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Abstract. We formalize a new cryptographic primitive that we call
Message-Locked Encryption (MLE), where the key under which encryp-
tion and decryption are performed is itself derived from the message.
MLE provides a way to achieve secure deduplication (space-efficient se-
cure outsourced storage), a goal currently targeted by numerous cloud-
storage providers. We provide definitions both for privacy and for a form
of integrity that we call tag consistency. Based on this foundation, we
make both practical and theoretical contributions. On the practical side,
we provide ROM security analyses of a natural family of MLE schemes
that includes deployed schemes. On the theoretical side the challenge is
standard model solutions, and we make connections with deterministic
encryption, hash functions secure on correlated inputs and the sample-
then-extract paradigm to deliver schemes under different assumptions
and for different classes of message sources. Our work shows that MLE
is a primitive of both practical and theoretical interest.

1 Introduction

We introduce an intriguing new primitive that we call Message-Locked Encryp-
tion (MLE). An MLE scheme is a symmetric encryption scheme in which the
key used for encryption and decryption is itself derived from the message. In-
stances of this primitive are seeing widespread deployment and application for
the purpose of secure deduplication [1, 2, 4, 5, 7, 8, 10, 22, 23, 31, 35, 39, 43], but in
the absence of a theoretical treatment, we have no precise indication of what
these methods do or do not accomplish.

We provide definitions of privacy and integrity peculiar to this domain. Now
having created a clear, strong target for designs, we make contributions that
may broadly be divided into two parts: (1) practical and (2) theoretical. In
the first category we analyze existing schemes and new variants, breaking some
and justifying others with proofs in the random-oracle-model (ROM) [16]. In
the second category we address the challenging question of finding a standard-
model MLE scheme, making connections with deterministic public-key encryp-
tion [11], correlated-input-secure hash functions [27] and locally-computable ex-
tractors [9, 30, 40] to provide schemes exhibiting different trade-offs between as-
sumptions made and the message distributions for which security is proven. From
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our treatment MLE emerges as a primitive that combines practical impact with
theoretical depth and challenges, making it well worthy of further study and a
place in the cryptographic pantheon. Below we begin with some background and
then look more closely at our contributions.

1.1 Background

To save space, commercial cloud storage services such as Google Drive [6], Drop-
box [3] and bitcasa [1] perform file-level deduplication across all their users. Say
a user Alice stores a file M and Bob requests to store the same file M . Observ-
ing that M is already stored, the server, instead of storing a second copy of M ,
simply updates metadata associated to M to indicate that Bob and Alice both
stored M . In this way, no file is stored more than once, moving storage costs for
a file stored by u users from O(u · |M |) to O(u+ |M |) where the big-O notation
hides implementation-dependent constants.

However, as users we may want our files to be encrypted. We may not want
the storage provider to see our data. Even if we did trust the provider, we may
legitimately worry about errant employees or the risk of server compromise by
an external adversary. When users themselves are corporations outsourcing their
data storage, policy or government regulation may mandate encryption.

Conventional encryption, however, makes deduplication impossible. Say Alice
stores not her file M but its encryption CA under her password pwA. Bob would
store CB , the encryption of M under his password pwB . Two issues arise: (1)
how the server is to detect that the data underlying the two ciphertexts is the
same, and (2) even if it can so detect, what can it store short of (CA, CB) that
allows both parties, based on their separate respective passwords, to recover the
data from what is stored. Standard IND-CPA encryption means even (1) is not
possible. We might use some kind of searchable encryption [11, 20, 38] but it is
still not clear how to solve (2). Just storing Alice’s ciphertext, for example, does
not work because Bob cannot later decrypt it to recover the file, and visa versa.

Douceur et. al. (DABST) [24] proposed a clever solution called convergent
encryption (CE). Alice derives a key K = H(M) from her message M and
then encrypts the message as C = E(K,M) = E(H(M),M), where H is a
cryptographic hash function and E is a block cipher. (They assume the message
is one block long.) The ciphertext is given to the server and the user retains K.
Since encryption is deterministic, if Bob starts from the same message he would
produce the same key and ciphertext. The server can now perform deduplication
on the ciphertext C, checking, when it receives C, whether or not it is already
stored, and, if the latter, as before, not re-storing but instead updating meta-
data to indicate an additional owner. Both Alice and Bob can decrypt C since
both have the same key K.

These ideas have been attractive enough to see significant usage, with CE or
variants deployed in [1,2,4,5,8,31,35,39,43]. It is not however clear what precisely
is the underlying security goal and whether deployed schemes achieve it.
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1.2 Definitions and Relations

We introduce Message-Locked Encryption (MLE) —so named because the mes-
sage is locked, as it were, under itself— with the goal of providing an encryption
primitive that provably enables secure deduplication.

Syntax. As depicted in Fig. 2, the key generation algorithm of an MLE scheme
K maps a message M to a key K. The encryption algorithm E takes input the key
K and a message M and produces a ciphertext C. The decryption algorithm D
allows recovery of M from C given the key K. The tagging algorithm T maps the
ciphertext C to a tag T used by the server to detect duplicates. (Tag correctness
requires that tags corresponding to messages M1,M2 are likely to be the same
iff M1,M2 are the same.) All algorithms may depend on a parameter P but the
latter is public and common to all parties including the adversary, and thus is
not a key.

Any MLE scheme enables deduplication of ciphertexts. CE is captured by
our syntax as the MLE scheme that lets K = H(M), C = E(K,M) and tag
T = H(C).

MLE is trivially achieved by letting the key K equal the message M . (Set
C = T = ε to the empty string and have decryption simply return the key.) This
degenerate solution is however useless for deduplication since the client stores as
K the entire file and no storage savings result. We rule it out by requiring that
keys be shorter than messages, ideally keys are of a fixed, short length.

Privacy. No MLE scheme can achieve semantic-security-style privacy in the
spirit of [13,26]. Indeed, if the target message M is drawn from a space S of size
s then an adversary, given an encryption C of M , can recover M in O(s) trials.
(For each candidate M ′ ∈ S test whether D(K(M ′), C) = M ′ and if so return
M ′.) As with deterministic public-key encryption [11], we therefore ask for the
best possible privacy, namely semantic security when messages are unpredictable
(have high min-entropy). Adapting definitions from [11, 12, 14, 21] we formalize
a PRV-CDA notion where encryptions of two unpredictable messages should be
indistinguishable. (“cda” stands for “chosen-distribution attack” [12].) We also
formalize a stronger PRV$-CDA notion where the encryption of an unpredictable
message must be indistinguishable from a random string of the same length
(cf. [37]).

These basic notions are for non-adaptive adversaries. The corresponding
adaptive versions are PRV-CDA-A and PRV$-CDA-A. We show that PRV-CDA
does not imply PRV-CDA-A but, interestingly, that PRV$-CDA does imply
PRV$-CDA-A. (See the right hand side of Fig. 1 for a comprehensive relations
summary.) Thus PRV$-CDA emerges as the preferred target for designs because
non-adaptive security is easier to prove yet adaptive security is implied.

Tag consistency. Suppose client Alice has a message MA and client Bob has
a different message MB . Alice is malicious and uploads not an honest encryp-
tion of MA but a maliciously-generated ciphertext CA such that, when Bob
tries to upload CB , the server sees a tag match T (CA) = T (CB). (This does
not contradict the correctness requirement that tags are usually equal iff the
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messages are equal because that holds for honestly-generated ciphertexts.) The
server thus keeps only CA, deleting CB . Yet later, when Bob downloads to get
CA, the decryption is MA, not MB , meaning the integrity of his data has been
compromised.

This is a serious concern, and not mere speculation, for such “duplicate-
faking” attacks have been found on some CE variants [39]. We define tag con-
sistency to rule out these types of integrity violations. Notion TC asks that it be
hard to create (M,C) such that T (C) = T (E(K(M),M)) but D(K(M), C) is a
string different from M . In words, an adversary cannot make an honest client
recover an incorrect message, meaning one different from the one it uploaded.
Notion STC (“S” for “strong”) asks that it additionally be hard to create (M,C)
such that T (C) = T (E(K(M),M)) but D(K(M), C) = ⊥, meaning an adversary
cannot erase an honest client’s message. STC is strictly stronger than TC; we
define both because, as we will see, some schemes meet only the weaker, but still
meaningful, TC version.

1.3 Practical Contributions

The definitional framework outlined above puts us in a position to rigorously
assess —a decade after its inception in [24]— the security of convergent encryp-
tion (CE). The task is complicated by the presence and deployment of numerous
variants of the basic CE idea. We address this by formulating two MLE schemes,
that we call CE and HCE1, that represent two major variants of CE and between
them capture the prominent existing schemes. They each make use of a RO hash
function H and a deterministic symmetric encryption scheme SE. CE with SE
set to a blockcipher, for example, is the scheme of [24] and HCE1 with SE as a
blockcipher in counter mode with fixed IV is used within the Tahoe FileSystem
(TahoeFS) [43].

CE sets K = H(M), C = SE(K,M) and tag T = H(C), while HCE1 sets
K = H(M), C = SE(K,M)‖H(K) and T = H(K). The rationale for HCE1 is
to offer better performance for the server who can simply read the tag as the
second part of the ciphertext rather than needing to compute it by hashing the
possibly long ciphertext. But we observe that HCE1 is vulnerable to duplicate
faking attacks, meaning it does not even achieve TC security. We discuss the
implications for the security of TahoeFS in Section 4.

We ask whether performance gains of the type offered by HCE1 over CE can
be obtained without loss in consistency, and offer as answers two new schemes,
HCE2 and RCE. The former is as efficient as HCE1. RCE however is even more
efficient, needing just one concerted pass over the data to generate the key,
encrypt the message and produce the tag. On the other hand, HCE2 needs two
passes, one pass to generate the key and a second for encryption, while CE
needs a third pass for producing the tag. RCE achieves this via a novel use of
randomization (all previous schemes were deterministic). Roughly, encryption
picks a fresh random key L and then computes SE(L,M) and K = H(M) in
the same pass, finally placing an encryption of L under K, together with an
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appropriate tag, in the ciphertext. We have implemented all three schemes and
the results [15] show that RCE does indeed outperform the other two.

Fig. 1 (table, first four rows) summarizes the findings of our security analysis
of the four schemes. Under standard assumptions on the deterministic symmetric
encryption scheme SE (one-time real-or-random ciphertext, or ROR, security as
well as key-recovery security) and with H a RO, we show that all four MLE
schemes meet our strong privacy notion PRV$-CDA. The consistency findings are
more involved. As mentioned, HCE1 provides no tag consistency. The good news
is that CE, HCE2 and RCE all achieve TC security, so that an adversary cannot
make a client recover a file different from the one she uploaded. But only CE
offers STC security, implying that the reduction in server cost offered by HCE1,
HCE2 and RCE comes at a price, namely loss of STC-security. The conclusion is
that designers will need to trade performance for strong tag consistency. Whether
this is fundamental or if better schemes exist is an interesting open question.

1.4 Theoretical Contributions

Is MLE possible in the standard-model? This emerges as the natural and most
basic theoretical question in this domain. Another question is, how does MLE
relate to other (existing) primitives? MLE has in common with Deterministic
Public-Key Encryption (D-PKE) [11] and Correlated-input-secure Hash Func-
tions (CI-H) [27] a goal of privacy on unpredictable but possibly related inputs,
so it is in particular natural to ask about the relation of MLE to these primitives.
The two questions are related, for showing that a primitive X implies MLE yields
a construction of an MLE scheme based on X. In exploring these questions it is
instructive to distinguish between D-MLE (where encryption is deterministic)
and R-MLE (where encryption may be randomized). The connections we now
discuss are summarized by the picture on the right side of Fig. 1:

• D-PKE ⇒ D-MLE: We show how to construct an MLE scheme from any D-
PKE scheme that is PRIV-secure in the sense of [11]. The first idea that may
come to mind is to make public a public key pk for the D-PKE scheme DE
and MLE-encrypt M as DE(pk ,M). But this does not make sense because
sk is needed to decrypt and the latter is not derived from M . Our XtDPKE
(“extract-then-D-PKE”) solution, described in Section 5, is quite different and
does not exploit the decryptability of DE at all. We apply a strong randomness
extractor to M to get the MLE key K and then encrypt M bit-by-bit, the
encryption of the i-th bit M [i] being C[i] = DE(pk ,K‖i‖M [i]). Decryption,
given K, is done by re-encrypting, for each i, both possible values of the i-th
message bit and seeing which ciphertext matches C[i]. We assume a trusted
generation of pk in which nobody retains sk . XtDPKE has PRV-CDA privacy
and provides STC (strong) tag consistency.

• CI-H ⇔ D-MLE: Our XtCIH (“extract-then-CI-Hash”) scheme derives a D-
MLE scheme from any CI-H hash function [27] by using the latter in place of
the D-PKE scheme in the above. XtCIH is PRV$-CDA private while retaining
STC consistency. Conversely, any PRV$-CDA D-MLE scheme can be used to
construct a CI-H hash function, making the primitives equivalent.
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Scheme Model D/R
Privacy Integrity

PRV-CDA PRV$-CDA TC STC

CE RO D 3 3 3 3
HCE1 RO D 3 3 7 7
HCE2 RO D 3 3 3 7
RCE RO R 3 3 3 7

XtCIH STD D 3 3 3 3
XtDPKE STD D 3 7 3 3
XtESPKE STD R 3 7 3 3

SXE STD D 3 3 3 3

CI-H

D-MLE
(PRV$-CDA)

D-MLE
(PRV-CDA)

D-PKE

ES-PKE

R-MLE
(PRV$-CDA)

R-MLE
(PRV-CDA)

Fig. 1. Left: For each MLE scheme that we construct, we indicate whether it
is in the RO or standard model; whether it is deterministic or randomized; and
which security properties it is proven to possess. The assumptions for XtCIH,
XtDPKE and XtESPKE are, respectively, a CI-H function, a D-PKE scheme
and an ES-PKE scheme, while the others assume only a symmetric encryp-
tion scheme. Right: An arrow X→ Y means we can construct primitive Y from
primitive X. Dark arrows are our results while light arrows indicate trivial or
known implications.

We believe these results are interesting as connections between prominent prim-
itives. However, they do not, right now, yield MLE schemes under standard
assumptions because providing the required D-PKE schemes or CI-H functions
under such assumptions is still open and deemed challenging. Indeed, Wichs [41]
shows that secure D-PKE schemes or CI-H functions may not be obtained via
blackbox reductions from any assumption that may be modeled as a game be-
tween an adversary and a challenger. We note that his result applies to D-MLE
as well but, as far as we can tell, not to R-MLE. One potential route to MLE with
standard assumptions may thus be to exploit randomization but we are unaware
of how to do this beyond noting that XtDPKE extends to a R-MLE scheme
XtESPKE based on any ES-PKE (Efficiently Searchable PKE) scheme [11], a
weaker primitive than D-PKE.

In the D-PKE domain, progress was made by restricting attention to special
message distributions. In particular D-PKE under standard assumptions have
been achieved for independent messages or block sources [14, 19, 21, 25]. CI-H
functions have been built for messages given by polynomials evaluated at the
same random point [27]. It is thus natural to ask whether we can obtain MLE
under standard assumptions for special message distributions. One might think
that this follows from our D-PKE⇒ D-MLE and CI-H⇒ D-MLE constructions
and the known results on D-PKE and CI-H, but this is not the case because our
constructions do not preserve the message distribution.

The final contribution we mention here is MLE schemes under standard as-
sumptions for certain classes of message distributions . Our SXE (Sample-extract-
encrypt) MLE scheme is inspired by locally-computable extractors [9,30,40] and
the sample-then-extract paradigm [33, 40]. The idea is to put a random subset
of the message bits through an extractor to get a key used to encrypt the rest of
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the bits, and the only assumption made is a standard, ROR-secure symmetric
encryption scheme.

1.5 Further Remarks and Related Work

There are folklore suggestions along the lines of CE predating [24]. See [34].
Recall that we have introduced an indistinguishability-from-random notion

(PRV$-CDA) for MLE and showed that it implied its adaptive counterpart. This
is of broader interest for the parent settings of deterministic and hedged encryp-
tion. Here achieving adaptive security has been challenging [12]. We suggest that
progress can be made by defining and then targeting indistinguishability-from-
random style definitions.

Mironov, Pandey, Reingold and Segev [32] suggest deduplication as a poten-
tial application of their incremental deterministic public-key encryption scheme.
But this will only work with a single client. It won’t allow deduplication across
clients, since they would all have to share the secret key.

Recent work showed that client-side deduplication gives rise to side-channel
attacks because users are told if another user already uploaded a file [29]. MLE
is compatible with either client- or server-side deduplication (the latter prevents
such side-channels). We note that one of our new schemes, RCE, gives rise to
such a side-channel (see Section 4). MLE targets a different class of threats than
proofs of ownership [28], which were proposed for deduplication systems in order
to mitigate abuse of services for surreptitious content distribution.

In independent and concurrent work, Xu, Chang and Zhou [44] consider
leakage resilience in the deduplication setting. They provide a randomized con-
struction similar to RCE.

2 Preliminaries

Notations and Conventions. The empty string is denoted by ε. If x is a
vector then |x| denotes the number of components in x, x[i] denotes the i-th
component, and x[i, j] = x[i] . . .x[j] for 1 ≤ i ≤ j ≤ |x|. A (binary) string x is
identified with a vector over {0, 1} so that |x| is its length, x[i] is its i-th bit and
x[i, j] = x[i] . . . x[j] for 1 ≤ i ≤ j ≤ |x|. If S is a finite set then |S| denotes its
size and s←$ S denotes picking an element uniformly from S and assigning it to
s. For i ∈ N we let [i] = {1, . . . , i}. We denote by λ ∈ N the security parameter
and by 1λ its unary representation.

“PT” stands for “polynomial-time.” Algorithms are randomized unless oth-
erwise indicated. By y ← A(x1, . . . ;R), we denote the operation of running
algorithm A on inputs x1, . . . and coins R and letting y denote the output. By
y←$A(x1, . . .), we denote the operation of letting y ← A(x1, . . . ;R) with R
chosen at random. We denote by [A(x1, . . .)] the set of points that have positive
probability of being output by A on inputs x1, . . .. Adversaries are algorithms
or tuples of algorithms. In the latter case, the running time of the adversary is
the sum of the running times of all the algorithms in the tuple.
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M KP K

EP C

DP M

TP T

PRV$-CDA

PRV-CDA

PRV$-CDA-A

PRV-CDA-A

Fig. 2. Left: Depiction of syntax of MLE scheme MLE = (P,K, E ,D, T ). The
parameter generation algorithm is not shown. Right: Relations between notions
of privacy for MLE schemes. An arrow from A to B means that any A-secure
MLE scheme is also B-secure. A barred arrow means there is an A-secure MLE
scheme that is not B-secure.

The guessing probability GP(X) and min-entropy H∞(X) of a random vari-
able X are defined via GP(X) = maxx Pr[X = x] = 2−H∞(X). The conditional
guessing probability GP(X |Y ) and conditional min-entropy H∞(X |Y ) of a
random variable X given a random variable Y are defined via GP(X |Y ) =∑
y Pr[Y = y] ·maxx Pr[X = x|Y = y] = 2−H∞(X |Y ). By SD(X;Y ) we denote

the statistical distance between random variables X and Y . For our security
definitions and proofs we use the code-based game playing framework of [17],
though adopting some of the syntax and semantics of [36].

3 Message-Locked Encryption

Syntax and correctness. An MLE scheme MLE = (P,K, E ,D, T ) is a five-
tuple of PT algorithms, the last two deterministic — see Fig. 2. On input 1λ

the parameter generation algorithm P returns a public parameter P . On input
P and a message M , the key-generation algorithm K returns a message-derived
key K←$KP (M). On inputs P,K,M the encryption algorithm E returns a
ciphertext C←$ EP (K,M). On inputs P,K and a ciphertext C, the decryption
algorithmD returnsDP (K,C) ∈ {0, 1}∗∪{⊥}. On inputs P,C the tag generation
algorithm returns a tag T ← TP (C). Associated to the scheme is a message
space MsgSpMLE that associates to any λ ∈ N a set MsgSpMLE(λ) ⊆ {0, 1}∗. We
require that there is a function Cl such that, for all λ ∈ N, all P ∈ [P(1λ)] and
all M ∈ {0, 1}∗, any output of EP (KP (M),M) has length Cl(P, λ, |M |), meaning
the length of a ciphertext depends on nothing about the message other than its
length. The decryption correctness condition requires that DP (K,C) = M for
all λ ∈ N, all P ∈ [P(1λ)], all M ∈ MsgSpMLE(λ), all K ∈ [KP (M)] and all
C ∈ [EP (K,M)]. The tag correctness condition requires that there is a negligible
function δ: N → [0, 1], called the false negative rate, such that Pr[TP (C) 6=
TP (C ′)] ≤ δ(λ) for all λ ∈ N, all P ∈ [P(1λ)] and all M ∈ MsgSpMLE(λ), where
the probability is over C←$ EP (KP (M),M) and C ′←$ EP (KP (M),M). We say
that MLE is deterministic if K and E are deterministic. We observe that if MLE
is deterministic then it has perfect tag correctness, meaning a false negative rate
of 0.
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Discussion. In the application to secure deduplication, the server publishes P
and maintains a database that we view as a table Da, initially everywhere ⊥.
In the UPLOAD protocol, the client, having P,M , computes K←$KP (M) and
C←$ EP (K,M). The client stores K securely. (It may do so locally or store K en-
crypted under its password on the server, but the implementation is not relevant
here.) It sends C to the server. The latter computes T ← TP (C). If Da[T ] = ⊥
then it lets Da[T ]← C. The server provides the client with a filename or pointer
that we may, for simplicity, just view as the tag T . In the DOWNLOAD pro-
tocol, the client sends the server a tag T and the server returns Da[T ]. If Alice
uploads M and Bob later does the same, tag correctness means that their tags
will most likely be equal and the server will store a single ciphertext on their
behalf. Downloads will return to both this common ciphertext C, and decryption
correctness guarantees that both can decrypt C under their respective (although
possibly different) keys to recover M .

A trivial construction of an MLE scheme MLE = (P,K, E ,D, T ) may be
obtained by setting the key to the message. In more detail, let P(1λ) = ε;
let Kε(M) = M ; let Eε(M,M) = Tε(C) = ε; let Dε(M,C) = M . This will
meet the decryption and tag correctness conditions besides meeting the security
requirements (privacy and tag consistency) we will formalize below. However,
this scheme is of no use for deduplication because the client stores the entire file
as the key and no storage savings are gleaned. To avoid this kind of degenerate
scheme, we insist that an MLE scheme have keys that are shorter than the
message. Formally, there must be a constants c, d < 1 such that the function
that on input λ ∈ N returns maxP,M Pr[|KP (M)| > d · |M |c] is negligible where
the probability is over the choices of K and the maximum is over all P ∈ [P(1λ)]
and all M ∈ MsgSpMLE(λ). Particular schemes we construct or analyze, however,
do much better, with the key-length for most of them depending only on the
security parameter.

Our formulation of search via tag comparison enables fast search: the server
can use the tag to index directly into a table or perform a logarithmic-time
binary search as in [11]. These requirements could be relaxed to define MLE
variants where search was allowed linear time (cf. [20]) or search ability was not
even provided. MLE does not appear easy to achieve even in the last case.

Privacy. A source is a PT algorithm M that on input 1λ returns (M0, . . . ,
Mn−1, Z) where M0, . . . ,Mn−1 are vectors over {0, 1}∗ and Z ∈ {0, 1}∗. Here
n ≥ 1 is a constant called the arity of the source. (We will only consider
n ∈ {1, 2}.) We require that all the vectors have the same length m(λ) for some
function m called the number of messages of the source. We require that there
is a function len, called the message length of the source, such that the string
Mj [i] has length len(λ, i) for all i ∈ [m(λ)] and all j ∈ {0, . . . , n−1}. We require
that Mj [i1] 6= Mj [i2] for all distinct i1, i2 ∈ [m(λ)] and all j ∈ {0, . . . , n − 1},
meaning the entries of each vector are distinct. We refer to Z as the auxil-
iary information. The guessing probability GPM of source M is defined as
the function which on input λ ∈ N returns maxi,j GP(Mj [i] |Z) where the
probability is over (M0, . . . ,Mn−1, Z)←$M(1λ) and the maximum is over all
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main PRV-CDAA
MLE,M(λ)

P ←$ P(1λ)

b←$ {0, 1}
(M0,M1, Z)←$M(1λ)

For i = 1, . . . , |Mb| do

K[i]←$KP (Mb[i])

C[i]←$ EP (K[i],Mb[i])

b′←$A(P,C, Z)

Ret (b = b′)

main PRV$-CDAA
MLE,M(λ)

P ←$ P(1λ)

b←$ {0, 1}
(M, Z)←$M(1λ)

For i = 1, . . . , |M| do

K[i]←$KP (M[i])

C1[i]←$ EP (K[i],M[i])

C0[i]←$ {0, 1}|C1[i]|

b′←$A(P,Cb, Z)

Ret (b = b′)

main TCAMLE(λ) STCAMLE(λ)

P ←$ P(1λ); (M,C′)←$A(P )

If (M = ⊥) or (C′ = ⊥) then

Ret false

T ←$ TP (EP (KP (M),M))

T ′←$ TP (C′)

M ′←$DP (KP (M), C′)

If (M = M ′) then Ret false

If (T 6= T ′) then Ret false

If (M ′ = ⊥) then Ret false

Ret true

Fig. 3. Games defining PRV-CDA, PRV$-CDA privacy and TC, STC tag consis-
tency security of MLE scheme MLE = (P,K, E ,D, T ).

i ∈ [m(λ)] and all j ∈ {0, . . . , n−1}. We say thatM is unpredictable if GPM(·)
is negligible. (Meaning, messages are unpredictable given the auxiliary infor-
mation. We do not require that the components Mj [1], . . . ,Mj [m(λ)] of a vec-
tor are independent, just that each, individually, is unpredictable.) We refer to
− log(GPM(·)) as the min-entropy of the source. We say that M is MLE-valid
if Mj [i] ∈ MsgSpMLE(λ) for all λ ∈ N, all (M0, . . . ,Mn−1, Z) ∈ [M(1λ)], all
i ∈ [m(λ)] and all j ∈ {0, . . . , n− 1}.

In the games of Fig. 3, “CDA” stands for “Chosen-Distribution Attack,” re-
ferring to the distribution on messages imposed by the MLE-valid source M,
which in game PRV-CDA has arity 2 and in game PRV$-CDA has arity 1.
If A is an adversary we let Advprv-cda

MLE,M,A(λ) = 2 · Pr[PRV-CDAA
MLE,M(λ)] − 1

and Advprv$-cda
MLE,M,A(λ) = 2 · Pr[PRV$-CDA

A
MLE,M(λ)] − 1. We say that MLE is

PRV-CDA (resp. PRV$-CDA) secure over a class M of PT, MLE-valid sources

if Advprv-cda
MLE,M,A(·) (resp. Advprv$-cda

MLE,M,A(·)) is negligible for all PT A and all

M ∈ M. We say that MLE is PRV-CDA (resp. PRV$-CDA) secure if it is
PRV-CDA (resp. PRV$-CDA) secure over the class of all PT, unpredictable MLE-
valid sources. PRV-CDA asks for indistinguishability of encryptions of two unpre-
dictable messages and is based on formalizations of deterministic [11,14,21] and
hedged [12] PKE. PRV$-CDA is a new variant, asking for the stronger property
that encryptions of unpredictable messages are indistinguishable from random
strings, an adaption to this setting of the corresponding notion for symmetric
encryption from [37].

The source is not given the parameter P as input, meaning privacy is only
assured for messages that do not depend on the parameter. This is analogous to
the restriction that messages do not depend on the public key in D-PKE [11],
and without this restriction, privacy is not possible. However, the adversary A
does get the parameter.
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The notions here are non-adaptive in the sense that the distribution of the
next message does not depend on the previous ciphertext. In the full version
[15], we give corresponding adaptive definitions PRV-CDA-A and PRV$-CDA-A,
and prove the relations summarized in Fig. 2. The one we highlight is that
non-adaptive PRV$-CDA implies its adaptive counterpart. This is not true for
PRV-CDA and makes PRV$-CDA preferable to achieve.

Tag consistency. Consider the games of Fig. 3 and let A be an adversary.
Game TCMLE includes the boxed statement, while STCMLE does not. We let
AdvTC

MLE,A(λ) = Pr[TCAMLE(λ)] and AdvSTC
MLE,A(λ) = Pr[STCAMLE(λ)]. We say that

MLE is TC (resp. STC) secure if AdvTC
MLE,A(·) (resp. AdvSTC

MLE,A(·)) is negligible.

Tag consistency (TC) aims to provide security against duplicate faking at-
tacks in which a legitimate message is undetectably replaced by a fake one. In
such an attack we imagine the adversary A creating and uploading C ′. Later,
an honest client, holding M (the formalism allows A to pick M) computes
K←$KP (M) and uploads C←$ EP (K,M). The server finds that the tags of
C and C ′ are equal and thus continues to store only C ′. Later, the honest client
downloads C ′ and decrypts under K. It expects to recover M , but in a successful
duplicate-faking attack it recovers instead some message M ′ 6= M . The integrity
of its data has thus been violated. TC security protects against this. Note that
TC explicitly excludes an attack in which M ′ = ⊥. Thus TC secure schemes
may still admit duplicate faking attacks that lead to erasures: a client can de-
tect corruption but no longer be able to recover their message. STC (strong tag
consistency) aims to additionally provide security against such erasure attacks.
In terms of implications, STC implies TC but TC does not imply STC.

Duplicate faking attacks are not just a theoretical concern. They were first
discussed in [39], yet currently deployed schemes are still vulnerable, as we’ll see
in the next section. Discussions with practitioners suggest that security against
them is viewed as an important requirement in practice.

Given any TC secure scheme, we can prevent all of the attacks above by hav-
ing a client, upon being informed that her ciphertext is already stored, download
it immediately and check that decryption yields her message. If not, she com-
plains. This however is not optimal, being expensive and complex and leading
to deduplication side-channels (cf. [29]).

If an MLE scheme is deterministic, letting the tag equal the ciphertext will
result in a scheme that is STC secure. This provides a relatively easy way to
ensure resistance to duplicate faking attacks, but the price paid is that the tag is
as long as the ciphertext. CR-hashing the ciphertext (still for a D-MLE scheme)
preserves STC, but for efficiency other, less effective options have been employed
in practice, as we will see.

ROM. An RO [16] is a game procedure H that maintains a table H[·, ·], initially
everywhere ⊥. Given a query x, k with x ∈ {0, 1}∗ and k ∈ N, it executes:
If H[x, k] = ⊥ then H[x, k]←$ {0, 1}k. It then returns H[x, k]. We will omit the
length k when it is clear from context. In the ROM, both scheme algorithms and
adversary algorithms will have access to H.
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In lifting the privacy definitions to the ROM, we do not give the source
access to H. This is to simplify our proofs. Our methods and proofs can be
extended to handle sources with access to H under an extension of the definition
of unpredictability to this setting in which, following [12,36], the unpredictability
of the source is independent of the coins underlying H.

4 The Security of Fast MLE Schemes

We investigate four MLE schemes, two that correspond to in-use schemes and
two new schemes.

Ingredients. The schemes are built from a one-time symmetric encryption
scheme and a hash function family H = (HK,H). The former is a tuple of
algorithms SE = (SK,SE ,SD): key generation SK, on input 1λ, outputs a key
K of length k(λ); deterministic encryption SE maps a key K and plaintext M to
a ciphertext C; and deterministic decryption SD maps a key K and ciphertext
C to a message M . We require that Pr[SD(K,SE(K,M)) = M ] = 1 for all
λ ∈ N, all K ∈ [SK(1λ)], and all M ∈ {0, 1}∗. We assume that there exists
a function clSE such that for all λ ∈ N and all M ∈ {0, 1}∗ any output of
SE(K,M) has length clSE(λ, |M |). For simplicity we assume that H and SE are
compatible: H(Kh,M) outputs a message of length k(λ) for any Kh ∈ [HK(1λ)].
We require schemes that provide both key recovery security (KR) and one-time
real-or-random security (ROR) [37]. Formal definitions are recalled in [15].

The four schemes. Let SE = (SK,SE ,SD) be a symmetric encryption scheme
and H = (HK,H) be a hash function family. All schemes inherit their message
space from SE (typically {0, 1}∗), use as parameter generation HK, and share a
common key generation algorithm K which derives keys as K ← H(P,M).

The first scheme, that we simply call convergent encryption (CE), generalizes
the original scheme of DABST [24]. CE encrypts the message as C ← SE(K,M).
Tags are computed as T ← H(P,C). (One could alternatively use the cipher-
text itself as the tag, but this is typically not practical.) Decryption returns
M ← SD(K,C) on input K,C. The second scheme, HCE1 (Hash-and-CE 1), is
a popular variant of the CE scheme used in a number of systems [4, 22, 23, 43].
Compared to CE, HCE1 computes tags during encryption by hashing the per-
message key (T ← H(P,K)) and including the result in the ciphertext. Tag
generation just extracts this embedded tag. This offloads work from the server
to the client and reduces the number of passes needed to encrypt and generate
a tag from three to two.

HCE1 is vulnerable to attacks that break TC security, as first discussed in [39].
The attack is straightforward: adversary A chooses two messages M 6= M ′,
computes C ← SE(H(P,M),M ′) and T ← H(P,H(P,M)), and finally outputs
(M,C ‖T ). This means an adversary, given knowledge of a user’s to-be-stored
message, can undetectably replace it with any arbitrary message. In TahoeFS’s
use of HCE1, the client additionally stores a message authentication code (MAC)
computed over the message, and checks this MAC during decryption. This means
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that the TC attack against HCE1 would be detected. TahoeFS is, however, still
vulnerable to erasure attacks. We have reported this to the developers, and are
discussing possible fixes with them.

We suggest a new scheme, HCE2, that modifies HCE1 to directly include a
mechanism, called guarded decryption, that helps it to achieve TC security. The
decryption routine now additionally checks the tag embedded in the ciphertext
by recomputing the tag using the just-decrypted message. If the check fails,
then ⊥ is returned.

For performance in practice, the important operation is deriving the cipher-
text and tag from the message. This involves generating the key, followed by en-
cryption and tag generation. CE requires three full passes to perform encryption
and tag generation, while HCE1 and HCE2 require two. Using at least two passes
here is fundamental: deterministic MLE schemes that output bits of ciphertext
before processing most of the message will not achieve PRV-CDA security.

The fourth scheme, Randomized Convergent Encryption (RCE), takes ad-
vantage of randomization to give a version of HCE2 that can generate the key,
encrypt the message, and produce the tag, all together, in a single pass. RCE
accomplishes this by first picking a random symmetric encryption key L and
then encrypting the message with L, and deriving the MLE key K in a single
pass. Finally it encrypts L using K as a one-time pad, and derives the tag from
K. Like HCE2 it uses guarded decryption.

We note that RCE does admit a side-channel attack similar to those arising
in client-side deduplication systems [29]. A user can infer whether she is the first
to upload a file, by first storing its encryption under RCE and then immediately
downloading to check if the recovered ciphertext is the one just uploaded.

For all the schemes, it is easy to verify decryption correctness. Tag correctness
follows as the tags are all deterministic.

Privacy. We prove the following theorem, which establishes the PRV$-CDA
security of the four schemes when modeling H as a RO, in the full version [15].
The key-recovery (KR) and one-time real-or-random (ROR) security notions
referred to below are recalled in [15].

Theorem 1. Let H be a RO and let SE = (SK,SE ,SD) be a one-time sym-
metric encryption scheme with key length k(·). Then if SE is both KR-secure
and ROR-secure, the scheme XXX[SE,H] for XXX ∈ {CE,HCE1,HCE2,RCE} is
PRV$-CDA-secure. �

Tag consistency. As discussed in Section 3, any deterministic scheme is STC-
secure when tags are CR-hashes of the ciphertext. So too with CE. For HCE2
and RCE, a straightforward reduction establishes the following theorem. Here
CR refers to standard collision resistance, the definition being recalled in [15].

Theorem 2. Let SE = (SK,SE ,SD) be a one-time symmetric encryption
scheme and let H = (HK,H) be a hash function family. If H is CR-secure then
HCE2[SE,H] and RCE[SE,H] are TC-secure. �
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HCE2 and RCE are not STC-secure, by the same attack as used against the TC
security of HCE1. (The tag check makes it so that decryption outputs M ′ = ⊥.)
One could in theory achieve STC security using non-interactive zero-knowledge
proofs [18], but this would obviate the speedups offered by the schemes com-
pared to CE. We conclude that finding fast, STC-secure schemes with O(1) tag
generation is an interesting open problem, surfaced by our definitions and results
above.

Discussion. The above schemes use a hash function family H. In practice, we
might use SHA-256 or SHA-3, and key them appropriately by choosing a uniform
bit string to prepend to messages. In [15] we explore various instantiations of the
MLE schemes, including ones that are entirely built from AES. We also report
on performance there.

5 Constructions without ROs

We overview Extract-Hash-Check (which yields standard model MLE from D-
PKE or CI-H hash functions) and Sample-Extract-Encrypt (which yields the
same from weaker assumptions but for particular classes of sources). Refer to [15]
for full construction descriptions and security proofs.

Extract-Hash-Check. It is natural to aim to build MLE from a D-PKE
scheme or a CI-H function because the latter primitives already provide privacy
on unpredictable messages. However, in attempting to build MLE from these
primitives, several problems arise. One is that neither of the base primitives
derives the decryption key from the message. Indeed, in both, keys must be
generated upfront and independently of the data. A related problem is that it is
not clear how an MLE scheme might decrypt. CI-H functions are not required
to be efficiently invertible. D-PKE does provide decryption, but it requires the
secret key, and it is not clear how this can yield message-based decryption.

Our solution will in fact not use the decryptability of the D-PKE scheme,
but rather view the latter as providing a CI-H function keyed by the public
key. We apply an extractor (its seed S will be in the parameters of the MLE
scheme) to the message M to get the MLE key K. Given S,M , this operation
is deterministic. The scheme encrypts the message bit by bit, creating from
M = M [1] . . .M [|M |] the ciphertext C = C[1] . . . C[|M |] in which C[i] is a hash
of K‖〈i〉‖M [i]. (The key for the hash function is also in the parameters.) To
decrypt C[i] given K, hash both K‖〈i〉‖1 and K‖〈i〉‖0 and see which equals
C[i]. (This is the “check” part.) The proof of privacy relies on the fact that each
input to each application of the hash function will have a negligible guessing
probability even given the parameters. The reduction will take an MLE source
and build a source for the hash function that itself computes K and produces
the inputs to the hash function. Details may be found in [15].

Sample-Extract-Encrypt. This MLE scheme relies only on a standard and
weak assumption, namely a one-time symmetric encryption scheme, which can
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be built from any one-way function. The tradeoff is that it is only secure for a
limited class of sources.

Stepping back, if we are to consider special sources, the obvious starting
point is uniform and independent messages. Achieving MLE here is easy be-
cause we can use part of the message as the key to encrypt the other part. The
next obvious target is block sources, where each message is assumed to have
negligible guessing probability given the previous ones. D-PKE for such sources
was achieved in [19]. We might hope, via the above XHC construction, to thus
automatically obtain MLE for the same sources, but XHC does not preserve the
block source restriction because the inputs to the hash function for different bits
of the same message are highly correlated.

Sample-Extract-Encrypt (SXE) builds an MLE scheme for classes of block
sources where a random subset of the bits of each message remains unpredictable
even given the rest of the bits and previous messages. For example, if a message
has some subset of uniform bits embedded within it. The scheme then uses
a random subset of the message bits as a key, applies an extractor, and then
symmetrically encrypts the rest of the message. Refer to [15] for details.
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