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Ruhr University Bochum

{saqib.kakvi,eike.kiltz}@rub.de

Abstract. RSA Full Domain Hash (RSA-FDH) is a digital signature
scheme, secure again chosen message attacks in the random oracle model.
The best known security reduction from the RSA assumption is non-
tight, i.e., it loses a factor of qs, where qs is the number of signature
queries made by the adversary. It was furthermore proved by Coron
(EUROCRYPT 2002) that a security loss of qs is optimal and cannot
possibly be improved. In this work we uncover a subtle flaw in Coron’s
impossibility result. Concretely, we show that it only holds if the under-
lying trapdoor permutation is certified. Since it is well known that the
RSA trapdoor permutation is (for all practical parameters) not certified,
this renders Coron’s impossibility result moot for RSA-FDH. Motivated
by this, we revisit the question whether there is a tight security proof
for RSA-FDH. Concretely, we give a new tight security reduction from a
stronger assumption, the Phi-Hiding assumption introduced by Cachin
et al (EUROCRYPT 1999). This justifies the choice of smaller parame-
ters in RSA-FDH, as it is commonly used in practice. All of our results
(positive and negative) extend to the probabilistic signature scheme PSS.

1 Introduction

Among all digital signatures schemes based on the RSA problem, arguably
among the most important ones is RSA Full Domain Hash (RSA-FDH) by Bel-
lare and Rogaway [3]. It is extensively used in a wide variety of applications,
and serves as the basis of several existing standards such as PKCS #1 [26]. It
has been demonstrated by means of a security reduction that, in the random
oracle model [2], breaking the security of RSA-FDH (in the sense of existential
unforgeability against chosen message attacks) is asymptotically at least as hard
as inverting the RSA function.

The seminal work by Bellare and Rogaway introduced the concept of con-
crete security [3] and highlights the importance of considering the tightness of
a security reduction. A security reduction is tight if an adversary breaking the
scheme yields another adversary breaking the underlying hardness assumption
with roughly the same success probability and running time. The current state
of RSA-FDH is as follows. Coron’s reduction [11] (which improves on earlier
results by Bellare and Rogaway [3]) bounds the probability ε of breaking RSA-
FDH in time t by ε′ · qs, where ε′ is the probability of inverting RSA in time
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t′ ≈ t and qs is the number of signature queries by the forger. In other words,
the security reduction for RSA-FDH is loose (it loses a factor of qs), which can
have great negative impact on the practical parameter choices of the scheme.
As a numerical example, for 80 bits of security and assuming that an adversary
can make up to qs = 230 signature queries [3], one should use a large enough
RSA modulus N such that inverting the RSA function cannot be done in fewer
than 2110 = 230 · 280 operations. Concretely, using the recommended key sizes
from [28], this leads to a modulus N of about 2432 bits, compared to 1248 bits
if RSA-FDH had a tight reduction. We further refer to [9] for a recent discussion
on the practical impact of non-tight security reductions in cryptography.

It is an interesting question of great practical impact whether or not there
is a tight security reduction for general FDH signatures (based on any trapdoor
permutation TDP) and, in particular, for RSA-FDH. Unfortunately, this ques-
tion was already answered to the negative exactly 10 years ago by Coron [12,
13] who showed that the above non-tight security reduction is essentially opti-
mal. That is, every security reduction from inverting the TDP (i.e., RSA in the
case of RSA-FDH) to breaking FDH signatures will inevitably lose a qs factor.
Consequently, for RSA-FDH a large RSA modulus seems unavoidable to obtain
a meaningful security proof.

1.1 An overview of our results

Revisiting Coron’s Impossibility Result. We uncover a gap in Coron’s re-
sult about the impossibility of a tight security reduction for FDH signatures [13].
As acknowledged by the author of [13], his impossibility result only holds if the
underlying trapdoor permutation (i.e., RSA in the case of RSA-FDH) is a certi-
fied trapdoor permutation. A trapdoor permutation is certified [5, 22] if one can
publicly verify that it actually defines a permutation. Unfortunately, the RSA
trapdoor permutation is not known to be certified (unless the public exponent e
is prime and larger than the modulus N) and therefore the impossibility result
does not apply any longer to the case of RSA-FDH.

A tight Security Reduction for FDH signatures. In light of the above,
we revisit the question whether there exists a tight security reduction for FDH
signatures. Unfortunately, we are not able to give such a tight security reduc-
tion from the assumption that the TDP is one-way, but from a stronger (yet
still non-interactive) assumption, namely that the TDP is lossy (in the sense of
Peikert and Waters [25]). Our main result (Theorem 8) shows that there is a
tight security reduction from the lossiness of the TDP to breaking security of
FDH, in the random oracle model.

Applications to RSA-FDH. Recently, Kiltz et al. [20] showed that the RSA
trapdoor permutation is lossy under the under the Φ-Hiding Assumption. The
Φ-Hiding Assumption was introduced by Cachin, Micali, and Stadler in 1999
[8] and it states that, roughly, (N, e) with gcd(ϕ(N), e) = 1 and e < N1/4 is
computationally indistinguishable from (N ′, e′) with e′ | ϕ(N ′). (Here ϕ(N) is
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Euler’s totient function.) This give a tight security reduction for RSA-FDH from
the Φ-Hiding Assumption. We remark that the Φ-Hiding Assumption (or, more
generally, the assumption that RSA is lossy) is a stronger assumption than the
assumption that RSA is one-way. However, it dates back to 1999 [8] and has
ever since been used in a number of cryptographic applications (e.g., [20, 7, 14,
16, 23, 18]). It has been cryptalanyzed (e.g. [8, 7, 27]) and for the parameters of
interest there is no known algorithm that breaks it without first factoring the
modulus N = pq. The common interpretation is that the Φ-Hiding Assumption
can in practice be viewed as as hard as factoring and hence gives a theoretical
justification as to why RSA-FDH with a small modulus N is secure in practice.

1.2 Full Domain Hash and Coron’s Impossibility Result

Recall that FDH signatures on a message m is σ = f−1(H(m)), where f is the
public description of the TDP and H is a hash function modelled as a random
oracle. A reduction R that reduces inverting the TDP to breaking FDH inputs a
challenge instance (f, y = f(x)) of the TDP and generates a public-key for FDH
that is passed to a forger F attacking FDH signatures. Next, F makes a number
of signature queries (which are answered by R) and finally outputs a forgery.
Finally, R uses the gathered information to invert the TDP, i.e., to compute
x = f−1(y). Reduction R is tight if the success probability of R is roughly the
same as the one of F .

Coron’s impossibility result shows that any reduction R from inverting the
TDP f to breaking FDH which is tight (i.e., does not lose more than a factor qs)
can be turned into an efficient inverting algorithm I for the TDP f (that works
without forger F). In a nutshell, the argument is as follows. Given an instance
of the TDP, the inverter I runs reduction R providing it with a simulated forger
F by making a number of hash queries and then signature queries to R. Next, I
rewinds reduction R to an earlier state (after the hash queries) and uses one of
the signed messages/signature pairs (say (m∗, σ∗)) obtained before the rewind
as its forgery. To R, this counts as a valid forgery since after the rewind, I did
not make a signing query on m∗. The central argument is as follows: consider a
real forger that is provided with the view as the simulated forger who outputs a
forgery σ′ on the same message m∗. FDH has unique signatures1 and hence we
can argue that σ∗ (provided by R before the rewind) equals σ′ (provided by a
real forger). Hence R is convinced it interacts with a real forger and outputs a
solution to the TDP instance. Consequently, from R we were able to construct
an algorithm I that inverts the TDP without using any forger. It is shown by
a combinatorial argument that the success probability of I is non-negative as
long as the reduction R does not loose more than a factor of qs, the number of
signature queries.

The Gap in the Proof. During the proof of [12, Th. 5] it is silently assumed
that the public-key pk generated by reduction R is a real public-key, honestly

1 A signature scheme has unique signatures if for each message there exists exactly
one signature that verifies w.r.t. a given (honestly generated) public-key.



4 S. A. Kakvi and E. Kitlz

generated by the key-generation algorithm of FDH, i.e., it contains f which
described a permutation.2 However, that does not necessarily hold, the public-
key generated by R could be anything. In fact, it is possible that the public-key
generated by the reduction R is fake in the sense that the FDH signatures are
no longer unique relative to this fake pk . Once signatures are no longer unique
(with respect to the fake pk), it is possible that a real forger outputs a forgery
σ′ on m∗ which is different from σ∗, the one provided by reduction R before
the rewind. In fact, it could be possible that σ∗ 6= σ′ is no longer useful for R
in order to solve the RSA instance after the rewind and hence the impossibility
result breaks down. In Section 3 we restate (and prove) a corrected version of
Coron’s impossibility result. Fortunately, it turns out that Coron’s argument can
be salvaged by requiring the trapdoor permutation in FDH to be certified. Note
that in case of a certified trapdoor permutation it is not longer possible for the
reduction R to generate a fake public-key and hence signatures are guaranteed
to be unique.

1.3 A tight security reduction for FDH signatures

It is precisely the non-uniqueness of FDH signatures with respect to a fake
public-key that will allow us to prove a tight security from the lossiness from the
lossiness of the TDP (i.e., the Φ-Hiding Assumption in the case of RSA-FDH).
Our proof is surprisingly simple and is sketched as follows. In a first step we
substitute the trapdoor permutation in public key with a lossy one. We use the
programmability of the random oracle to show that this remains unnoticed by
the adversary assuming lossiness of the TDP. Note that once the TDP is lossy,
FDH signatures (i.e., σ with f(σ) = H(m)) are not longer unique since, by the
definition of lossiness, each H(m) has many pre-images under a lossy f . In the
second step we show that any successful forger will be able to find a collision in
the TDP, i.e., two values x 6= x̂ with f(x) = f(x̂), which is again hard assuming
lossiness. The full proof is given in Section 3.

For the important case of RSA-FDH this gives a tight security reduction from
the Φ-Hiding Assumption, in the random oracle model. The Φ-Hiding Assump-
tion is believed to be true for sufficiently small public RSA exponents e < N1/4−ε

[8]. This in particular includes the important low-exponent cases of e = 3 and
e = 216 + 1 since they allow efficient verification of RSA-FDH signatures.3

It is interesting to remark, that, at a conceptual level FDH is the first sig-
nature scheme with unique signatures and a tight security reduction (from a
non-interactive assumption).4 Previously, only tight security reductions for ran-
domized signatures were known (e.g., [3, 17, 6, 15]).

2 Such restricted reductions were called key-preserving reductions in [24].
3 We stress that our tight proof technically does not give a counter-example to Coron’s

impossibility result since our reduction is from the Φ-Hiding Assumption, not the
RSA Assumption. However, as corollary the impossibility result would exclude any
(even non-tight) equivalence between the Φ-Hiding and the RSA assumption.

4 Here we do not count tight security proofs from “tautological assumptions” which
are essentially assuming that the signature scheme is secure.
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1.4 Extensions

Our observations can also be applied to the probabilistic signature scheme (PSS)
[3] which is contained in IEEE P1363a [19], ISO/IEC 9796-2, and PKCS#1 v2.1
[26]. Coron proved that, if log2(qs) bits of random salt is used in PSS, then
there is a tight security reduction from the one-wayness of the TDP [12, 13].
Furthermore, Coron also proved that log2(qs) bits of random salt are essentially
optimal for a tight security reduction. Our results for PSS are similar to the ones
for FDH. We note that Coron’s impossibility proof for PSS contains the same gap
as the one in FDH, i.e., it is only correct if the underlying trapdoor permutation
is certified. However, since PSS (with random salt of arbitrary length) is at least
as secure as FDH, we obtain as a corollary from Section 3 a tight security proof
from lossiness to the security of PSS, with random salt of arbitrary (possibly
zero) length.

1.5 Related Work

There is a lot of work on FDH and tightly secure signature schemes, we try to
summarize part of it relevant to this work.

Tight security reduction for RSA-FDH from an Interactive As-
sumption. Kobiltz and Menezes [21, Sec. 3] show a tight reduction from an
interactive assumption they call the RSA1 assumption (which is related to the
one-more-RSA assumption RSA-CTI [1]): Given N , e, and a set of qs+qh values
yi chosen uniformly from ZN , the adversary is permitted adaptively to select up
to qs of those yi for which he is given solutions xi to xei = yi mod N . The adver-
sary wins if he produces a solution xei = yi mod N for one of the remaining yi.
Even though the RSA1 assumption looks plausible, it is an interactive assump-
tion and almost a tautology for expressing that RSA-FDH signatures are secure
in the random oracle model. In fact, our tight security proof for RSA-FDH also
serves to show a tight reduction from Φ-Hiding to RSA1.

Non-unique Signatures with Tight Reductions. There exists several pre-
vious works that build digital signature schemes with a tight security reduction.
We stress that all of them have, in contrast to FDH, a randomized signing algo-
rithm, i.e., signatures are not unique. Goh et al. [17] show that adding one single
bit of random salt to the hash function of FDH allows to prove a tight security
reduction from the RSA assumption. Bernstein [6] shows a tight security reduc-
tion for (a certain randomized variant of) Rabin-Williams signature scheme from
the factoring assumption. More generally, Gentry et al. [15] introduce the con-
cept of preimage samplable trapdoor functions which are non-injective trapdoor
functions with an efficient pre-image sampling algorithm. They further propose
a probabilistic variant of FDH and prove it tightly secure. In fact, their proof
technique is reminiscent to the second step in our proof of FDH from the lossiness
but FDH can not be viewed as an instance of their probabilistic FDH variant.
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RSA-OAEP. Recently, [20] used the Φ-Hiding Assumption to show that the
RSA function is lossy and used this fact to prove positive instantiability results
of RSA-OAEP in the standard model.

1.6 Open problems

On the one hand the Φ-Hiding Assumption is believed to be true for public
exponents e ≤ N1/4−ε and hence for these values we get a tight security reduction
for RSA-FDH. On the other hand, Coron’s impossibility results holds for prime
e with e > N . This leaves the interesting open problem whether for public
exponents N1/4 ≤ e ≤ N there exists a tight security reduction for RSA-FDH
(under a reasonable assumption).

2 Definitions

2.1 Notations and conventions

We denote our security parameter as k. For all n ∈ N, we denote by 1n the
n-bit string of all ones. For any element x in a set S, we use x ∈

R
S to indicate

that we choose x uniformly random in S. All algorithms may be randomized.
For any algorithm A, we define x ←$ A(a1, . . . , an) as the execution of A with
inputs a1, . . . , an and fresh randomness and then assigning the output to x. We
denote the set of prime numbers by P and we denote the subset of k-bit primes
as Pk. Similarly, we have the integers denoted by Z and Zk. We denote by Z∗N
the multiplicative group modulo N ∈ Z.

2.2 Games

A game (such as in Figure 2) is defined as a collection of procedures, as per the
model of [4]. There is an Initialize procedure and a Finalize procedure, as well
a procedure for each separate oracle. Executing a game G with and adversary
A means running the adversary and using the procedures to answer any oracle
queries. The adversary must first make one query to Initialize. Then it may
query the oracles as many times as allowed by the definition of the game. Af-
ter this, the adversary must then make 1 query to Finalize, which is the final
procedure call of the game. The output of Finalize is denoted by GA. Where
the Finalize procedure simply returns the output of the adversary, we omit the
Finalize procedure. We use a strongly typed pseudo-code with implicit initial-
ization. Which means all variables maintain their type throughout the execution
of the games and they are all implicitly declared and initialized. Boolean flags
are initialized to false, numerical types are initialized to 0, sets are initialized to
∅. We use the notation y ←$ A(a1, . . . , an) to denote invoking the probabilis-
tic algorithm A with inputs a1, . . . , an and fresh randomness and assigning the
output to y.
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2.3 Signature schemes

A digital signature is a message-dependant bit string σ, which can only be gen-
erated by the signer, using a secret signing key sk and is transmitted with the
message. The signature can then be verified by the receiver using a public veri-
fication key pk . A digital signature scheme is defined as a triple of probabilistic
algorithms SIG = (KeyGen,Sign,Verify), which we describe below:

1. KeyGen takes as an input the unary representation of our security parameter
(1k) and outputs a signing key sk and verification key pk.

2. Sign takes as input a signing key sk, message m and outputs a signature σ.
3. Verify is a deterministic algorithm, which on input of a public key and a

message-signature pair (m,σ) outputs 1 (accept) or 0 (reject).

We say that SIG is correct if for all public key and secret key pairs generated by
KeyGen, we have:

Pr[Verify(pk,m, Sign(sk,m)) = 1] = 1.

We now define UF-CMA (unforgeability under chosen message attacks) as-
suming the signature scheme SIG contains a hash function h : {0, 1}∗ → Dom
which is modeled as a random oracle.

procedure Initialize
(pk, sk)←$ KeyGen(1k)
return pk

procedure Hash(m)
if (m, ·) ∈ H then fetch (m, y) ∈ H; return y
else y ∈R Dom; H ← H∪ (m, y); return y

procedure Sign(m) Game UF-CMA
M←M∪ (m)
return σ ←$ Sign(sk, y)

procedure Finalize(m∗, σ∗)
if Verify(pk ,m∗, σ∗) = 1 ∧m∗ 6∈ M
then return 1
else return 0

Fig. 1. Game defining UF-CMA security in the random oracle model.

We say a signature scheme SIG is (t, ε, qh, qs)-UF-CMA secure in the random
oracle model, if for all adversaries A running in time upto t, making at most
qh hashing and qs signing oracle queries, they have an advantage of at most ε,
where the advantage of A is defined as:

AdvUF-CMA
SIG (A) = Pr

[
UF-CMAA ⇒ 1

]
.

2.4 Trapdoor Permutations

We recall the definition of trapdoor permutation families.

Definition 1 A family of trapdoor permutations TDP = (Gen,Eval, Invert) con-
sists of following three polynomial-time algorithms.
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1. The probabilistic algorithm Gen, which on input 1k outputs a public de-
scription pub (which includes an efficiently sampleable domain Dompub) and
a trapdoor td .

2. The deterministic algorithm Eval, which on input pub and x ∈ Dompub ,
outputs y ∈ Dompub . We write f(x) = Eval(pub, x).

3. The deterministic algorithm Invert, which on input td and y ∈ Dompub ,
outputs x ∈ Dompub . We write f−1(y) = Invert(pub, y).

We require that for all k ∈ N and all (pub, td) output by Gen(1k), f(·) =
Eval(pub, ·) defines a permutation over Dompub and that for all x ∈ Dompub ,
Invert(td ,Eval(pub, x)) = x.

We want to point out that fpub(·) = Eval(pub, ·) is only required to be a
permutation for correctly generated pub but not every bit-string pub necessarily
yields a permutation. A family of trapdoor permutations TDP is said to be
certified [5] if the fact that it is a permutation can be verified in polynomial
time given pub.

Definition 2 A family of trapdoor permutations TDP is called certified if there
exists a deterministic polynomial-time algorithm Certify that, on input of 1k and
an arbitrary (polynomially bounded) bit-string pub (potentially not generated
by Gen), returns 1 iff f(·) = Eval(pub, ·) defines a permutation over Dompub .

We now recall security notion for trapdoor permutations. A trapdoor per-
mutation TDP is hard to invert (one-way) if given pub and fpub(x) for uniform
x ∈ Dompub , it is hard to compute x. More formally, it is (t, ε)-hard to invert
if for all adversaries running in time t, Pr[A(pub,Eval(pub, x)) = x] ≤ ε, where
the probability is taken over (pub, td) ← Gen(1k), x ∈R Dompub and the ran-
dom coin tosses of A. The following security notion, lossiness [25], is a stronger
requirement than one-wayness.

Definition 3 Let l ≥ 2. A trapdoor permutation TDP is a (l, t, ε) lossy trapdoor
permutation if the following two conditions hold.5

1. There exists a probabilistic polynomial-time algorithm LossyGen, which on
input 1k outputs pub′ such that the range of fpub′(·) := Eval(pub′, ·) un-
der Dompub′ is at least a factor of l smaller than the domain Dompub′ :
|Dompub′ |/|fpub′(Dompub′)| ≥ l. (Note that we measure the lossiness in its
absolute value l, i.e., the function has dlog2 le bits of lossiness.)

2. All distinguishersD running in time at most t have an advantage AdvL
TDP(D)

of at most ε, where

AdvL
TDP(D) = Pr[LD1 ⇒ 1]− Pr[LD0 ⇒ 1].

5 We deviate in two ways from the original definition of lossy trapdoor functions
Peikert and Waters [25]. First, we define the permutation over arbitrary domains
Dom, rather than {0, 1}k; second, we measure the absolute lossiness l, rather than
the bits of lossiness ` = log2(l).



Optimal Security Proofs for Full Domain Hash, Revisited 9

procedure Initialize Game L0 procedure Initialize Game L1

(pub, td)←$ Gen(1k) (pub′,⊥)←$ LossyGen(1k)
return pub return pub′

Fig. 2. The Lossy Trapdoor Permutation Games.

We say TDP is regular (l, t, ε) lossy if TDP is (l, t, ε) lossy and all functions
fpub′(·) = Eval(pub′, ·) generated by LossyGen are l-to-1 on Dompub′ .

2.5 The RSA trapdoor permutation

We define the RSA trapdoor permutation RSA = (RSAGen,RSAEval,RSAInv)
as follows. The RSA instance generator RSAGen(1k) outputs pub = (N, e) and
td = d, where N = pq is the product of two k/2-bit primes, gcd(e, ϕ(N)) = 1,
and d = e−1 mod ϕ(N). The domain is Dompub = Z∗N . The evaluation algo-
rithm RSAEval(pub, x) returns fpub(x) = xe mod N , the inversion algorithm
RSAInv(td , y) returns f−1pub(y) = yd mod N . The standard assumption is that
RSA is hard to invert. We will review the (regular) lossiness of RSA in Section 4.

3 Full Domain Hash Signatures

3.1 The Scheme

For a familiy of trapdoor permutations TDP = (Gen,Eval, Invert) we define the
Full Domain Hash (TDP-FDH) signature scheme [3] in Figure 3.

procedure KeyGen TDP-FDH
(pub, td)←$ Gen(1k)
Pick a hash function h : {0, 1}∗ → Dompub

return (pk = (h, pub), sk = td)

procedure Sign(sk,m)
return σ = Invert(td , h(m)) // σ = f−1

pub(h(m))

procedure Verify(pk,m, σ)

if Eval(pub, σ) = h(m) then return 1 // fpub(σ)
?
= h(m)

else return 0

Fig. 3. The Full Domain Hash Signature Scheme TDP-FDH.

3.2 Classical Security Results of TDP-FDH

The original reduction by Bellare and Rogaway from one-wayness of TDP loses
a factor of (qh + qs) [3], which was later improved by Coron to a factor of qs [11]
for the case of the RSA trapdoor permutation.
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Theorem 4 Assume the trapdoor permutation RSA is (t′, ε′)-hard to invert.
Then for any (qh, qs), RSA-FDH is (t, ε, qh, qs)-UF-CMA secure in the Random
Oracle Model, where

ε′ =
ε

qs
·
(

1− 1

qs + 1

)qs+1

≈ ε

qs
· exp(−1)

t′ = t+ (qh + qs + 1) · O(k3).

3.3 A corrected version of Coron’s optimality result

Coron showed that a security loss of a factor qs (times some constant) is es-
sentially optimal for TDP-FDH [12, 13]. To state a corrected version of Coron’s
impossibility result, we first recall the following definitions [12].

Definition 5 We say a reduction R (tF , tR, qh, qs, εF , εR)-reduces solving a
hard problem to breaking SIG = (KeyGen,Sign,Verify) if after running a forger F
that (tF , qh, qs, εF )-breaks SIG, the reduction outputs a solution of the problem
with probability at least εR, with running time at most tR.

Definition 6 A signature scheme SIG = (KeyGen,Sign,Verify) is said to be a
unique signature scheme if for every public key pk output by KeyGen, for every
message m there exists exactly one bit-string σ ∈ {0, 1}∗ such that Verify(pk ,m,
σ) = 1.

We now state the corrected version of Coron’s impossibility result which we
prove in the full version of this paper.

Theorem 7 Suppose TDP is a certified trapdoor permutation. Let R be a reduc-
tion that (tF , tR, qh, qs, εF , εR)-reduces breaking one-wayness of TDP to breaking
UF-CMA security of TDP-FDH. If R runs the forger only once, then we can build
an inverter I which (tI , εI)-breaks one-wayness of TDP with:

tI ≤ 2 · tR

εI ≥ εR − εF ·
exp(−1)

qs
·
(

1− qs
qh

)−1
.

Hence, from a security reduction from one-wayness to the security of TDP-FDH
which loses less than a factor of qs, one obtains an efficient inverter I for TDP.

3.4 A Tight Security Proof for TDP-FDH

The impossibility result of Theorem 7 only holds for TDP-FDH if TDP is certified
trapdoor permutation. However if TDP is not certified, this leaves room for a
tight proof for TDP-FDH. We now state our main result, namely that TDP-FDH
is tightly secure assuming TDP is regular lossy.
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Theorem 8 Assume TDP = (Gen,Eval, Invert) is a regular (l, t′, ε′)-lossy trap-
door permutation for l ≥ 2. Then, for any (qh, qs), TDP-FDH is (t, ε, qh, qs)-
UF-CMA secure in the Random Oracle Model, where

ε =

(
2l − 1

l − 1

)
· ε′

t = t′ − qh · TTDP

and TTDP is the time to evaluate TDP.

Proof. Let A be an adversary that runs in time t against TDP-FDH executed
in the UF-CMA experiment described in G0 in Figure 1 with ε = Pr[GA0 ⇒ 1].
Here we assume wlog that A always makes a query to Hash(m) before calling
Sign(m) or Finalize(m, ·).

procedure Initialize Game G0

(pub, td)←$ Gen(1k) = (UF-CMA)
Return pk = pub

procedure Hash(m)
if (m, ·) ∈ H then fetch (m, ym); return ym
else

ym ∈R Dompub

H ← H∪ (m, ym); return ym

procedure Sign(m)
M←M∪ (m)
return σm = Invert(td , h(m))

Procedure Finalize(m∗, σ∗)
if (Verify(pub,m∗, σ∗) = 1) ∧ (m∗ 6∈ M)
return 1
else return 0

procedure Initialize Games G1-G4

(pub, td)←$ Gen(1k) //G1,G4

(pub,⊥)←$ LossyGen(1k) //G2,G3

Return pk = pub

procedure Hash(m)
if m ∈ H lookup (m, ym, σm) ∈ H

return ym
else

σm ∈R Dompub

ym = Eval(pub, σm)
H ← H∪ (m, ym, σm); return ym

procedure Sign(m)
M←M∪ (m)
lookup (m, ym, σm) ∈ H, return σm

Procedure Finalize(m∗, σ∗)
lookup (m∗, ym∗ , σm∗) ∈ H //G3,G4

if σm∗ = σ∗ then BAD = true
return 0 //G3,G4

if Verify(pub,m∗, σ∗) = 1 ∧ (m∗ 6∈ M)
return 1
else return 0

Table 1. Games for the proof of Theorem 8.

Lemma 9 Pr[GA0 ⇒ 1] = Pr[GA1 ⇒ 1].

Proof. In G0, we modelled the hash function as a random oracle. In G1 we modify
the random oracle and the signing queries. On any m the random oracle now
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works by evaluating the permutation on a random element σm ∈ Dompub . We
then modify the signing oracle to return this element σm. Note that signing
no longer requires the trapdoor td . It can be seen that all our signatures will
verify due to the fact that Eval(pub, σm) = ym for all m. Thus our simulation
of the signatures is correct. Since TDP is a permutation, the distribution of
our hash queries in G1 is identical to the distribution in G0. Thus we have
Pr[GA0 ⇒ 1] = Pr[GA1 ⇒ 1].

Lemma 10 There exists a distinguisher D1 against the lossines of TDP, which
runs in time t = tA+qh·TTDP and that Pr[GA1 ⇒ 1]−Pr[GA2 ⇒ 1] = AdvLTDP(D1).

Proof. From G1 to G2, we change the key generation from a normal permutation
to a lossy permutation, however the oracles are identical in both games. We now
build a distinguisher D1 against the lossiness of TDP, using these games. The
distinguisher will run A and simulates the oracles Sign(·),Hash(·) as described in
games G1&G2, for which it requires time qh ·TTDP. Note that D1 does not require
the trapdoor td to simulate the oracles. After A calls Finalize, D1 returns the
inverse of Finalize. Thus we can see that Pr[LD1

0 ⇒ 1] = 1−Pr[GA1 ⇒ 1]. Similarly,
we have Pr[LD1

1 ⇒ 1] = 1−Pr[GA2 ⇒ 1]. Hence we have Pr[GA1 ⇒ 1]−Pr[GA2 ⇒
1] = (1 − Pr[LD1

0 ⇒ 1]) − (1 − Pr[LD1
1 ⇒ 1]) = Pr[LD1

1 ⇒ 1] − Pr[LD1
0 ⇒ 1] =

AdvL
TDP(D1).

Lemma 11 Pr[GA3 ⇒ 1] =
(
l−1
l

)
Pr[GA2 ⇒ 1].

Proof. In G3, we introduce a new rule, which sets BAD to true if the forgery σ∗

provided by A is the same as the simulated signature σm∗ for the target message
m∗. If this is the case, the adversary loses the game, i.e., G3 outputs 0. σm∗

is independent of A’s view and is uniformly distributed in set of pre-images of
ym∗ . Due to the l regular lossiness of TDP, the probability of a collision is equal
to exactly 1/l. Thus we see that the BAD rule reduces the probability of the
adversary winning the game by 1/l, hence Pr[GA3 ⇒ 1] = (1− 1

l ) Pr[GA2 ⇒ 1] =(
l−1
l

)
Pr[GA2 ⇒ 1].

Lemma 12 There exists a distinguisher D2 against the lossiness of TDP, which
runs in time t = tA+qh·TTDP and that Pr[GA3 ⇒ 1]−Pr[GA4 ⇒ 1] = AdvLTDP(D2).

Proof. From G3 to G4, we change the key generation from a lossy permutation
to a normal permutation, however the oracles are identical in both games. We
now build a distinguisher D2 against the lossiness of TDP, using these games.
The distinguisher will act as the challenger to A. It will simulate the oracles
as described in games G3&G4, for which it requires time qh · TTDP. After A
calls Finalize, D2 returns the output of Finalize. We can see that Pr[GA4 ⇒ 1] =
Pr[LD2

0 ⇒ 1]. Similarly, we have Pr[GA3 ⇒ 1] = Pr[LD2
1 ⇒ 1]. Hence we have

Pr[GA3 ⇒ 1]− Pr[GA4 ⇒ 1] = Pr[LD2
1 ⇒ 1]− Pr[LD2

0 ⇒ 1] = AdvL
TDP(D2).

Lemma 13 Pr[GA4 ⇒ 1] = 0.



Optimal Security Proofs for Full Domain Hash, Revisited 13

Proof. In G4 we again use the original KeyGen such that Eval(pub, ·) defines a
permutation. This means that our signing function is now a permutation, thus
any forgery implies a collision. Therefore whenever the adversary is able to make
a forgery, the game outputs 0 due to the BAD rule. Whenever they are unable
to make a forgery, the game outputs 0. Thus we can see that in all cases, the
game will output 0, hence Pr[GA4 ⇒ 1] = 0.

We combine Lemmas 9 to 13 to get:

Pr[GA0 ⇒ 1] = AdvL
TDP(D1) + ( l

l−1 )AdvL
TDP(D2).

where l is the lossiness of TDP. Because the distinguishers run in the same time,
we know that both distinguishers can have at most an advantage of ε′, giving
us:

ε ≤ 2l − 1

l − 1
· ε′.

This completes the proof.

4 Lossiness of RSA from the Φ-Hiding Assumption

4.1 Lossiness of RSA

The lossiness of RSA for a number of specific instance generators RSAGen was
first considered in [20]. We now recall (and extend) some of the results from [20].

First, we recall some definitions from [20]. We denote byRSAk := {(N, p, q) |
N = pq, p, q ∈ Pk/2} the set of all the tuples (N, p, q) such that N = pq is the
product of two distinct k/2-bit primes. Such an N is called an RSA modulus. By
(N, p, q) ∈

R
RSAk we mean the (N, p, q) is sampled according to the uniform

distribution on RSAk. Let R be some relation on p and q. By RSAk[R], we
denote the subset of RSAk such that the relation R holds on p and q. For
example, let e be a prime. Then RSAk[p = 1 mod e] is the set of all (N, p, q),
where where N = pq is the product of two distinct k/2-bit primes p, q and
p = 1 mod e. That is, the relation R(p, q) is true if p = 1 mod e and q is arbitrary.
By (N, p, q) ∈

R
RSAk[R] we mean that (N, p, q) is sampled according to the

uniform distribution on RSAk[R].

α-Φ-Hiding Assumption. We recall a variant of the Φ-Hiding Assumption in-
troduced by Cachin, Micali and Stadler [8], where we build on a formalization by
Kiltz, O’Neil and Smith [20]. The main statement of the assumption is that given
an k-bit RSA modulus N = pq and a random α ·k-bit prime e (where 0 < α < 1

4
is a public constant), it is difficult to decide if e | ϕ(N) or if gcd(e, ϕ(N)) = 1.
We note that if e | ϕ(N) with e ≥ N1/4, then N can be factored using Copper-
smith’s attacks [10], see [8] for details. Hence for the Φ-Hiding Assumption to
hold, the bit-length of e must not exceed one-fourth of the bit length of N .

Consider a distinguisher D which plays one of the games P0 or P1 defined in
Table 2, The advantage of D is defined as:

AdvΦH(D) = Pr[PD1 ⇒ 1]− Pr[PD0 ⇒ 1].
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procedure Initialize Game P0 procedure Initialize Game P1

e ∈R Pαk e ∈R Pαk
(N, p, q) ∈R RSAk[gcd(e, ϕ(N) = 1] (N, p, q) ∈R RSAk[p = 1 mod e]
return (N, e) return (N, e)

Table 2. The α-Φ-Hiding Assumption Games.

We say that the α-Φ-Hiding Problem is (t, ε)-hard if for all distinguishers D
running in time at most t have and advantage of at most ε.

Define an RSA instance generator RSAGen as an algorithm that returns
(N, e, p, q) sampled as e ∈

R
Pαk and (N, p, q) ∈

R
RSAk[gcd(e, ϕ(N) = 1]. (See

[20] for details on the sampling algorithm.)

Lemma 14 If the α-Φ-Hiding Problem is (t, ε)-hard, then the RSA = (RSAGen,
RSAEval,RSAInv) defines a regular (2α, t, ε)-lossy trapdoor permutation.

Proof. If (N, e) is sampled using RSAGen, then gcd(e, ϕ(N) = 1) and (N, e)
defines a permutation RSA(x) = xe mod N over Z∗N . We define LossyGen to be an
algorithm that returns (N, e) sampled as e ∈

R
Pαk and (N, p, q) ∈

R
RSAk[p = 1

mod e]. If (N, e) is sampled using LossyGen then e | ϕ(N) and hence the RSA
function is e-to-1 on the domain Dompub = Z∗N . By definition, the outputs of
RSAGen and LossyGen are indistinguishable if the α-Φ-Hiding Problem is hard.

Fixed-Prime Φ-Hiding Assumption. In practice, e is chosen to be small and
is generally fixed to some specific numbers, such as e = 3 or e = 216 + 1, which
allows for fast exponentiation. We now show a minor variant of the α-Φ-Hiding
Assumption for fixed primes e, where our formalization relies on discussions from
[8] and [20, Footnote 9].

First, we discuss the special case of e = 3. We define our RSA instance
RSAGen3 generator as an algorithm that samples (N, p, q) uniformly from RSAk
[p = 2 mod 3, q = 2 mod 3], which is equivalent to RSAk[gcd(3, ϕ(N)) = 1].
We note that N mod 3 is always 1. This means that for the lossy case, we must
also ensure the N mod 3 = 1, otherwise there would be a simple distinguisher.
To ensure this is to have 3 divide both p− 1 and q− 1. Thus, our lossy keys are
sampled from the RSAk[p = 1 mod 3, q = 1 mod 3].

procedure Initialize Game 3F0 procedure Initialize Game 3F1

(N, p, q) ∈R RSAk[gcd(3, ϕ(N)) = 1] (N, p, q) ∈R RSAk[p = 1 mod 3, q = 1 mod 3]
return (N, e = 3) return (N, e = 3)

Table 3. The Fixed-Prime Φ-Hiding Assumption Games

Consider a distinguisher D which plays one of the games in Table 3. The
advantage of D is defined as
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AdvFΦH(D) = Pr[3FD1 ⇒ 1]− Pr[3FD0 ⇒ 1].

We say that the Fixed-Prime Φ-Hiding Problem, with e = 3, is (t, ε)-hard if all
distinguishers running in time at most t have an advantage of at most ε.

Lemma 15 If the Fixed-Prime Φ-Hiding Problem, with e = 3, is (t, ε)-hard,
then the RSA3 = (RSAGen3,RSAEval,RSAInv) defines a regular (9, t, ε)-lossy
trapdoor permutation.

Proof. If (N, p, q) ∈ RSAk[gcd(3, ϕ(N)) = 1] then (N, 3) clearly makes the RSA
function a permutation. If (N, p, q) ∈ RSAk[p = 1 mod 3, q = 1 mod 3] then
3 | ϕ(N) and hence the RSA function is 9-to-1 on the domain Dompub = Z∗N .

We now consider the general case of fixed e > 3. For this case, we define our
RSA instance generator RSAGene as an algorithm that samples (N, p, q) from
RSAk[gcd(e, ϕ(N)) = 1]. We note that N mod e will be some value between 1
and e − 1. This means that for the lossy case, we require e to divide p − 1 and
not q − 1, otherwise we would have a simple distinguisher. Our lossy keys are
sampled from RSAk[p = 1 mod e, q 6= 1 mod e]. Consider a distinguisher D

procedure Initialize Game F0 procedure Initialize Game F1

(N, p, q) ∈R RSAk[gcd(e, ϕ(N)) = 1] (N, p, q) ∈R RSAk[p = 1 mod e, q 6= 1 mod e]
return (N, e) return (N, e)

Table 4. The Fixed-Prime Φ-Hiding Assumption Games

which plays one of the games in Table 4. The advantage of D is defined as

AdvFΦH(D) = Pr[FD1 ⇒ 1]− Pr[FD0 ⇒ 1].

We say that the Fixed-Prime Φ-Hiding Problem, with e > 3, is (t, ε)-hard if for
all distinguishers running in time at most t have an advantage of at most ε.

Lemma 16 If the Fixed-Prime Φ-Hiding Problem, with e > 3, is (t, ε)-hard,
then RSAe = (RSAGene,RSAEval,RSAInv) defines a regular (e, t, ε)-lossy trap-
door permutation.

Proof. If (N, p, q) ∈ RSAk[gcd(e, ϕ(N)) = 1] then (N, e) clearly defines a per-
mutation. If (N, p, q) ∈ RSAk[p = 1 mod e, q 6= 1 mod e] then e | ϕ(N) and
hence the RSA function is e-to-1 on the domain Dompub = Z∗N .
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