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Abstract. We present a new approach for creating chosen ciphertext
secure encryption. The focal point of our work is a new abstraction that
we call Detectable Chosen Ciphertext Security (DCCA). Intuitively, this
notion is meant to capture systems that are not necessarily chosen ci-
phertext attack (CCA) secure, but where we can detect whether a certain
query CT can be useful for decrypting (or distinguishing) a challenge ci-
phertext CT∗.

We show how to build chosen ciphertext secure systems from DCCA se-
curity. We motivate our techniques by describing multiple examples of
DCCA systems including creating them from 1-bit CCA secure encryp-
tion — capturing the recent Myers-shelat result (FOCS 2009). Our work
identifies DCCA as a new target for building CCA secure systems.

1 Introduction

A central goal of public key cryptography is to design encryption systems that
are secure against chosen ciphertext attacks. Public key encryption systems that
are chosen ciphertext attack (CCA) secure are robust against powerful adver-
saries that are able to leverage interaction with a decryptor. Such an attacker is
modeled by allowing him to query for the decryption of any ciphertext except
a challenge ciphertext for which he is trying to break. This includes ciphertexts
derived from the challenge ciphertext3. Due to its robustness against powerful
attackers, chosen ciphertext security has become the accepted goal for building
secure encryption. For this reason, building chosen ciphertext secure systems has
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been a central pursuit of cryptographers for over twenty years and we have seen
many distinct approaches to achieving CCA security.

Early pioneering work in chosen ciphertext security [23, 14, 26] introduced the
technique of leveraging Non-Interactive Zero Knowledge Proofs (NIZKs) [5] to
build CCA-secure encryption systems from chosen plaintext secure encryption
systems. Roughly, a NIZK is used to prove that a ciphertext is “well-formed” or
legal. Later Cramer and Shoup [12, 13] introduced the first practical CCA-secure
systems that were built on specific number theoretic assumptions such as Deci-
sional Diffie Hellman. These techniques implicitly embed a certain form of des-
ignated verifier Non-Interactive Zero Knowledge proofs in them. More recently,
different methods for building chosen ciphertext security from Identity-Based
Encryption [7] and Lossy Trapdoor Functions [25] have emerged. In addition,
Myers and shelat [22] described general methods for amplifying CCA encryption
of 1 bit to many bits.

In this work, we introduce a new approach to obtaining chosen ciphertext
secure systems. The focal point of our work is a new abstraction that we call
Detectable Chosen Ciphertext Security (DCCA). Intuitively, this notion is meant
to capture systems that are not necessarily CCA secure, but where we can detect
whether a certain query CT can be useful for decrypting (or distinguishing) a
challenge ciphertext CT∗.

A system that is DCCA secure will be associated with a boolean function F
that takes in three inputs: a public key pk , a challenge ciphertext CT∗ and a
query ciphertext CT. The function will output 1 if the query CT is “dangerous”
for the an attacker wishing to distinguish CT∗. A DCCA secure system must
have the following two properties stated here informally:

– Unpredictability Without seeing CT∗ it should be hard to find a ciphertext
CT such that F (PK,CT∗,CT) = 1. In other words, an attacker must first
see a challenge ciphertext in order to discover a dangerous query for it.

– Indistinguishability The system will be secure under a detectable chosen
ciphertext attack if the attacker is limited to decryption queries of cipher-
texts CT where F (pk ,CT∗,CT) = 0 for challenge ciphertext CT∗. I.e. the
system is CCA secure if the attacker does not make dangerous queries.

The goal of our work will be to construct fully chosen ciphertext secure
systems from detectable CCA-secure systems. We first motivate this goal by
observing multiple DCCA systems that naturally occur:

– Many bit encryption from 1-bit CCA Suppose we have a 1-bit CCA-
secure system and we wish to encrypt multiple bits by concatenating multiple
1-bit encryptions together. The resulting system is no longer chosen cipher-
text secure, but is DCCA secure. The detecting function F is 1 iff any of the
1-bit ciphertext components between CT∗ and CT are equal. This scenario
is akin to the problem of showing that bit encryption is complete considered
by Myers and shelat [22], where they worried about such “quoting” attacks.

– Tag-Based Encryption Systems MacKenzie, Reiter and Yang [21] and
Kiltz [19] define a tag-based encryption scheme as an encryption scheme that



takes in an additional “tag” parameter on encryption and decryption. The
security game allows an attacker to make decryption queries with any tag
parameter t, except for the tag t∗ that the challenge ciphertext is encrypted
under. Several examples of tag-based schemes exist. Kiltz [19] gave a direct
construction from the linear assumption. The CCA1-secure encryption vari-
ant of the Canetti, Halevi and Katz [7] construction where the tag is an
IBE identity is an additional example. One can also view the CCA1-secure
variant of Peikert and Waters [25] as a tag-based scheme, where the tag is
the “branch” in an all-but-one encryption scheme.
Most of the above examples of tag-based encryption can be proven selectively
secure, where an attacker must commit to the tag of the challenge ciphertext
before seeing the public key. However, if we are willing to utilize complexity
leveraging arguments, we can argue that these are adaptively secure. In
addition, the CHK-lite transformation will be an adaptively secure tag-based
scheme if used with an adaptively secure Identity-Based Encryption system.
We observe that adaptively-secure tag-based encryption immediately gives
rise to DCCA-secure encryption. A ciphertext of the DCCA-secure system
consists of a random tag t plus a tag-based encryption of the message under
the tag t. Decryption follows analogously and the function F simply tests
if two ciphertexts have the same tag. Unpredictability follows from having
a large tag space. Although it is already possible to transform tag-based
encryption into CCA-secure encryption using a strongly unforgeable signa-
ture [19], these examples demonstrate natural DCCA systems.

– “Sloppy” CCA Encryption One can envision that in practice an encryp-
tion system is CCA secure, but an implementation of it is not due to certain
nuances. For instance, suppose a number theoretic library had a slack bit in
its representation of group elements (e.g. a bit that was supposed to be 0, but
if set to 1 does not affect any computations.) A CCA attacker could exploit
this weakness in an implementation, however, it is possible that the system
would still be DCCA secure. One might use our techniques as a hedge against
such problems. This is somewhat analogous to recent work [2] on applying
deterministic encryption as a hedge against faulty random bit generation.

In addition to the examples listed above, we believe that it is useful to identify
DCCA security as a new “target” for achieving chosen ciphertext security.

Overview of Our Techniques We now give an overview of our construction and
proof. Our construction will build a chosen ciphertext secure system from three
components: a chosen plaintext secure system, 1-bounded CCA-secure system 4,
and a detectable CCA-secure system. Since DCCA security (trivially) implies
CPA, and we can build 1-bounded CCA from CPA encryption [24, 11, 10], it
follows that all components are realizable from DCCA as a building block.

A public key from our system consists of three components. An “inner” public
key PKin which is a DCCA public key and two “outer” keys PKA,PKB respec-

4 A 1-bounded CCA-secure encryption system is secure against one chosen ciphertext
query.



tively from 1-bounded CCA and CPA secure systems. To encrypt a message M ,
one first chooses the randomness rA, rB to be used for the outer encryptions and
then encrypts the tuple (rA, rB ,M) under the inner (detectable) key to compute
an inner ciphertext CTin. Next, the encryption algorithm encrypts CTin under
the outer public key PKA using randomness rA to get CTA. It then analogously
creates CTB as the encryption of CTin under key PKB and randomness rB . The
output ciphertext is CT = (CTA,CTB).

The structure of our ciphertexts is that the two outer ciphertexts both en-
crypt the same message — the inner ciphertext. This ciphertext itself encrypts
the message and the randomness used to create the outer ciphertexts. Thus, the
outer ciphertexts indirectly encrypt their own randomness. 5 The decryption
algorithm will receive CT = (CTA,CTB) and first decrypt CTA to get CT′in
and decrypt this to get (rA

′, rb
′,M ′) using the appropriate secret keys. Finally,

it will check that the ciphertext is well formed by itself encrypting CT′in un-
der PKA,PKB and the respective randomness rA

′, rB
′ and validating that the

output matches CTA and CTB before accepting M ′ as the message. Our encryp-
tion system has elements both of the Naor-Yung [23] two key method for our two
outer keys and the Myers-shelat [22] method of embedding outer randomness in
inner ciphertexts.

Security of our system depends on the premise that no attacker is able to
learn the message encrypted in the inner ciphertext. This will follow from the
Detectable CCA security if we are able to guarantee that an attacker is unable
to make any ciphertext queries CTA,CTB where the decryption of CTA, de-
noted CTin, is related to the inner component of our challenge ciphertext CT∗in
according to to the DCCA function F . Intuitively, we hope to achieve this from
the combination of two features of our system. First, the 1-bounded CCA secu-
rity of PKA will (hopefully) make it difficult to create an encryption under PKA

related to CT∗in. Second, the embedded randomness will allow us to check that
ciphertexts are well formed and thus answer multiple ciphertext queries under
the Naor-Yung two key type manner.

The trickiness in proving security lies with the embedded randomness which
is a two-edge sword. On one hand, forcing the attacker queries to embed ran-
domness allows a reduction algorithm to decrypt if it knows either one of the
two outer keys. On the other hand, it is not clear how such a reduction can
create valid ciphertexts while playing the 1-bounded CCA game, since a reduc-
tion algorithm will not know the randomness rA to embed. Thus, this circularity

5 This construction implicitly assumes that the length of the random string needed
for encryption is dependent only on the security parameter and is independent (or
at least smaller than) the message size of the outer ciphertexts. We can justify this
assumption with the common technique of using a seed to a (variable length) Pseudo
Random Generator (PRG) as the input to each encryption algorithm. The PRG
can then extend the randomness to whatever length is required by the underlying
encryption system. By using this justified assumption in our definitions, we are able
to simplify the presentation of our construction and proofs. In contrast, Myers and
shelat [22] explicitly carry the PRG technique through their exposition. This choice
gives our exposition and proof an advantage in simplicity.



creates a fundamental barrier similar to difficulties encountered in attempts to
create trapdoor functions from encryption [15].

We deal with this by arguing security in an indirect way that steps around
this barrier. We first define a security game specific to our construction called
nested indistinguishability. In this game, an attacker will receive a public key
and is allowed to make decryption queries. The attacker at some point submits a
single message M . The challenger will flip a coin z. If z = 0, the challenger creates
a valid encryption of M ; otherwise, if z = 1 the challenger creates a encryption
where the innermost message is all 0’s — it neither includes the message nor
the embedded randomness. The attacker continues to make decryption queries
(other than the challenge ciphertext) and wins if it is successfully able to guess
z. It follows that if no attacker is successful in this game, then our system is
chosen ciphertext secure.

To prove security of this nested indistinguishability game, we begin by defin-
ing a “bad event”. The bad event is defined to be when the attacker submits a
query (CTA,CTB) such that CTA 6= CT∗A where CT∗A is from the challenge ci-
phertext and the decryption of CTA gives a ciphertext that is related to the inner
challenge ciphertext according to F . If we can argue that such bad events only
occur with negligible probability, then security of the nested indistinguishability
game follows straightforwardly from DCCA security.

The crux of our proof is how we eliminate the possibility of a bad event. We
do so in an indirect manner. We begin by arguing this event cannot happen in
the case where z = 1, which is where all 0’s are encrypted and the randomness is
not embedded. In this case, we get the best of both worlds. We are able to require
that the attacker’s queries have the randomness embedded in them, so that we
can check ciphertext well-formedness, however, the challenge ciphertext is not
required to embed the outer randomness. We argue that the bad event does not
happen by applying a set of hybrid experiments. First, we change CT∗B to be an
encryption of all 1’s. Next, we change the decryption algorithm to decrypt using
the secret key for PKB . Finally, we change CT∗A to be an encryption of all 1’s. In
each experiment we argue that the chance of a bad event must be very close to
that of the prior experiment. For the last step we leverage the 1-bounded CCA
property of the first component. Finally, we note that in the last experiment the
probability of a bad event is negligible since the inner challenge ciphertext CT∗in
is replaced by all 1’s and is not even present.

One interesting question is why is 1-bounded CCA security needed for the
PKA since at the last step in the proof we can use the secret key SKB to execute
decryption. While this is true, it is actually possible for the bad event to occur
on a malformed ciphertext that will not decrypt. We need the 1-bounded CCA
property to detect the occurrence of the bad event in this case during the security
reduction.

We are not able to argue the lack of a bad event in a similar manner for
the z = 0 (embedded randomness) case due to the aforementioned circularity
problems. Instead, we can infer this from the lack of event in the z = 1 case
along with DCCA security. To prove this, we can create an algorithm that plays



the DCCA indistinguishability game while simulating the nested indistinguisha-
bility game to the attacker. The simulator will choose the outer keys and outer
randomness for the challenge ciphertext itself. It submits the message and outer
randomness as one inner message and the 0’s string as another. Then it will be
able to decrypt all ciphertext queries until a bad event happens using its keys
in addition to the DCCA decryption oracle. Once a bad event query is made
though, it is stuck. However, it need not go any further! The fact that the at-
tacker was able to create a bad event at all must mean that the message and
randomness were embedded. It can then break the DCCA distinguishing game.
Thus, we can infer that the bad event happens with negligible probability in
either case. The remainder of the proof follows straightforwardly.

Comparison to Myers-shelat Myers and shelat [22] showed how to achieve many-
bit chosen ciphertext security from 1-bit chosen ciphertext security and moti-
vated us to explore the notion of detectability. They created a system using
an inner/outer structure where the inner ciphertext encrypted the outer random
coins. Their inner scheme, built from 1-bit CCA, is what they call “unquoteable”
secure. Their concept is roughly analogous to a specific instance of a DCCA
scheme. Encryptions of many-bit messages are concatenations of 1-bit encryp-
tions; the system is chosen ciphertext secure as long as queries do not copy a 1-bit
ciphertext component of the underlying scheme. For the outer scheme, they use
a notion of security that is an amalgam of unquoteability and non-malleability.
Their outer construction follows a specific adaptation of the Choi et. al. [10]
methods applied to the 1-bit primitive. (No two key structure is used.) Their
proof relies on defining quoting attacks on both the inner and outer layers and
then establishing a certain order that outer quoting attacks must happen before
inner quoting attacks.

We believe our methods offer benefits in terms of generality, simplicity, and
efficiency. First, our general notion of Detectable Chosen Ciphertext Security can
be realized by multiple systems. These include the 1-bit to many-bit examples,
the tag-based encryption class and future systems that can leverage this as a
new target path for creating CCA secure encryption.

Another key difference is that the outer layer of our scheme is built from
simple 1-bounded CCA and CPA-secure parts. We argue these provide simpler
concepts and are easier to work with. In addition, one can instantiate them
from any 1-bounded encryption system. For instance, we can apply any candi-
date 1-bounded CCA-secure system and do not need to work through the Choi
et. al. [10] construction. Instead we can apply the 1-bounded CCA system of
Cramer et. al. [11], which is signficantly more efficient and simpler than the non-
malleable systems of either PSV [24] or Choi et. al. [10]. We also regard avoiding
a combination security definition between 1-bounded CCA (or non-malleability)
and detection as a benefit for simplicity. This simplification will also improve
efficiency in the case where there is a candidate CPA primitive that is more
efficient than the candidate DCCA primtive, since we can build the 1-bounded
scheme out of the CPA primitive.



Our choice of abstractions and structure allow us to have a simple proof. We
can eliminate the possibility of a bad event using a basic Naor-Yung two key
argument. Then once we are able to eliminate this, the rest of the proof follows
in a straightforward manner.

Why not CCA1? One intriguing possibility is to try to leverage our techniques
to build full chosen ciphertext security from CCA1 security. A natural direction
would be to use a CCA1 system for the inner component in place of the detectable
encryption scheme. The intuitive rationale would be if the outer keys are 1-
bounded CCA or non-malleable then the queries produced by the attacker should
not be related to the inner challenge ciphertext and thus CCA1 might suffice.
Unfortunately, we were able to create an attack oracle which breaks full CCA
security in our scheme, yet does not perturb the 1-bounded CCA or CCA1
primitives, giving evidence that this approach may not work. However, the oracle
we use is quite strong and “exotic”. This suggests that there might be primitives
that lie somewhere in between DCCA and CCA1. One interesting example is the
CCA-1 secure “Cramer-Shoup lite” [12] cryptosystem. There exists a malleability
attack on a challenge CT∗ that produces a query ciphertext which has the same
distribution as a fresh encryption of a random message. Hence the CS-lite system
is not CCA secure. However, it would be very interesting and surprising if there
existed attack algorithms that matched the above oracle. We expand on this in
the full version of this paper.

1.1 Related Work

Relaxations of CCA Multiple relaxations of chosen ciphertext security have been
proposed in the literature.

One interesting class of relaxations is the notion of Replayable Chosen Ci-
phertext Security [8] and other similar works [29, 1]. These works aim to capture
the concept that some malleability attacks might intuitively be benign. In par-
ticular, consider a cryptosystem where an attacker is only able to maul a cipher-
text CT encrypting a message M into a different ciphertext C ′ that encrypts
the same message M . If an application (or user) makes all decisions based on
the decrypted plaintexts as opposed to the representation of the ciphertext such
notions might be sufficient.

The primary goal of RCCA is to formally capture a form of “good enough”
security under ciphertext attacks. In contrast, Detectable CCA inherently does
not have good enough security on its own. In DCCA systems, it may be possible
to maul ciphertexts to be encryptions of different messages or even create attack
ciphertexts that each target a single bit of a target ciphertext. Thus, our primary
focus is to create CCA security from a less secure DCCA building block.

We observe that DCCA does not imply RCCA. In [8], the authors gave an
example of an RCCA scheme that could not be publicly detected. Conversely,
not all DCCA schemes will be RCCA secure. Our bit encryption instance serves
as an example. We also note that [8] discusses a notion of detectability and
introduces a definition that combines replayable and detectable properties. This



combined definition is a particular instance of DCCA. However, they do not
explore the notion of detectability in isolation or how to build CCA security
from it. Canetti, Krawcyzk, and Nielsen [8] do show how to create CCA security
from RCCA security using the KEM/DEM framework.

Finally, Hofheinz and Kiltz [17] introduce a notion they call Constrained
CCA security particular to developing Key Encapsulation Mechanisms. In their
definition an attacker must include a predicate p along with each query ciphertext
CT. The challenger will only answer the query if the predicate evaluated on the
decrypted key of the ciphertext is true and the predicate is false for all but
a negligible fraction of possible KEM keys. While this notion is weaker than
CCA security, they show that when combined with a (symmetric) authenticated
encryption scheme, the resulting system is CCA secure.

Other Related Work Goldwasser and Micali [16] gave the first formal definition
of security for public key encryption systems. Naor and Yung [23] and Rackoff
and Simon [26] extended this to include chosen ciphertext attacks.

Naor and Yung [23] initiated the approach of leveraging NIZKs to build cho-
sen ciphertext security by introducing their “two key” method. A NIZK would
guarantee the integrity of the ciphertext by giving a proof that the same message
was encrypted to two keys. While their system gave security against lunchtime or
CCA1 attacks, Dolev, Dwork and Naor [14] showed how to achieve full CCA2 se-
curity. In addition, they introduced the fundamental concept of non-malleability.
Sahai [28] introduced a concept of simulation sound NIZKs that could be used to
achieve CCA security through the NY two key structure. Bellare and Sahai [4]
gave relations between non-malleability [14] chosen ciphertext security.

Since then, different approaches to achieving CCA security have been pro-
posed. Cramer and Shoup [12, 13] showed techniques for proving ciphertexts were
well-structured and abstracted this into projective hash functions. Several other
novel cryptosystems make use of specific number-theoretic techniques (e.g. [19,
9, 18]). Boneh, Canetti, Halevi and Katz [6] showed a generic method of achiev-
ing chosen ciphertext security from IBE systems. Peikert and Waters [25] gave
a new avenue for achieving CCA security with the introduction of Lossy Trap-
door Functions (TDFs). Notably, this gave the first chosen ciphertext secure
systems from lattice-based assumptions. Subsequently, various refinements of
weaker conditions on the trapdoor functions were introduced [27, 20].

The above techniques are proven secure in the standard model. Bellare and
Rogaway [3] show that in the random oracle model chosen ciphertext security
can be built from chosen plaintext security.

2 Detectable Chosen Ciphertext Security

In this section, we define detectable chosen ciphertext security. An encryption
scheme satisfying this definition is called a detectable encryption system. Our
discussions assume a familiarity with CPA, CCA1 and CCA2 security as well as
bounded CCA security and non-malleability. A reader wishing to review these
definitions can find them in the full version of this paper.



2.1 Detectable Encryption

We define a detectable encryption scheme as having the usual algorithms (KeyGen,
Enc,Dec) together with an efficiently-computable boolean function F . Informally,
F tests for a “detectable” relationship between two ciphertexts. The security
game will mirror that of CCA2 security, except that decryption queries in the
second phase will not be answered for ciphertexts detectably-related to the chal-
lenge ciphertext. Our formal definition follows below.

Definition 1 (Detectable Encryption System). A detectable encryption
system is a tuple of probabilistic polynomial-time algorithms (KeyGen,Enc,Dec, F )
such that:

1. (KeyGen,Enc,Dec) have the usual input and output, although we sometimes
denote Enc(pk ,m; r) as a deterministic function of the public key pk, the
message m and randomness r, and

2. F (pk , c′, c) → {0, 1} : the detecting function F takes as input a public key
pk and two ciphertexts c′ and c, and outputs a bit.

Correctness is the same as a regular encryption system.

A detectable encryption system must have the following two properties.

Unpredictability of the Detecting Function F . Informally, given the description
of F and a public key pk , for an unknown ciphertext c, it should be hard to find
a second ciphertext c′ that is “related” to c; i.e., such that F (pk , c′, c) = 1. We
consider both a basic and a strong formalization.

Basic Unpredictability Experiment. Consider the experiment Exppredict.basicA,Π (λ)
defined for a detectable encryption scheme Π = (KeyGen,Enc,Dec, F ) and an
adversary A:

1. Setup: KeyGen(1λ) is run to obtain keys (pk , sk).
2. Queries: Adversary A is given pk and access to a decryption oracle Dec(sk , ·).

The adversary outputs a message m in the message space associated with
pk and a ciphertext c in the ciphertext space associated with pk .

3. Challenge: A ciphertext c∗ ← Enc(pk ,m) is computed.
4. Output: The output of the experiment is defined to be 1 if F (pk , c∗, c), and

0 otherwise.

We also define a stronger variant Exppredict.strongA,Π (λ) of the unpredictability
experiment where the adversary is additionally given sk . We observe that strong
unpredictability implies basic unpredictability since the adversary can simulate
the decryption oracle using the secret key.

Indistinguishability of Encryptions. Next, we formalize the confidentiality guar-
antee. Consider the following experiment ExpindistA,Π (λ) defined for a detectable
encryption scheme Π = (KeyGen, Enc,Dec, F ) and an adversary A:



1. Setup: KeyGen(1λ) is run to obtain keys (pk , sk).
2. Phase 1: Adversary A is given pk and access to a decryption oracle Dec(sk , ·).
A outputs a pair of messages m0,m1 of the same length in the message space
associated with pk .

3. Challenge: A random bit b ← {0, 1} is chosen, and then a ciphertext c∗ ←
Enc(pk ,mb) is computed and given to A. We call c∗ the challenge ciphertext.

4. Phase 2: A continues to have access to Dec(sk , ·), but may not request a
decryption of a ciphertext c such that F (pk , c∗, c) = 1. Finally, A outputs a
bit b′.

5. Output: The output of the experiment is defined to be 1 if b′ = b, and 0
otherwise.

Definition 2 (Detectable Chosen Ciphertext Security). A detectable en-
cryption scheme Π = (KeyGen,Enc,Dec, F ) has an unpredictable detecting func-
tion and indistinguishable encryptions under a detectable chosen-ciphertext at-
tack (or is DCCA-secure) if for all probabilistic polynomial-time adversaries A
there exists a negligible function negl such that:

1. (F is unpredictable:) Pr[Exppredict.basicA,Π (λ) = 1] ≤ negl(λ) and

2. (Encryptions are indistinguishable:) Pr[ExpindistA,Π (λ) = 1] ≤ 1
2 + negl(λ).

2.2 Facts about DCCA Security

For space reasons, we omit the simple proofs of the first two lemmas. We conjec-
ture that the converse of Lemma 2 is not true. Indeed if the DDH assumption
holds, then the CCA-1 secure Cramer-Shoup lite system would separate these
two notions as discussed in the introduction.

Lemma 1 (CCA2 =⇒ DCCA). If Π = (KeyGen,Enc,Dec) is a CCA2-secure
encryption scheme, then Π ′ = (KeyGen,Enc,Dec, F ) is a DCCA-secure encryp-
tion scheme where F outputs 0 on all inputs except those of the form (·, c, c).
Lemma 2 (DCCA =⇒ CCA1). If Π = (KeyGen,Enc,Dec, F ) is a DCCA-
secure encryption scheme, then Π ′ = (KeyGen,Enc,Dec) is a CCA1-secure en-
cryption scheme.

We also claim that one-bit DCCA-secure encryption implies arbitrary-length
DCCA-secure encryption. Say Π = (KeyGen,Enc,Dec, F ) is a detectable en-
cryption system with plaintext space {0, 1}. We can construct a new scheme
Π ′ = (KeyGen,Enc′,Dec′, F ′) with plaintext space {0, 1}∗ by defining Enc′ as:

Enc′(pk ,m) = Enc(pk ,m1), . . . ,Enc(pk ,mn)

where m = m1 . . .mn. The decryption algorithm Dec′ decrypts each ciphertext
piece using Dec. The function F ′ performs n2 invocations of F , testing each
ciphertext piece of C with each ciphertext piece of C ′, and outputting 1 if any
invocation of F returned 1, and 0 otherwise.

Lemma 3 (1-bit DCCA encryption implies many-bit DCCA encryp-
tion). Let Π and Π ′ be as above. If Π is DCCA-secure, then so is Π ′.

We defer the proof of this lemma to the full version of the paper.



3 The Construction: CCA2 Security from DCCA
Security

An overview of the techniques used for our construction is provided in Section 1.

The Construction Description We now construct a CCA2-secure public-key en-
cryption scheme Π = (KeyGen, Enc,Dec) using three building blocks6:

1. a DCCA-secure encryption scheme, denoted Πdcca = (KeyGendcca,Encdcca,
Decdcca, F ).

2. a 1-bounded CCA-secure encryption scheme with perfect correctness, de-
noted Π1b−cca = (KeyGen1b−cca, Enc1b−cca, Dec1b−cca).

3. a CPA-secure encryption scheme with perfect correctness, denoted Πcpa =
(KeyGencpa, Enccpa, Deccpa).

We assume that the message space of each system is {0, 1}∗ and that messages
of the form (x, y, z) can be uniquely and efficiently encoded as strings in {0, 1}∗,
where the encoding length is the same for all inputs of the same length. We
assume that λ bits will be sufficient randomness for the encryption algorithm of
each system, where 1λ is the security parameter. We assume that Π1b−cca and
Πcpa have perfect correctness for decryption. Finally, we assume that for Πdcca

the ciphertext length is a deterministic function of the security parameter and
the message length. We further justify these assumptions in the full version.

KeyGen(1λ) Run KeyGendcca(1λ) to produce (PKin,SKin), KeyGen1b−cca(1λ) to
produce (PKA, SKA), and KeyGencpa(1λ) to produce (PKB ,SKB). Set the public
key as PK := (PKin,PKA, PKB) and the secret key as SK := (SKin,SKA,SKB).

Enc(PK,M) The encryption algorithm first chooses random strings rin, rA, rB ∈
{0, 1}λ. Next, it computes the ciphertext CTin := Encdcca(PKin, (rA, rB ,M); rin).
It treats this ciphertext as the message and computes CTA := Enc1b−cca(PKA,
CTin; rA) and CTB := Enccpa(PKB ,CTin; rB). Finally, it outputs (CTA,CTB).

Dec(SK,CT) The decryption algorithm takes a ciphertext CT := (CTA,CTB).
It decrypts the first ciphertext as CTin := Dec1b−cca(SKA,CTA). It then de-
crypts this output as (rA, rB ,M) := Decdcca(SKin,CTin). It then checks that

CTA = Enc1b−cca(PKA,CTin; rA) and CTB = Enccpa(PKB ,CTin; rB).

If all checks pass, it outputs M ; otherwise, it outputs ⊥.

6 A 1-bounded CCA-secure encryption system is secure if an attacker makes at most
one decryption query. One-bounded CCA security can be constructed from CPA
security [24, 10]. CPA security is trivially implied by DCCA security. Thus, there is
really only one necessary building block: a DCCA-secure system.



4 Proof of Security

We will now argue that the Section 3 construction is CCA2 secure, assuming
the respective security properties of the underlying building blocks. To do so, it
will be easier to consider a slight variant of the CCA2 security game, which we
call nested indistinguishability, where the challenger either encrypts one of the
two challenge messages or encrypts a string of zeros. The experiment involves
three encryption schemes and combines them in the same manner as our main
construction.

Nested Indistinguishability. Consider the experiment ExpnestedA,Πdcca,Π1b−cca,Πcpa
(λ)

defined for detectable encryption schemeΠdcca, encryption schemesΠ1b−cca, Πcpa

and an adversary A:

1. Setup: Run KeyGendcca, KeyGen1b−cca and KeyGencpa to obtain key pairs
(PKin,SKin), (PKA, SKA) and (PKB ,SKB) respectively. Set pk := (PKin,
PKA,PKB) and sk := (SKin,SKA,SKB).

2. Phase 1: Adversary A is given pk and access to a decryption oracle Dec(sk , ·),
which executes the decryption algorithm as defined in Section 3. A outputs a
pair of messages m0,m1 of the same length in the message space associated
with pk .

3. Challenge: Randomness β, z ← {0, 1} and rA, rB ← {0, 1}λ are chosen. Let
` denote the length of the encoding of (rA, rB ,mβ). Then compute:

CT∗in :=

{
Encdcca(PKin, (rA, rB ,mβ)) if z = 0;

Encdcca(PKin, 0
`) if z = 1.

(1)

Next compute CT∗A := Enc1b−cca(PKA,CT∗in; rA) and CT∗B := Enccpa(PKB ,
CT∗in; rB). Return to A the ciphertext CT∗ := (CT∗A,CT∗B).

4. Phase 2: A continues to have access to Dec(sk , ·), but may not request a
decryption of the challenge ciphertext CT∗. Finally, A outputs a bit z′.

5. Output: The output of the experiment is defined to be 1 if z′ = z, and 0
otherwise.

Definition 3 (Nested Indistinguishability). A tuple of encryption systems
(Πdcca, Π1b−cca, Πcpa) has nested indistinguishable encryptions under a chosen-
ciphertext attack if for all probabilistic polynomial-time adversaries A there ex-
ists a negligible function negl such that:

Pr[ExpnestedA,Πdcca,Π1b−cca,Πcpa
(λ) = 1] ≤ 1

2
+ negl(λ).

It is important to observe that the nested indistinguishability experiment
combines Πdcca, Π1b−cca, Πcpa in exactly the same manner as the Section 3
construction. When z = 1, it encrypts “properly” and when z = 0, it encrypts
all zeros.

With a goal of proving CCA2 security, our main task is to argue that our
Section 3 construction provides nested indistinguishability. To do this, we must



first establish that a certain event does not happen, except with negligible prob-
ability. We define this event as follows.

Definition 4 (The Bad Query Event). Let Πdcca, Π1b−cca, and Πcpa be

the schemes parameterizing the experiment Expnested. Let PKin be the public key
output by running KeyGendet during the course of the experiment. We say that a
bad query event has occurred during an execution of this experiment if in Phase
2, the adversary A makes a decryption query of the form CT := (CTA,CTB)
such that

– (Query inner is “related” to challenge inner:)
F (PKin,CT∗in,Dec1b−cca(SKA,CTA)) = 1, and

– (Query ciphertext differs from challenge ciphertext in first half):
CT∗A 6= CTA.

where CT∗ := (CT∗A,CT∗B) is the challenge ciphertext and CT∗A is an encryption
of CT∗in. We note that this event is well defined in both the cases where z = 0
and z = 1.

4.1 Proof that Bad Query Event Does Not Happen

Lemma 4 (No Bad Query Event when z = 1 (all zeros encrypted)).
Suppose that Πdcca is DCCA secure, Π1b−cca is 1-bounded CCA secure, and Πcpa

is CPA secure, all with perfect correctness. Then for all probabilistic polynomial-
time adversaries A, during a run of experiment ExpnestedA,Πdcca,Π1b−cca,Πcpa

(λ) with
z = 1, a bad query event does not take place except with negligible probability in λ
where the probability is taken over the coins of the adversary and the experiment.

Proof. We proceed via a series of hybrids. Let BQE denote a bad query event.

Step 1: Pr[BQE in Nested] ∼ Pr[BQE in Right-Erased] from CPA-security of
Πcpa. We first define a variation of the nested indistinguishability experiment
with z = 1, which we call the right-erased experiment. In this experiment, CT∗B is
formed as CT∗B := Enccpa(PKB , 1

k; rB) where k denotes the length of CT∗in. CT∗A
is formed the same as in the nested indistinguishability experiment with z = 1.
We suppose there exists a PPT adversary A for the nested indistinguishability
experiment which causes the bad query event to occur with non-negligibly differ-
ent probability in the usual experiment with z = 1 compared to the right-erased
experiment. We construct a PPT algorithm B which violates the CPA-security
of Πcpa.
B is given PKB . B then runs KeyGendcca and KeyGen1b−cca for itself to pro-

duce PKin,SKin and PKA,SKA respectively. It gives A pk = (PKin,PKA,PKB).
B can simulate the decryption oracle Dec(sk , ·) for A by running the usual de-
cryption algorithm (note that this does not require SKB).

The adversary A outputs a pair of messages m0,m1 of the same length in
the message space associated with pk . B chooses rA ∈ {0, 1}λ and computes
CT∗in = Encdcca(PKin, 0

`), where ` is the length of the encoding of (rA, rA,m0).



It then computes CT∗A = Enc1b−cca(PKA,CT∗in; rA). It submits CT∗in and 1k to
its challenger as its two messages. It receives CT∗B as the ciphertext. It gives
CT∗ := (CT∗A,CT∗B) to A.

To respond to remaining decryption queries A makes, B runs the usual de-
cryption algorithm (after checking that the query is not equal to the challenge
ciphertext). In addition, B checks for the bad query event by first checking if
CTA 6= CT∗A and then computing F (PKin,CT∗in,Dec1b−cca(SKA, CTA)). We re-
call that B generated SKA,PKA for itself, so it can compute Dec1b−cca(SKA,CTA).

If CT∗B is an encryption of CT∗in, then B has properly simulated the usual
experiment with z = 1. If it is instead an encryption of 1k, then B has properly
simulated the right-erased experiment. We note that the bad query event occurs
in the simulation if and only if it is detected by B.

We let ε denote the probability that the bad query event occurs in the usual
experiment with z = 1 and δ denote this probability in the right-erased experi-
ment. We suppose ε−δ is positive and non-negligible (the opposite case is analo-
gous). Now, if B detects the bad query event, it guesses that CT∗A is an encryption
of CT∗in. Otherwise, it guesses the opposite. B’s probability of guessing correctly
in the CPA security game for Πcpa is then equal to ε

2 + 1
2 (1− δ) = 1

2 + 1
2 (ε− δ).

The quantity ε − δ is non-negligible, so B violates the CPA-security of Πcpa.
Hence we may conclude that the probability of the bad query event happening
in the usual experiment with z = 1 is the same (up to a negligible difference) as
the probability of the bad query event happening in the right-erased experiment
for any PPT adversary.

Step 2: Pr[BQE in Full-Erased] is negligible from the unpredictability of the de-
tecting function of Πdcca. We now define an additional variation of the exper-
iment, which we call the full-erased experiment. This is like the right-erased
experiment, except that CT∗A is also an encryption of 1k, instead of an encryp-
tion of CT∗in. We claim that in the full-erased experiment, the bad query event
can only occur with negligible probability. To see this, we suppose we have a
PPT adversary A which causes the bad query event to occur with non-negligible
probability in the full-erased experiment. We will build a PPT adversary B for
the basic unpredictability experiment which violates unpredictability of the de-
tecting function for Πdcca.
B is given PKin and access to a decryption oracle Dec(SKin, ·). It runs

KeyGen1b−cca and KeyGencpa for itself to produce PKA,SKA and PKB ,SKB . It
gives (PKin,PKA,PKB) to A. B can simulate the decryption oracle for A using
SKA and its own decryption oracle. A outputs m0,m1. B then computes CT∗A =
Enc1b−cca(PKA, 1

k) and CT∗B = Enccpa(PKB , 1
k) and gives CT∗ = (CT∗A,CT∗B)

to A. We let q denote the number of Phase 2 queries made by A. B can respond
to these queries as before. B chooses a random i ∈ {1, 2, . . . , q} and a random
bit b ∈ {0, 1}. It takes the ith Phase 2 query of A, denoted by (CTiA,CTiB),
and computes CTiin = Dec1b−cca(SKA,CTiA). It submits mb and CTiin to its
challenger. Then, the distribution of c∗ = Encdcca(PKin,mb) in the basic un-
predictability experiment is precisely the distribution of CT∗in. Hence, the bad
query event for query i corresponds to an output of 1 for basic unpredictability



experiment. Thus, if the bad query event occurs with some non-negligible prob-
ability ε, B will cause an output of 1 in the basic unpredictability experiment
with probability at least ε

q , which is non-negligible.

Step 3: Pr[BQE in Right-Erased] ∼ Pr[BQE in Full-Erased] from the 1-bounded
CCA security of Π1b−cca. We now return to considering a PPT adversary A
in the right-erased experiment. We let q denote the number of Phase 2 queries
made by A. We suppose that A causes the bad query event with non-negligible
probability. Then there exists some index i ∈ {1, . . . , q} such that A causes the
bad query event to occur with non-negligible probability on its ith Phase 2 query.
In other words, if there exists a PPT adversary A for which the bad query event
occurs with non-negligible probability in the right-erased experiment, then for
each value of the security parameter, there exists an index i such that A causes
the BQE to occur on its ith Phase 2 query with non-negligible probability. We
note that for any i, the probability that A causes the BQE to occur on its ith

Phase 2 query in the full-erased experiment is negligible, as we proved above.
We fix such an i, and we define a PPT algorithm B which violates the 1-

bounded CCA security of Π1b−cca. B receives PKA from its challenger. It runs
KeyGendcca and KeyGencpa for itself to produce PKin,SKin and PKB ,SKB . It
gives (PKin,PKA,PKB) to A as the public key.
B simulates the decryption oracle for A as follows. Upon receiving a cipher-

text (CTA,CTB), B decrypts CTB using Deccpa with SKB , and we let CTin

denote the output. It then decrypts CTin using Decdcca with SKin, and parses
the output as rA, rB ,M . It checks if CTA = Enc1b−cca(PKA,CTin; rA) and
if CTB = Enccpa(PKB ,CTin; rB). If both checks pass, it outputs M . Else, it
outputs ⊥.

We claim that this matches the output of the usual decryption algorithm,
even though B is first decrypting CTB instead of CTA. To see this, note that
the outputs are the same whenever Dec1b−cca(CTA,SKA) = Deccpa(CTB ,SKB).
Whenever these are unequal, both decryption methods will output ⊥. This is
because CTA = Enc1b−cca(PKA,CTin; rA) and CTB = Enccpa(PKB ,CTin; rB)
imply that Dec1b−cca(CTA,SKA) = CTin = Deccpa(CTB ,SKB). (Recall here
that we have assumed Π1b−cca and Πcpa have perfect correctness.)

At some point, A outputs m0,m1. B forms CT∗in = Encdcca(PKin, 0
`) and

CT∗B = Enccpa(PKB , 1
k). It outputs the messages CT∗in and 1k to its chal-

lenger, and receives a ciphertext which it sets as CT∗A. It gives the ciphertext
(CT∗A,CT∗B) to A. It can then respond to A’s Phase 2 decryption queries in the
same way as before. When it receives the ith Phase 2 query of A, denoted by
(CTiA,CTiB), B checks for the bad query event by first checking if CTiA 6= CT∗A
and if so, submitting CTiA as its one decryption query to its decryption oracle
for PKA. It can compute F (PKin,CT∗in,Dec(SKA,CTiA)). This equals 1 if and
only if the bad query event has occurred for query i, and in this case B guesses
that CT∗A is an encryption of CT∗in. Otherwise, B guesses the opposite.

We observe that when CT∗A is an encryption of CT∗in, then B has properly
simulated the right-erased experiment, and when CT∗A is an encryption of 0k,
then B has properly simulated the full-erased experiment. We let ε denote the



non-negligible probability that A causes the bad query event to occur on (Phase
2) query i in the right-erased experiment, and we let δ denote the corresponding
probability for the full-erased experiment. We know that δ must be negligible,
therefore ε − δ is positive and non-negligible. The probability that B guesses
correctly is: 1

2 (1−δ)+ 1
2ε = 1

2 + 1
2 (ε−δ), so B achieves a non-negligible advantage

in the 1-bounded CCA security game for Π1b−cca.

Thus, it must be the case that for all PPT algorithms A, the BQE occurs
with only negligible probability in the right-erased experiment, and hence also
in the nested experiment with z = 1.

Lemma 5 (No Bad Query Event when z = 0 (real message encrypted)).
As a consequence of Lemma 4 and the DCCA security of Πdcca, it holds that
for all probabilistic polynomial-time adversaries A, during a run of experiment
ExpnestedA,Πdcca,Π1b−cca,Πcpa

(λ) with z = 0, a bad query event does not take place ex-
cept with negligible probability in λ where the probability is taken over the coins
of the adversary and the experiment.

Proof. In Lemma 4, we established that bad query events happen with at most
negligible probability when z = 1. We will use this fact to argue that they
cannot happen much more frequently when z = 0. Suppose to the contrary
that there exists a PPT adversary A that forces bad query events to happen
with non-negligible probability ε when z = 0. We create an PPT adversary B
who interacts with A in a run of the nested indistinguishability experiment to
break the DCCA security of Πdcca with detecting function F with probability
negligibly-close to 1

2 + ε
2 as follows:

1. Setup: B obtains PKin from the Expindist challenger. It runs KeyGen1b−cca to
obtain (PKA,SKA) and KeyGencpa to obtain (PKB ,SKB).

2. Phase 1: B gives to A the public key PK = (PKin,PKA,PKB). When A
queries the decryption oracle on CT, B can simulate the normal decryption
algorithm using SKA and the phase 1 oracle Dec(SKin, ·). Eventually, A
outputs a pair of messages m0,m1.

3. Challenge: Choose random β ∈ {0, 1} and rA, rB ∈ {0, 1}λ. Send to the
Expindist challenger the messages M0 = (rA, rB ,mβ) and M1 = 0|M0|, and ob-
tain from the challenger CT∗in. Compute CT∗A := Enc1b−cca(PKA,CT∗in; rA)
and CT∗B := Enccpa(PKB ,CT∗in; rB). Return CT∗ := (CT∗A,CT∗B) to A.

4. Phase 2: When A queries the decryption oracle on CT := (CTA,CTB),
compute CTin := Dec1b−cca(SKA,CTA). If

(a) Case 1 (a bad query event): CTA 6= CT∗A and yet F (PKin,CT∗in,CTin) =
1, then abort and output the bit 0.

(b) Case 2 (partial match with challenge): CTA = CT∗A, then return ⊥ to
A.

Otherwise, query the phase 2 oracle, Dec(SKin, ·), to decrypt CTin, and re-
turn its response to A.

5. Output: When A outputs a bit, B echos the bit as its output.



Analysis. We begin our analysis by arguing that B correctly answers all de-
cryption queries except when it aborts. First, we show that a partial match
with the challenge, causing the ⊥ response in Case 2, is correct because that
query must be invalid. Since a decryption query on the challenge is forbidden
by the experiment, if CTA = CT∗A, then CTB 6= CT∗B . However, we argue that
this must be an invalid ciphertext, i.e., one on which the main construction’s
decryption algorithm would return ⊥. We see this as follows. Since decryption
is deterministic, we have T := Dec1b−cca(SKA,CTA) = Dec1b−cca(SKA,CT∗A)
and (rA, rB ,m) := Decdcca(SKin, T ). By the checks enforced by the main con-
struction’s decryption algorithm, there is only one “second half” that matches
CTA = CT∗A, that is Enccpa(PKB , T ; rB). Since the challenge is a valid cipher-
text, CT∗B must be this value and CTB must cause an error.

When neither Case 1 or Case 2 applies in phase 2, the inner decryption query
will succeed since the ciphertext is not detectably related to the challenge. This
allows B to respond correctly.

When a bad query event occurs in Phase 2, B cannot query Expindist’s decryp-
tion oracle to decrypt the ciphertext. At first glance, one seems stuck. However,
we assumed bad query events happen only when z = 0 with all but negligible
probability. Thus, B can guess that A thinks z = 0, which corresponds to M0

being encrypted in our reduction. Thus, B can abort and guess 0 at this point.
When B aborts, it causes the Expindist experiment to output 1 with high

probability. When B does not abort, it causes Expindist experiment to output 1
with probability 1

2 . Since B aborts with non-negligible probability ε when z = 0,
then B causes the experiment’s output to be 1 with probability non-negligibly
greater than 1

2 .

4.2 Putting the Proof of the Main Theorem Together

Theorem 1 (Main Construction is Nested Indistinguishable). Our main
construction in Section 3, comprised of the three building blocks Πdcca, Π1b−cca,
Πcpa, has nested indistinguishable encryptions under a chosen-ciphertext attack
under the assumptions that Πdcca is DCCA secure, Π1b−cca is 1-bounded CCA
secure, and Πcpa is CPA secure, all with perfect correctness.

Proof of Theorem 1 appears in the full version. The crux of the argument
is that bad query events do not happen (except with negligible probability).
This was already established in Lemmas 4 and 5. Armed with this fact, we
can prove the nested indistinguishability of the main construction based on the
indistinguishability property of the DCCA-security of Πdcca. The reduction and
its analysis are similar to those in the proof of Lemma 5. 7

The following corollary follows from Theorem 1. Informally, if the adversary
cannot distinguish an encryption of a message from an encryption of zeros, then
she also cannot distinguish between the encryptions of two different messages.

7 We alternatively could have merged the proofs of Lemma 5 and Theorem 1. However,
we chose to keep the bad event analysis separate for pedagogical purposes at the
expense of some redundancy in the description of the related reductions.



Corollary 1 (Main Construction is CCA2 Secure). Our main construc-
tion in Section 3, comprised of the three building blocks Πdcca, Π1b−cca, Πcpa,
is CCA2 secure under the assumptions that Πdcca is DCCA secure, Π1b−cca is
1-bounded CCA secure, and Πcpa is CPA secure, all with perfect correctness.
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