
Dynamic Proofs of Retrievability
via Oblivious RAM?

David Cash1 ??, Alptekin Küpçü2? ? ?, and Daniel Wichs3 †

1
Rutgers University
2 Koç University.

3 Northeastern University

Abstract. Proofs of retrievability allow a client to store her data on a
remote server (e.g., “in the cloud”) and periodically execute an efficient
audit protocol to check that all of the data is being maintained correctly
and can be recovered from the server. For efficiency, the computation
and communication of the server and client during an audit protocol
should be significantly smaller than reading/transmitting the data in its
entirety. Although the server is only asked to access a few locations of
its storage during an audit, it must maintain full knowledge of all client
data to be able to pass.

Starting with the work of Juels and Kaliski (CCS ’07), all prior
solutions require that the client data is static and do not allow it to be
efficiently updated. Indeed, they store a redundant encoding of the data
on the server, so that the server must delete a large fraction of its storage
to ‘lose’ any actual content. Unfortunately, this means that even a single
bit modification to the original data will need to modify a large fraction
of the server storage, which makes updates highly inefficient.

In this work, we give the first solution providing proofs of retrievability
for dynamic storage, where the client can perform arbitrary reads/writes
on any location within her data by running an efficient protocol with
the server. At any point in time, the client can also execute an audit
protocol to ensure that the server maintains the latest version of its
data. The computation and communication complexity of the server and
client in our protocols is only polylogarithmic in the size of the data.
Our main idea is to split up the data into small blocks and redundantly
encode each block of data individually, so that an update inside any
data block only affects a few codeword symbols. The main difficulty is
to prevent the server from identifying and deleting too many codeword
symbols belonging to any single data block. We do so by hiding where
the various codeword symbols are stored on the server and when they
are being accessed by the client, using the techniques of oblivious RAM.

? A full version of this work is available as ePrint report 2012/550.
?? Research conducted while at IBM Research, T.J. Watson.

? ? ? Supported by TÜBİTAK, the Scientific and Technological Research Council of
Turkey, under project number 112E115.

† Research conducted while at IBM Research, T.J. Watson and supported by DARPA
under agreement number FA8750-11-C-0096.

1 Introduction

Cloud storage systems (Amazon S3, Dropbox, Google Drive etc.) are becoming
increasingly popular as a means of storing data reliably and making it easily
accessible from any location. Unfortunately, even though the remote storage
provider may not be trusted, current systems provide few security or integrity
guarantees. Guaranteeing the privacy and authenticity of remotely stored data
while allowing efficient access and updates is non-trivial, and relates to the study
of oblivious RAMs and memory checking, which we will return to later. The main
focus of this work, however, is an orthogonal question: How can we efficiently
verify that the entire client data is being stored on the remote server in the first
place? In other words, what prevents the server from deleting some portion of
the data (say, an infrequently accessed sector) to save on storage?

Provable Storage. Motivated by the questions above, there has been much
cryptography and security research in creating a provable storage mechanism,
where an untrusted server can prove to a client that her data is kept intact.
More precisely, the client can run an efficient audit protocol with the untrusted
server, guaranteeing that the server can only pass the audit if it maintains full
knowledge of the entire client data. This is formalized by requiring that the data
can be efficiently extracted from the server given its state at the beginning of any
successful audit. One may think of this as analogous to the notion of extractors
in the definition of zero-knowledge proofs of knowledge [15, 4].

One trivial audit mechanism, which accomplishes the above, is for the client
to simply download all of her data from the server and check its authenticity (e.g.,
using a MAC). However, for the sake of efficiency, we insist that the computation
and communication of the server and client during an audit protocol is much
smaller than the potentially huge size of the client’s data. In particular, the server
shouldn’t even have to read all of the client’s data to run the audit protocol,
let alone transmit it. A scheme that accomplishes the above is called a Proof of
Retrievability (PoR).

Prior Techniques. The first PoR schemes were defined and constructed by
Juels and Kaliski [18], and have since received much attention. We review the
prior work and and closely related primitives (e.g., sublinear authenticators [21]
and provable data possession [1]) in Section 1.2.

On a very high level, all PoR constructions share essentially the same common
structure. The client stores some redundant encoding of her data under an erasure
code on the server, ensuring that the server must delete a significant fraction
of the encoding before losing any actual data. During an audit, the client then
checks a few random locations of the encoding, so that a server who deleted a
significant fraction will get caught with overwhelming probability.

More precisely, let us model the client’s input data as a string M ∈ Σ`

consisting of ` symbols from some small alphabet Σ, and let Enc : Σ` → Σ`′

denote an erasure code that can correct the erasure of up to 1
2 of its output

symbols. The client stores Enc(M) on the server. During an audit, the client
selects a small random subset of t out of the `′ locations in the encoding, and

challenges the server to respond with the corresponding values, which it then
checks for authenticity (e.g., using MAC tags). Intuitively, if the server deletes
more than half of the values in the encoding, it will get caught with overwhelming
probability > 1 − 2−t during the audit, and otherwise it retains knowledge of
the original data because of the redundancy of the encoding. The complexity
of the audit protocol is only proportional to t which can be set to the security
parameter and is independent of the size of the client data.4

Difficulty of Updates. One of the main limitations of all prior PoR schemes
is that they do not support efficient updates to the client data. Under the above
template for PoR, if the client wants to modify even a single location of M,
it will end up needing to change the values of at least half of the locations in
Enc(M) on the server, requiring a large amount of work (linear in the size of
the client data). Constructing a PoR scheme that allows for efficient updates
was stated as the main open problem by Juels and Kaliski [18]. We emphasize
that, in the setting of updates, the audit protocol must ensure that the server
correctly maintains knowledge of the latest version of the client data, which
includes all of the changes incurred over time. Before we describe our solution
to this problem, let us build some intuition about the challenges involved by
examining two natural but flawed proposals.

First Proposal. A natural attempt to overcome the inefficiency of updating
a huge redundant encoding is to encode the data “locally” so that a change to
one position of the data only affects a small number of codeword symbols. More
precisely, instead of using an erasure code that takes all ` data symbols as input,
we can use a code Enc : Σk → Σn that works on small blocks of only k � `
symbols encoded into n symbols. The client divides the data M into L = `/k
message blocks (m1, . . . ,mL), where each block mi ∈ Σk consists of k symbols.
The client redundantly encodes each message block mi individually into a cor-
responding codeword block ci = Enc(mi) ∈ Σn using the above code with small
inputs. Finally the client concatenates these codeword blocks to form the value
C = (c1, . . . , cL) ∈ ΣLn, which it stores on the server. Auditing works as before:
The client randomly chooses t of the L·n locations in C and challenges the server
to respond with the corresponding codeword symbols in these locations, which
it then tests for authenticity.5 The client can now read/write to any location
within her data by simply reading/writing to the n relevant codeword symbols
on the server.

The above proposal can be made secure when the block-size k (which deter-
mines the complexity of reads/updates) and the number of challenged locations
t (which determines the complexity of the audit) are both set to Ω(

√
`) where

` is the size of the data (see the full version [8] for details). This way, the audit

4 Some of the more advanced PoR schemes (e.g., [24, 11]) optimize the communication
complexity of the audit even further by cleverly compressing the t codeword symbols
and their authentication tags in the server’s response.

5 This requires that we can efficiently check the authenticity of the remotely stored
data C, while supporting efficient updates on it. This problem is solved by memory
checking (see our survey of related work in Section 1.2).

is likely to check sufficiently many values in each codeword block ci. Unfortu-
nately, if we want a truly efficient scheme and set n, t = o(

√
`) to be small,

then this solution becomes completely insecure. The server can delete a single
codeword block ci from C entirely, losing the corresponding message block mi,
but still maintain a good chance of passing the above audit as long as none of
the t random challenge locations coincides with the n deleted symbols, which
happens with good probability.

Second Proposal. The first proposal (with small n, t) was insecure because
a cheating server could easily identify the locations within C that correspond
to a single message block and delete exactly the codeword symbols in these
locations. We can prevent such attacks by pseudo-randomly permuting the lo-
cations of all of the different codeword-symbols of different codeword blocks
together. That is, the client starts with the value C = (C[1], . . . ,C[Ln]) =
(c1, . . . , cL) ∈ ΣLn computed as in the first proposal. It chooses a pseudo-
random permutation π : [Ln] → [Ln] and computes the permuted value
C′ := (C[π(1)], . . . ,C[π(Ln)]) which it then stores on the server in an encrypted
form (each codeword symbol is encrypted separately). The audit still checks t
out of Ln random locations of the server storage and verifies authenticity.

It may seem that the server now cannot immediately identify and selectively
delete codeword-symbols belonging to a single codeword block, thwarting the
attack on the first proposal. Unfortunately, this modification only re-gains se-
curity in the static setting, when the client never performs any operations on
the data.6 Once the client wants to update some location of M that falls in-
side some message block mi, she has to reveal to the server where all of the n
codeword symbols corresponding to ci = Enc(mi) reside in its storage since she
needs to update exactly these values. Therefore, the server can later selectively
delete exactly these n codeword symbols, leading to the same attack as in the
first proposal.

Impossibility? Given the above failed attempts, it may even seem that truly
efficient updates could be inherently incompatible with efficient audits in PoR.
If an update is efficient and only changes a small subset of the server’s storage,
then the server can always just ignore the update, thereby failing to maintain
knowledge of the latest version of the client data. All of the prior techniques
appear ineffective against such attack. More generally, any audit protocol which
just checks a small subset of random locations of the server’s storage is unlikely
to hit any of the locations involved in the update, and hence will not detect
such cheating, meaning that it cannot be secure. However, this does not rule
out the possibility of a very efficient solution that relies on a more clever audit
protocol, which is likelier to check recently updated areas of the server’s storage
and therefore detect such an attack. Indeed, this property will be an important
component in our actual solution.

6 A variant of this idea was actually used by Juels and Kaliski [18] for extra efficiency
in the static setting.

1.1 Our Results and Techniques

Overview of Result. In this work, we give the first solution to dynamic PoR
that allows for efficient updates to client data. The client only keeps some short
local state, and can execute arbitrary read/write operations on any location
within the data by running a corresponding protocol with the server. At any
point in time, the client can also initiate an audit protocol, which ensures that a
passing server must have complete knowledge of the latest version of the client
data. The cost of any read/write/audit execution in terms of server/client work
and communication is only polylogarithmic in the size of the client data. The
server’s storage remains linear in the size of the client data. Therefore, our scheme
is optimal in an asymptotic sense, up to polylogarithmic factors. See Section 6
for a detailed efficiency analysis.

PoR via Oblivious RAM. Our dynamic PoR solution starts with the same
idea as the first proposal above, where the client redundantly encodes small
blocks of her data individually to form the value C = (c1, . . . , cL) ∈ ΣLn,
consisting of L codeword blocks and `′ = Ln codeword symbols, as defined
previously. The goal is to then store C on the server in some “clever way” so
that that the server cannot selectively delete too many symbols within any single
codeword block ci, even after observing the client’s read and write executions
(which access exactly these symbols). As highlighted by the second proposal,
simply permuting the locations of the codeword symbols of C is insufficient.
Instead, our main idea it to store all of the individual codeword symbols of C
on the server using an oblivious RAM scheme.

Overview of ORAM. Oblivious RAM (ORAM), initially defined by Goldreich
and Ostrovsky [14], allows a client to outsource her memory to a remote server
while allowing the client to perform random-access reads and writes in a private
way. More precisely, the client has some data D ∈ Σd, which she stores on the
server in some carefully designed privacy-preserving form, while only keeping a
short local state. She can later run efficient protocols with the server to read
or write to the individual entries of D. The read/write protocols of the ORAM
scheme should be efficient, and the client/server work and communication during
each such protocol should be small compared to the size of D (e.g., polylogarith-
mic). A secure ORAM scheme not only hides the content of D from the server,
but also the access pattern of which locations in D the client is reading or writ-
ing in each protocol execution. Thus, the server cannot discern any correlation
between the physical locations of its storage that it is asked to access during
each read/write protocol execution and the logical location inside D that the
client wants to access via this protocol.

In our work, we will also always use ORAM schemes that are authenticated,
which means that the client can detect if the server ever sends an incorrect value.
In particular, authenticated ORAM schemes ensure that the most recent version
of the data is being retrieved in any accepting read execution, preventing the
server from “rolling back” updates.

Construction of Dynamic PoR. A detailed technical description of our
construction appears in Section 5, and below we give a simplified overview. In
our PoR construction, the client starts with data M ∈ Σ` which she splits into
small message blocks M = (m1, . . . ,mL) with mi ∈ Σk where the block size
k � ` = Lk is only dependant on the security parameter. She then applies an
error correcting code Enc : Σk → Σn that can efficiently recover n

2 erasures to
each message block individually, resulting in the value C = (c1, . . . , cL) ∈ ΣLn

where ci = Enc(mi). Finally, she initializes an ORAM scheme with the initial
data D = C, which the ORAM stores on the server in some clever privacy-
preserving form, while keeping only a short local state at the client.

Whenever the client wants to read or write to some location within her data,
she uses the ORAM scheme to perform the necessary reads/writes on each of
the n relevant codeword symbols of C (see details in Section 5). To run an audit,
the client chooses t (≈ security parameter) random locations in {1, . . . , Ln} and
runs the ORAM read protocol t times to read the corresponding symbols of C
that reside in these locations, checking them for authenticity.

Catching Disregarded Updates. First, let us start with a sanity check, to
explain how the above construction can thwart a specific attack in which the
server simply disregards the latest update. In particular, such attack should be
caught by a subsequent audit. During the audit, the client runs the ORAM
protocol to read t random codeword symbols and these are unlikely to coin-
cide with any of the n codeword symbols modified by the latest update (recall
that t and n are both small and independent of the data size `). However, the
ORAM scheme stores data on the server in a highly organized data-structure,
and ensures that the most recently updated data is accessed during any subse-
quent “read” execution, even for an unrelated logical location. This is implied by
ORAM security since we need to hide whether or not the location of a read was
recently updated or not. Therefore, although the audit executes the “ORAM
read” protocols on random logical locations inside C, the ORAM scheme will
end up scanning recently updated ares of the server’s actual storage and check
them for authenticity, ensuring that recent updates have not been disregarded.

Security and “Next-Read Pattern Hiding”. The high-level security in-
tuition for our PoR scheme is quite simple. The ORAM hides from the server
where the various locations of C reside in its storage, even after observing the
access pattern of read/write executions. Therefore it is difficult for the server
to reach a state where it will fail on read executions for most locations within
some single codeword block (lose data) without also failing on too many read
executions altogether (lose the ability to pass an audit).

Making the above intuition formal is quite subtle, and it turns out that
standard notion of ORAM security does not suffice. The main issue is that that
the server may be able to somehow delete all (or most) of the n codeword symbols
that fall within some codeword block ci = (C[j + 1], . . . ,C[j + n]) without
knowing which block it deleted. Therefore, although the server will fail on any
subsequent read if and only if its location falls within the range {j+1, . . . , j+n},
it will not learn anything about the location of the read itself since it does not

know the index j. Indeed, we will give an example of a contrived ORAM scheme
where such an attack is possible and our resulting construction of PoR using this
ORAM is insecure.

We show, however, that the intuitive reasoning above can be salvaged if the
ORAM scheme achieves a new notion of security that we call next-read pattern
hiding (NRPH), which may be of independent interest. NRPH security consid-
ers an adversarial server that first gets to observe many read/write protocol
executions performed sequentially with the client, resulting in some final client
configuration Cfin. The adversarial server then gets to see various possibilities
for how the “next read” operation would be executed by the client for various
distinct locations, where each such execution starts from the same fixed client
configuration Cfin.7 The server should not be able to discern any relationship be-
tween these executions and the locations they are reading. For example, two such
“next-read” executions where the client reads two consecutive locations should
be indistinguishable from two executions that read two random and unrelated
locations. This notion of NRPH security will be used to show that server cannot
reach a state where it can selectively fail to respond on read queries whose lo-
cation falls within some small range of a single codeword block (lose data), but
still respond correctly to most completely random reads (pass an audit).

Proving Security via an Extractor. We now give a high-level overview
of how our PoR extractor works. In particular, we claim that we can take any
adversarial server that has a “good” chance of passing an audit and use the
extractor to efficiently recover the latest version of the client data from it. The
extractor initializes an “empty array” C. It then executes random audit protocols
with the server, by acting as the honest client. In particular, it chooses t random
locations within the array and runs the corresponding ORAM read protocols. If
the execution of the audit is successful, the extractor fills in the corresponding
values of C that it learned during the audit execution. In either case, it then
rewinds the server and runs a fresh execution of the audit, repeating this step
for several iterations.

Since the server has a good chance of passing a random audit, it is easy
to show that the extractor can eventually recover a large fraction, say > 3

4 , of
the entries inside C by repeating this process sufficiently many times. Because
of the authenticity of the ORAM, the recovered values are the correct ones,
corresponding to the latest version of the client data. Now we need to argue that
there is no codeword block ci within C for which the extractor recovered fewer
than 1

2 of its codeword symbols, as this would prevent us from applying erasure
decoding and recovering the underlying message block. Let FAILURE denote
the above bad event. If all the recovered locations (comprising > 3

4 fraction
of the total) were distributed uniformly within C then FAILURE would occur
with negligible probability, as long as the codeword size n is sufficiently large in
the security parameter. We can now rely on the NRPH security of the ORAM
to ensure that FAILURE also happens with negligible probability in our case.

7 This is in contrast to the standard sequential operations where the client state is
updated after each execution.

We can think of the FAILURE event as a function of the locations queried by
the extractor in each audit execution, and the set of executions on which the
server fails. If the malicious server can cause FAILURE to occur, it means that it
can distinguish the pattern of locations actually queried by the extractor during
the audit executions (for which the FAILURE event occurs) from a randomly
permuted pattern of locations (for which the FAILURE event does not occur
with overwhelming probability). Note that the use of rewinding between the
audit executions of the extractor forces us to rely on NRPH security rather than
just standard ORAM security.

The above presents the high-level intuition and is somewhat oversimplified.
See Section 4 for the formal definition of NRPH security and Section 5 for the
formal description of our dynamic PoR scheme and a rigorous proof of security.

Achieving Next-Read Pattern Hiding. We show that standard ORAM
security does not generically imply NRPH security, by giving a contrived scheme
that satisfies the former but not the latter. Nevertheless, all natural ORAM
constructions in the literature do essentially satisfy NRPH security. In the full
version [8], we look at one particularly efficient ORAM construction of Goodrich
and Mitzenmacher [16] in depth, and prove that (with minor modifications) it
is NRPH secure.

Contributions. We call our final scheme PORAM since it combines the tech-
niques and security of PoR and ORAM. In particular, other than providing
provable dynamic cloud storage as was our main goal, our scheme also satisfies
the strong privacy guarantees of ORAM, meaning that it hides all contents of
the remotely stored data as well as the access pattern of which locations are
accessed when. It also provides strong authenticity guarantees (same as memory
checking ; see Section 1.2), ensuring that any “read” execution with a malicious
remote server is guaranteed to return the latest version of the data (or detect
cheating). In brief, our contributions can be summarized as follows:

– We give the first asymptotically efficient solution to PoR for outsourced
dynamic data, where a successful audit ensures that the server knows the
latest version of the client data. In particular:

• Client storage is small and independent of the data size.

• Server storage is linear in the data size, expanding it by only a small
constant factor.

• Communication and computation of client and server during read, write,
and audit executions are polylogarithmic in the size of the client data.

– Our scheme also achieves strong privacy and authenticity guarantees, match-
ing those of oblivious RAM and memory checking.

We mention that the PORAM scheme is simple to implement and has low con-
crete efficiency overhead on top of an underlying ORAM scheme with NRPH se-
curity. There is much recent and ongoing research activity in instantiating/implementing
truly practical ORAM schemes, which are likely to yield correspondingly prac-
tical instantiations of our PORAM protocol.

1.2 Related Work

Proofs of retrievability for static data were initially defined and constructed
by Juels and Kaliski [18], building on a closely related notion called sublinear-
authenticators of Naor and Rothblum [21]. Concurrently, Ateniese et al. [1]
defined another related primitive called provable data possession (PDP). Since
then, there has been much ongoing research activity on PoR and PDP schemes.

PoR vs. PDP. The main difference between PoR and PDP is the notion of
security that they achieve. A PoR audit guarantees that the server maintains
knowledge of all of the client data, while a PDP audit only ensures that the
server is storing most of the client data. For example, in a PDP scheme, the
server may lose a small portion of client data (say 1 MB out of a 10 GB file) and
may maintain an high chance of passing a future audit. On a technical level, the
main difference in most prior PDP/PoR constructions is that PoR schemes store
a redundant encoding of the client data on the server. For a detailed comparison,
see Küpçü [19, 20].

Static Data. PoR and PDP schemes for static data (without updates) have
received much research attention [24, 11, 7, 2], with works improving on com-
munication efficiency and exact security, yielding essentially optimal solutions.
Another interesting direction has been to extend these works to the multi-server
setting [6, 9, 10] where the client can use the audit mechanism to identify faulty
machines and recover the data from the others.

Dynamic Data. The works of Ateniese et al. [3], Erway et al. [13] and Wang et
al. [27] show how to achieve PDP security for dynamic data, supporting efficient
updates. This is closely related to work on memory checking [5, 21, 12], which
studies how to authenticate remotely stored dynamic data so as to allow efficient
reads/writes, while being able to verify the authenticity of the latest version of
the data (preventing the server from “rolling back” updates and using an old
version). Unfortunately, these techniques alone cannot be used to achieve the
stronger notion of PoR security. Indeed, the main difficulty that we resolve in
this work, how to efficiently update redundantly encoded data, does not come up
in the context of PDP.

A recent work of Stefanov et al. [26] considers PoR for dynamic data, but in
a more complex setting where an additional trusted “portal” performs some op-
erations on behalf of the client, and can cache updates for an extended period of
time. It is not clear if these techniques can be translated to the basic client/server
setting, which we consider here. However, even in this modified setting, the com-
plexity of the updates and the audit in that work is proportional to square-root
of the data size, whereas ours is polylogarithmic.

2 Preliminaries

Notation. Throughout, we use λ to denote the security parameter. We identify
efficient algorithms as those running in (probabilistic) polynomial time in λ
and their input lengths, and identify negligible quantities (e.g., acceptable error

probabilities) as negl(λ) = 1/λω(1), meaning that they are asymptotically smaller

than 1/λc for every constant c > 0. For n ∈ N, we define the set [n]
def
= {1, . . . , n}.

We use the notation (k mod n) to denote the unique integer i ∈ {0, . . . , n− 1}
such that i = k (mod n).

Erasure Codes. We say that (Enc,Dec) is an (n, k, d)Σ-code with efficient era-
sure decoding over an alphabet Σ if the original message can always be recovered
from a corrupted codeword with at most d− 1 erasures. That is, for every mes-
sage m = (m1, . . . ,mk) ∈ Σk giving a codeword c = (c1, . . . , cn) = Enc(m),
and every corrupted codeword c̃ = (c̃1, . . . , c̃n) such that c̃i ∈ {ci,⊥} and the
number of erasures is |{i ∈ [n] : c̃i = ⊥}| ≤ d − 1, we have Dec(c̃) = m. We
say that a code is systematic if, for every message m, the codeword c = Enc(m)
contains m in the first k positions c1 = m1, . . . , ck = mk. A systematic variant
of the Reed-Solomon code achieves the above for any integers n > k and any
field Σ of size |Σ| ≥ n with d = n− k + 1.

Virtual Memory. We think of virtual memory M, with word-size w and length

`, as an array M ∈ Σ` where Σ
def
= {0, 1}w. We assume that, initially, each

location M[i] contains the special uninitialized symbol 0 = 0w. Throughout, we
will think of ` as some large polynomial in the security parameter, which upper
bounds the amount of memory that can be used.

Outsourcing Virtual Memory. In the next two sections, we look at two
primitives: dynamic PoR and ORAM. These primitives allow a client to out-
source some virtual memory M to a remote server, while providing useful secu-
rity guarantees. Reading and writing to some location of M now takes on the
form of a protocol execution with the server. The goal is to provide security
while preserving efficiency in terms of client/server computation, communica-
tion, and the number of server-memory accesses per operation, which should all
be poly-logarithmic in the length `. We also want to optimize the size of the
client storage (independent of `) and server storage (not much larger than `).

3 Dynamic PoR

A Dynamic PoR scheme consists of protocols PInit,PRead,PWrite, Audit be-
tween two stateful parties: a client C and a server S. The server acts as the
curator for some virtual memory M, which the client can read, write and audit
by initiating the corresponding interactive protocols:

– PInit(1λ, 1w, `): This protocol corresponds to the client initializing an (empty)
virtual memory M with word-size w and length `, which it supplies as inputs.

– PRead(i): This protocol corresponds to the client reading v = M[i], where
it supplies the input i and outputs some value v at the end.

– PWrite(i, v): This protocol corresponds to setting M[i] := v, where the client
supplies the inputs i, v.

– Audit: This protocol is used by the client to verify that the server is main-
taining the memory contents correctly so that they remain retrievable. The
client outputs a decision b ∈ {accept, reject}.

The client C in the protocols may be randomized, but we assume (w.l.o.g.) that
the honest server S is deterministic. At the conclusion of the PInit protocol,
both the client and the server create some long-term local state, which each
party will update during the execution of each of the subsequent protocols. The
client may also output reject during the execution of the PInit,PRead,PWrite
protocols, to denote that it detected some misbehavior of the server. Note that
we assume that the virtual memory is initially empty, but if the client has some
initial data, she can write it onto the server block-by-block immediately after
initialization. For ease of presentation, we may assume that the state of the
client and the server always contains the security parameter, and the mem-
ory parameters (1λ, 1w, `). We now define the three properties of a dynamic
PoR scheme: correctness, authenticity and retrievability. For these definitions,
we say that P = (op0, op1, . . . , opq) is a dynamic PoR protocol sequence if
op0 = PInit(1λ, 1w, `) and, for j > 0, opj ∈ {PRead(i), PWrite(i, v), Audit}
for some index i ∈ [`] and value v ∈ {0, 1}w.

Correctness. If the client and the server are both honest and P = (op0, . . . , opq)
is some protocol sequence, then we require the following to occur with probability
1 over the randomness of the client:

• Each execution of a protocol opj = PRead(i) results in the client outputting
the correct value v = M[i], matching what would happen if the correspond-
ing operations were performed directly on a memory M. In particular, v is
the value contained in the most recent prior write operation with location
i, or, if no such prior operation exists, v = 0.

• Each execution of the Audit protocol results in the decision b = accept.

Authenticity. We require that the client can always detect if any protocol mes-
sage sent by the server deviates from honest behavior. More precisely, consider
the following game AuthGameS̃(λ) between a malicious server S̃ and a challenger:

• The malicious server S̃(1λ) specifies a valid protocol sequence P = (op0, . . . , opq).

• The challenger initializes a copy of the honest client C and the (determinis-
tic) honest server S. It sequentially executes op0, . . . , opq between C and the

malicious server S̃ while, in parallel, also passing a copy of every message
from C to the honest server S.

• If, at any point during the execution of some opj , any protocol message

given by S̃ differs from that of S, and the client C does not output reject,
the adversary wins and the game outputs 1. Else 0.

For any efficient adversarial server S̃, we require Pr[AuthGameS̃(λ) = 1] ≤
negl(λ). Note that authenticity and correctness together imply that the client
will always either read the correct value corresponding to the latest contents of
the virtual memory or reject whenever interacting with a malicious server.

Retrievability. Finally we define the main purpose of a dynamic PoR scheme,
which is to ensure that the client data remains retrievable. We wish to guarantee
that, whenever the malicious server is in a state with a reasonable probability δ

of successfully passing an audit, he must know the entire content of the client’s
virtual memory M. As in “proofs of knowledge”, we formalize knowledge via
the existence of an efficient extractor E which can recover the value M given
(black-box) access to the malicious server.

More precisely, we define the game ExtGameS̃,E(λ, p) between a malicious

server S̃, extractor E , and challenger:

• The malicious server S̃(1λ) specifies a protocol sequence P = (op0, . . . , opq).
Let M ∈ Σ` be the correct value of the memory contents at the end of
executing P .

• The challenger initializes a copy of the honest client C and sequentially
executes op0, . . . , opq between C and S̃. Let Cfin and S̃fin be the final con-
figurations (states) of the client and malicious server at the end of this
interaction, including all of the random coins of the malicious server. De-

fine the success-probability Succ(S̃fin)
def
= Pr

[
S̃fin

Audit←→ Cfin = accept
]

as the

probability that an execution of a subsequent Audit protocol between S̃fin

and Cfin results in the latter outputting accept. The probability is only over
the random coins of Cfin during this execution.

• Run M′ ← E S̃fin(Cfin, 1
`, 1p), where the extractor E gets black-box rewinding

access to the malicious server in its final configuration S̃fin, and attempts
to extract out the memory contents as M′.8

• If Succ(S̃fin) ≥ 1/p and M′ 6= M then output 1, else 0.

We require that there exists a probabilistic-poly-time extractor E such that,
for every efficient malicious server S̃ and every polynomial p = p(λ) we have
Pr[ExtGameS̃,E(λ, p) = 1] ≤ negl(λ).

The above says that whenever the malicious server reaches some state S̃fin in
which it maintains a δ ≥ 1/p probability of passing the next audit, the extractor
E will be able to extract out the correct memory contents M from S̃fin, meaning
that the server must retain full knowledge of M in this state. The extractor is
efficient, but can run in time polynomial in p and the size of the memory `.

A Note on Adaptivity. We defined the above authenticity and retrievability
properties assuming that the sequence of read/write operations is adversarial,
but is chosen non-adaptively, before the adversarial server sees any protocol ex-
ecutions. This seems to be sufficient in most realistic scenarios, where the server
is unlikely to have any influence on which operations the client wants to perform.
It also matches the security notions in prior works on ORAM. Nevertheless, we
note that our final results also achieve adaptive security, where the attacker can
choose the sequence of operations opi adaptively after seeing the execution of
previous operations, if the underlying ORAM satisfies this notion. Indeed, most
prior ORAM solutions seem to do so, but it was never included in their analysis.

8 This is similar to the extractor in zero-knowledge proofs of knowledge. In particular
E can execute protocols with the malicious server in its state S̃fin and rewind it back
this state at the end of the execution.

4 Oblivious RAM with Next-Read Pattern Hiding

An ORAM consists of protocols (OInit,ORead,OWrite) between a client C and
a server S, with the same syntax as the corresponding protocols in PoR. We will
also extend the syntax of ORead and OWrite to allow for reading/writing from/to
multiple distinct locations simultaneously. That is, for arbitrary t ∈ N, we define
the protocol ORead(i1, . . . , it) for distinct indices i1, . . . , it ∈ [`], in which the
client outputs (v1, . . . , vt) corresponding to reading v1 = M[i1], . . . , vt = M[it].
Similarly, we define the protocol OWrite(it, . . . , it; v1, . . . , vt) for distinct indices
i1, . . . , it ∈ [`], which corresponds to setting M[i1] := v1, . . . ,M[it] := vt.

We say that P = (op0, . . . , opq) is an ORAM protocol sequence if op0 =
OInit(1λ, 1w, `) and, for j > 0, opj is a valid (multi-location) read/write opera-
tion. We require that an ORAM construction needs to satisfy correctness and
authenticity, which are defined the same way as in PoR. (Traditionally, authen-
ticity is not always defined/required for ORAM. However, it is crucial for our
use. As noted in several prior works, it can often be added at almost no cost to
efficiency. It can also be added generically by running a memory checking scheme
on top of ORAM.) We now define a new property called next-read pattern hiding.

Next-Read Pattern Hiding. Consider an honest-but-curious server A who
observes the execution of some protocol sequence P with a client C resulting in
the final client configuration Cfin. At the end of this execution, A gets to observe
how Cfin would execute the next read operation ORead(i1, . . . , it) for various
different t-tuples (i1, . . . , it) of locations, but always starting in the same client
state Cfin. We require that A cannot observe any correlation between these next-
read executions and their locations, up to equality. That is, A should not be
able to distinguish if Cfin instead executes the next-read operations on permuted
locations ORead(π(i1), . . . , π(it)) for a permutation π : [`]→ [`].

More formally, we define NextReadGamebA(λ), for b ∈ {0, 1}, between an ad-
versary A and a challenger:

– The attackerA(1λ) chooses an ORAM protocol sequence P1 = (op0, . . . , opq1).
It also chooses a sequence P2 = (rop1, . . . , ropq2) of valid multi-location read
operations, where each operation is of the form ropj = ORead(ij,1, . . . , ij,tj)
with tj distinct locations. Lastly, it chooses a permutation π : [`]→ [`]. For
each ropj in P2, define a permuted version rop′j := ORead(π(ij,1), . . . , π(ij,tj)).
The game now proceeds in two stages.

– Stage I. The challenger initializes the honest client C and the (deterministic)
honest server S. It sequentially executes the protocols P = (op0, . . . , opq1)
between C and S. Let Cfin,Sfin be the final configuration of the client and
server at the end.

– Stage II. For each j ∈ [q2]: challenger either executes the original operation
ropj if b = 0, or the permuted operation rop′j if b = 1, between C and S. At
the end of each operation execution it resets the configuration of the client
and server back to Cfin,Sfin respectively, before the next execution.

– The adversary A is given the transcript of all the protocol executions in
stages I and II, and outputs a bit b̃ which we define as the output of the game.

Note that, since the honest server S is deterministic, seeing the protocol
transcripts between S and C is the same as seeing the entire internal state
of S at any point time.

We require that, for every efficient A, we have∣∣Pr[NextReadGame0
A(λ) = 1]− Pr[NextReadGame1

A(λ) = 1]
∣∣ ≤ negl(λ).

5 PORAM: Dynamic PoR via ORAM

We now give our construction of dynamic PoR, using ORAM. Since the ORAM
security properties are preserved by the construction as well, we happen to
achieve ORAM and dynamic PoR simultaneously. Therefore, we call our con-
struction PORAM.

Overview of Construction. Let (Enc, Dec) be an (n, k, d = n − k + 1)Σ
systematic code with efficient erasure decoding over the alphabet Σ = {0, 1}w
(e.g., the systematic Reed-Solomon code over F2w). Our construction of dynamic
PoR will interpret the memory M ∈ Σ` as consisting of L = `/k consecutive
message blocks, each having k alphabet symbols (assume k is small and divides
`). The construction implicitly maps operation on M to operations on encoded
memory C ∈ (Σ)`code=Ln, which consists of L codeword blocks with n alphabet
symbols each. The L codeword blocks C = (c1, . . . , cL) are simply the encoded
versions of the corresponding message blocks in M = (m1, . . . ,mL) with cq =
Enc(mq) for q ∈ [L]. This means that, for each i ∈ [`], the value of the memory
location M[i] can only affect the values of the encoded-memory locations C[j +
1], . . . ,C[j+n] where j = n·bi/kc. Furthermore, since the encoding is systematic,
we have M[i] = C[j + u] where u = (i mod k) + 1. To read the memory
location M[i], the client will use ORAM to read the codeword location C[j+u].
To write to the memory location M[i] := v, the client needs to update the
entire corresponding codeword block. She does so by first using ORAM to read
the corresponding codeword block c = (C[j + 1], . . . ,C[j + n]), and decodes to
obtain the original memory block m = Dec(c). She then locally updates the
memory block by setting m[u] := v, re-encodes the updated memory block to
get c′ = (c1, . . . , cn) := Enc(m) and uses the ORAM to write c′ back into the
encoded memory, setting C[j + 1] := c′1, . . . ,C[j + n] := c′n.

The Construction. Our PORAM construction is defined for some parameters
n > k, t ∈ N. Let O = (OInit,ORead,OWrite) be an ORAM. Let (Enc, Dec) be
an (n, k, d = n − k + 1)Σ systematic code with efficient erasure decoding over
the alphabet Σ = {0, 1}w (e.g., the systematic Reed-Solomon code over F2w).

– PInit(1λ, 1w, `): Assume k divides ` and let `code := n · (`/k). Run the
OInit(1λ, 1w, `code) protocol.

– PRead(i): Let i′ := n·bi/kc+(i mod k)+1 and run the ORead(i′) protocol.
– PWrite(i, v): Set j := n · bi/kc and u := (i mod k) + 1.
• Run ORead(j + 1, . . . , j + n) and get output c = (c1, . . . , cn).
• Decode m = (m1, . . . ,mk) = Dec(c).

• Modify position u of m by locally setting mu := v. Re-encode the mod-
ified message-block m by setting c′ = (c′1, . . . , c

′
n) := Enc(m).

• Run OWrite(j + 1, . . . , j + n; c′1, . . . , c
′
n).

– Audit: Pick t distinct indices j1, . . . , jt ∈ [`code] at random. Run ORead(j1, . . . , jt)
and return accept iff the protocol finished without outputting reject.

If, any ORAM protocol execution in the above scheme outputs reject, the client
enters a special rejection state in which it stops responding and automatically
outputs reject for any subsequent protocol execution.

As our main result, we now prove that if the ORAM scheme satisfies next-
read pattern hiding (NRPH) security then the PORAM construction above is
also a secure dynamic PoR scheme. See the full version [8] for a proof of the
following theorem.

Theorem 1. Assume that O = (OInit,ORead,OWrite) is an ORAM with next-
read pattern hiding (NRPH) security, and we choose parameters k = Ω(λ), k/n =
(1−Ω(1)), t = Ω(λ). Then the above scheme PORAM = (PInit,PRead,PWrite,Audit)
is a dynamic PoR scheme.

ORAM with NPRH Security. The notion of ORAM was introduced by
Goldreich and Ostrovsky [14], who also introduced the so-called hierarchical
scheme. Since then several improvements to the hierarchical scheme have been
given, including improved rebuild phases and the use of advanced hashing tech-
niques (e.g., [23, 16] etc.).

In the full version of our work [8], we examine a particular ORAM scheme
of Goodrich and Mitzenmacher [16] and show that (with minor modifications) it
satisfies next-read pattern hiding security. Therefore, this scheme can be used to
instantiate our PORAM construction. We note that most other ORAM schemes
from the literature that follow the hierarchical structure also seemingly satisfy
next-read pattern hiding, and we only focus on the above example for concrete-
ness. However, in the full version of our work, we show that it is not the case
that every ORAM scheme satisfies next-read pattern hiding, and in fact give
an example of a contrived scheme which does not satisfy this notion and makes
our construction of PORAM completely insecure. We also believe that there are
natural schemes, such as the ORAM of Shi et al. [25], which do not satisfy this
notion. Therefore, next-read pattern hiding is a meaningful property beyond
standard ORAM security and must be examined carefully.

6 Efficiency

We now look at the efficiency of our PORAM construction (when instantiated
with the ORAM scheme of Goodrich-Mitzemacher [16] with the worst-case
complexity optimization [17, 22]). We analyze efficiency in three ways: firstly, we
look at the overhead of PORAM scheme on top of just storing the data inside of
the ORAM , secondly, we look at the overall efficiency of PORAM, and thirdly,
we compare it with dynamic PDP [13, 27] which does not employ erasure codes
and does not provide full retrievability guarantee. In the table below, ` denotes

the size of the client data and λ is the security parameter. We assume that the
ORAM scheme uses a PRF whose computation takes O(λ) work.

PORAM Efficiency vs. ORAM Overall vs. Dynamic PDP [13]
Client Storage Same O(λ) Same
Server Storage × O(1) O(`) × O(1)

Read Complexity × O(1) O(λ log2 `) × O(log `)

Write Complexity × O(λ) O(λ2 × log2 `) × O(λ× log `)

Audit Complexity Read × O(λ) O(λ2 × log2 `) × O(log `)

By modifying the underlying ORAM to dynamically resize tables during
rebuilds, the resulting PORAM instantiation can achieve the same efficiency
measures as above with ` taken to be amount of memory currently used, rather
than the maximum memory use.

Disclaimer

The U.S. Government is authorized to reproduce and distribute reprints for Govern-

mental purposes notwithstanding any copyright notation thereon. The views expressed

are those of the author and do not reflect the official policy or position of the Depart-

ment of Defense or the U.S. Government. Distribution Statement “A” (Approved for

Public Release, Distribution Unlimited).

References

1. G. Ateniese, R. C. Burns, R. Curtmola, J. Herring, L. Kissner, Z. N. J. Peterson,
and D. Song. Provable data possession at untrusted stores. In P. Ning, S. D. C. di
Vimercati, and P. F. Syverson, editors, ACM CCS 07, pages 598–609. ACM Press,
Oct. 2007.

2. G. Ateniese, S. Kamara, and J. Katz. Proofs of storage from homomorphic identifi-
cation protocols. In M. Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS,
pages 319–333. Springer, Dec. 2009.

3. G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik. Scalable and efficient
provable data possession. Cryptology ePrint Archive, Report 2008/114, 2008.
http://eprint.iacr.org/.

4. M. Bellare and O. Goldreich. On defining proofs of knowledge. In E. F. Brickell,
editor, CRYPTO’92, volume 740 of LNCS, pages 390–420. Springer, Aug. 1993.

5. M. Blum, W. S. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the
correctness of memories. Algorithmica, 12(2/3):225–244, 1994.

6. K. D. Bowers, A. Juels, and A. Oprea. HAIL: a high-availability and integrity layer
for cloud storage. In E. Al-Shaer, S. Jha, and A. D. Keromytis, editors, ACM CCS
09, pages 187–198. ACM Press, Nov. 2009.

7. K. D. Bowers, A. Juels, and A. Oprea. Proofs of retrievability: theory and imple-
mentation. In R. Sion and D. Song, editors, CCSW, pages 43–54. ACM, 2009.

8. D. Cash, A. Kupcu, and D. Wichs. Dynamic proofs of retrievability via oblivious
ram. Cryptology ePrint Archive, Report 2012/550, 2012. http://eprint.iacr.org/.

9. B. Chen, R. Curtmola, G. Ateniese, and R. C. Burns. Remote data checking
for network coding-based distributed storage systems. In A. Perrig and R. Sion,
editors, CCSW, pages 31–42. ACM, 2010.

10. R. Curtmola, O. Khan, R. Burns, and G. Ateniese. Mr-pdp: Multiple-replica prov-
able data possession. In ICDCS, 2008.

11. Y. Dodis, S. P. Vadhan, and D. Wichs. Proofs of retrievability via hardness ampli-
fication. In O. Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 109–127.
Springer, Mar. 2009.

12. C. Dwork, M. Naor, G. N. Rothblum, and V. Vaikuntanathan. How efficient can
memory checking be? In O. Reingold, editor, TCC 2009, volume 5444 of LNCS,
pages 503–520. Springer, Mar. 2009.

13. C. C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia. Dynamic provable
data possession. In E. Al-Shaer, S. Jha, and A. D. Keromytis, editors, ACM CCS
09, pages 213–222. ACM Press, Nov. 2009.

14. O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious
RAMs. Journal of the ACM, 43(3):431–473, 1996.

15. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

16. M. T. Goodrich and M. Mitzenmacher. Privacy-preserving access of outsourced
data via oblivious RAM simulation. In L. Aceto, M. Henzinger, and J. Sgall,
editors, ICALP 2011, Part II, volume 6756 of LNCS, pages 576–587. Springer,
July 2011.

17. M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia. Oblivious
RAM simulation with efficient worst-case access overhead. In CCSW, pages 95–100,
2011.

18. A. Juels and B. S. Kaliski Jr. Pors: proofs of retrievability for large files. In P. Ning,
S. D. C. di Vimercati, and P. F. Syverson, editors, ACM CCS 07, pages 584–597.
ACM Press, Oct. 2007.

19. A. Küpçü. Efficient Cryptography for the Next Generation Secure Cloud. PhD
thesis, Brown University, 2010.

20. A. Küpçü. Efficient Cryptography for the Next Generation Secure Cloud: Protocols,
Proofs, and Implementation. Lambert Academic Publishing, 2010.

21. M. Naor and G. N. Rothblum. The complexity of online memory checking. In 46th
FOCS, pages 573–584. IEEE Computer Society Press, Oct. 2005.

22. R. Ostrovsky and V. Shoup. Private information storage (extended abstract). In
29th ACM STOC, pages 294–303. ACM Press, May 1997.

23. B. Pinkas and T. Reinman. Oblivious RAM revisited. In T. Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 502–519. Springer, Aug. 2010.

24. H. Shacham and B. Waters. Compact proofs of retrievability. In J. Pieprzyk,
editor, ASIACRYPT 2008, volume 5350 of LNCS, pages 90–107. Springer, Dec.
2008.

25. E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li. Oblivious ram with o((logn)3)
worst-case cost. In D. H. Lee and X. Wang, editors, ASIACRYPT, volume 7073
of Lecture Notes in Computer Science, pages 197–214. Springer, 2011.

26. E. Stefanov, M. van Dijk, A. Oprea, and A. Juels. Iris: A scalable cloud file system
with efficient integrity checks. Cryptology ePrint Archive, Report 2011/585, 2011.
http://eprint.iacr.org/.

27. Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou. Enabling public verifiability and
data dynamics for storage security in cloud computing. In M. Backes and P. Ning,
editors, ESORICS 2009, volume 5789 of LNCS, pages 355–370. Springer, Sept.
2009.

