
Quantum-Secure Message Authentication Codes

Dan Boneh and Mark Zhandry

Stanford University
{dabo,zhandry}@cs.stanford.edu

Abstract. We construct the first Message Authentication Codes (MACs)
that are existentially unforgeable against a quantum chosen message
attack. These chosen message attacks model a quantum adversary’s ability
to obtain the MAC on a superposition of messages of its choice. We begin
by showing that a quantum secure PRF is sufficient for constructing a
quantum secure MAC, a fact that is considerably harder to prove than
its classical analogue. Next, we show that a variant of Carter-Wegman
MACs can be proven to be quantum secure. Unlike the classical settings,
we present an attack showing that a pair-wise independent hash family is
insufficient to construct a quantum secure one-time MAC, but we prove
that a four-wise independent family is sufficient for one-time security.
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1 Introduction

Message Authentication Codes (MACs) are an important building block in
cryptography used to ensure data integrity. A MAC system is said to be secure if
an efficient attacker capable of mounting a chosen message attack cannot produce
an existential MAC forgery (see Section 2.2).

With the advent of quantum computing there is a strong interest in post-
quantum cryptography, that is systems that remain secure even when the adver-
sary has access to a quantum computer. There are two natural approaches to
defining security of a MAC system against a quantum adversary. One approach
is to restrict the adversary to issue classical chosen message queries, but then
allow the adversary to perform quantum computations between queries. Security
in this model can be achieved by basing the MAC construction on a quantum
intractable problem.

The other more conservative approach to defining quantum MAC security is to
model the entire security game as a quantum experiment and allow the adversary
to issue quantum chosen message queries. That is, the adversary can submit
a superposition of messages from the message space and in response receive a
superposition of MAC tags on those messages. Informally, a quantum chosen
message query performs the following transformation on a given superposition of
messages: ∑

m

ψm
∣∣m〉 −→

∑
m

ψm
∣∣m,S(k,m)

〉



where S(k,m) is a tag on the message m with secret key k.
To define security, let q be the number of queries that the adversary issues by

the end of the game. Clearly it can now produce q classical message-tag pairs by
sampling the q superpositions it received from the MAC signing oracle. We say
that the MAC system is quantum secure if the adversary cannot produce q + 1
valid message-tag pairs. This captures the fact that the adversary cannot do any
better than trivially sampling the responses from its MAC signing oracle and is
the quantum analogue of a classical existential forgery.

1.1 Our results

In this paper we construct the first quantum secure MAC systems. We begin
with a definition of quantum secure MACs and give an example of a MAC system
that is secure against quantum adversaries capable of classical chosen message
queries, but is insecure when the adversary can issue quantum chosen message
queries. We then present a number of quantum secure MAC systems.
Quantum secure MACs. In the classical settings many MAC systems are based
on the observation that a secure pseudorandom function gives rise to a secure
MAC [BKR00,BCK96]. We begin by studying the same question in the quantum
settings. Very recently Zhandry [Zha12b] defined the concept of a quantum secure
pseudorandom function (PRF) which is a PRF that remains indistinguishable
from a random function even when the adversary can issue quantum queries
to the PRF. He showed that the classic GGM construction [GGM86] remains
secure under quantum queries assuming the underlying pseudorandom generator
is quantum secure.

The first question we study is whether a quantum secure PRF gives rise to
a quantum secure MAC, as in the classical settings. To the MAC adversary a
quantum secure PRF is indistinguishable from a random function. Therefore
proving that the MAC is secure amounts to proving that with q quantum queries
to a random oracle H no adversary can produce q + 1 input-output pairs of H
with non-negligible probability. In the classical settings where the adversary can
only issue classical queries to H this is trivial: given q evaluations of a random
function, the adversary learns nothing about the value of the function at other
points. Unfortunately, this argument fails under quantum queries because the
response to a single quantum query to H : X → Y contains information about
all of H. In fact, with a single quantum query the adversary can produce two
input-output pairs of H with probability about 2/|Y| (with classical queries the
best possible is 1/|Y|). As a result, proving that q quantum queries are insufficient
to produce q + 1 input-output pairs is quite challenging. We prove tight upper
and lower bounds on this question by proving the following theorem:

Theorem 1 (informal). Let H : X → Y be a random oracle. Then an adversary
making at most q < |X | quantum queries to H will produce q + 1 input-output
pairs of H with probability at most (q+ 1)/|Y|. Furthermore, when q � |Y| there
is an algorithm that with q quantum queries to H will produce q + 1 input-output
pairs of H with probability 1− (1− 1/|Y|)q+1 ≈ (q + 1)/|Y|.



The first part of the theorem is the crucial fact needed to build quantum
secure MACs and is the harder part to prove. It shows that when |Y| is large
any algorithm has only a negligible chance in producing q + 1 input-output pairs
of H from q quantum queries. To prove this bound we introduce a new lower-
bound technique we call the rank method for bounding the success probability
of algorithms that succeed with only small probability. Existing quantum lower
bound techniques such as the polynomial method [BBC+01] and the adversary
method [Amb00,Aar02,Amb06,ASdW09] do not give the result we need. One
difficulty with existing lower bound techniques is that they generally prove
asymptotic bounds on the number of queries required to solve a problem with
high probability, whereas we need a bound on the success probability of an
algorithm making a limited number of queries. Attempting to apply existing
techniques to our problem at best only bounds the success probability away
from 1 by an inverse polynomial factor, which is insufficient for our purposes.
The rank method for proving quantum lower bounds overcomes these difficulties
and is a general tool that can be used in other post-quantum security proofs.

The second part of Theorem 1 shows that the lower bound presented in the
first part of the theorem is tight. A related algorithm was previously presented by
van Dam [vD98], but only for oracles outputting one bit, namely when Y = {0, 1}.
For such a small range only about |X |/2 quantum queries are needed to learn
the oracle at all |X | points. A special case where Y = X = {0, 1} and q = 1 was
developed independently by Kerenidis and de Wolf [KdW03]. Our algorithm is a
generalization of van Dam’s result to multi-bit oracles.

Quantum secure Carter-Wegman MACs. A Carter-Wegman MAC [WC81] signs
a message m by computing

(
r, h(m)⊕F (k, r)

)
where h is a secret hash function

chosen from an xor-universal hash family, F is a secure PRF with secret key k,
and r is a short random nonce. The attractive feature of Carter-Wegman MACs
is that the long message m is hashed by a fast xor-universal hash h. We show
that a slightly modified Carter-Wegman MAC is quantum secure assuming the
underlying PRF is quantum secure in the sense of Zhandry [Zha12b].

One-time quantum secure MACs. A one-time MAC is existentially unforgeable
when the adversary can make only a single chosen message query. Classically, one-
time MACs are constructed from pair-wise independent hash functions [WC81].
These MACs are one-time secure since the value of a pair-wise independent hash
at one point gives no information about its value at another point. Therefore, a
single classical chosen-message query tells the adversary nothing about the MAC
tag of another message.

In the quantum settings things are more complicated. Unlike the classical
settings, we show that pair-wise independence does not imply existential un-
forgeability under a one-time quantum chosen message attack. For example,
consider the simple pair-wise independent hash family H = {h(x) = ax+ b}a,b∈Fp

with domain and range Fp. We show that a quantum adversary presented with
an oracle for a random function h ∈ H can find both a and b with a single
quantum query to h. Consequently, the classical one-time MAC constructed from



H is completely insecure in the quantum settings. More generally we prove the
following theorem:
Theorem 2 (informal). There is a polynomial time quantum algorithm that
when presented with an oracle for h(x) = a0 + a1x + . . . + adx

d for random
a0, . . . , ad in Fp can recover a0, . . . , ad using only d quantum queries to the oracle
with probability 1−O(d/n).

The h(x) = ax+ b attack discussed above is a special case of this theorem
with d = 1. With classical queries finding a0, . . . , ad requires d+ 1 queries, but
with quantum queries the theorem shows that d queries are sufficient.

Theorem 2 is a quantum polynomial interpolation algorithm: given oracle
access to the polynomial, the algorithm reconstructs its coefficients. This problem
was studied previously by Kane and Kutin [KK11] who prove that d/2 quantum
queries are insufficient to interpolate the polynomial. Interestingly, they conjecture
that quantum interpolation requires d+1 quantum queries as in the classical case,
but Theorem 2 refutes that conjecture. Theorem 2 also applies to a quantum
version of secret sharing where the shares themselves are superpositions. It shows
that the classical Shamir secret sharing scheme [Sha79] is insecure if the shares are
allowed to be quantum states obtained by evaluating the secret sharing polynomial
on quantum superpositions. More generally, the security of secret sharing schemes
in the quantum settings was analyzed by Dam̊ard et al. [DFNS11].

As for one-time secure MACs, while pair-wise independence is insufficient for
quantum one-time security, we show that four-wise independence is sufficient. That
is, a four-way independent hash family gives rise to an existentially unforgeable
MAC under a one-time quantum chosen message attack. It is still an open
problem whether three-way independence is sufficient. More generally, we show
that (q + 1)-way independence is insufficient for a q-time quantum secure MAC,
but (3q + 1)-way independence is sufficient.

Motivation. Allowing the adversary to issue quantum chosen message queries is
a natural and conservative security model and is therefore an interesting one to
study. Showing that classical MAC constructions remain secure in this model
gives confidence in case end-user computing devices eventually become quantum.
Nevertheless, one might imagine that even in a future where computers are
quantum, the last step in a MAC signing procedure is to sample the resulting
quantum state so that the generated MAC is always classical. The quantum
chosen message query model ensures that even if the attacker can bypass this
last “classicalization” step, the MAC remains secure.

As further motivation we note that the results in this paper are the tip of a
large emerging area of research with many open questions. Consider for example
signature schemes. Can one design schemes that remain secure when the adversary
can issue quantum chosen message queries? Similarly, can one design encryption
systems that remain secure when the the adversary can issue quantum chosen
ciphertext queries? More generally, for any cryptographic primitive modeled as
an interactive game, one can ask how to design primitives that remain secure
when the interaction between the adversary and its given oracles is quantum.



Other related work. Several recent works study the security of cryptographic prim-
itives when the adversary can issue quantum queries [BDF+11,Zha12a,Zha12b].
So far these have focused on proving security of signatures, encryption, and
identity-based encryption in the quantum random oracle model where the adver-
sary can query the random oracle on superpositions of inputs. These works show
that many, but not all, random oracle constructions remain secure in the quantum
random oracle model. The quantum random oracle model has also been used
to prove security of Merkle’s Puzzles in the quantum settings [BS08,BHK+11].
Meanwhile, Damård et al. [DFNS11] examine secret sharing and multiparty
computation in a model where an adversary may corrupt a superposition of
subsets of players, and build zero knowledge protocols that are secure, even when
a dishonest verifier can issue challenges on superpositions.

Some progress toward identifying sufficient conditions under which classical
protocols are also quantum immune has been made by Unruh [Unr10] and
Hallgren et al. [HSS11]. Unruh shows that any scheme that is statistically secure
in Cannetti’s universal composition (UC) framework [Can01] against classical
adversaries is also statistically secure against quantum adversaries. Hallgren et
al. show that for many schemes this is also true in the computational setting.
These results, however, do not apply to MACs.

2 Preliminaries: Definitions and Notation

Let [n] be the set {1, ..., n}. For a prime power n, let Fn be the finite field on n
elements. For any positive integer n, let Zn be the ring of integers modulo n.

Functions will be denoted by capitol letters (such as F ), and sets by capitol
script letters (such as X ). We denote vectors with bold lower-case letters (such
as v), and the components of a vector v ∈ An by vi, i ∈ [n]. We denote matrices
with bold capital letters (such as M), and the components of a matrix M ∈ Am×n
by Mi,j , i ∈ [m], j ∈ [n]. Given a function F : X → Y and a vector v ∈ Xn, let
F (v) denote the vector (F (v1), F (v2), ..., F (vk)). Let F ([n]) denote the vector
(F (1), F (2), ..., F (n)).

Given a vector space V, let dimV be the dimension of V, or the number of
vectors in any basis for V . Given a set of vectors {v1, ...,vk}, let span{v1, ...,vk}
denote the space of all linear combinations of vectors in {v1, ...,vk}. Given a
subspace S of an inner-product space V , and a vector v ∈ V , define projSv as the
orthogonal projection of v onto S, that is, the vector w ∈ S such that |v−w| is
minimized.

Given a matrix M, we define the rank, denoted rank(M), to be the size of the
largest subset of rows (equivalently, columns) of M that are linearly independent.

Given a function F : X → Y and a subset S ⊆ X , the restriction of F to S is
the function FS : S → Y where FS(x) = F (x) for all x ∈ S. A distribution D
on the set of functions F from X to Y induces a distribution DS on the set of
functions from S to Y , where we sample from DS by first sampling a function F
from D, and outputting FS . We say that D is k-wise independent if, for each set
S of size at most k, each of the distributions DS are truly random distributions



on functions from S to Y . A set F of functions from X to Y is k-wise independent
if the uniform distribution on F is k-wise independent.

2.1 Quantum Computation.

The quantum system A is a complex Hilbert space H with inner product 〈·|·〉.
The state of a quantum system is given by a vector |ψ〉 of unit norm (〈ψ|ψ〉 = 1).
Given quantum systems H1 and H2, the joint quantum system is given by the
tensor product H1 ⊗H2. Given |ψ1〉 ∈ H1 and |ψ2〉 ∈ H2, the product state is
given by |ψ1〉|ψ2〉 ∈ H1 ⊗H2. Given a quantum state |ψ〉 and an orthonormal
basis B = {|b0〉, ..., |bd−1〉} for H, a measurement of |ψ〉 in the basis B results in
a value bi with probability |〈bi|ψ〉|2, and the state |ψ〉 is collapsed to the state
|bi〉. We let bi ← |ψ〉 denote the distribution on bi obtained by sampling |ψ〉.

A unitary transformation over a d-dimensional Hilbert space H is a d × d
matrix U such that UU† = Id, where U† represents the conjugate transpose. A
quantum algorithm operates on a product space Hin⊗Hout⊗Hwork and consists
of n unitary transformations U1, ...,Un in this space. Hin represents the input
to the algorithm, Hout the output, and Hwork the work space. A classical input
x to the quantum algorithm is converted to the quantum state |x, 0, 0〉. Then,
the unitary transformations are applied one-by-one, resulting in the final state

|ψx〉 = Un...U1|x, 0, 0〉 .

The final state is measured, obtaining (a, b, c) with probability |〈a, b, c|ψx〉|
2.

The output of the algorithm is b.

Quantum-accessible Oracles. We will implement an oracle O : X → Y by a
unitary transformation O where

O|x, y, z〉 = |x, y +O(x), z〉

where + : X × X → X is some group operation on X . Suppose we have a
quantum algorithm that makes quantum queries to oracles O1, ..., Oq. Let |ψ0〉
be the state of the algorithm before any queries, and let U1, ...,Uq be the unitary
transformations applied between queries. The final state of the algorithm will be

UqOq...U1O1|ψ0〉

We can also have an algorithm make classical queries to Oi. In this case, the
input to the oracle is measured before applying the transformation Oi.

Fix an oracle O : X → Y . Let O(q) : X q → Yq be the oracle that maps x into
O(x) = (O(x1), O(x2), ..., O(xq)). Observe that any quantum query to O(q) can
be implemented using q quantum queries to O, where the unitary transformations
between queries just permute the registers. We say that an algorithm that makes
a single query to O(q) makes q non-adaptive queries to O.



2.2 Quantum secure MACs
A MAC system comprises two algorithms: a (possibly) randomized MAC signing
algorithm S(k,m) and a MAC verification algorithm V (k,m, t). Here k denotes
the secret key chosen at random from the key space, m denotes a message in the
message space, and t denotes the MAC tag in the tag space on the message m.
These algorithms and spaces are parameterized by a security parameter λ.

Classically, a MAC system is said to be secure if no attacker can win the
following game: a random key k is chosen from the key space and the attacker is
presented with a signing oracle S(k, ·). Queries to the signing oracle are called
chosen message queries. Let {(mi, ti)}qi=1 be the set of message-tag pairs that
the attacker obtains by interacting with the signing oracle. The attacker wins the
game if it can produce an existential forgery, namely a valid message-tag pair
(m∗, t∗) satisfying (m∗, t∗) 6∈ {(mi, ti)}qi=1. The MAC system is said to be secure
if no “efficient” adversary can win this game with non-negligible probability in λ.

Quantum chosen message queries. In the quantum settings we allow the adversary
to maintain its own quantum state and issue quantum queries to the signing
oracle. Let

∑
m,x,y ψm,x,y

∣∣m,x, y〉 be the adversary’s state just prior to issuing
a signing query. The MAC signing oracle transforms this state as follows:
1. it chooses a random string r that will be used by the MAC signing algorithm,
2. it signs each “slot” in the given superposition by running S(k,m; r), that is

running algorithm S with randomness r. More precisely, the signing oracle
performs the following transformation:∑

m,x,y

ψm,x,y
∣∣m,x, y〉 −→

∑
m,x,y

ψm,x,y
∣∣m, x⊕ S(k,m; r), y

〉
When the signing algorithm is deterministic there is no need to choose an r.
However, for randomized signing algorithms the same randomness is used to
compute the tag for all slots in the superposition. Alternatively, we could have
required fresh randomness in every slot, but this would make it harder to
implement the MAC system on a quantum device. Allowing the same randomness
in every slot is more conservative and frees the signer from this concern. At any
rate, the two models are very close — if need be, the random string r can be
used as a key for a quantum-secure PRF [Zha12b] which is used to generate a
fresh pseudorandom value for every slot.

Existential forgery. After issuing q quantum chosen message queries the adversary
wins the game if it can generate q + 1 valid classical message-tag pairs.
Definition 1. A MAC system is existentially unforgeable under a quantum
chosen message attack (EUF-qCMA) if no adversary can with the quantum MAC
game with non-negligible advantage in λ.

Zhandry [Zha12b] gives an example of a classically secure PRF that is insecure
under quantum queries. This PRF gives an example MAC that is classically
secure, but insecure under quantum queries. Our goal for the remainder of the
paper is to construct EUF-qCMA secure MACs.



3 The Rank Method

In this section we introduce the rank method which is a general approach to
proving lower bounds on quantum algorithms. The setup is as follows: we give a
quantum algorithm A access to some quantity H ∈ H. By access, we mean that
the final state of the algorithm is some fixed function of H. In this paper, H will
be a set of functions, and A will be given oracle access to H ∈ H by allowing A
to make q quantum oracle queries to H, for some q. For now, we will treat H
abstractly, and return to the specific case where H is a set of functions later.

The idea behind the rank method is that, if we treat the final states of the
algorithm on different H as vectors, the space spanned by these vectors will be
some subspace of the overall Hilbert space. If the dimension of this subspace is
small enough, the subspace (and hence all of the vectors in it) must be reasonably
far from most of the vectors in the measurement basis. This allows us to bound
the ability of such an algorithm to achieve some goal.

For H ∈ H, let |ψH〉 be the final state of the quantum algorithm A, before
measurement, when given access to H. Suppose the different |ψH〉 vectors all lie
in a space of dimension d. Let ΨA,H be the the |H| × d matrix whose rows are
the various vectors |ψH〉.

Definition 2. For a quantum algorithm A given access to some value H ∈ H,
we define the rank, denoted rank(A,H), as the rank of the matrix ΨA,H.

The rank of an algorithm A seemingly contains very little information: it
gives the dimension of the subspace spanned by the |ψH〉 vectors, but gives no
indication of the orientation of this subspace or the positions of the |ψH〉 vectors
in the subspace. Nonetheless, we demonstrate how the success probability of an
algorithm can be bounded from above knowing only the rank of ΨA,H.

Theorem 3. Let A be a quantum algorithm that has access to some value H ∈
H drawn from some distribution D and produces some output w ∈ W. Let
R : H ×W → {True, False} be a binary relation. Then the probability that A
outputs some w such that R(H,w) = True is at most(

max
w∈W

Pr
H←D

[R(H,w)]
)
× rank(A,H) .

In other words, the probability that A succeeds in producing w ∈ W for which
R(H,w) is true is at most rank(A,H) times the best probability of success of any
algorithm that ignores H and just outputs some fixed w.

Proof. The probability that A outputs a w such that R(H,w) = True is

Pr
H←D

w←|ψH〉
[R(H,w)] =

∑
H

Pr
D

[H]
∑

w:R(H,w)

|〈w|ψH〉|
2 =

∑
w

∑
H:R(H,w)

Pr
D

[H]|〈w|ψH〉|
2

Now, |〈w|ψH〉| is just the magnitude of the projection of |w〉 onto the space
spanned by the vector |ψH〉, that is, projspan|ψH〉(|w〉). This is at most the



magnitude of the projection of |w〉 onto the space spanned by all of the |ψH′〉 for
H ′ ∈ H, or projspan{|ψ

H′〉}(|w〉). Thus,

Pr
H←D

w←|ψH〉
[R(z, w)] ≤

∑
w

 ∑
H:R(H,w)

Pr
D

[H]

∣∣∣projspan{|ψ
H′〉}(|w〉)

∣∣∣2
Now, we can perform the sum over H, which gives PrH←D[R(H,w)]. We can

bound this by the maximum it attains over all w, giving us

Pr
H←D

w←|ψH〉
[R(H,w)] ≤

(
max
w

Pr
H←D

[R(H,w)]
)∑

w

∣∣∣projspan{|ψ
H′〉}(|w〉)

∣∣∣2
Now, let |bi〉 be an orthonormal basis for span{|ψH′〉}. Then∣∣∣projspan{|ψ

H′〉}(|w〉)
∣∣∣2 =

∑
i

|〈bi|w〉|2

Summing over all w gives∑
w

∣∣∣projspan{|ψ
H′〉}(|w〉)

∣∣∣2 =
∑
w

∑
i

|〈bi|w〉|2 =
∑
i

∑
w

|〈bi|w〉|2

Since the w are the possible results of measurement, the vectors |w〉 form
an orthonormal basis for the whole space, meaning

∑
w |〈bi|w〉|

2 = | |bi〉 |2 = 1.
Hence, the sum just becomes the number of |bi〉, which is just the dimension of
the space spanned by the |ψH′〉. Thus,

Pr
H←D

w←|ψH〉
[R(H,w)] ≤

(
max
w∈W

Pr
H←D

[R(H,w)]
)

(dim span{|ψH′〉}) .

But dim span{|ψH′〉} is exactly rank(ΨA,H) = rank(A,H), which finishes the
proof of the theorem. ut

We now move to the specific case of oracle access. H is now some set of
functions from X to Y, and our algorithm A makes q quantum oracle queries
to a function H ∈ H. To use the rank method (Theorem 3) for our purposes,
we need to bound the rank of such an algorithm. First, we define the following
quantity:

Ck,q,n ≡
q∑
r=0

(
k

r

)
(n− 1)r .

Theorem 4. Let X and Y be sets of size m and n and let H0 be some function
from X to Y. Let S be a subset of X of size k and let H be some set of functions
from X to Y that are equal to H0 except possibly on points in S. If A is a quantum
algorithm making q queries to an oracle drawn from H, then

rank(A,H) ≤ Ck,q,n .



Proof. The proof appears in the full version [BZ13]. Here we sketch our approach.
Let |ψqH〉 be the final state of a quantum algorithm after q quantum oracle calls
to an oracle H ∈ H. We wish to bound the dimension of the space spanned by
the vectors |ψqH〉 for all H ∈ H. We accomplish this by exhibiting a basis for
this space. Our basis consists of |ψqH′〉 vectors where H ′ only differs from H0
at a maximum of q points in S. A simple counting argument shows that there
are exactly Ck,q,n such H ′ oracles. We show in the full version that these |ψqH′〉
vectors do indeed span the entire space. ut

3.1 An Example

Suppose our task is to, given one quantum query to an oracle H : X → Y , produce
two distinct pairs (x0, y0) and (x1, y1) such that H(x0) = y0 and H(x1) = y1.
Suppose further that H is drawn from a pairwise independent set H. We will
now see that the rank method leads to a bound on the success probability of any
quantum algorithm A.

Corollary 1. No quantum algorithm A, making a single query to a function
H : X → Y drawn from a pairwise independent set H, can produce two distinct
input/output pairs of H, except with probability at most |X |/|Y|.

Proof. Let m = |X | and n = |Y|. Since no outputs of H are fixed, we will set
S = X in Theorem 4, showing that the rank of the algorithm A is bounded
by Cm,1,n = 1 + m(n − 1) < mn. If an algorithm makes no queries to H, the
best it can do at outputting two distinct input/output pairs is to just pick two
arbitrary distinct pairs, and output those. The probability that this zero-query
algorithm succeeds is at most 1/n2. Then Theorem 3 tells us that A succeeds
with probability at most rank(A,H) times this amount, which equates to m

n . ut

For m > n, this bound is trivial. However, for m smaller than n, this gives
a non-trivial bound, and for m exponentially smaller than n, this bound is
negligible.

4 Outputting Values of a Random Oracle

In this section, we will prove Theorem 1. We consider the following problem: given
q quantum queries to a random oracle H : X → Y, produce k > q distinct pairs
(xi, yi) such that yi = H(xi). Let n = |Y| be the size of the range. Motivated
by our application to quantum-accessible MACs, we are interested in the case
where the range Y of the oracle is large, and we want to show that to produce
even one extra input/output pair (k = q+ 1) is impossible, except with negligible
probability. We are also interested in the case where the range of the oracle,
though large, is far smaller than the domain. Thus, the bound we obtained in
the previous section (Corollary 1) is not sufficient for our purposes, since it is
only non-trivial if the range is larger than the domain.



In the classical setting, when k ≤ q, this problem is easy, since we can just
pick an arbitrary set of k different xi values, and query the oracle on each value.
For k > q, no adversary of even unbounded complexity can solve this problem,
except with probability 1/nk−q, since for any set of k inputs, at least k− q of the
corresponding outputs are completely unknown to the adversary. Therefore, for
large n, we have have a sharp threshold: for k ≤ q, this problem can be solved
efficiently with probability 1, and for even k = q + 1, this problem cannot be
solved, even inefficiently, except with negligible probability.

In the quantum setting, the k ≤ q case is the same as before, since we can
still query the oracle classically. However, for k > q, the quantum setting is
more challenging. The adversary can potentially query the random oracle on a
superposition of all inputs, so he “sees” the output of the oracle on all points.
Proving that it is still impossible to produce k input/output pairs is thus more
complicated, and existing methods fail to prove that this problem is difficult.
Therefore, it is not immediately clear that we have the same sharp threshold as
before.

In Section 4.1 we use the rank method to bound the probability that any (even
computationally unbounded) quantum adversary succeeds. Then in Section 4.2
we show that our bound is tight by giving an efficient algorithm for this problem
that achieves the lower bound. In particular, for an oracle H : X → Y we consider
two cases:

– Exponentially-large range Y and polynomial k, q. In this case, we will see
that the success probability even when k = q + 1 is negligible. That is, to
produce even one additional input/output pair is hard. Thus, we get the
same sharp threshold as in the classical case

– Constant size range Y and polynomial k, q. We show that even when q is
a constant fraction of k we can still produce k input/output pairs with
overwhelming probability using only q quantum queries. This is in contrast to
the classical case, where the success probability for q = ck, c < 1, is negligible
in k.

4.1 A Tight Upper Bound

Theorem 5. Let A be a quantum algorithm making q queries to a random oracle
H : X → Y whose range has size n, and produces k > q pairs (xi, yi) ∈ X × Y.
The probability that the xi values are distinct and yi = H(xi) for all i ∈ [k] is at
most 1

nkCk,q,n.

Proof. The complete proof is given in the full version [BZ13]. Here we prove
the special case where k is equal to the size of the domain X . In this case, any
quantum algorithm that outputs k distinct input/output pairs must output all
input/output pairs. Similar to the proof of Corollary 1, we will set S = X , and
use Theorem 4 to bound the rank of A at Ck,q,n. Now, any algorithm making
zero queries succeeds with probability at most 1/nk. Theorem 3 then bounds the
success probability of any q query algorithm as Ck,q,n/nk. ut



For this paper, we are interested in the case where n = |Y| is exponentially
large, and we are only allowed a polynomial number of queries. Suppose k = q+1,
the easiest non-trivial case for the adversary. Then, the probability of success is

1
nq+1

q∑
r=0

(
q + 1
r

)
(n− 1)r = 1−

(
1− 1

n

)q+1
≤ q + 1

n
. (4.1)

Therefore, to produce even one extra input/output pair is impossible, except
with exponentially small probability, just like in the classical case. This proves
the first part of Theorem 1.

4.2 An Optimal Attack
In this section, we present a quantum algorithm for the problem of computing
H(xi) for k different xi values, given only q < k queries:
Theorem 6. Let X and Y be sets, and fix integers q < k, and k distinct values
x1, ..., xk ∈ X . There exists a quantum algorithm A that makes q non-adaptive
quantum queries to any function H : X → Y, and produces H(x1), ...,H(xk) with
probability Ck,q,n/nk, where n = |Y|.

The proof appears in the full version [BZ13], and is similar to the algorithm
of [vD98], though generalized to handle arbitrary range sizes. This algorithm has
the same success probability as in Theorem 5, showing that both our attack and
lower bound of Theorem 5 are optimal. This proves the second part of Theorem 1.

As we have already seen, for exponentially-large Y , this attack has negligible
advantage for any k > q. However, if n = |Y| is constant, we can do better. The
error probability is

k∑
r=q+1

(
k

r

)(
1− 1

n

)r( 1
n

)k−r
=
k−q−1∑
s=0

(
k

s

)(
1
n

)s(
1− 1

n

)k−s
.

This is the probability that k consecutive coin flips, where each coin is heads
with probability 1/n, yields fewer than k− q heads. Using the Chernoff bound, if
q > k(1− 1/n), this probability is at most

e−
n

2k (q−k(1−1/n))2
.

For a constant n, let c be any constant with 1− 1/n < c < 1. If we use q = ck
queries, the error probability is less than

e−
n

2k (k(c+1/n−1))2
= e−

nk
2 (c+1/n−1)2

,

which is exponentially small in k. Thus, for constant n, and any constant c with
1−1/n < c < 1, using q = ck quantum queries, we can determine k input/output
pairs with overwhelming probability. This is in contrast to the classical case,
where with any constant fraction of k queries, we can only produce k input/output
pairs with negligible probability. As an example, if H outputs two bits, it is
possible to produce k input/output pairs of of H using only q = 0.8k quantum
queries. However, with 0.8k classical queries, we can output k input/output pairs
with probability at most 4−0.2k < 0.76k.



5 Quantum-Accessible MACs

Using Theorem 5 we can now show that a quantum secure pseudorandom
function [Zha12b] gives rise to the quantum-secure MAC, namely S(k,m) =
PRF(k,m). We prove that this mac is secure.

Theorem 7. If PRF : K ×X → Y is a quantum-secure pseudorandom function
and 1/|Y| is negligible, then S(k,m) = PRF(k,m) is a EUF-qCMA-secure MAC.

Proof. Let A be a polynomial time adversary that makes q quantum queries
to S(k, ·) and produces q + 1 valid input/output pairs with probability ε. Let
Game 0 be the standard quantum MAC attack game, where A makes q quantum
queries to MACk. By definition, A’s success probability in this game is ε.

Let Game 1 be the same as Game 0, except that S(k, ·) is replaced with a truly
random function O : X → Y , and define A’s success probability as the probability
that A outputs q + 1 input/output pairs of O. Since PRF is a quantum-secure
PRF, A’s advantage in distinguishing Game 0 from Game 1 is negligible.

Now, in Game 1, A makes q quantum queries to a random oracle, and tries to
produce q+ 1 input/output pairs. However, by Theorem 5 and Eq. (4.1) we know
that A’s success probability is bounded by (q + 1)/|Y| which is negligible. It now
follows that ε is negligible and therefore, S is a EUF-qCMA-secure MAC. ut

5.1 Carter-Wegman MACs

In this section, we show how to modify the Carter-Wegman MAC so that it
is secure in the quantum setting presented in Section 2.2. Recall that H is an
XOR-universal family of hash functions from X into Y if for any two distinct
points x and y, and any constant c ∈ Y,

Pr
h←H

[H(x)−H(y) = c] = 1/|Y|

The Carter-Wegman construction uses a pseudorandom function family PRF
with domain X and range Y, and an XOR-universal family of hash functions
H from M to Y. The key is a pair (k,H), where k is a key for PRF and H is a
function drawn from H. To sign a message, pick a random r ∈ X , and return
(r, PRF(k, r) +H(m)).

This MAC is not, in general, secure in the quantum setting presented in
Section 2.2. The reason is that the same randomness is used in all slots of a
quantum chosen message query, that is the signing oracle computes:∑

m

αm|m〉 −→
∑
m

αm|m, r,PRF(k, r) +H(m)〉

where the same r is used for all classical states of the superposition. For example,
suppose H is the set of functions H(x) = ax+ b for random a and b. With even
a single quantum query, the adversary will be able to obtain a and PRF(k, r) + b



with high probability, using the algorithm from Theorem 10 in Section 6. Knowing
both of these will allow the adversary to forge any message.

We show how to modify the standard Carter-Wegman MAC to make it secure
in the quantum setting.

Construction 1 (Carter-Wegman) The Quantum Carter-Wegman MAC
(QCW-MAC) is built from a pseudorandom function PRF, an XOR-universal set
of functions H, and a pairwise independent set of functions R.

Keys: The secret key for QCW-MAC is a pair (k,H), where k is a key for PRF
and H :M→ Y is drawn from H

Signing: To sign a message m choose a random R ∈ R and output the pair(
R(m), PRF(k,R(m)) +H(m)

)
as the tag. When responding to a quantum

chosen message query, the same R is used in all classical states of the
superposition.

Verification: To verify that (r, s) is a valid tag for m, accept iff PRF(k, r) +
H(m) = s.

Theorem 8. The Quantum Carter-Wegman MAC is a EUF-qCMA secure MAC.

The proof is given in the full version [BZ13].

6 q-time MACs

In this section, we develop quantum one-time MACs, MACs that are secure when
the adversary can issue only one quantum chosen message query. More generally,
we will study quantum q-time MACs.

Classically, any pairwise independent function is a one-time MAC. In the
quantum setting, Corollary 1 shows that when the range is much larger than the
domain, this still holds. However, such MACs are not useful since we want the
tag to be short. We first show that when the range is not larger than the domain,
pairwise independence is not enough to ensure security:

Theorem 9. For any set Y of prime-power size, and any set X with |X | ≥ |Y|,
there exist (q + 1)-wise independent functions from X to Y that are not q-time
MACs.

To prove this theorem, we treat Y as a finite field, and assume X = Y, as
our results are easy to generalize to larger domains. We use random degree q
polynomials as our (q + 1)-wise independent family, and show in Theorem 10
below that such polynomials can be completely recovered using only q quantum
queries. It follows that the derived MAC cannot be q-time secure since once the
adversary has the polynomial it can easily forge tags on new messages. The proof
of the following theorem appears in the full version [BZ13]:

Theorem 10. For any prime power n, there is an efficient quantum algorithm
that makes only q quantum queries to an oracle implementing a degree-q polyno-
mial F : Fn → Fn, and completely determines F with probability 1−O(qn−1).



The theorem shows that a (q + 1)-wise independence family is not necessarily
a secure quantum q-time MAC since after q quantum chosen message queries the
adversary extracts the entire secret key. The case q = 1 is particularly interesting.

6.1 Sufficient Conditions for a One-Time Mac

We show that, while pairwise independence is not enough for a one-time MAC,
4-wise independence is. We first generalize a theorem of Zhandry [Zha12a]:

Lemma 1. Let A be any quantum algorithm that makes c classical queries and q
quantum queries to an oracle H. If H is drawn from a (c+ 2q)-wise independent
function, then the output distribution of A is identical to the case where H is
truly random.

Proof. The complete proof is given in the full version [BZ13]. If q = 0, then this
theorem is trivial, since the c classical outputs A sees are distributed randomly.
If c = 0, then the theorem reduces to that of Zhandry [Zha12a]. By adapting the
proof of the c = 0 case to the general case, we get the lemma. ut

Using this lemma we show that (3q+ 1)-wise independence is sufficient for q-time
MACs.

Theorem 11. Any (3q + 1)-wise independent family with domain X and range
Y is a quantum q-time secure MAC provided (q + 1)/|Y| is negligible.

Proof. Let D be some (3q + 1)-wise independent function. Suppose we have
an adversary A that makes q quantum queries to an oracle H, and attempts to
produces q + 1 input/output pairs. Let εR be the probability of success when H
is a random oracle, and let εD be the probability of success when H is drawn
from D. We construct an algorithm B with access to H as follows: simulate A
with oracle access to H. When A outputs q + 1 input/output pairs, simply make
q + 1 queries to H to check that these are valid pairs. Output 1 if and only if all
pairs are valid. Therefore, B makes q quantum queries and c = q + 1 classical
queries to H, and outputs 1 if and only if A succeeds: if H is random, B outputs
1 with probability εR, and if H is drawn from D, B outputs 1 with probability
εD. Now, since D is (3q + 1)-wise independent and 3q + 1 = 2q + c, Lemma 1
shows that the distributions of outputs when H is drawn from D is identical to
that when H is random, meaning εD = εR.

Thus, when H is drawn from D, A’s succeeds with the same probability that
it would if H was random. But we already know that if H is truly random, A’s
success probability is less than (q + 1)/|Y|. Therefore, when H is drawn from D,
A succeeds with probability less than (q + 1)/|Y|, which is negligible. Hence, if
H is drawn from D, H is a q-time MAC. ut



7 Conclusion

We introduced the rank method as a general technique for obtaining lower bounds
on quantum oracle algorithms and used this method to bound the probability
that a quantum algorithm can evaluate a random oracle O : X → Y at k points
using q < k queries. When the range of Y is small, say |Y| = 8, a quantum
algorithm can recover k points of O from only 0.9k queries with high probability.
However, we show that when the range Y is large, no algorithm can produce k
input-output pairs of O using only k − 1 queries, with non-negligible probability.
We use these bounds to construct the first MACs secure against quantum chosen
message attacks. We consider both PRF and Carter-Wegman constructions. For
one-time MACs we showed that pair-wise independence does not ensure security,
but four-way independence does.

These results suggest many directions for future work. First, can these bounds
be generalized to signatures to obtain signatures secure against quantum chosen
message attacks? Similarly, can we construct encryption systems secure against
quantum chosen ciphertext attacks where decryption queries are superpositions
of ciphertexts?
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