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Abstract. We show that homomorphic evaluation of (wide enough)
arithmetic circuits can be accomplished with only polylogarithmic over-
head. Namely, we present a construction of fully homomorphic encryp-
tion (FHE) schemes that for security parameter λ can evaluate any
width-Ω(λ) circuit with t gates in time t · polylog(λ).
To get low overhead, we use the recent batch homomorphic evaluation
techniques of Smart-Vercauteren and Brakerski-Gentry-Vaikuntanathan,
who showed that homomorphic operations can be applied to “packed” ci-
phertexts that encrypt vectors of plaintext elements. In this work, we in-
troduce permuting/routing techniques to move plaintext elements across
these vectors efficiently. Hence, we are able to implement general arith-
metic circuit in a batched fashion without ever needing to “unpack” the
plaintext vectors.
We also introduce some other optimizations that can speed up homomor-
phic evaluation in certain cases. For example, we show how to use the
Frobenius map to raise plaintext elements to powers of p at the “cost”
of a linear operation.

1 Introduction

Fully homomorphic encryption (FHE) [1–3] allows a worker to perform arbitrarily-
complex dynamically-chosen computations on encrypted data, despite not hav-
ing the secret decryption key. Processing encrypted data homomorphically re-
quires more computation than processing the data unencrypted. But how much
more? What is the overhead, the ratio of encrypted computation complexity to
unencrypted computation complexity (using a circuit model of computation)?
Here, under the ring-LWE assumption, we show that the overhead can be made
as low as polylogarithmic in the security parameter.

We accomplish this by packing many plaintexts into each ciphertext; each
ciphertext has Ω̃(λ) “plaintext slots”. Then, we describe a complete set of op-
erations – Add,Mult and Permute – that allows us to evaluate arbitrary circuits
while keeping the ciphertexts packed. Batch Add and Mult have been done before
[4], and follow easily from the Chinese Remainder Theorem within our underly-
ing polynomial ring. Here we introduce the operation Permute, that allows us to



homomorphically move data between the plaintext slots, show how to realize it
from our underlying algebra, and how to use it to evaluate arbitrary circuits.

Our approach begins with the observation [5, 4] that we can use an automor-
phism group H associated to our underlying ring to “rotate” or “re-align” the
contents of the plaintext slots. (These automorphisms were used in a somewhat
similar manner by Lyubashevsky et al. [6] in their proof of the pseudorandomness
of RLWE.) While H alone enables only a few permutations (e.g., “rotations”),
we show that any permutation can be constructed as a log-depth permutation
network, where each level consists of a constant number of “rotations”, batch-
additions and batch-multiplications. Our method works when the underlying
ring has an associated automorphism group H which is abelian and sharply
transitive, a condition that we prove always holds for our scheme’s parameters.

Ultimately, the Add,Mult and Permute operations can all be accomplished
with Õ(λ) computation by building on the recent Brakerski-Gentry-Vaikuntanathan
(BGV) “FHE without bootstrapping” scheme [5], which builds on prior work by
Brakerski and Vaikuntanathan and others [7–9]. Thus, we obtain an FHE scheme
that can evaluate any circuit that has Ω(λ) average width with only polylog(λ)
overhead. For comparison, the smallest overhead for FHE was Õ(λ3.5) [10] until
BGV recently reduced it to Õ(λ) [5].3

In addition to their essential role in letting us move data across plaintext slots,
ring automorphisms turn out to have interesting secondary consequences: they
also enable more nimble manipulation of data within plaintext slots. Specifically,
in some cases we can use them to raise the packed plaintext elements to a high
power with hardly any increase in the noise magnitude of the ciphertext! In
practice, this could permit evaluation of high-degree circuits without resorting
to bootstrapping, in applications such as computing AES. See the full version of
this paper [12].

1.1 Packing Plaintexts and Batched Homomorphic Computation

Smart and Vercauteren [13, 4] were the first to observe that, by an application
the Chinese Remainder Theorem to number fields, the plaintext space of some
previous FHE schemes can be partitioned into a vector of “plaintext slots”, and
that a single homomorphic Add or Mult of a pair of ciphertexts implicitly adds
or multiplies (component-wise) the entire plaintext vectors. Each plaintext slot
is defined to hold an element in some finite field Kn = Fpn , and, abstractly, if
one has two ciphertexts that hold (encrypt) messages m0, . . . ,m`−1 ∈ K`n and
m′0, . . . ,m

′
`−1 ∈ K`n respectively in plaintext slots 0, . . . , `− 1, applying `-Add to

the two ciphertexts gives a new ciphertext that holds m0 +m′0, . . . ,m`−1 +m′`−1

and applying `-Mult gives a new ciphertext that holds m0 ·m′0, . . . ,m`−1 ·m′`−1.
Smart and Vercauteren used this observation for batch (or SIMD [14]) homo-
morphic operations. That is, they show how to evaluate a function f homomor-

3 However, the polylog factors in our new scheme are rather large. It remains to be
seen how much of an improvement this approach yields in practice, as compared to
the Õ(λ3.5) approach implemented in [11, 10].



phically ` times in parallel on ` different inputs, with approximately the same
cost that it takes to evaluate the function once without batching.

Here is a taste of how these separate plaintext slots are constructed alge-
braically. As an example, for the ring-LWE-based scheme, suppose we use the
polynomial ring A = Z[x]/(x` + 1) where ` is a power of 2. Ciphertexts are
elements of A2

q where (as in in [5]) q has only polylog(λ) bits. The “aggregate”
plaintext space is Ap (that is, ring elements taken modulo p) for some small
prime p = 1 mod 2`. Any prime p = 1 mod 2` splits over the field associated to
this ring – that is, in A, the ideal generated by p is the product of ` ideals {pi}
each of norm p – and therefore Ap ≡ Ap0

× · · · × Ap`−1
. Consequently, using

the Chinese remainder theorem, we can encode ` independent mod-p plaintexts
m0, . . . ,m`−1 ∈ {0, . . . , p − 1} as the unique element in Ap that is in all of the
cosets mi+pi. Thus, in a single ciphertext, we may have ` independent plaintext
“slots”.

In this work, we often use `-Add and `-Mult to efficiently implement a Select
operation: Given an index set I we can construct a vector vI of “select bits”
(v0, . . . , v`−1), such that vi = 1 if i ∈ I and vi = 0 otherwise. Then element-wise
multiplication of a packed ciphertext c with the select vector v results in a new
ciphertext that contains only the plaintext element in the slots corresponding
to I, and zero elsewhere. Moreover, by generating two complementing select
vectors vI and vĪ we can mix-and-match the slots from two packed ciphertexts
c1 and c2: Setting c = (vI × c1) + (vĪ × c2), we pack into c the slots from c1 at
indexes from I and the slots from c2 elsewhere.

While batching is useful in many setting, it does not, by itself, yield low-
overhead homomorphic computation in general, as it does not help us to reduce
the overhead of computing a complicated function just once. Just as in normal
program execution of SIMD instructions (e.g., the SSE instructions on x86), one
needs a method of moving data between slots in each SIMD word.

1.2 Permuting Plaintexts Within the Plaintext Slots

To reduce the overhead of homomorphic computation in general, we need a
complete set of operations over packed vectors of plaintexts. The approach above
allows us to add or multiply messages that are in the same plaintext slot, but
what if we want to add the content of the i-th slot in one ciphertext to the
content of the j-th slot of another ciphertext, for i 6= j? We can “unpack” the
slots into separate ciphertexts (say, using homomorphic decryption4 [3, 2]), but
there is little hope that this approach could yield very efficient FHE. Instead,
we complement `-Add and `-Mult with an operation `-Permute to move data
efficiently across slots within a a given ciphertext, and efficient procedures to
clone slots from a packed ciphertext and move them around to other packed
ciphertexts.

Brakerski, Gentry, and Vaikuntanathan [5] observed that for certain param-
eter settings, one can use automorphisms associated with the algebraic ring A
4 This is the approach suggested in [4] for Gentry’s original FHE scheme.



to “rotate” all of plaintext spaces simultaneously, sort of like turning a dial on
a safe. That is, one can transform a ciphertext that holds m0,m1, . . . ,m`−1 in
its ` slots into another ciphertext that holds mi,mi+1, . . . ,mi+`−1 (for an arbi-
trary given i, index arithmetic mod `), and this rotation operation takes time
quasi-linear in the ciphertext size, which is quasi-linear in the security param-
eter. They used this tool to construct Pack and Unpack algorithms whereby
separate ciphertexts could be aggregated (packed) into a single ciphertext with
packed plaintexts before applying bootstrapping (and then the refreshed cipher-
text would be unpacked), thereby lowering the amortized cost of bootstrapping.

We exploit these automorphisms more fully, using the basic rotations that
the automorphisms give us to construct permutation networks that can permute
data in the plaintext slots arbitrarily. We also extend the application of the
automorphisms to more general underlying rings, beyond the specific parame-
ter settings considered in prior work [7, 8, 5]. This lets us devise low-overhead
homomorphic schemes for arithmetic circuits over essentially any small finite
field Fpn .

Our efficient implementation of Permute, described in Section 3, uses the
Beneš/Waksman permutation network [15, 16]. This network consists of two
back-to-back butterfly network of width 2k, where each level in the network
has 2k−1 “switch gates” and each switch gate swaps (or not) its two inputs,
depending on a control bit. It is possible to realize any permutation of ` = 2k

items by appropriately setting the control bits of all the switch gates. Viewing
this network as acting on k-bit addresses, the i-th level of the network partitions
the 2k addresses into 2k−1 pairs, where each pair of addresses differs only in the
|i − k|-th bit, and then it swaps (or not) those pairs. The fact that the pairs
in the i-th level always consist of addresses that differ by exactly 2|i−k|, makes
it easy to implement each level using rotations: All we need is one rotation by
2|i−k| and another by −2|i−k|, followed by two batched Select operations.

For general rings A, the automorphisms do not always exactly “rotate” the
plaintext slots. Instead, they act on the slots in a way that depends on a quo-
tient group H of the appropriate Galois group. Nonetheless, we use basic the-
orems from Galois theory, in conjunction with appropriate generalizations of
the Beneš/Waksman procedure, to construct a permutation network of depth
O(log `) that can realize any permutation over the ` plaintext slots, where each
level of the network consists of a constant number of permutations from H and
Select operations. As with the rotations considered in [5], applying permutations
from H can be done in time quasi-linear in ciphertext size, which is only quasi-
linear in the security parameter. Overall, we find that permutation networks and
Galois theory are a surprisingly fruitful combination.

We note that Damg̊ard, Ishai and Krøigaard [17] used permutation networks
in a somewhat analogous fashion to perform secure multiparty computation with
packed secret shares. In their setting, which permits interaction between the
parties, the permutations can be evaluated using much simpler mathematical
machinery.



1.3 FHE with Polylog Overhead

In our discussion above, we glossed over the fact that ciphertext sizes in a BGV-
like cryptosystem [5] depend polynomially on the depth of the circuit being
evaluated, because the modulus size must grow with the depth of the circuit
(unless bootstrapping [3, 2] is used). So, without bootstrapping, the “polylog
overhead” result only applies to circuits of polylog depth. However, decryption
itself can be accomplished in log-depth [5], and moreover the parameters can be
set so that a ciphertext with Ω̃(λ) slots can be decrypted using a circuit of size
Õ(λ). Therefore, “recryption” can be accomplished with polylog overhead, and
we obtain FHE with polylog overhead for arbitrary (wide enough) circuits.

2 Computing on (Encrypted) Arrays

As we explained above, our main tool for low-overhead homomorphic computa-
tion is to compute on “packed ciphertexts”, namely make each ciphertext hold a
vector of plaintext values rather than a single value. Throughout this section we
let ` be a parameter specifying the number of plaintext values that are packed
inside each ciphertext, namely we always work with `-vectors of plaintext values.
Let Kn = Fpn denote the plaintext space (e.g., Kn = F2 if we are dealing with
binary circuits directly). It was shown in [5, 4] how to homomorphically evaluate
batch addition and multiplication operations on `-vectors:

`-Add
(
〈u0, . . . , u`−1〉 , 〈v0, . . . , v`−1〉

) def
= 〈u0 + v0, . . . , u`−1 + v`−1〉

`-Mult
(
〈u0, . . . , u`−1〉 , 〈v0, . . . , v`−1〉

) def
= 〈u0 × v0, . . . , u`−1 × v`−1〉

on packed ciphertexts in time Õ((` + λ)(log |Kn|) where λ is the security pa-
rameter (with addition and multiplication in Kn).5 Specifically, if the size of
our plaintext space is polynomially bounded and we set ` = Θ(λ), then we can
evaluate the above operations homomorphically in time Õ(λ).

Unfortunately, component-wise `-Add and `-Mult are not sufficient to per-
form arbitrary computations on encrypted arrays, since data at different indexes
within the arrays can never interact. To get a complete set of operations for
arrays, we introduce the `-Permute operation that can arbitrarily permute the
data within the `-element arrays. Namely, for any permutation π over the indexes
I` = {0, 1, . . . , `− 1}, we want to homomorphically evaluate the function

`-Permuteπ
(
〈u0, . . . , u`−1〉

)
=
〈
uπ(0), . . . , uπ(`−1)

〉
.

on a packed ciphertext, with complexity similar to the above. We will show how
to implement `-Permute homomorphically in Sections 3 and 4 below. For now,
we just assume that such an implementation is available and show how to use it
to obtain low-overhead implementation of general circuits.

5 To compute L levels of such operations, the complexity expression becomes Õ((`+
λ)(L+ log |Kn|)).



2.1 Computing with `-Fold Gates

We are interested in computing arbitrary functions using “`-fold gates” that
operate on `-element arrays as above. We assume that the function f(·) to be
computed is specified using a fan-in-2 arithmetic circuit with t “normal” arith-
metic gates (that operate on singletons). Our goal is to implement f using as
few `-fold gates as possible, hopefully not much more than t/` of them.

We assume that the input to f is presented in a packed form, namely when
computing an r-variate function f(x1, . . . , xr) we get as input dr/`e arrays (in-
dexed A0, . . . , Adr/`e) with the j’th array containing the input elements xj`
through xj`+`−1. The last array may contain less than ` elements, and the un-
used entries contain “don’t care” elements. In fact, throughout the computation
we allow all of the arrays to contain “don’t care” entries. We say that an array is
sparse if it contains `/2 or more “don’t care” entries. We maintain the invariant
that our collection of arrays is always at least half full, i.e., we hold r values
using at most d2r/`e `-element arrays.

The gates that we use in the computation are the `-Add, `-Mult, and `-Permute
gates from above. The rest of this section is devoted to establishing the following
theorem:

Theorem 1. Let `, t, w and W be parameters. Then any t-gate fan-in-2 arith-
metic circuit C with average width w and maximum width W , can be evaluated
using a network of O

(
dt/`e · d`/we · logW · polylog(`)

)
`-fold gates of types

`-Add, `-Mult, and `-Permute. The depth of this network of `-fold gates is at
most O(logW ) times that of the original circuit C, and the description of the
network can be computed in time Õ(t) given the description of C.

Before turning to proving Theorem 1, we point out that Theorem 1 implies
that if the original circuit C has size t = poly(λ), depth L, and average width
w = Ω(λ), and if we set the packing parameter as ` = Θ(λ), then we get an
O(L · log λ)-depth implementation of C using O(t/λ · polylog(λ)) `-fold gates. If
implementing each `-fold gate takes Õ(Lλ) time, then the total time to evaluate
C is no more than

O
( t
λ

polylog(λ) · L · λ · polylog(λ)
)

= O(t · L · polylog(λ)).

Therefore, with this choice of parameter (and for “wide enough” circuits of
average width Ω(λ)), our overhead for evaluating depth-L circuits is only O(L ·
polylog(λ)). And if L is also polylogarithmic, as in BGV with bootstrapping [5],
then the total overhead is polylogarithmic in the security parameter.

The high-level idea of the proof of Theorem 1 is what one would expect.
Consider an arbitrary fan-in two arithmetic circuit C. Suppose that we have ≈ w
output wire values of level i−1 packed into roughly w/` arrays. We need to route
these output values to their correct input positions at level i. It should be obvious
that the `-Permute gates facilitate this routing, except for two complications:

1. The mapping from outputs of level i− 1 to inputs of level i is not a permu-
tation. Specifically, level-(i − 1) gates may have high fan-out, and so some
of the output values may need to be cloned.



2. Once the output values are cloned sufficiently (for a total of, say, w′ values),
routing to level i apparently calls for a big permutation over w′ elements, not
just a small permutation within arrays of ` elements.

Below we show that these complications can be handled efficiently.

2.2 Permutations over Hyper-Rectangles

First, consider the second complication from above – namely, that we need to
perform a permutation over some w elements (possibly w � `) using `-Add,
`-Mult, and `-Permute operations that only work on `-element arrays. We use
the following basic fact (cf. [18]).

Lemma 1. Let S = {0, . . . , a− 1} × {0, . . . , b− 1} be a set of ab positions, ar-
ranged as a matrix of a rows and b columns. For any permutation π over S, there
are permutations π1, π2, π3 such that π = π3◦π2◦π1 (that is, π is the composition
of the three permutations) and such that π1 and π3 only permute positions within
each column (these permutations only change the row, not the column, of each
element) and π2 only permutes positions within each row. Moreover, there is a
polynomial-time algorithm that given π outputs the decomposition permutations
π1, π2, π3.

In our context, Lemma 1 says that if we have w elements packed into k =
dw/`e `-element arrays, we can express any permutation π of these elements as
π = π3 ◦ π2 ◦ π1 where π2 invokes `-Permute (k times in parallel) to permute
data within the respective arrays, and π1, π3 only permute (` times in parallel)
elements that share the same index within their respective arrays. In Section 2.3,
we describe how to implement π1, π3 using `-Add and `-Mult, and analyze the
overall efficiency of implementing π. The following generalization of Lemma 1
to higher dimensions will be used later in this work. It is proved by invoking
Lemma 1 recursively.

Lemma 2. Let S = In1
× · · · × Ink

where Ini
= {0, . . . , ni − 1}. (Each element

in S has k coordinates.) For any permutation π over S, there are permutations
π1, . . . , π2k−1 such that π = π2k−1 ◦ · · · ◦π1 and such that πi affects only the i-th
coordinate for i ≤ k and only the (2k − i)-th coordinate for i ≥ k.

2.3 Batch Selections, Swaps, and Permutation Networks

We now describe how to use `-Add and `-Mult to realize the outer permutations
π1, π3, which permute (` times in parallel) elements that share the same index
within their respective arrays. To perform these permutations, we can apply a
permutation network à la Beneš/Waksman [15, 16]. Recall that a r-dimensional
Beneš network consists of two back-to-back butterfly networks. Namely it is a
(2r− 1)-level network with 2r nodes in each level, where for i = 1, 2, . . . , 2r− 1,
we have an edge connecting node j in level i−1 to node j′ in level i if the indexes
j, j′ are either equal (a “straight edge”) or they differ in only in the |r− i|’th bit
(a “cross edge”). The following lemma is an easy corollary of Lemma 2.



Lemma 3. [19, Thm 3.11] Given any one-to-one mapping π of 2r inputs to
2r outputs in an r-dimensional Beneš network (one input per level-0 node and
one output per level-(2r− 1) node), there is a set of node-disjoint paths from the
inputs to the outputs connecting input i to output π(i) for all i.

In our setting, to implement our π1 and π3 from Lemma 1 we need to evaluate
` of these permutation networks in parallel, one for each index in our `-fold
arrays. Assume for simplicity that the number of `-fold arrays is a power of two,
say 2r, and denote these arrays by A0, . . . , A2r−1, we would have a (2r−1)-level
network, where the i’th level in the network consists of operating on pairs of
arrays (Aj , Aj′), such that the indexes j, j′ differ only in the |r − i|’th bit.

The operation applied to two such arrays Aj , Aj′ works separately on the
different indexes of these arrays. For each k = 0, 1, . . . , ` − 1 the operation will
either swap Aj [k]↔ Aj′ [k] or will leave these two entries unchanged, depending
on whether the paths in the k’th permutation network uses the cross edges or
the straight edges between nodes j and j′ in levels i − 1, i of the permutation
network.

Thus, evaluating ` such permutation networks in parallel reduces to the fol-
lowing Select function: Given two arrays A = [m0, . . . ,m`−1] and A′ = [m′0, . . .,
m′`−1] and a string S = s0 · · · s`−1 ∈ {0, 1}`, the operation SelectS(A,A′) out-
puts an array A′′ = [m′′0 , . . . ,m

′′
`−1] where, for each k, m′′k = mk if sk = 1 and

m′′k = m′k otherwise. It is easy to implement SelectS(A,A′) using just the `-Add
and `-Mult operations – in particular

SelectS(A,A′) = `-Add
(
`-Mult(A,S), `-Mult(A′, S̄)

)
where S̄ is the bitwise complement of S. Note that SelectS̄(A,A′) outputs pre-
cisely the elements that are discarded by SelectS(A,A′). So, SelectS(A,A′) and
SelectS̄(A,A′) are exactly like the arrays A′ and A′, except that some pairs of
elements with identical indexes have been swapped – namely, those pairs at index
k where Sk = 0. Hence we obtain the following lemma, whose proof is in the full
version [12].

Lemma 4. Evaluating ` permutation networks in parallel, each permuting k
items, can be accomplished using O(k · log k) gates of `-Add and `-Mult, and
depth O(log k). Also, evaluating a permutation π over k · ` elements that are
packed into k `-element arrays, can be accomplished using k `-Permute gates and
O(k log k) gates of `-Add and `-Mult, in depth O(log k). Moreover, there is an
efficient algorithm that given π computes the circuit of `-Permute, `-Add, and
`-Mult gates that evaluates it, specifically we can do it in time O(k · ` · log(k · `)).

2.4 Cloning: Handling High Fan-out in the Circuit

We have described how to efficiently realize a permutation over w > ` items
using `-Add, `-Mult and `-Permute gates that operate on `-element arrays. How-
ever, the wiring between adjacent levels of a fan-in-two circuit are typically not
permutations, since we typically have gates with high fan-out. We therefore need



to clone the output values of these high-fan-out gates before performing a per-
mutation that maps them to their input positions at the next level. We describe
an efficient procedure for this “cloning” step.

A cloning procedure. The input to the cloning procedure consists of a collec-
tion of k arrays, each with ` slots, where each slot is either “full” (i.e., contains
a value that we want to use) or “empty” (i.e., contains a don’t-care value). We
assume that initially more than k · `/2 of the available slots are full, and will
maintain a similar invariant throughout the procedure. Denote the number of
full slots in the input arrays by w (with k · `/2 < w ≤ k · `), and denote the i’th
input value by vi. The ordering of input values is arbitrary – e.g., we concate-
nate all the arrays and order input values by their index in the concatenated
multi-array.

We are also given a set of positive integers m1, . . . ,mw ≥ 1, such that v1

should be duplicated m1 times, v2 should be duplicated m2 times, etc. We say
that mi is the intended multiplicity of vi. The total number of full slots in the

output arrays will therefore be w′
def
= m1+m2+· · ·+mw ≥ w. In more detail, the

output of the cloning procedure must consist of some number k′ of `-slot arrays,
where k′`/2 < w′ ≤ k′`, such that v1 appears in at least m1 of the output slots,
v2 appears in at least m2 of the output slots, etc.

Denote the largest intended multiplicity of any value by M = maxi{mi}.
The cloning procedure works in dlogMe phases, such that after the j’th phase
each value vi is duplicated min(mi, 2

j) times. Each phase consists of making a
copy of all the arrays, then for values that occur too many times marking the
excess slots as empty (i.e., marking the extra occurrences as don’t-care values),
and finally merging arrays that are “sparse” until the remaining arrays are at
least half full. A simple way to merge two sparse arrays is to permute them so
that the full slots appear in the left half in one array and the right half in the
other, and then apply Select in the obvious way. A pseudo-code description of
this procedure is given in Figure 1, whilst the proof of the following lemma is in
the full version [12].

Lemma 5. (i) The cloning procedure from Figure 1 is correct.

(ii) Assuming that at least half the slots in the input arrays are full, this proce-
dure can be implemented by a network of O(w′/` · log(w′)) `-fold gates of type
`-Add, `-Mult and `-Permute, where w′ is the total number of full slots in the
output, w′ =

∑
mi. The depth of the network is bounded by O(logw′).

(iii) This network can be constructed in time Õ(w′), given the input arrays and
the mi’s.

We also describe some more optimizations in the full version, including a
different cloning procedure that improves on the complexity bound in Lemma 5.
Putting all the above together we can efficiently evaluate a circuit using `-Permute,
`-Add and `-Mult, yielding a proof of Theorem 1, see the full version for details
[12].



Input: k `-slot arrays, A1, . . . , Ak, each of the k · ` slots containing either a value
or the special symbol ‘⊥’, w positive integers m1, . . . ,mw ≥ 1, where w is
the number of full slots in the input arrays.

Output: k′ `-slot arrays, A′
1, . . . , A

′
k′ , with each slot containing either a value or

the special symbol ‘⊥’, where k′/2 ≤ (
∑

imi)/` ≤ k′ and each input value
vi is replicated mi times in the output arrays

0. Set M ← maxi{mi}
1. For j = 1 to dlogMe // The j’th phase
2. Make another copy of all the arrays // Duplicate everything
3. While there are values vi with multiplicity more than mi:
4. Replace the excess occurrences of vi by ⊥ // Remove redundant entries
5. While there exist pairs of arrays that have between them ` or more slots with ⊥:
6. Pick one such pair and merge the two arrays //Merge sparse arrays
7. Output the remaining arrays

Fig. 1. The cloning procedure

3 Permutation Networks from Abelian Group Actions

As we will show in Section 4, the algebra underlying our FHE scheme makes it
possible to perform inexpensive operations on packed ciphertexts, that have the
effect of permuting the ` plaintext slots inside this packed ciphertext. However,
not every permutation can be realized this way; the algebra only gives us a small
set of “simple” permutations. For example, in some cases, the given automor-
phisms “rotate” the plaintext slots, transforming a ciphertext that encrypts the
vector 〈v0, . . . , v`−1〉 into one that encrypts 〈vk, . . . , v`−1, v0, . . . , vk−1〉, for any
value of k of our choosing. (See Section 3.2 for the general case.)

Our goal in this section is therefore to efficiently implement an `-Permuteπ
operation for an arbitrary permutation π using only the simple permutations
that the algebra gives us (and also the `-Add and `-Mult operations that we
have available). We begin in Section 3.1 by showing how to efficiently realize
arbitrary permutations when the small set of “simple permutations” is the set
of rotations. In Section 3.2 we generalize this construction to a more general set
of simple permutations.

3.1 Permutation Networks from Cyclic Rotations and Swaps

Consider the Beneš permutation network discussed in Lemma 3. It has the in-
teresting property that when the 2r items being permuted are labeled with r-bit
strings, then the i-th level only swaps (or not) pairs whose index differs in the
|r − i|-th bit. In other words, the i-th level swaps only disjoint pairs that have
offset 2|r−i| from each other. We call this operation an “offset-swap”, since all
pairs of elements that might be swapped have the same mutual offset.

Definition 1 (Offset Swap). Let I` = {0, . . . , `− 1}. We say that a permuta-
tion π over I` is an i-offset swap if it consists only of 1-cycles and 2-cycles (i.e.,



π = π−1), and moreover all the 2-cycles in π are of the form (k, k+ i mod `) for
different values k ∈ I`.

Offset swaps modulo ` are easy to implement by combining two rotations
with the Select operation defined in Section 2.3. Specifically, for an i-offset swap,
we need rotations by i and −i mod ` and two Select operations. By Lemma 3, a
Beneš network can realize any permutation over 2r elements using 2r − 1 levels
where the i-th level is a 2|k−i|-offset swap modulo 2r. An i-offset modulo 2r,
` < 2r < 2` can be cobbled together using a constant number of offset swaps
modulo ` and Select operations, with offsets i and 2`−i. Therefore, given a cyclic
group of “simple” permutations H and Select operations, we can implement any
permutation using a Beneš network with low overhead. Specifically, we prove the
following lemma in the full version of this paper.

Lemma 6. Fix an integer ` and let k = dlog `e. Any permutation π over I` =
{0, . . . , ` − 1} can be implemented by a (2k − 1)-level network, with each level
consisting of a constant number of rotations and Select operations on `-arrays.

Moreover, regardless of the permutation π, the rotations that are used in
level i (i = 1, . . . , 2k − 1) are always exactly 2|k−i| and `− 2|k−i| positions, and
the network depends on π only via the bits that control the Select operations.
Finally, this network can be constructed in time Õ(`) given the description of π.

3.2 Generalizing to Sharply-Transitive Abelian Groups

Below, we extend our techniques above to deal with a more general set of “simple
permutations” that we get from our ring automorphisms. (See Section 4)

Definition 2 (Sharply Transitive Permutation Groups). Denote the `-
element symmetric group by S` (i.e., the group of all permutations over I` =
{0, . . . , `− 1}), and let H be a subgroup of S`. The subgroup H is sharply tran-
sitive if for every two indexes i, j ∈ I` there exists a unique permutation h ∈ H
such that h(i) = j.

Of course, the group of rotations is an example of an abelian and sharply
transitive permutation group. It is abelian: rotating by k1 positions and then
by k2 positions is the same as rotating by k2 positions and then by k1 positions.
It is also sharply transitive: for all i, j there is a single rotation amount that maps
index i to index j, namely rotation by j− i. However, it is certainly not the only
example. We now explain how to efficiently realize arbitrary permutations using
as building blocks the permutations from any sharply-transitive abelian group.

Recall that any abelian group is isomorphic to a direct product of cyclic
groups, hence H ∼= C`1 × · · · ×C`k (where C`i is a cyclic group with `i elements
for some integers `i ≥ 2 where `i divides `i+1 for all i). As any cyclic group
with `i elements is isomorphic to I`i = {0, 1, . . . , `i − 1} with the operation of
addition mod `i, we will identify elements in H with vectors in the box B =
I`1 ×· · ·× I`k , where composing two group elements corresponds to adding their
associated vectors (modulo the box). The group H is generated by the k unit



vectors {er}kr=1 (where er = 〈0, . . . , 0, 1, 0, . . . , 0〉 with 1 in the r-th position).
We stress that our group H has polynomial size, so we can efficiently compute
the representation of elements in H as vectors in B.

Since H is a sharply transitive group of permutations over the indexes I` =
{0, . . . , ` − 1}, we can similarly label the indexes in I` by vectors in B: Pick
an arbitrary index i0 ∈ I`, then for all h ∈ H label the index h(i0) ∈ I` with
the vector associated with h. This procedure labels every element in I` with
exactly one vector from B, since for every i ∈ I` there is a unique h ∈ H such
that h(i0) = i. Also, since H ∼= B, we use all the vectors in B for this labeling
(|H| = |B| = `). Note that with this labeling, applying the generator er to an
index labeled with vector v ∈ B, yields an index labeled with v′ = v+er mod B.
Namely we increment by one the r’th entry in v (mod `r), leaving the other
entries unchanged.

In other words, rather than a one-dimensional array, we view I` as a k-
dimensional matrix (by identifying it with B). The action of the generator er on
this matrix is to rotate it by one along the r-th dimension, and similarly applying
the permutation ekr ∈ H to this matrix rotates it by k positions along the r-th
dimension. For example, when k = 2, we view I` as an `1 × `2 matrix, and the
group H includes permutations of the form ek1 that rotate all the columns of this
matrix by k positions and also permutations of the form ek2 that rotate all the
rows of this matrix by k positions.

Using Lemma 6, we can now implement arbitrary permutations along the
r’th dimension using a permutation network built from offset-swaps along the
r’th dimension. Moreover, since the offset amounts used in the network do not
depend on the specific permutation that we want to implement, we can use just
one such network to implement in parallel different arbitrary permutations on
different r’th-dimension sub-matrices. For example, in the 2-dimensional case, we
can effect a different permutation on every column, yet realize all these different
permutations using just one network of rotations and Selects, by using the same
offset amounts but different Select bits for the different columns. More gener-
ally we can realize arbitrary (different) `/`r permutations along all the different
“generalized columns” in dimension-r, using a network of depth O(log `r) con-
sisting of permutations h ∈ H and `-fold Select operations (and we can construct
that network in time `/`r · Õ(`r) = Õ(`)).

Once we are able to realize different arbitrary permutations along the differ-
ent “generalized columns” in all the dimensions, we can apply Lemma 2. That
lemma allows us to decompose any permutation π on I` into 2k−1 permutations
π = πi ◦ · · · ◦ π2k−1 where each πi consists only of permuting the generalized
columns in dimension r = |k − i|. Hence we can realize an arbitrary permuta-
tion on I` as a network of permutations h ∈ H and `-fold Select operations,
of total depth bounded by 2

∑k−1
i=0 O(log `i) = O(log `) (the last bound follows

since ` =
∏k−1
i=0 `i). Also we can construct that network in time bounded by

2
∑k−1
i=0 Õ(`i) = Õ(`) (the bound follows since k ≤ log `). Concluding this dis-

cussion, we have:



Lemma 7. Fix any integer ` and any abelian sharply-transitive group of permu-
tations over I`, H ⊂ S`. Then for every permutation π ∈ S`, there is a permu-
tation network of depth O(log `) that realizes π, where each level of the network
consists of a constant number of permutations from H and Select operations on
`-arrays.

Moreover, the permutations used in each level do not depend on the partic-
ular permutation π, the network depends on π only via the bits that control the
Select operations. Finally, this network can be constructed in time Õ(`) given
the description of π and the labeling of elements in H, I` as vectors in B. ut

Lemma 7 tells us that we can implement an arbitrary `-Permute operation
using a log-depth network of permutations h ∈ H (in conjunction with `-Add
and `-Mult). Plugging this into Theorem 1 we therefore obtain:

Theorem 2. Let `, t, w and W be parameters, and let H be an abelian, sharply-
transitive group of permutations over I`.

Then any t-gate fan-in-2 arithmetic circuit C with average width w and max-
imum width W , can be evaluated using a network of O

(
dt/`e · d`/we · logW ·

polylog(`)
)
`-fold gates of types `-Add, `-Mult, and h ∈ H. The depth of this

network of `-fold gates is at most O(logW · log `) times that of the original cir-
cuit C, and the description of the network can be computed in time Õ(t · log `)
given the description of C. ut

4 FHE With Polylog Overhead

Theorem 2 implies that if we could efficiently realize `-Add, `-Mult, and H-
actions on packed ciphertexts (where H is a sharply transitive abelian group of
permutations on `-slot arrays), then we can evaluate arbitrary (wide enough)
circuits with low overhead. Specifically, if we could set ` = Θ(λ) and realize
`-Add, `-Mult, and H-actions in time Õ(λ), then we can realize any circuit of
average width Ω(λ) with just polylog(λ) overhead. It remains only to describe
an FHE system that has the required complexity for these basic homomorphic
operations.

4.1 The Basic Setting of FHE Schemes Based on Ideal Lattices and
Ring LWE

Many of the known FHE schemes work over a polynomial ring A = Z[X]/F (X),
where F (X) is irreducible monic polynomial, typically a cyclotomic polynomial.
Ciphertexts are typically vectors (consisting of one or two elements) over Aq =
A/qA where q is an integer modulus, and the plaintext space of the scheme is
Ap = A/pA for some integer modulus p � q with gcd(p, q) = 1, for example
p = 2. (Namely, the plaintext is represented as an integer polynomial with
coefficients mod p.) Secret keys are also vectors over Aq, and decryption works
by taking the inner product b← 〈c, s〉 in Aq (so b is an integer polynomial with
coefficients in (−q/2, q/2]) then recovering the message as b mod p. Namely, the



decryption formula is [[〈c, s〉 mod F (X)]q]p where [·]q denotes modular reduction
into the range (−q/2, q/2]. Below we consider ciphertext vectors and secret-key
vectors with two entries, since this is indeed the case for the variant of the BGV
scheme [5] that we use.

Smart and Vercauteren [4] observed that the underlying ring structure of
these schemes makes it possible to realize homomorphic (batch) Add and Mult
operations, i.e. our `-Add and `-Mult. Specifically, though F (X) is typically irre-

ducible over Q, it may nonetheless factor modulo p; F (X) =
∏`−1
i=0 Fi(X) mod p.

In this case, the plaintext space of the scheme also factors: Ap = ⊗`−1
j=0Apj

where
pi is the ideal in A generated by p and Fi(X). In particular, the Chinese Remain-
der Theorem applies, and the plaintext space is partitioned into ` independent
non-interacting “plaintext slots”, which is precisely what we need for component-
wise `-Add and `-Mult. The decryption formula recovers the “aggregate plain-
text” a ← [[〈c, s〉 mod F (X)]q]p, and this aggregate plaintext is decoded to get
the individual plaintext elements, roughly via zj ← a mod (Fi(x), p) ∈ Apj

.

4.2 Implementing Group Actions on FHE Plaintext Slots

While component-wise Add and Mult are straightforward, getting different plain-
text slots to interact is more challenging. For ease of exposition, suppose at
first that F (X) is the degree-(m − 1) polynomial Φm(X) = (Xm − 1)/(X − 1)
for m prime, and that p ≡ 1 (mod m). Thus our ring A above is the mth
cyclotomic number field. In this case F (X) factors to linear terms modulo p,

F (X) =
∏`−1
i=0(X − ρi) (mod p) with ρi ∈ Fp. Hence we obtain ` = m− 1 plain-

text slots, each slot holding an element of the finite field Fp (i.e. in this case Api

above is equal to Fp).
To get Φm to factor modulo p into linear terms we must have p ≡ 1 (mod m),

so p > m. Also we need m = Ω(λ) to get security (since m is roughly the
dimension of the underlying lattice). This means that to get Φm to factor into
linear terms we must use plaintext spaces that are somewhat large (in particular
we cannot directly use F2). Later in this section we sketch the more elaborate
algebra needed to handle the general (and practical) case of non-prime m and
p � m, where Φm may not factor into linear terms. This is covered in more
detail in the full version of this paper. For now, however, we concentrate on the
simple case where Φm factors into linear terms modulo p.

Recall that ciphertexts are vectors over Zq[X]/Φm(X), so each entry in these
vectors corresponds to an integer polynomial. Consider now what happens if
we simply replace X with Xi inside all these polynomials, for some exponent
i ∈ Z∗m, i > 1. Namely, for each polynomial f(X), we consider f (i)(X) =
f(Xi) mod Φm(X). Notice that if we were using polynomial arithmetic mod-
ulo Xm − 1 (rather then modulo Φm(X)) then this transformation would just
permutes the coefficients of the polynomials. Namely f (i) has the same coeffi-
cients as f but in a different order, which means that if the coefficient vector
of f has small norm then the same holds for the coefficient vector of f (i). In
the full version we show that using a different notion of “size” of a polynomial



(namely, the norm of the canonical embedding of a polynomial rather than the
norm of its coefficient vector), we can conclude the same also for mod-Φm poly-
nomial arithmetic. Namely, the mapping f(X) 7→ f(Xi) mod Φm(X) does not
change the “size” of the polynomial. To simplify presentation, below we describe
everything in terms of coefficient vectors and arithmetic modulo Xm − 1. The
actual mod-Φm implementation that we use is described in the full version of
this paper [12].

Let us now consider the effect of the transformation X 7→ Xi on decryption.
Let c = (c0(X), c1(X)) and s = (s0(X), s1(X)) be ciphertext and secret-key
vectors, and let b = 〈c, s〉 mod (Xm − 1, q) and a = b mod p. Denote c(i) =
(c0(Xi), c1(Xi)) mod (Xm − 1), and define s(i), b(i) and a(i) similarly. Since
〈c, s〉 = b (mod Xm − 1, q), we have that

c0(X)s0(X) + c1(X)s1(X) = b(X) + q · r(X) + (Xm − 1)s(X) (over Z[X])

for some integer polynomials r(X), s(X), and therefore also

c0(Xi)s0(Xi)+c1(Xi)s1(Xi) = b(Xi)+q ·r(Xi)+(Xmi−1)s(Xi) (over Z[X]).

Since Xm − 1 divides Xmi − 1, then we also have〈
c(i), s(i)

〉
= b(i) + q · r(Xi) + (Xm − 1)S(X) (over Z[X])

for some r(X), S(X). That is, b(i) =
〈
c(i), s(i)

〉
mod (Xm − 1, q). Clearly, we

also have a(i) = b(i) (mod p). This means that if c decrypts to the aggregate
plaintext a under s, then c(i) decrypts to a(i) under s(i)! Then using key-switching
we can get an encryption of a(i) back under s (or any other key). See the full
version for more details [12].

But how does this new aggregate plaintext a(i) relate to the original a?
Here we apply to Galois theory, which tells us that decoding the aggregate a(i)

(which we do roughly by setting zj ← a(i) mod (Fj , p)), the set of zj ’s that we
get is exactly the same as when decoding the original aggregate a, albeit in
different order. Roughly, this is because each of our plaintext slots corresponds
to a root of the polynomial F (X), and the transformations X 7→ Xi, which
are precisely the elements of the Galois group, permute these roots. In other
words by transforming c→ c(i) (followed by key switching), we can permute the
plaintext slots inside the packed ciphertext. Moreover, in our simplified case, the
permutations have a single cycle – i.e., they are rotations of the slots. Arranging
the slots appropriately we can get that the transformation c → c(i) rotates the
slots by exactly i positions, thus we get the group of rotations that we were
using in Section 3.1. In general the situation is a little more complicated, but
the above intuition still can be made to hold; for more details see the full version
[12].

The general case. In the general case, when m is not a prime, the polynomial
Φm(X) has degree φ(m) (where φ(·) is Euler’s totient function), and it factors
mod p into a number of same-degree irreducible factors. Specifically, the degree of



the factors is the smallest integer d such that pd = 1 (mod m), and the number

of factors is ` = φ(m)/d (which is of course an integer), Φm(X) =
∏`−1
j=0 Fj(X).

For us, it means that we have ` plaintext slots, each isomorphic to the finite field
Fpd , and an aggregate plaintext is a degree-(φ(m)− 1) polynomial over Fp.

Suppose that we want to evaluate homomorphically a circuit over some un-
derlying field Kn = Fpn , then we need to find an integer m such that Φm(X)
factors mod p into degree-d factors, where d is divisible by n. This way we could
directly embed elements of the underlying plaintext space Kn inside our plain-
text slots that hold elements of Fpd , and addition and multiplication of plaintext
slots will directly correspond to additions and multiplications of elements in Kn.
(This follows since Kn = Fpn is a subfield of Fpd when n divides d.)

Note that each plaintext slot will only have n log p bits of relevant informa-
tion, i.e., the underlying element of Fpn , but it takes d log p bits to specify. We
thus get an “embedding overhead” factor of d/n even before we encrypt any-
thing. We therefore need to choose our parameter m so as to keep this overhead
to a minimum.

Even for a non-prime m, the Galois group Gal(Q[X]/Φm(X)) consists of
all the transformations X 7→ Xi for i ∈ Z∗m, hence there are exactly φ(m)
of them. As in the simplified case above, if we have a ciphertext c that de-
crypts to an aggregate plaintext a under s, then c(i) decrypts to a(i) under
s(i). Differently from the simple case, however, not all members of the Galois
group induce permutations on the plaintext slots, i.e., decoding the aggregate
plaintext a(i) does not necessarily give us the same set of (permuted) plaintext
elements as decoding the original a. Instead Gal(Q[X]/Φm(X)) contains a sub-

group G = {(X 7→ Xpj ) : j = 0, 1, . . . , d − 1} corresponding to the Frobenius
automorphisms6 modulo p. This subgroup does not permute the slots at all,
but the quotient group H = Gal/G does. Clearly, G has order d and H has or-
der φ(m)/d = `. In the full version we show that the quotient group H acts as
a transitive permutation group on our ` plaintext slots, and since it has order `
then it must be sharply transitive. In the general case we therefore use this group
H as our permutation group for the purpose of Lemma 7. Another complication
is that the automorphism that we can compute are elements of Gal and not ele-
ments in the quotient group H. In the full version we also show how to emulate
the permutations in H, via use of coset representatives in Gal.

4.3 Low-Overhead FHE

Given the background from above (and the modification of the BGV cryptosys-
tem [7] described in the full version), we explain in the full version how to set
the parameters for our variant of the BGV scheme so as to get low-overhead
FHE scheme. This gives us:

Theorem 3. For security parameter λ, any t-gate, depth-L arithmetic circuit
of average width Ω(λ) over underlying plaintext space Fpn (with pn ≤poly(λ))

can be evaluated homomorphically in time t · Õ(L)·polylog(λ).

6 The group G is called the decomposition group at p in the literature.



Theorem 3 implies that we can implement shallow arithmetic circuit with
low overhead, but when the circuit gets deeper the dependence of the overhead
on L causes the overhead to increase. Recall that the reason for this dependence
on the depth is that in the BGV cryptosystem [5], the moduli get smaller as we
go up the circuit, which means that for the first layers of the circuit we must
choose moduli of bitsize Ω(L).

As explained in [5], the dependence on the depth can be circumvented by
using bootstrapping. Namely, we can start with a modulus which is not too
large, then reduce it as we go up the circuit, and once the modulus become too
small to do further computation we can bootstrap back into the larger-modulus
ciphertexts, then continue with the computation.

For our purposes, we need to ensure that we bootstrap often enough to keep
the moduli small, and yet that the time we spend on bootstrapping does not
significantly impact the overhead. Here we apply to the analysis from [5], that
shows that a packed ciphertext with Ω̃(λ) slots can be decrypted using a circuit
of size Õ(λ) and depth polylog(λ). Hence we can even bootstrap after every layer
of the circuit and still keep the overhead polylogarithmic, and the moduli never
grow beyond polylogarithmic bitsize. We thus get:

Theorem 4. For security parameter λ, any t-gate arithmetic circuit of aver-
age width Ω(λ) over underlying plaintext space Fpn (with pn ≤poly(λ)) can be
evaluated homomorphically in time t·polylog(λ).
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