK,
it suffices to build (as we do) a SNARK that is statistical zero-knowledge.

14

3.2 Our SNARK Construction

We can create a SNARK for an NP relation R = {(u,w)} with n’-bit
statements and (n — n’)-bit witnesses by building a canonical QSP for
the function f such that f(u,w) =1 iff (u,w) € R. At a high-level, the
prover uses his inputs to evaluate the circuit for f, hence obtaining linear
combinations for the QSP that satisfy Eq.1. He uses these combinations to
compute v(z) = vo(x)+>_ ag-vi(x) (and similarly for w(zx)), and convinces
the verifier that the QSP’s quadratic property holds (Eq.1), which implies
f(u,w) =1, by calculating h(z) such that h(x) - D(z) = v(z)w(x).

To protect against malicious provers, all of the calculations described
above are performed over encoded values. Specifically, the CRS holds an
encoding of the evaluation of each polynomial (e.g., the {vi(x)}) at a
secret point . The encoding permits homomorphic operations, which
allow the prover to calculate v(o), w(o), and h(c) inside the encoding.
The encoding also permits a quadratic equality check so that the verifier
can check that Equation 1 holds.

An encoding scheme & has two algorithms (Setup, E), where Setup
takes the security parameter and generates parameters for the scheme,
and F (possibly randomized) produces an encoding for an element. Our
preferred encoding is exponentiation within a bilinear group: E(vg(o)) =
g“k("), in which case, the quadratic equality check is performed via a
pairing. One may also use an additively homomorphic encryption scheme,
e.g., Paillier®: E(vi(0)) = Ency(vi(c)). In this case, the verifier needs a
secret key sk to remove the encoding and perform the quadratic check,
and hence the SNARK is designated-verifier.

As a final note, to ensure the prover uses circuit inputs matching wu, the
verifier calculates the portion of v(o) that corresponds to u independently,
leaving the portion of v(o) that corresponds to the witness to the prover.

To base the security of our scheme on an existing knowledge of exponent
assumption [27], we add terms to the CRS of the form E(ac?), E(avg(o)),
E(awg(0)), E(Byvk(0)), E(Bywwi (o)), and extend the proof with relations
between these terms and those in the basic proof (see Section 3.4).

CRS generation Gen: On input security parameter x, construct a com-
mon random string CRS = (crsp,crsy). Let f be the function check-
ing the relation R(u,w) and let Qr = (V,W, D(x),Ztree; Liabeled =

5 Technically, our constructions apply only where the encoding space is a field, and the
plaintext space of Paillier is a ring, not a field. However, it would be easy to extend
our results to Paillier, using the fact that one is unlikely to encounter encodings of
nontrivial zero divisors in Zy unless one is able to factor V.

15

Uien),jef0,13Zijs L = Lfree U Ziabeted) be a QSP of size m and degree d
for the functionality f%. Let Z;, = U?;1Iij and Z,,;q = Z \ Z;y,. Gener-
ate public and private parameters (pk, sk) for the encoding scheme E.
Generate uniformly at random «, o, 8y, 8w,y < F* and set the output:

crsp = (pk, Qp,n', {E (") }icpo,a- {E(a0”) Yicjo.a)»
{E(vk(0)) brezmia {E(wi(0)) brez,
{E(awk(0)) ke, igr {E(Qwr(0)) breT,
{E(Bovr () }kezpiar {E(Buwwi(0)) Yher)

crsy = (pk, sk, E(1), E(a), E(v), E(Bv), E(Bu),
{E(vk(0))}reqoyu,,: E(wo(0)), E(D(0))).

Prove P: On input crsp, statement u € {0, 1}”/ and witness w, P evalu-
ates Q¢ to obtain (ai,...,a,) and (b1,...,by) and polynomial h(x)
such that

h(z) - D(z) = (uo(x) n i a - vk(aj)> : (wo(x) v i by, - wk(:v)) :
k=1 k=1

Let vmia(z) = > pez, ., ok - vk(z) and w(z) = 3 ;o7 b - wi(x). Then,
P uses the encoding’s homomorphism to output the following proof:

7= (E(vmia(0)), E(w(0)), B(h(a))
B(atmial@)), E(aw(a)), B(ah(0)), B(B,vmia(0) + Buw(0))).

Verify V: On input crsy, u, and m = (Trvmid,ww,ﬂh,wv;m,ﬁw/, T, Ty), V
confirms that the terms are in the support of validly encoded elements.
Let Viyia, W, H, V) ... W', H', and Y be what is encoded. V computes
an encoding E(vin(0)) of vin(0) = > pcr. ax - vg(c). V confirms that
the following equations hold:

H - D(o) = (vo(0) + vin(0) + Vinid) - (wo(o) + W),

Vg = aVinid, W' = aW, H = aH,vY = (5v7)vmid + (/Bw'Y)W

mid —

3.3 Making the SNARK Statistical Zero-Knowledge (NIZKs)

In our NIZK construction, the prover simply randomizes each of the
terms vg(0) + Vin(0) + Vinia and wo(o) + W so that their product is still

5 For example, with circuit SAT, f is a universal circuit.

16

divisible by D(o), but the terms reveal nothing more about the original
values. We achieve this by adding random multiples of D(o) to both terms,
which preserves the divisibility property for their product. We supplement
crsp with additional terms to facilitate computation of the remainder
of the randomized proof. Specifically, we include: E(D(0)), E(aD(0)),
E(B,D(0)), E(BuD(0)), E(vo(0)), E(awvn(0)), E(wo(o)) and E(awy()).

After generating a proof 7 as above, the prover randomizes it as follows.
He picks random 4. 0w < F and outputs the following proof:

Umid >

' = (EWpna(0)), E(w'(0)), E(W (o)),

mid
E(ava(0)), E(aw'(0)), E(ah’(0)), E(Buvpa(o) + Buw'(9))),

where v/ () = vmid(z) + 0p,,,,D(x), w'(x) = w(z) + 0u,D(x), M (z) =
(00() 4 Vin () 4V 5q()) - (w0() +0/())/ D), and vo(), 010 (), ()
and w(x) are the values computed in the SNARK construction from the
previous section. The encodings in the new proof 7’ can be computed

efficiently from the encodings in 7w and the augmented crsp.

3.4 Security

We base security on two assumptions, the g-power Diffie-Hellman (¢-PDH)
assumption and the g-power knowledge of exponent (¢-PKE) assump-
tion. When we instantiate our construction and the ¢-PDH and ¢-PKE
assumptions with an encoding scheme E(a) = g* over a bilinear group,
the ¢-PDH and ¢-PKE assumptions are virtually identical to those used
by Groth in his NIZK construction [27].7 Also, the bilinear group version
of our ¢-PDH assumption is very similar to, but weaker than, assumptions
that were used to construct hierarchical identity-based encryption and
broadcast encryption schemes with short ciphertexts [11, 13].

The ¢-PDH assumption is a “conventional” falsifiable assumption,
though still somewhat unusual in its dependence on ¢, which is related to
the size of the circuits for the functions computed by our SNARKs.
Assumption 1 (¢-PDH). Let k be a security parameter, and ¢ = poly(k).
The q-power Diffie-Hellman (q-PDH) assumption holds for encoding & if
for all non-uniform probabilistic polynomial time adversaries A we have

pk < £.Setup(1¥) ; 0 + F*;
Pr |7« (pk,E(1),E(0),...,E(09), E(c?t?),...,E(c%)) ; | =negl(k).
y < Alr) : y=E(c™)
" Our ¢-PDH assumption is actually weaker than his ¢-CPDH assumption, and our

¢-PKE assumption is identical to Groth’s [27] and Lipmaa’s [33], except that we
extend the assumption to handle auxiliary inputs.

17

The ¢-PKE assumption is a non-falsifiable “knowledge” assumption,
similar in spirit to (but more complicated than) early knowledge-of-
exponent assumptions (KEAs) [6, 18].

Assumption 2 (¢-PKE). Let k be a security parameter, and ¢ = poly(k).
The q-power knowledge of exponent (q-PKE) assumption holds for encoding
E if for every non-uniform probabilistic polynomial time adversary A, there
exists a non-uniform probabilistic polynomial time extractor x 4 such that

pk < E.Setup(1¥) ; a,0 < F*;
T+ (pk,E(1),E(0),...,E(c?),E(a), E(a0),...,E(ac?));
(E(c), E(¢); ap, - - - 7aq) — (Allxa)(r,2)
e=achec# >t _japo”

Pr = negl(k)

for any auziliary information z € {0, l}POIY(”) that is independent of .
Next we state our main security theorem.

Theorem 4. If the g-PDH and d-PKFE assumptions hold for some q >
max{2d — 1,d + 2}, then the NIZK scheme defined in Section 3.3, instan-
tiated with a QSP of degree d, is secure under Definition 6.

Here, we provide some intuition, using a simpler version of our scheme,
which has the following 6 element proof:
™ = (E(vmia(0)), E(w(0)), E(h(0)), E(avvmia(0)), E(aww(c)), E(anh(0))) .

For the version above, the intuition is that it is hard for the prover,
who knows the CRS but not «,,, to output any pair (E(W), E(W"))
with W' = a,,W unless he knows a representation {b; : k € Z} of W
such that W = Y~ bywy (o). Knowledge of exponent assumptions (KEAs)®
formalize this intuition: they say that for any algorithm that outputs
a pair of encoded elements with ratio «y,, there is an extractor that
“watches” the algorithm’s computation and outputs the representation
(the linear combination). In the security proof, extractors for the v, w
and h terms extract out polynomials v,,;4(x), w(z), h(x) that are in the
spans of {vg(z) : k € Tonia}, {wr(x) : k € I}, {2° : i € [d]}. If the proof
verifies, then (vo(o) 4+ v(0)) - (wo(o) + w(o)) = h(o) - D(o) for v(x) =
Vmid(T)+ per,, Vk(2). If indeed (vo(z)+v(w))-(wo(z)+w(x)) = h(z)-D(x)
as polynomials, then the soundness of our QSP implies that we have
extracted a true proof. Otherwise, (vo(x)+v(z))-(wo(z)+w(z))—h(x)-D(z)
is a nonzero polynomial having ¢ as a root, which allows the simulator to
solve a hard problem.

8 KEAs [6, 18, 24] exist for Paillier/RSA [19, 24], bilinear groups [27, 33], and even
lattices [34].

18

We modified this simpler scheme to the more complicated SNARK
construction in order to base security on assumptions slightly weaker than
Groth’s [27]. With these assumptions, we can only extract representations
of the encoded terms with respect to the power basis {z'} (as in [27]),
not with respect to {vi(z) : k € Z,,;4}. Thus, this extraction does not
guarantee that v,,;q(x) and w(x) are in their proper spans. We ensure this
via the final term E(B,vmia(0) + Bww(c)), from which the simulator can
solve a hard problem if vy,;4(x) or w(x) lies outside its proper span.

3.5 Efficiency

Next we state the complexities for our SNARK construction and refer the
reader to the full version of the paper [22] for the proofs.

Prover’s Work. The prover computation requires a number of group
operations linear in the size of the QSP, aside from the computation of
h(z), which can be computed in O(d-log?(d)) time, where d is the degree of
the QSP, via multipoint evaluation and interpolation. When we construct
a SNARK for circuit SAT, we use a QSP for a universal circuit, which
has size O(|C|log|C|) where |C| is the maximum size of the circuits in
the satisfiability problem.

Verifier’s Work. The verification of the SNARK is proportional to
the statement size and independent of the size of the witness. We can
further reduce the verification work [22] to a constant plus a hash function
evaluation by applying an ordinary hash function to the statement and
proving a new relation which takes the the hash output as the statement.

4 Quadratic Programs for Arithmetic Circuits

We also construct Quadratic Arithmetic Programs (QAPs), a natural
extension of QSPs which “naturally” compute arithmetic circuits modulo
the group order p. For some functions, arithmetic circuits are much smaller
than their Boolean counterparts, suggesting that, in such cases, QAPs are
a more attractive option. In fact, it turns out (see [38]) that QAPs are
more efficient than QSPs, even for the Boolean case.

The full details of the QAP construction appear in the final version [22];
here we present the definition of QAPs and our main result about them.

Definition 7 (Quadratic Arithmetic Programs (QAP)). A quadratic
arithmetic program (QAP) Q over field F' contains three sets of polyno-
mials V = {vi(x) : k € {0,....m}}, W = {wi(x) : k € {0,...,m}},
Y =A{yr(x) : k € {0,...,m}}, and a divisor polynomial D(z), all from

19

Let f: F* — F" be a function having input variables with labels
1,...,n and output variables with labels m—n'+1,...,m. We say that Q is

a QAP that computes f if the following is true: ai, ..., an, Gm—p/41,-- -, 0m €
Ftn' s q valid assignment to the input/output variables of f iff there
exist (apyt1,. .., Gmep) € F™"" such that D(z) divides:

(v0e) + Y- 0nla) - (wn(o) + 3 ar - wn(@) — (o) + 3 ax - sule)):
k=1 k=1 k=1

The size of Q is m. The degree of Q is deg(D(x)).
We prove that we can build very efficient QAPs for arbitrary circuits.

Theorem 5. Let C' be an arithmetic circuit with input from F™ that has
s multiplication gates, each with fan-in two, and whose output gates are
all multiplication gates. There is a QAP with size n+ s and degree s that
computes C.

5 Concrete Performance

We developed a system called Pinocchio [38] that includes a compiler that
transforms a subset of C into either a QSP or QAP, and a set of programs
for generating the CRS, creating proofs, and verifying proofs. It supports
NIZK proofs and VC proofs, with both designated and public verifiers. We
use a pairing-based encoding, with a 256-bit BN-curve [5] that provides
128 bits of security.

We find that QAPs outperform QSPs, and that Pinocchio significantly
outperforms state-of-the-art systems [16, 40] based on PCPs [2, 25, 30].”
For example, we measured the time for Nx/N matrix multiplication using
random 32-bit matrix entries. For N = 25 to 100, Pinocchio’s verifier
takes 8-13ms, making it 5-7 orders of magnitude faster than previous work,
while the worker takes 8.9-776.4s, making it 19 — 60x faster.

Acknowledgments

We thank Nir Bitansky, Jens Groth, Yuval Ishai, Seny Kamara, Helger
Lipmaa, and the anonymous reviewers for all of their helpful suggestions.

9 We are not aware of any implementations based on other non-PCP-based approaches
(e.g., Groth [27] or Lipmaa [33]), making direct comparisons difficult.

20

References

Masayuki Abe and Serge Fehr. Perfect NIZK with adaptive soundness. In TCC,
2007.

Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and the hardness of approximation problems. J. ACM, 45(3):501—
555, 1998.

Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new charac-
terization of NP. J. ACM, 45(1):70-122, 1998.

Lészl6 Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking
computations in polylogarithmic time. In STOC, pages 21-31, 1991.

Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic curves of
prime order. In Selected Areas in Cryptography (SAC), pages 319-331, 2006.
Mihir Bellare and Adriana Palacio. The knowledge-of-exponent assumptions and
3-round zero-knowledge protocols. In CRYPTO, pages 273-289, 2004.

Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. On the
concrete-efficiency threshold of probabilistically-checkable proofs. In STOC, 2013.
To appear.

Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable
collision resistance to succinct non-interactive arguments of knowledge, and back
again. In ITCS, pages 326-349, 2012.

Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge
and its applications (extended abstract). In STOC, pages 103-112, 1988.

Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Noninter-
active zero-knowledge. SIAM Journal on Computing, 20(6):1084-1118, 1991.
Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption
with constant size ciphertext. In FUROCRYPT, pages 440-456, 2005.

Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil
pairing. In CRYPTO, 2001.

Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast
encryption with short ciphertexts and private keys. In CRYPTO, 2005.

Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs
of knowledge. J. Comput. Syst. Sci., 37(2):156-189, 1988.

Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited. J. ACM, 51(4):557-594, 2004.

Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical verified
computation with streaming interactive proofs. In ITCS, 2012.

Giovanni Di Crescenzo and Helger Lipmaa. Succinct NP proofs from an extractabil-
ity assumption. In CiFE, pages 175-185, 2008.

Ivan Damgard. Towards practical public key systems secure against chosen cipher-
text attacks. In CRYPTO, pages 445-456, 1991.

Ivan Damgard, Sebastian Faust, and Carmit Hazay. Secure two-party computation
with low communication. In TCC| pages 54-74, 2012.

Uriel Feige, Shafi Goldwasser, Laszlé Lovéasz, Shmuel Safra, and Mario Szegedy.
Interactive proofs and the hardness of approximating cliques. J. ACM, 43(2):268—
292, 1996.

Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable
computing: Outsourcing computation to untrusted workers. In CRYPTO, 2010.
Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic
span programs and succinct NIZKs without PCPs. Cryptology ePrint Archive,
Report 2012/215, 2012.

21

23]
24]
[25]

[26]

27]
28]
[29]
130]
31)
[32)
33

[34]

[35]
[36]
37]

[38]

[39]

[40]

[41]

Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments
from all falsifiable assumptions. In STOC, pages 99-108. ACM, 2011.

Kristian Gjgsteen. Subgroup membership problems and public key cryptosystems.
PhD thesis, Norwegian University of Science and Technology, 2004.

Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating compu-
tation: Interactive proofs for muggles. In STOC, pages 113-122, 2008.

Shafi Goldwasser, Huijia Lin, and Aviad Rubinstein. Delegation of computation
without rejection problem from designated verifier CS-proofs. TACR Cryptology
ePrint Archive, 2011:456, 2011.

Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In
ASIACRYPT, pages 321-340, 2010.

Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for noninteractive
zero-knowledge. Journal of the ACM, 59(3):11:1-11:35, 2012.

Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear
groups. SIAM Journal on Computing, 41(5):1193-1232, 2012.

Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. Efficient arguments without
short PCPs. In IEEE Conference on Computational Complezity, 2007.

Mauricio Karchmer and Avi Wigderson. On span programs. In Structure in
Complexity Theory Conference, pages 102-111, 1993.

Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended
abstract). In STOC, pages 723-732, 1992.

Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive
zero-knowledge arguments. In T'CC, volume 7194, pages 169189, 2012.

Jake Loftus, Alexander May, Nigel P. Smart, and Frederik Vercauteren. On CCA-
secure somewhat homomorphic encryption. In Selected Areas in Cryptography,
pages 55-72, 2011.

Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic
methods for interactive proof systems. J. ACM, 39(4):859-868, 1992.

Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253-1298,
2000. Extended abstract in FOCS 94.

Moni Naor. On cryptographic assumptions and challenges. In CRYPTO, pages
96-109, 2003.

Bryan Parno, Craig Gentry, Jon Howell, and Mariana Raykova. Pinocchio: Nearly
practical verifiable computation. In Proceedings of the IEEE Symposium on Security
and Priwacy, May 2013.

Bryan Parno, Mariana Raykova, and Vinod Vaikuntanathan. How to delegate and
verify in public: Verifiable computation from attribute-based encryption. In T'CC;
2012.

Srinath Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun, Andrew J. Blumberg,
and Michael Walfish. Taking proof-based verified computation a few steps closer
to practicality. In Proceedings of USENIX Security, August 2012.

Adi Shamir. IP = PSPACE. J. ACM, 39(4):869-877, 1992.

22

	Quadratic Span Programs and Succinct NIZKs without PCPs

