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Abstract. A central question in the theory of public-key cryptogra-
phy is to determine which minimal assumptions are sufficient to achieve
security against chosen-ciphertext attacks (or CCA-security, for short).
Following the large body of work on hardness and correctness amplifi-
cation, we investigate how far we can weaken CCA security and still be
able to efficiently transform any scheme satisfying such a weaker notion
into a fully CCA-secure one.
More concretely, we consider a weak CCA-secure bit-encryption scheme
with decryption error (1 − α)/2 where an adversary can distinguish
encryptions of different messages with possibly large advantage β <
1−1/poly. We show that whenever α2 > β, the weak correctness and se-
curity properties can be simultaneously amplified to obtain a fully CCA-
secure encryption scheme with negligible decryption error. Our approach
relies both on a new hardcore lemma for CCA security as well as on re-
visiting the recently proposed approach to obtain CCA security due to
Hohenberger et al (EUROCRYPT ’12).
We note that such amplification results were only known in the simpler
case of security against chosen-plaintext attacks.

1 Introduction

1.1 Public-key Encryption and CCA Security

The seminal work of Goldwasser and Micali [1] introduced semantic security as
the basic security notion for public-key encryption. Semantic security demands
that no polynomial-time adversary, given only the public key, can distinguish
encryptions of any two messages m0 and m1 of its choice, except with negligi-
ble advantage. Often, this notion is also referred to as security against a chosen
plaintext attack, or CPA security, for short. This is in contrast to the stronger no-
tion of (adaptive) chosen-ciphertext security (CCA security, for short) [2], where
the above indistinguishability requirement must hold true even for adversaries
with the additional ability to query a decryption oracle; as CCA security is re-
quired by many applications, it is by now considered to be the golden standard
for secure public-key encryption.

In contrast to the case of CPA security, where simple constructions from
generic assumptions (such as trapdoor permutations (TDP)) can be given, de-
livering CCA-secure public-key encryption from general assumptions proved it-
self to be a much more challenging problem. In particular, determining whether



CCA-secure public-key encryption can be achieved solely from CPA-secure public-
key encryption remains a major longstanding open question. Constructions ad-
ditionally relying on non-interactive zero-knowledge proof systems (NIZKs) are
known [3, 4, 2, 5]. But, so far, all constructions of NIZKs require the existence of
(enhanced) TDPs, which are not known to be implied by CPA-secure encryp-
tion; furthermore, known constructions based on NIZKs are all non-black-box.
It is in fact likely that no black-box construction of a CCA-secure scheme from
a CPA-secure one exists, as confirmed at least for a certain natural class of
constructions [6]. For this reason, efficient constructions have been instead given
from more concrete families of assumptions, such as hash proof systems and vari-
ants thereof [7, 8], lossy TDFs [9], correlated-product secure TDFs [10], adaptive
TDFs [11], or using random oracles [12, 13].

1.2 Our Results: From Weak to Strong CCA Security

In this paper, we ask and answer the following question:

“How far can we weaken CCA security and still provide a black-box con-
struction of a CCA-secure encryption scheme from a scheme only satis-
fying the weaker notion?”

Our approach follows the one of the large body of works on security amplifi-
cation, which has considered a wide range of cryptographic primitives and was
initiated by Yao [14] in the context of one-way functions. Interestingly, limited
work has been devoted to amplification of public-key encryption. The problem
was first considered by Dwork, Naor, and Reingold [15] for CPA-secure public-
key encryption. Constructions achieving better parameters were later proposed
by Holenstein [16] and by Holenstein and Renner [17]. However, the question of
amplifying CCA security has remained wide open. This is the question that we
tackle and solve in this work.3

Modeling weak CCA encryption. Our model of weak CCA encryption ex-
tends naturally the model of weak CPA encryption considered in [15, 17]. We
start from a bit-encryption4 scheme with key generation algorithm Gen, encryp-
tion algorithm Enc, and decryption algorithm Dec, and weaken it in two different
directions, allowing both for non-negligible decryption errors as well as for non-
negligible adversarial advantage in a chosen-ciphertext attack. More concretely,
for two given parameters 0 < α, β ≤ 1, where α ≥ 1/p(κ) and β < 1 − 1/q(κ)
for some polynomials p and q, we assume the following two conditions:

3 Note that in the secret-key setting, amplification of CCA security is, at least in prin-
ciple, known to be feasible, as any weak form of CCA security implies weak one-way
functions, and these are sufficient to build CCA-secure symmetric-key encryption
via standard techniques.

4 As every meaningful encryption scheme has at least the ability to encrypt a binary
value, this is the weakest possible assumption in terms of message space of the basic
scheme.



(i) α-weak decryptability: The decryption error over a random key-pair
and a random bit is at most 1−α

2 . We stress that this is a very weak
guarantee, as it is taken over random choices of the keys and of the bit b,
as well as of the coins used to encrypt b.

(ii) β-weak security: We consider the usual CCA-security game where an
adversary obtains first the public key, and later a challenge ciphertext
encrypting a random bit b. Moreover, the adversary can ask arbitrary
decryption queries, with the sole exception that after the adversary obtains
the challenge ciphertext, it cannot ask for its decryption. The task of
the adversary is to output a guess b′, and we are going to require that
Pr [b′ = b] ≤ 1+β

2 for all polynomial-size adversaries.

Justifying weak CCA security. There are several reasons why assuming
the existence of such a weak scheme is reasonable. Let us mention some natural
examples.

- Within the general agenda of achieving CCA security from general assump-
tions, we may envision that a construction of a weak CCA scheme is poten-
tially much easier to find than a construction of a full-fledged CCA-secure
encryption scheme.

- An existing scheme designed to be CCA-secure may end up being less secure
than expected due to the discovery of a better concrete attack or due to im-
plementation errors, as in the recently discussed case of faulty key generation
for RSA-based systems [18, 19].

- It may be generally easier to build a CCA-secure scheme with large decryp-
tion errors. For example, as pointed out in [20], an encryption scheme with
a simple, easily learnable, decryption algorithm must have large decryption
error. In contrast to CPA encryption, reducing the decryption error turns
out to be a major challenge in the case of CCA-secure encryption, even if
the scheme is already fully CCA secure.

Our main result. The question we are going to ask is whether for certain α
and β, there exists a transformation which delivers a CCA-secure encryption
scheme from any scheme which has α-weak decryptability and β-weak security.
We provide an affirmative answer to this question.

Theorem 1 (Main theorem, informal). If α2 > β, there exists a black-box
construction transforming any scheme with α-weak decryptability and β-weak
security into a CCA-secure encryption scheme with negligible decryption error.

Unfortunately, we cannot rule out constructions achieving a wider range of
parameters α and β. In fact, we remark that the problem of determining the
optimal parameters is open even in the simpler case of amplifying weak CPA
security. While the constraint α2 > β is shown [17] to be necessary for a restricted
class of CPA black-box amplifiers, we see little value in extending this result to
CCA security, as our amplifier itself is not within this class.



1.3 Our Techniques

We now turn to a high-level overview of our techniques. In particular, our ap-
proach builds upon a number of previous works [17, 21, 22], which we first review.
Then, we will move to a description of our two main new tools, namely hardcore
lemmas for CCA-security and heavy-ciphertext pre-sampling, and of their use.

Amplification of CPA encryption.Given a bit-encryption scheme PKE with
α-weak decryptability and β-weak security with respect to chosen-plaintext at-
tacks, the Holenstein-Renner (HR) construction [17] produces a fully CPA-secure
encryption scheme with negligible decryption error. To encrypt each message m,
the HR construction invokes the basic bit-encryption scheme PKE to encrypt
several fresh random bits b1, · · · , bn under n public keys pk1, · · · , pkn, produc-
ing ciphertexts c1, · · · , cn; the bits b1, · · · , bn are then carefully “combined” to
generate a one-time-pad k for hiding the actual message m, as well as some
additional ciphertext component c′; the additional component c′ is used by the
legitimate receiver, given the secret keys, to reconstruct the one-time pad, but it
should not leak any information about k to the adversary. The final ciphertext
is c = (c1, . . . , cn, c

′,m⊕ k).

The reason why such a combiner can exist is that the probability that the
legitimate receiver, given the secret keys, can learn each individual bit bi from ci
is (1 + α)/2, which we expect to be sufficiently larger than the probability that
the adversary learns bi from ci without the secret keys. To make this intuition
sound, one uses Impagliazzo’s hardcore lemma [23] and its tighter version by
Holenstein [16]: The lemma implies that if PKE is β-weakly CPA secure, then, for
each i, with probability 1−β (over the choice of bi, the randomness for sampling
pki and encrypting bi), the encryption of bi is a “hard instance”, meaning that
given its encryption ci, the bit bi is (computationally) indistinguishable from a
random independent bit. This gap between what an honest decryptor and an
eavesdropper can recover can be leveraged by an information-theoretically secure
one-way key-agreement protocol as in the setting of Maurer [24], which turns out
to provide directly the right type of combiner.

From bit CCA encryption to string CCA encryption. It is well known
that a CPA-secure string encryption scheme can be built from a CPA-secure
bit-encryption scheme via simple parallel encryption of each bit. However, this
approach does not lift to extending the message space of CCA-secure bit encryp-
tion, as an adversary can easily maul a challenge ciphertext c1 · · · ci · · · cn of a
n-bit string b1 · · · bi · · · bn into another ciphertext c1 · · · c′i · · · cn of a related string
b1 · · · 0 · · · bn, and thus win in the CCA security game—additional structure is
needed to retain CCA security. Myers and shelat [21] showed that although this
approach is not CCA secure, it satisfies a weaker adaptive security property—
called UCCA security—which requires indistinguishability to hold for adversaries
that can query a decryption oracle on any ciphertext c1, · · · , cn of their choice,
except those that “quote” the challenge ciphertext, denoted as c∗1, · · · , c∗n, at any
of its components, that is ci = c∗i for some i. Myers and shelat, and later Hohen-
berger, Lewko, and Waters (HLW) [22], showed how to construct a string CCA-



secure scheme PKE from such a UCCA-secure string encryption scheme PKEs.
5

We briefly review the HLW construction: It uses PKEs as an inner encryption
scheme PKEin = PKEs and two outer schemes PKEout,1, PKEout,2 that are CCA-1
and CPA secure respectively. To encrypt a message m, the encryption algorithm
proceeds by encrypting m together with two random strings rout,1 and rout,2 into
an inner ciphertext cin = Encin(pkin, (m, rout,1, rout,2)); it then encrypts the inner
ciphertext into two outer ciphertexts (cout,1, cout,2) using rout,1 and rout,2 respec-
tively as the randomness for encryption, that is, cout,i = Encout,i(pkout,i, cin; rout,i)
for i = 1, 2; the final ciphertext is simply (cout,1, cout,2). At a high level, the two
outer schemes prevent the adversary from issuing a decryption query for a cipher-
text whose embedded inner ciphertext “quotes” that in the challenge ciphertext,
thus reducing CCA to UCCA security.

Our Approach. A seemingly plausible attempt for constructing a CCA-secure
encryption scheme from a weak scheme PKE with α-decryptability and β-weak
CCA-security is to first try to show that the HR construction PKE′, when in-
stantiated with PKE as the basic bit-encryption scheme, is UCCA secure, and
subsequently plugging PKE′ as the inner encryption scheme into the HLW con-
struction PKE, and show that it yields a CCA-secure encryption scheme.

Unfortunately, we encounter the following two challenges: First, it is unclear
whether the weak CCA security of PKE is amplified through the construction
of PKE′ to UCCA security; in particular, known hardcore lemmas [23, 16] only
hold for games where the challenger is stateless, but the challenger in the CCA
security game is stateful (it changes its behavior before and after the challenge
ciphertext is generated). Second, it turns out that the security proof of the
HLW construction requires the basic scheme PKE to have “unpredictability”—
that is, a random cipheretxt (of a random bit) of PKE has high entropy and
is almost impossible to blindly guess—which holds trivially for any fully-secure
CPA encryption scheme with negligible decryption error, but is not satisfied by
a weak CCA encryption scheme.

Overcoming these two difficulties turns out to be quite challenging and re-
quires the adoption of new techniques, which we now illustrate.

Step 1: The Hardcore Lemma for CCA security and XCCA security.
To overcome the first difficulty, we prove a variant of Impagliazzo’s hardcore
lemma which applies to CCA security (Theorem 2 below): It implies that if a
scheme is weakly β-CCA-secure, then with probability 1− β (over the random-
ness for choosing a random plaintext bit, for key generation, and for encryption),
given an encryption of a random bit b, b is indistinguishable from a random in-
dependent bit even to adversaries with access to the decryption oracle. Our new
hardcore lemma can be used to prove that PKE′ satisfies an even stronger adap-
tive security property than UCCA, called XCCA (read as “cross”-CCA), which
guarantees indistinguishability even for adversaries with access to decryption

5 In fact, [22] showed a more general construction of string CCA encryption schemes
from any encryption scheme that is DCCA secure and unpredictable. In particular,
UCCA security is a special case of DCCA security.



oracles that decrypts ciphertext of the basic scheme PKE under each individual
component key of PKE′, subject to the restriction that the decryption oracle
for the i-th component does not answer queries that “quote” the correspond-
ing component in the challenge ciphertext. As we will see shortly, this stronger
security guarantee is quintessential for overcoming the second difficulty.

Finally, rather than presenting a direct proof of the hardcore lemma for
CCA security, we provide a general characterization of games for which hardcore
lemmas exist, which extends beyond games for which such lemmas are known [23,
16, 25]. Our hardcore lemma for CCA-security is then simply derived as a special
case. We believe this step to be of independent interest.

Step 2: From XCCA security to CCA security.We prove that the CCA
security of PKE can be based on the stronger XCCA security of the inner encryp-
tion PKE′, even if the underlying basic scheme PKE is not sufficiently “unpre-
dictable” – in contrast to the proof in [22]. This requires a substantially different
analysis than the one of [22], and in particular a new reduction. Concretely, we
overcome lack of unpredictability by introducing a new technique called heavy-
ciphertext pre-sampling. Roughly speaking, this technique allows the security
reduction (from CCA security of PKE to XCCA security of PKE′) to proactively
predict and decrypt all highly likely ciphertexts of PKE, and the challenging task
is to prove that these are the only components of the inner challenge ciphertext
an adversary may indeed easily “quote” after seeing the challenge ciphertext.

2 Preliminaries

2.1 Basic Concepts and Notation

The probability distribution of a random variable X is usually denoted as PX ,
and we occasionally use the shorthand PX(x) for Pr [X = x]. Adversaries are
going to be modeled as non-uniform families of (randomized) circuits for ease of
exposition, but all results extend with some work to the uniform setting.

2.2 Weak and Strong CCA-secure Encryption

A public-key encryption scheme with message space M ⊆ {0, 1}∗ is a triple
PKE = (Gen,Enc,Dec), where (i) Gen is the (randomized) key generation algo-
rithm, outputting a pair (pk, sk) consisting of a public- and a secret-key, respec-
tively (ii) Enc is the (randomized) encryption algorithm outputting a ciphertext
c = Enc(pk,m) for any message m ∈M and a valid public key pk; and (iii) Dec is
the deterministic decryption algorithm such that Dec(sk, c) ∈M∪{⊥}. All algo-
rithms additionally take (implicitly) as input the security parameter 1κ in unary
form, and the message space M may also depend on the security parameter κ.
Whenever M = {0, 1}, we say that the scheme is a bit-encryption scheme. We
sometimes need to make the randomness used by Gen and Enc explicit: In these
cases, we write Gen(r) and Enc(pk,m; r) to highlight the fact that random coins
r are used to generate keys by Gen and to encrypt the message m, respectively.



Correctness of PKE. Throughout this paper, we say that the encryption
scheme PKE with message space M has decryption error δ if

Pr
[
(pk, sk)

$← Gen, m
$←M : Dec(sk,Enc(pk,m)) 6= m

]
≤ δ,

where the probability is additionally over the random coins of Enc. Moreover, we
say that a scheme is almost perfectly correct, if for an overwhelming fraction of
randomness r used by the key generation algorithm, for (pk, sk) = Gen(r), and
all messages m ∈M, we have Pr [Dec(sk,Enc(pk,m)) = m] = 1.

Security of PKE. In general, security of the scheme PKE = (Gen,Enc,Dec)
is defined via the following security game involving a challenger CCCA2 and an
adversary A:

Game CCA2APKE:

(i) CCCA2 generates (pk, sk)
$← Gen and b

$← {0, 1}, and gives pk to A.
(ii) A asks decryption queries c, which are answered with Dec(sk, c).

(iii) A outputs (m0,m1) with |m0| = |m1|; CCCA2 sends A c∗ $← Enc(pk,mb).
(iv) A asks decryption queries c 6= c∗, which are answered with Dec(sk, c).
(v) The adversary A outputs a bit b′, and wins the game if b′ = b.

We refer to decryption queries in phase (ii) and (iv) as before-the-fact and
after-the-fact decryption queries, respectively. Moreover, in the case that PKE is
a bit-encryption scheme we assume without loss of generality that (m0,m1) =
(0, 1), and hence Enc(pk, b) is the challenge ciphertext. We also define the CCA2-
advantage of the adversary A as AdvCCA2

PKE (A) = 2 ·Pr [b′ = b]−1. We say that an
encryption scheme is CCA-secure if AdvCCA2

PKE (A) is negligible for all polynomial-
size adversaries A. We say it is q-CCA-secure if this holds for adversaries making
at most q decryption queries, whereas it is CPA-secure if it is 0-CCA-secure. The
following notation will also be convenient.

Definition 1. For α, β ∈ [0, 1], a bit-encryption scheme PKE is (α, β)-CCA-
secure if the following two properties hold: (i) PKE has decryption error (1−α)/2,
and (ii) For any polynomial-size adversary A, we have AdvCCA2

PKE (A) ≤ β.

In passing, we point out that CPA-secure encryption with negligible decryption
error implies one-way functions [26], and in turn implies pseudorandom genera-
tors [27], all in a black-box way.

3 The Hardcore Lemma for CCA Security

Impagliazzo’s Hardcore Lemma [23] asserts that if it is mildly hard to compute
P (x) for a predicate P on a random input x given side information f(x) (i.e., say
this can be done with probability at most 1+ε

2 ), then there exists a sufficiently
large subset S (the “hardcore set”) of the inputs such that when sampling x′



from S, it is infeasible to predict P (x′) from f(x′) noticeably better than by
random guessing. A tight proof where the set S contains a (1 − ε)-fraction of
the inputs is due to Holenstein [16]. The main contribution of this section is to
derive a similar statement for (weak) CCA-secure encryption to be used below.

In particular, we present a new abstraction of existing proofs of hardcore
lemmas, which is of independent interest. Not only we apply it to derive the
hardcore lemma for CCA security of bit-encryption, but it also yields previous
more restricted statements [23, 25] as special cases.

Bit-guessing games. We consider games (such as the CCA-security game)
where the adversary is asked to guess a bit. Formally, a bit-guessing game is
a tuple G = (PX , C, P ), where PX is a probability distribution with support
X , C is an interactive stateful machine taking an auxiliary input x ∈ X , and
P : X → {0, 1} is a predicate. Combined with an adversary A, G defines the

following random experiment: First, an input x
$← PX is sampled. Then A

interacts with the challenger C(x) and outputs a bit b
$← AC(x) (the oracle C(x)

keeps state). The G-advantage of A relative to a distribution P is

AdvGP (A) = 2 · Pr
[
x

$← P, b
$← AC(x) : b = P (x)

]
− 1 . (1)

We say that G is (s, ε)-hard if AdvGPX
(A) ≤ ε for all s-size adversaries A.

Hardcore lemmas and measures. A measure M for a bit-guessing game G
is a mappingM : X → [0, 1], and its density is µ(M) =

∑
x∈X PX(x)·M(x). We

associate with M the probability distribution PM such that PM(x) := PX(x) ·
M(x)/µ(M) for all x ∈ X . The role of a measure is that of adjoining an event E
to the sampling of x

$← PX such that Pr
[
E
∣∣X = x

]
=M(x); then in particular

Pr [E ] = µ(M), and Pr
[
X = x

∣∣ E] = PM(x).
We ask the question of which bit-guessing games admit a hardcore measure:

Assuming the game G is ε-hard for some ε ∈ [0, 1], we seek for a measure M
with large density (e.g. µ(M) ≥ 1− ε) such that conditioned on the associated
event E , the game G is very hard to win. In [25], a proof that this is true for
the case where C(x) is stateless for each x was given. Our new approach extends
this to possibly stateful challengers, as in the case of CCA security.

Abstract hardcore lemmas.We give a sufficient condition on a bit-guessing
game G = (PX , C, P ) to admit a hardcore lemma – informally, this condition
corresponds to the ability, for any given and possibly unknown x, to estimate
the probability that a binary-output adversary for G, sampled according to a
given distribution over circuits, outputs one when run on C(x). In particular,
we call an oracle O a size s circuit sampler for G if, upon each invocation, it
returns the description of a valid adversary A for G of size s. For each such O,

we define pG,O1 (x) as the probability that a randomly sampled adversary A $← O

outputs one when run with C(x), i.e., pG,O1 (x) := Pr
[
B $← O, b′

$← BC(x) : b′ = 1
]
.

The following definition captures the notion of a good estimation algorithm for
pG,O1 (x) which can only interact with C(x) and obtain samples from O, but does
not learn x and must be equally successful on all such x.



Definition 2 (p1-estimator). A (s, s′, q, γ, η)-p1-estimator for a bit-guessing
game G = (PX , C, P ) is a size s circuit E with output in [0, 1] such that

Pr
[
B1, . . . ,Bq

$← O, p1
$← EC(x)(B1, . . . ,Bq) :

∣∣∣p1 − pG,O1 (x)
∣∣∣ > γ

]
< η

for all size-s′ circuit samplers O and for all x.

Note that in particular q · s′ ≤ s. The following theorem relates the existence of
a hardcore lemma for a certain game G with the existence of a p1-sampler for
G. Its proof abstracts the ones of [16, 25] and is found in the full version.

Proposition 1 (The Abstract Hardcore Lemma). Let s ∈ N and ε ∈ [0, 1].
Let G = (PX , C, P ) be a bit-guessing game which is (s, ε)-hard. Then, for all
γ > 0, if for some s′ = s′(γ) there exists an (s, s′, q, γ(1 − ε)/4, γ(1 − ε)/4)-p1-
estimator for G, then there exists a measure M =Mγ such that:

(i) µ(M) ≥ 1− ε, (ii) AdvGPM
(B) ≤ γ for all s′-size B.

The hardcore lemma for CCA-security. We are now going to show a
hardcore lemma for CCA-security as an application of Proposition 1. Let PKE =
(Gen,Enc,Dec) be a public-key bit encryption scheme such that Gen and Enc take
randomness of lengths ρGen and ρEnc, respectively. Formally, we consider the bit-
guessing game CCA2[PKE] = (PX , CCCA2, P ) where PX is the uniform distribu-
tion on {0, 1}ρGen×{0, 1}ρEnc×{0, 1}, whereas CCCA2(rGen, rEnc, b) is the challenger
for the CCA-security game for PKE with challenge bit b, public key and secret
key (pk, sk) = Gen(rGen), and challenge ciphertext c∗ = Enc(pk, b; rEnc). More-
over, we define P (rGen, rEnc, b) = b. The following lemma gives an appropriate
p1-estimator for CCA2[PKE].

Lemma 1. For all PKE = (Gen,Enc,Dec) with message space {0, 1}, and all
s′ ∈ N, γ, η ∈ (0, 1], there exists a (s, s′, q, γ, η)-p1-estimator for CCA2[PKE]
with q = O(log(1/η)/γ2) and s = s′ · q +O(1).

Proof. The estimator E , given pk from CCCA2, runs sequentially each of B1, . . . ,Bq
on input pk until they output their query (0, 1). All before-the-fact decryption
queries are answered using the challenger CCCA2. It then obtains a challenge ci-
phertext c∗, and then resumes the execution of Bi’s from the last state before out-
putting (0, 1), again using the challenger to reply to decryption queries. Finally,
let b′i be the output of Bi; the estimator E outputs the average z = (1/q)·

∑q
i=1 b

′
i.

The error is at most γ with probability at most η by the Chernoff bound. ut

The above proof crucially relies on the scheme encrypting one-bit messages:
For a larger set of messages, each Bi could ask a different message pair, and the
above estimation technique would fail.

The following theorem is a simple combination of Proposition 1 and Lemma 1.

Theorem 2 (Hardcore Lemma for CCA Security). Let α, β ∈ [0, 1], and
let s ∈ N. Moreover, let PKE = (Gen,Enc,Dec) be a public-key encryption



scheme with message space {0, 1}, and assume that AdvCCA2
PKE (A) ≤ β for all

s-size adversaries A. Then, for all γ > 0, there exists a measure M such that

µ(M) ≥ 1 − β, and Adv
CCA2[PKE]
PM

(B) ≤ γ for all adversaries B with size s′,

where s = O(s′ · log(1/γ(1− ε))/γ2(1− ε)2).

In the full version, we provide a more detailed discussion about related results
and extensions to the uniform setting, which we here omit due to lack of space.

4 From Weak to Strong CCA Security

We present our construction to transform an (α, β)-CCA encryption scheme into
a fully CCA-secure encryption scheme. First, we review some tools underlying
our construction, before turning to its description and security.

4.1 Information-theoretically Secure Key-agreement

We consider the problem of two parties, Alice and Bob, agreeing on a secret key
with unconditional security in a setting where they each hold values X1, . . . Xn

and Y1 . . . , Yn, respectively, in presence of an adversary obtaining correlated val-
ues Z1, . . . , Zn; in particular, (Xi, Yi, Zi) are sampled independently from a given
tripartite probability distributions PXY Z for all 1 ≤ i ≤ n. That is, (Xi, Yi, Zi)
are correlated for each i, but independent across distinct indices i 6= j. More-
over, Alice and Bob are connected via an authenticated channel, allowing them
to exchange messages, which is however wiretapped by the adversary. Secret-key
agreement in this setting was first considered by Maurer [24]. Here, we consider
the special case where the channel only allows one-way communication from
Alice to Bob. The following definition captures protocols for this setting.

Definition 3 (One-way key-agreement). Let ε, δ : N → [0, 1], and let n, ` :
N → N be monotonically increasing. Also, let P = {Pκ}κ∈N be a family of
sets of probability distribution PXY Z . A (P, ε, δ, n, `)-one-way key-agreement
(OKA) protocol is a pair of probabilistic polynomial-time algorithms OKA =
(KAEnc,KADec) such that for all κ ∈ N and PXY Z ∈ Pκ, the following two

properties hold when sampling (X1, Y1, Z1), . . . , (Xn, Yn, Zn)
$← PXY Z (where

n = n(κ)), (C,K)
$← KAEnc(1κ, X1, . . . , Xn), K ′

$← KADec(1κ, Y1, . . . , Yn;C),

and K ′′
$← {0, 1}`(κ)’: (1) K = K ′ with probability at least 1 − δ(κ), and (2)

(C,K,Z1, . . . , Zn) and (C,K ′′, Z1, . . . , Zn) have statistical distance at most ε(κ).

The following set of distributions was introduced in [17].

Definition 4 ([17]). Let α, β : N → [0, 1]. Let D(α, β) = {Dκ(α, β)}κ∈N be

such that for all κ ∈ N, PXY Z ∈ Dκ(α, β) if (X,Y, Z)
$← PXY Z satisfies

(i) Pr [X = 0] = Pr [X = 1] = 1
2 , i.e., X is uniform, (ii) Pr [X = Y ] ≥ 1+α(κ)

2 ,
(iii) there exists an event E, defined on (X,Z), such that Pr

[
X = 0

∣∣Z = z, E
]

=

Pr
[
X = 1

∣∣Z = z, E
]

= 1
2 for all z, and Pr [E ] ≥ 1− β(κ).



The following two propositions show feasibility of OKA protocols for D(α, β)
for certain values of α and β. The first proposition was proved by Holenstein
and Renner [17], the second is proved in the full version. We note that there is
no a-priori reason why α2 and β could not be closer, yet no better gap can be
proven given existing constructions of capacity-achieving error-correcting codes.

Proposition 2. Let α, β : N → [0, 1] be such that α2 > β + Ω(1), and let
` : N → N be a polynomial function. Then, there exists a polynomial-time
(D(α, β), ε, δ, n, `)-OKA protocol such that n(κ) = 1

7 · `(κ) · (α2 − β − O(1))

and moreover, ε(κ) is negligible in n(κ), and δ(κ) = 2−Θ(n(κ)).

Proposition 3. Let p, ` : N→ N be polynomially bounded and let ε′ : N→ [0, 1].
Then, there exists a D(1, 1 − 1

p(κ) , ε, δ, n, `)-OKA protocol where n(κ) = 2/(1 −
β(κ)) · (`(κ) + 2 log(1/ε′(κ)) +O(1)), ε(κ) ≤ O(

√
ε′(κ)), and δ(κ) = 0.

4.2 The Construction

Let PKE = (Gen,Enc,Dec) be a bit-encryption scheme which is (α, β)-secure. As-
suming the existence of an information-theoretically secure one-way key agree-
ment protocol for D(α, β), we present a construction of a CCA-secure public-key
encryption scheme PKE = (Gen,Enc,Dec), with message length ` = `(κ) and
negligible decryption error, which makes black-box use of the basic scheme PKE.

At the highest level, our construction PKE follows the paradigm recently
proposed by Hohenberger, Lewko, and Waters [22]. In particular, it consists of
an inner scheme PKEin = (Genin,Encin,Decin) and two outer schemes PKEout,1 =
(Genout,1,Encout,1,Decout,1) and PKEout,2 = (Genout,2,Encout,2,Decout,2), all three
of which will be built from PKE, and specified below. For ? ∈ {in, (out, 1), (out, 2)},
let us further denote by `?, ρ? and t? the message, randomness, and ciphertext
lengths of PKE?, respectively. We are going to require `in = ` + ρout,1 + ρout,2
as well as `out,1 = `out,2 = tin. A formal description of PKE is given in Figure 1,
on top: We encrypt the message m, together with two random values rout,1 and
rout,2, obtaining an inner ciphertext cin, which is then encrypted twice with the
two outer schemes, using rout,1 and rout,2 as the respective random coins. De-
cryption recovers the message by decrypting the ciphertext via Decout,1 and Decin
using the corresponding secret keys, and then checks validity of the ciphertext
by re-encrypting the inner ciphertext using the public keys and the recovered
random coins.

We now turn to describing the construction of the component schemes PKEin,
PKEout,1 and PKEout,2 from the basic scheme PKE.

The inner scheme. Let OKA = (KAEnc,KADec) be a (D(α, β), ε, δ, n, `in)-one-
way key agreement protocol such that ε and δ are negligible, and known (recall
that PKE is (α, β)-CCA secure). We define PKEin = (Genin,Encin,Decin) as in
Figure 1, at the bottom: It encrypts random bits b1, . . . , bn with the basic scheme,
and then generates a session key k via KAEnc(b1, . . . , bn), and a ciphertext c′,
and uses the key k as an one-time pad. Decryption via KADec is then obvious.
It is easy to see that the decryption error of this scheme is inherited from OKA,
i.e., it is upper bounded by exactly δ.



Scheme PKE = (Gen,Enc,Dec):

Key generation Gen(1κ): Sample (pkin, skin)
$← Genin(1

κ) and for i = 1, 2,

(pkout,i, skout,i)
$← Genout,i(1

κ). Return (pk = (pkin, pkout,1, pkout,2), sk =
(skin, skout,1, pkout,1, pkout,2)).

Encryption Enc(pk,m), m ∈ {0, 1}`: Sample rout,i
$← {0, 1}ρout,i for i =

1, 2. Generate cin
$← Encin(pkin,m ‖ rout,1 ‖ rout,2) and cout,i ←

Encout,i(pkout,i, cin; rout,i) for i = 1, 2. Output ciphertext cout,1 ‖ cout2 .

Decryption Dec(sk, c = cout,1 ‖ cout2): Decrypt c′in ← Decout,1(skout,1, cout,1)
and m′ ‖ r′out,1 ‖ r′out,2 ← Decin(skin, c

′
in). If Encout,i(pkout,i, c

′
in; r
′
out,i) =

cout,i for i = 1, 2 then return m, else return ⊥.

Scheme PKEin = (Genin,Encin,Decin):

Key generation Genin(1
κ): Sample (pk1, sk1), . . . , (pkn, skn)

$← Gen(1κ).
Return (pk = (pk1, . . . , pkn), sk = (sk1, . . . , skn)).

Encryption Encin(pk,m), m ∈ {0, 1}`in : For all i ∈ [n], sample bi
$← {0, 1}

and generate ci
$← Enc(pk[i], bi). Compute (k, c′)

$← KAEnc(b1, . . . , bn).
Return ciphertext (c1, . . . , cn, c

′,m⊕ k).
Decryption Decin(sk, c = (c1, . . . , cn, c

′, c′′)): Decrypt b′i ← Dec(sk[i], ci)
for i = [n] and k′ ← KADec(b′1, . . . , b

′
n; c′). Return plaintext m′ = c′′⊕k′.

Fig. 1. Descriptions of public-key encryption schemes PKE and PKEin.

The outer schemes.We now instantiate the two outer schemes. The following
description is fairly high-level, but sufficient to fully specify the construction.
We refer the reader unfamiliar with the basic components to the full version for
a more detailed description.

We first derive a CPA-secure public-key encryption scheme PKE`,ρout with mes-
sage length ` = poly(κ) and randomness length ρ = ω(log(κ)) from the basic
scheme PKE which also enjoys almost-perfect correctness:6

1. We use the same construction as in PKEin to achieve a CPA-secure scheme
PKE′out, with message length truncated to 1-bit. CPA-security of the resulting
scheme follows from the proof in [17] or from the stronger Lemma 2 below.
Let ρ be the randomness length of PKE′out.

2. We apply the transformation by Dwork, Naor, and Reingold [15] to enhance
correctness of PKE′out with negligible decryption error to almost-perfect cor-
rectness, via sparsification of the randomness space. Let δ be the decryption
error of PKE′out. The transformation of [15] reduces randomness length to
ρ′ = 1

4 · log(1/δ(κ)) = ω(log(κ)) via a PRG G : {0, 1}ρ′ → {0, 1}ρ, whose
existence is implied by the existence of PKE′out in a black-box fashion [26,
27].

6 In the following, we are not going to optimize the complexity of the scheme; it is
clear that some modifications can be done to save on complexity.



3. We then use parallel repetition of ` copies of PKE′′out to obtain PKE`,ρout, pos-
sibly using a PRG again to shorten the overall randomness length to ρ.

We let PKEout,2 = PKE
`out,2,ρout,2
out . To obtain the first outer scheme PKEout,1, we

rely on the result by Cramer et al [28] that transforms a CPA-secure encryption
scheme into a 1-CCA secure one in a black-box way, which preserves the almost
perfect correctness property of the underlying CPA-secure scheme. By applying

their transformation to PKE
`out,1,ρ
out (for some ρ = poly(κ)), and then finally using

a PRG to reduce the randomness length to ρout,1, we obtain a 1-CCA secure
encryption scheme that is almost-perfectly correct.

4.3 CCA Security of PKE

We turn to our main result and show that our construction PKE is CCA secure.

Theorem 3. Let ε and δ be two negligible functions. Assume that PKE is (α, β)-
CCA-secure, and OKA is a (D(α, β), ε, δ, n, `in)-one-way key-agreement protocol.
Then, PKE is a CCA-secure encryption scheme with negligible decryption error.

In particular, by Propositions 2 and 3, we achieve amplification whenever
α2 > β +Ω(1), and whenever α = 1 and β < 1− 1

p(κ) for some polynomial p.

Overview of the Security Proof. Towards showing the CCA security of PKE, we
first show that it follows from Theorem 2 that the inner encryption scheme PKEin

satisfies a strong adaptive security property, which we refer to as XCCA (to be
read as “cross”-CCA) security. We are then going to reduce the CCA security of
PKE to the XCCA security of PKEin using the 1-CCA security of PKEout,1 and
the CPA security of PKEout,2, combined with their almost perfect correctness.
This second step resembles the proof of [22] only at a first glance, as it will
require a completely different technique to handle the fact that ciphertexts of
the basic scheme PKE are not sufficiently unpredictable.

Before proceeding to describing the two steps in more details, we first de-
scribe the XCCA security game. For simplicity, here we only define the XCCA
game w.r.t. the concrete scheme PKEin; one can easily generalize the definition
to a larger class of encryption schemes whose ciphertext contains multiple com-
ponent ciphertexts of a base encryption scheme, similarly to [21]; we omit the
details here. The game proceeds almost identically to the CCA game except
that instead of having access to the decryption oracle for the whole encryption
scheme, the adversary has access to the decryption oracles of the basic encryption
scheme PKE using each of the component secret keys; the i’th decryption oracle
using the i’th component secret key is denoted as Dec(sk[i], ·). As a result, the
adversary cannot make any after-the-fact decryption queries that is the same as
any of the component ciphertexts encrypted using one of the component public
keys pk[i] in the challenge ciphertext. Similar to the CCA game, we define the
XCCA-advantage of the adversary A as AdvXCCA

PKEin
(A) = 2 · Pr [b′ = b] − 1. We

say that PKEin is XCCA-secure if no polynomial sized adversary can achieve a
non-negligible advantage in the XCCA game.



We remark that the XCCA game is closely related to the notion of UCCA
security defined in [21], and the similar notion of DCCA security in [22]: In
comparison, in the UCCA security game w.r.t. PKEin, the adversary only has
access to the decryption oracle of the whole encryption scheme, but is not allowed
to make any after-the-fact query that quotes any of the component ciphertexts
in the challenge ciphertext (in DCCA a more fine grained control on disallowed
queries is considered). As we will see shortly, the stronger security guarantee
given by XCCA is crucial for our proof to succeed.

With the definition of the XCCA game in mind, the remainder of the proof
proceeds via the following two lemmas, for which we give a proof sketch. (A
formal proof is given in the full version.)

Lemma 2. Let ε and δ be two negligible functions. Assume that PKE is (α, β)-
secure, and OKA is a (D(α, β), ε, δ, n, `in)-one-way KA protocol. Then, PKEin is
XCCA-secure.

Lemma 3. Assume that PKEin, PKEout,1 and PKEout,2 are respectively XCCA,
1-CCA and CPA secure, and PKEout,1 and PKEout,2 have almost-perfect correct-
ness, then PKE is CCA secure.

Proof Sketch of Lemma 2: We are going to use the hardcore lemma for CCA-
security (Theorem 2) to show that PKEin is XCCA secure. Informally speaking,
in the XCCA game, with respect to each random bit bi used to generate the
component ci of the challenge ciphertext, the adversary is participating in an
independently and randomly executed CCA game for PKE: Indeed, each ran-
dom bit bi is encrypted using an independently and randomly chosen public key
pk[i] and random coins, and the adversary has access to the decryption oracle
Dec(sk[i], ·). Thus, by the hardcore lemma, each of these CCA games has prob-
ability 1− β of delivering an “hard instance”, and thus the corresponding bit bi
remains hidden to the adversary, i.e., it looks (pseudo-)random with probability

1 − β. More precisely, each triple (bi,Dec(sk[i], ci), ci), with ci
$← Enc(pk[i], bi)

is computationally indistinguishability from a sample from a valid distribution
from D(α, β). In this case, then it simply follows from the fact that OKA is
a (D(α, β), ε, δ, n, `in)-one-way key agreement scheme that the key k output by
KAEnc(b1, · · · , bn) remains random and thus the message mb is hidden.

Proof Sketch of Lemma 3: We base the CCA security of PKE on the XCCA
security of PKEin via a black-box reduction. The reduction B participates in the
XCCA game for PKEin and internally emulates the CCA game for PKE to a
CCA-adversary A succeeding with non-negligible advantage γ as follows:

- It receives the public key pk in the XCCA game and internally generates
the public key pk by sampling key pairs (pkout,1, skout,1) and (pkout,2, skout,2)
for the two outer schemes and gives pk = (pk, pkout,1, pkout,2) to A.

- To emulate the challenge ciphertext c∗ of PKE that encrypts either m0 or
m1 chosen by A in the emulated CCA game, B first chooses random rout,1



and rout,2, and obtains the challenge ciphertext c∗in of PKEin that encrypts
mb‖rout,1‖rout,2 for a random b ∈ {0, 1} chosen in the XCCA game. It then
produces c∗ honestly by encrypting c∗out,1 = Encout,1(c∗in; rout,1) and c∗out,2 =
Encout,2(c∗in; rout,2).

- Finally, it emulates the decryption oracle Dec(sk, ·) for A by using the secret
key skout,1 and the decryption oracles {Dec(sk[i], ·)}i∈[n] in the XCCA game.

It is easy to see that as long as A does not ask any after-the-fact queries whose
inner ciphertext (embedded in the first outer ciphertext) “quotes” the inner
challenge ciphertexts c∗in, i.e., it does not share a common component ciphertext,
B always decrypts queries from A perfectly and consequently also emulates the
view of A perfectly.

It is therefore tempting to try to show that the probability that A “quotes”
is negligible. Indeed, this is the approach taken by [21, 22]. The rationale in
their proof is that if the basic scheme PKE has unpredictability — a random
ciphertext of a random bit has high entropy and is hard to blindly guess — then
the fact that A manages to quote would violate the 1-CCA security of the first
outer scheme or the CPA-security of the second outer scheme. In [22], a series of
hybrids is used to remove the circular dependence between the inner challenge
ciphertext and the randomness used in its two outer encryptions, and move to
a setting where A’s view is statistically independent from the inner challenge
ciphertext, but the quoting probability is negligibly close to the original one.
One can then easily show that unpredictability of PKE yields that quoting occurs
with negligible probability only.

Unfortunately, this approach fails completely in our setting, as our basic en-
cryption scheme PKE does not ensure unpredictability; in fact, it is possible to
build an (α, β)-CCA-secure scheme where ciphertexts have very low min-entropy.
We address this via a new technique, called heavy ciphertext pre-sampling: We
observe that if A can blindly guess some component ciphertext ci in c∗in, then ci
is a ciphertext value which appears with sufficiently large probability when en-
crypting a random bit under pk[i]. Hence, we can hope that the same value is hit
by the reduction B by simply generating a large number of random encryptions
(of random bits) of PKE under pk[i]; call these pre-sampled ciphertexts. Since
the component ciphertexts in c∗in are generated identically to the pre-sampled
ciphertexts, the probability that A’s guess collides with the former is the same
as the probability it collides with any of the pre-sampled ciphertexts. Setting the
size of the pre-sampling large enough, say poly(1/ε), the reduction can exhaust
all the component ciphertexts that A may “quote” with probability 1 − ε, for
any ε. Furthermore, due to the strong security provided by the XCCA game, the
reduction B, with access to the decryption oracles of the component ciphertexts,
can obtain the decrypted values of these pre-sampled ciphertexts before-the-fact.
This is crucial, since even if we know that a ciphertext is obtained by encrypt-
ing some bit d, its actual decryption could well be equal 1− d due to the weak
α-correctness.

Intuitively this solves the problem, as whenever A makes an after-the-fact
query that “quotes” c∗in, B can still decrypt by using either the external decryp-



tion oracles (for components that do not quote) or the decrypted values of the
pre-sampled ciphertexts (for these that quote). This will allow us to show that
B succeeds in emulating the view of A with high probability, and thus the CCA
security of PKE reduces to the XCCA security of PKEin.
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