
Cryptanalyses on a Merkle-Damg̊ard Based
MAC — Almost Universal Forgery and

Distinguishing-H Attacks

Yu Sasaki

NTT Information Sharing Platform Laboratories, NTT Corporation
3-9-11 Midori-cho, Musashino-shi, Tokyo 180-8585 Japan

sasaki.yu@lab.ntt.co.jp

Abstract. This paper presents two types of cryptanalysis on a Merkle-
Damg̊ard hash based MAC, which computes a MAC value of a message
M by Hash(K‖`‖M) with a shared key K and the message length `. This
construction is often called LPMAC. Firstly, we present a distinguishing-
H attack against LPMAC instantiating any narrow-pipe Merkle-Damg̊ard
hash function with O(2n/2) queries, which indicates the incorrectness of
the widely believed assumption that LPMAC instantiating a secure hash
function should resist the distinguishing-H attack up to 2n queries. In
fact, all of the previous distinguishing-H attacks considered dedicated at-
tacks depending on the underlying hash algorithm, and most of the cases,
reduced rounds were attacked with a complexity between 2n/2 and 2n.
Because it works in generic, our attack updates these results, namely full
rounds are attacked with O(2n/2) complexity. Secondly, we show that an
even stronger attack, which is a powerful form of an almost universal
forgery attack, can be performed on LPMAC. In this setting, attackers
can modify the first several message-blocks of a given message and aim
to recover an internal state and forge the MAC value. For any narrow-
pipe Merkle-Damg̊ard hash function, our attack can be performed with
O(2n/2) queries. These results show that the length prepending scheme
is not enough to achieve a secure MAC.

Keywords: LPMAC, distinguishing-H attack, almost universal forgery
attack, multi-collision, diamond structure, prefix freeness

1 Introduction

Message Authentication Code (MAC) is a cryptographic technique which pro-
duces the integrity of the data and the authenticity of the communication player.
MACs take a message and a key as input and compute a MAC value which is
often called tag. Suppose that a sender and a receiver share a secret key K in
advance. When the sender sends a message M to the receiver, he computes a tag
σ and sends a pair of (M, σ). The receiver computes a tag by using the shared
key K and the received M . If the result matches with the received σ, he knows
that he received the correct message and it was surely sent by the sender.

MACs are often constructed by using block-ciphers or hash functions. There
are three basic MAC constructions based on hash functions which were analyzed
by Tsudik [1]. Let H be a hash function. A secret-prefix method computes a
tag of a message M by H(K‖M). A secret-suffix method computes a tag by
H(M‖K). A hybrid method computes a tag by H(K‖M‖K). Among the above
three, the secret-prefix method is known to be vulnerable when H processes M
block by block by iteratively applying a compression function h. This attack
is called padding attack in [1] and length-extension attack in the recent SHA-3
competition [2]. Assume that the attacker obtains the tag σ for a message M .
He then, without knowing the value of K and M , can compute a tag σ′ for a
message M‖z for any z by computing σ′ ← h(σ, z).

LPMAC was suggested to avoid the vulnerability of the secret-prefix method
[1]1. In LPMAC, the length of the message to be hashed is prepended before the
message is hashed, that is to say, σ ← H(K‖`‖M), where ` is the length of M .
K‖` is often padded to be a multiple of the block-length so that the computation
of M can start from a new block. The length prepending scheme can be regarded
as a concrete construction of the prefix freeness introduced by Bellare et al. [4].
Therefore, by [4], LPMAC was proven to be a secure pseudo-random function
(PRF) up to O(2n/2) queries.

The security of MAC is usually discussed with respect to the resistance
against the following forgery attacks. An existential forgery attack creates a pair
of valid (M, σ) for a message M which is not queried yet. A selective forgery
attack creates a pair of valid (M, σ) where M is chosen by the attacker prior
to the attack. A universal forgery attack creates a pair of valid (M,σ) where
M can be any message chosen prior to the attack. Variants of these forgery
attacks can also be considered. For example, Dunkelman et al. introduced an
almost universal forgery attack [5] against the ALRED construction, which the
attacker can modify one message block in M . In addition, the security against
distinguishing attacks are also evaluated on MAC constructions. Kim et al. intro-
duced two distinguishing attacks called distinguishing-R and distinguishing-H
[6]. Let R and r be random functions which have the same domain as H and h,
respectively. Moreover, we denote the hash function H instantiating a compres-
sion function f by Hf . In the distinguishing-R attack, the attacker distinguishes
a MAC H(K, M) from R(K, M). On the other hand, in the distinguishing-H
attack, the attacker distinguishes Hh(K, M) from Hr(K, M).

Regarding the distinguishing-R attack, Preneel and van Oorschot [7] pre-
sented a generic attack against MACs with a Merkle-Damg̊ard like iterative
structure, which requires O(2n/2) queries. In [7], it was explicitly mentioned that
the same attack could be applied to LPMAC. Chang and Nandi later discussed its
precise complexity when a long message is used [8]. The distinguishing-R attack
is immediately converted to the existential forgery attack with the same com-
plexity. On the other hand, no generic attack is known for the distinguishing-H
attack, and it is widely believed that the complexity of the distinguishing-H at-

1 The name “LPMAC” was given by Wang et al. [3].

Table 1. Comparison of distinguishing-H attacks against LPMAC

Attack Target Size(n) #Rounds #Queries Reference

SHA-1 160 43/80 2124.5 [3]
SHA-1 160 61/80 2154.5 [3]
SHA-1 160 65/80 280.9 [18]

SHA-256 256 39/64 2184.5 [20]
RIPEMD 128 48/48 (full) 266 [19]

RIPEMD-256 256 58/64 2163.5 [19]
RIPEMD-320 320 48/80 2208.5 [19]

Generic narrow-pipe MD n full 3 · 2 n
2 Ours

Our attack also requires 2n/2 offline computations and a memory to store 2n/2 tags.
The attack can be memoryless with 6 · 2n/2 queries and 2(n/2)+1 offline computations.

tack against a MAC instantiating a securely designed hash algorithm Hh should
cost 2n complexity.

There are several cryptanalytic results on MAC constructions. Although sev-
eral results are known for block-cipher based MACs e.g. [5, 9, 10], in this paper,
we focus our attention on hash function based MACs. A notable work in this
field is the one proposed by Contini and Yin, which presented distinguishing and
key recovery attacks on HMAC/NMAC with several underlying hash functions
[11]. After that, several improved results were published [12–16]. Another im-
portant work is the one proposed by Wang et al. [17], which presented the first
distinguishing-H attack on HMAC-MD5 in the single-key setting. In this attack
framework, the number of queries principally cannot be below 2n/2 because the
birthday attack is used. With the techniques of [17], a series of distinguishing-H
attacks on LPMAC were presented against SHA-1, SHA-256, and the RIPEMD-
family [18, 19, 3, 20]. The attack results are summarized in Table 1. Note that
the notion of the almost universal forgery attack was firstly mentioned by [5],
while some of previous attacks e.g. [10] can directly be applied for this scenario.

Our Contributions

In this paper, we propose generic attacks on LPMAC instantiating any narrow-
pipe Merkle-Damg̊ard hash function. We firstly propose a distinguishing-H at-
tack with 3 ·2n/2 queries, 2n/2 offline computations, and a memory to store 2n/2

tags. Our attack updates the previous results, namely full rounds are attacked
with O(2n/2) complexity. Moreover, the attack can be memoryless by using the
technique in [21, Remark9.93]. The complexity of our attack is listed in Table 1.

Our attack is based on a new technique which makes an internal collision
starting from two different length-prepend values, and recovers an internal state
value with queries of different lengths. This approach is completely different from
previous attacks on LPMAC, which utilize the existence of a high-probability

IV h h

K||2 M
1

IV h h

h
K||3 M

1
’

M
2
=M

2
’

h

M
3
’

H
1

H
1
’

H
3

H
2

H
4

H
2
’

σ ’

(=σ)

H
0

H
0

Fig. 1. Sketch of Distinguish-H Attack

h

Md+1

h

Md+2
K||d+1

K||d+2

K||d+t

h

M(d+1)

M(d+2)

Tag for (M(d+1)||Md+1)

Tag for (M(d+2)||Md+1||Md+2)
Multi-collision

with the diamond

structure

d = log2(k)

σ

Mt

Tag for (M(d+t)||Md+1|| ||Md+(t-d))

M(d+(t-d))

Fig. 2. Sketch of Almost Universal Forgery Attack

differential path of an underlying compression function. The idea of our technique
is depicted in Fig. 1. The outline is as follows. We start from two length-prepend
values; one is for 2-block messages and the other is for 3-block messages. With
a very high probability, the internal states H1 and H ′

1 will be different values.
Assume that we can easily obtain paired messages (M1,M

′
1) such that h(H1,M1)

and h(H ′
1, M

′
1) form an internal collision. Then, we can obtain the value of

H4(= σ′), which is the output of the last compression function, by querying
M ′

1‖M ′
2‖M ′

3. In addition, we can obtain the value of H3(= σ), which is the
input of the last compression function by querying M1‖M2. Because we obtain
all input and output information for the last compression function, we can judge
whether h is the target algorithm or not by comparing h(σ,M ′

3) and σ′.
As mentioned before, the length prepending scheme is known to be prefix-

free. However, an internal collision with different length-prepend values have the
same effect as the prefix. In fact, in Fig. 1, M1‖M2 can be regarded as a prefix
of M ′

1‖M ′
2‖M ′

3. This shows that the core of the security of LPMAC, which is the
pre-fix freeness, can be totally broken with O(2n/2) queries.

We then further extend the technique to mount an even stronger attack
against LPMAC, which is called an almost universal forgery attack. In this at-

tack, for a given t-block message M1‖M2‖ · · · ‖Mt, we assume the attacker’s abil-
ity to modify the first d message blocks where d = dlog te into the value of his
choice M ′

1‖M ′
2‖ · · · ‖M ′

d. Then, the attacker forges the tag for M ′
1‖ · · ·M ′

d‖Md+1‖
· · · ‖Mt. Moreover, in our attack, the attacker can reveal the internal state value.
The main idea is constructing a multi-collision starting from various different
length-prepend values, which is depicted in Fig. 2. This enables the attacker to
deal with various undetermined length-prepend values (1, . . . , t) in advance. To
construct the multi-collision, we use the diamond structure proposed by Kelsey
and Kohno for the herding attack [22].

Paper Outline

In Sect. 2, we introduce LPMAC and briefly summarize related work. In Sect. 3,
we explain our generic distinguishing-H attack. In Sect. 4, we explain our generic
almost universal forgery attack. In Sect. 5, we conclude this paper.

2 Related Work

2.1 LPMAC with Narrow-Pipe Merkle-Damg̊ard Hash Functions

LPMAC is a hash function based MAC construction observed by Tsudik [1]
to prevent the so called length-extension attack on the secret-prefix MAC. In
LPMAC, the length of the message to be hashed is prepended before the message
is hashed, that is to say, σ ← H(K‖`‖M), where ` is the length of M .

Most of widely used hash functions adopt the Merkle-Damg̊ard domain exten-
sion with the narrow-pipe structure and the MD-strengthening. In this scheme,
the input message M is first padded to be a multiple of the block-length by the
padding procedure. Roughly speaking, a single bit ‘1’ is appended to M , and
then a necessary number of ‘0’s are appended. Finally, the length of M is ap-
pended. Note that this padding scheme is not only the one, and replacing it with
another padding scheme e.g. split padding [23] is possible. However, we only use
it in this paper because it is the most common. The padded message is divided
into message blocks M0,M1, . . . ,Mt−1 with the block size of b bits. Then, the
hash value of size n is computed by iteratively updating the chaining variable of
size n bits with the compression function h defined as {0, 1}n×{0, 1}b → {0, 1}n;

H0 ← IV, Hi+1 ← h(Hi,Mi) for i = 0, 1, . . . , t− 1, (1)

where IV is an n-bit pre-specified value. Finally, Ht is the hash value of M .
In this paper, for simplicity, we assume that K‖` is always padded to be

1-block long. Note that all of our attacks can work without this assumption by
fixing remaining message bits in the first block to some constant value, say 0.

2.2 Summary of Previous Analyses on MAC Algorithms

To distinguish the target compression function h from a random function r, pre-
vious distinguishing-H attacks exploited a high probability differential path on
h. Assume that a good near-collision path exists, namely there exists (∆, ∆′)
such that h(c,m) ⊕ h(c,m ⊕ ∆) = ∆′ holds with probability p where p > 2−n

for a randomly chosen c and m. Then, h is distinguished by querying 1/p paired
messages with difference ∆ and checking whether the output difference is ∆′. To
construct a high probability differential path, we usually need the difference of
the input chaining variable (pseudo-near collision). However, because the MAC
computation starts from the secret information, it is hard to generate a spe-
cific difference on intermediate chaining variables, and is also hard to detect it
only from the tag values. Wang et al. [17] solved these problems by using the
birthday attack to generate a specific difference of an intermediate chaining vari-
ables and efficiently detect it only by changing the next message block. Previous
distinguishing-H attacks on LPMAC [18, 19, 3, 20] used the similar idea as [17].
As long as the birthday attack is used to generate an intermediate difference,
the attack complexity is between 2n/2 and 2n.

2.3 Multi-Collision Attack

The naive method to construct a multi-collision is too expensive. For narrow-pipe
Merkle-Damg̊ard hash functions, several generic attacks to construct a multi-
collision are known; collisions of sequential blocks [24], collisions with a fixed
point [25], an expandable message [26], a diamond structure [22], and multi-pipe
diamonds [27]. These are the methods to attack hash functions, which no secret
exists in the computation. Because our attack is targeting MAC with secret
information, we should choose the most suitable construction carefully.

3 Generic Distinguishing-H Attack on LPMAC

In this section, we present a generic distinguishing-H attack on a narrow-pipe
Merkle-Damg̊ard hash function. The attack complexity is 3·2n

2 queries, 2
n
2 offline

computations, and a memory to store 2
n
2 (n + b)-bit information. Moreover, the

attack becomes memoryless with 6 · 2n
2 queries and 2

n
2 +1 offline computations.

The results indicate that the hardness of the distinguishing-H attack on LPMAC
is almost the same level as the distinguishing-R attack when a narrow-pipe
Merkle-Damg̊ard hash function is used.

3.1 Main Idea

Our attack is based on a new technique which makes an internal collision starting
from two different length-prepend values t1 and t2 where t1 < t2. The idea is
illustrated in Fig. 3. First the attacker generates 2n/2 t2-block messages which
start from the length-prepend value t2 and the last t2 − t1 blocks are fixed to

IV h h

K||t
1

M
1

IV h h

K||t
2

M
1
’

H
1

H
1
’

σ ’

σ

h

M
t1
’

H
2
’ H

t1
’ H

t1+1

h

M
t1

H
2

H
t1

H
t1+1

h

M
t1+1

h

M
t2

(=σ)
H
t2+1

H
t2

Fig. 3. Internal Collision with Different Length-Prepend Values

IV h h

K||1 M1||P1

IV h h h

K||2 M1’ M2’||P2

σ’

σ
H1

H1’ H2’
(=σ)

h

M2’||P2

σ’?

simulatable

at offline

(fixed)

(fixed)

Fig. 4. Procedure of Distinguishing-H Attack

some value. Then he generates 2n/2 t1-block messages starting from the length-
prepend value t1 and further computes t2 − t1 blocks at offline with the fixed
value. By checking their match, the inner collision at Ht1+1 can be detected
with a good probability. The attacker can know the values of Ht1+1 and Ht2+1

by querying the colliding t1-block message and t2-block message, respectively.
Therefore, by simulating the last t2 − t1 blocks at offline, which of h or r is
instantiated can be detected.

3.2 Attack Procedure

We assume that the MD-strengthening is used as the padding procedure of the
underlying hash function, because it is adopted by most of widely used hash
functions. The attack procedure is described in Alg. 1, which is also depicted in
Fig. 4. Note that the length-prepend value can be chosen by the distinguisher.
The attack procedure returns a bit 1 if the underlying compression function is
h and a bit 0 if the underlying compression function is r.

Attack Evaluation. Alg. 1 correctly returns a bit 1 only if the compression
function is h.

Let us evaluate the probability that Alg. 1 returns a bit 1 when the compres-
sion function is h. In the above procedure, we generate 2n/2 values for H2(= σ)

Algorithm 1 Distinguishing-H Attack
Input: a compression function algorithm h to be distinguished
Output: a determining bit 0 or 1
1: Randomly choose the value of M ′

2 so that the padding string P2 is included in the
same block.

2: for 2n/2 different values of M ′
1 do

3: Query M ′
1‖M ′

2 to obtain the corresponding tag σ′

4: Store the pair of (M ′
1, σ

′) in a table T .
5: end for
6: for 2n/2 different values but the same length of M1 whose padding string P1 is

included in the same block do
7: Query M1 and obtain the corresponding tag σ.
8: Compute temp ← h(σ, M ′

2‖P2) at offline.
9: Check if the same value as temp exists in T .

10: if the same value exists then
11: Replace M ′

2 with M ′
2 such that M ′

2 6= M ′
2 and |M ′

2| = |M ′
2|.

12: Query M ′
1‖M ′

2 to obtain the corresponding tag σ′.
13: Compute temp ← h(σ, M ′

2‖P2) at offline.
14: if σ′ = temp then
15: Return a bit 1.
16: end if
17: end if
18: end for
19: Return a bit 0.

and 2n/2 values for H ′
2, and thus we have 2n pairs of (H2,H

′
2). Hence, we have

a collision (H2 = H ′
2) with probability 1 − e−1. If H2 = H ′

2, the simulated
value temp and σ′ always become a collision due to the identical message in the
last block. Note that we happen to have a collision at Step 9 even if H2 6= H ′

2

with probability 1 − e−1. This collision is noise in order to detect the internal
collision. However, with the additional check at Step 14, the internal collision
pair (H2 = H ′

2) also generates a collision for M ′
2 with probability 1, whereas

the noise collision only produces another collision with probability 2−n. Overall,
Alg. 1 returns a bit 1 with a probability of 1−e−1 and this is a right pair making
an internal collision with probability 1− 2−n ≈ 1.

Let us evaluate the probability that Alg. 1 returns a bit 1 when the com-
pression function is r. An internal collision H2 = H ′

2 occurs with probability
1 − e−1. However, the collision between H2 and H ′

2 is not preserved between
temp and σ′ at Step 9. This is because σ′ is obtained by a query and thus
σ′ = r(H2,M

′
2‖P2), whereas, temp is computed based on the algorithm of h

at offline and thus temp = h(H2, M
′
2‖P2). The probability that r(H2,M

′
2‖P2)

collides with h(H2,M
′
2‖P2) is 2−n. As a result, we expect to obtain only one

collision at Step 9, and the probability that this pair generates another collision
at Step 14 is 2−n. Overall, Alg. 1 returns 1 only with probability 2−n. This is
significantly smaller than the probability for the case of h.

Complexity Evaluation. The iteration at Step 2 requires to query 2n/2 2-
block messages and to store 2n/2 tag values and corresponding messages. Hence,
the query complexity is 2(n/2)+1 message blocks and the memory complexity is
2n/2(n + b) bits, where b is the block size. The iteration at Step 6 requires to
query 2n/2 1-block messages and to compute h for each of them. Hence, the query
complexity is 2n/2 message blocks and the time complexity is 2n/2 compression
function computations. Overall, the total attack cost is 3 · 2n/2 message blocks
in query, 2n/2 h computations in time, and 2n/2(n + b) bits in memory.

Memoryless Attack. The core of the attack is a collision finding problem
on an internal state, thus it can be memoryless with the well-known technique
using the cycle structure. Because it needs a collision starting from two different
length-prepend values, the problem is a memoryless meet-in-the-middle attack
[21, Remark9.93] rather than a memoryless collision attack. To make the cycle,
we define the computation from an internal state value si to si+1 as follows.

- If the LSB of si is 0, apply procedure F . If the LSB of si is 1, apply G.
F : Convert an n-bit string si into a b-bit string sFi e.g. by appending 0s. Query

sFi ‖M ′
2 to obtain σ′ and set si+1 ← σ′.

G : Convert an n-bit string si into a string sGi by some appropriate method so
that the padding string P1 is included in the same block. Query sGi to obtain
σ and compute si+1 ← h(σ,M ′

2‖P2) at offline.

Finally, the attack can be memoryless with double of the query and time com-
plexities, which are queries of 6 · 2n/2 message blocks and 2(n/2)+1 computations
of h.

Impact of the Attack. The goal of the attack presented in this section is the
distinguishing-H attack. However, the attack not only distinguishes h from r,
but also achieves a much stronger result, which is the recovery of the internal
state. The knowledge of the internal state leads to much stronger attacks.

The first application is the length-extension attack. We use Fig. 3 to explain
the attack. As explained in Sect. 3.1, our attack first recovers the internal state
value ht1+1. That is, we know that any t2-block message whose first t1 blocks
are fixed to M ′

1‖M ′
2‖ · · · ‖M ′

t1 will result in the known collision value at ht1+1.
Therefore, for any (t2 − t1)-block message Mt1+1‖ · · · ‖Mt2 , the attacker can
compute the tag for M ′

1‖ · · · ‖M ′
t1‖Mt1+1‖ · · · ‖Mt2 only with one offline compu-

tation (of t2 − t1 blocks) without knowing the value of K. In other words, the
length-extension attack can be performed once an internal collision with different
length-prepend values is detected.

One may suspect that this length extension attack is the same as the existen-
tial forgery because it requires O(2n/2) queries. However, obtaining the knowl-
edge of the internal state is actually stronger than the distinguish-R attack [7]
because it forges the tag of a message of t2 blocks long without any more query.

It may be interesting to see our attack from a different viewpoint. The secu-
rity proof of LPMAC by Bellare et al. assumed the prefix-freeness of the construc-
tion, where the prefix-freeness means that any message is not the prefix of other
messages. Due to the length-prepend values, LPMAC satisfies the prefix-freeness.
However, an internal collision starting from different length-prepend values has
the same effect as the prefix. In fact in the above explanation, M1‖ · · · ‖Mt1 can
be regarded as a prefix of M ′

1‖ · · · ‖M ′
t1‖Mt1+1‖ · · · ‖Mt2 , and thus the length-

extension attack is applied. Note that our attack requires 3 · 2n/2 queries and
thus does not contradict with the security proof by Bellare et al. where LPMAC
is a secure PRF up to 2n/2 queries.

One limitation of this length extension attack is that it only can forge the
tag for messages of t2 blocks long. We remove this limitation in the next section.

4 Generic Almost Universal Forgery Attack on LPMAC

The almost universal forgery attack was mentioned by Dunkelman et al. [5]. The
original explanation by [5] is as follows.

we can find in linear time and space the tag of essentially any desired
message m chosen in advance, after performing a onetime precomputa-
tion in which we query the MAC on 2n/2 messages which are completely
unrelated to m. The only sense in which this is not a universal forgery
attack is that we need the ability to modify one message block in an easy
to compute way.

In the attack by [5], the first message block of the given message is modified by
applying the XOR with two precomputed values.

In our attack, the attacker first determines parameter t, which is the limita-
tion of the block-length of a message to be forged. For parameter t, the block
length of the target message must be longer than d blocks and shorter than or
equal to d + t blocks, where d = dlog2 te. We perform a onetime precomputa-
tion; query tags for (t− 1) · 2n/2 messages of at most d + t blocks long (in total
O(2t2 · 2n/2) message blocks) which are completely unrelated to a target mes-
sage M , and perform t · 2n/2 offline computations of h. At the online stage, we
replace the first d blocks of M(M1‖M2‖ · · · ‖Md) with the precomputed values
M ′

1‖M ′
2‖ · · · ‖M ′

d. Then, the attacker generates the tag for the modified message
only with one offline computation (without any query).

4.1 Easiness and Hardness of Almost Universal Forgery Attack

Easiness of Almost Universal Forgery Attack on Various MACs. First
of all, we point out that the almost universal forgery attack is trivial for var-
ious MACs with an iterated structure such as HMAC if the precomputation
that queries O(2n/2) messages is allowed. To achieve this, we can simply run
the distinguishing-R attack by [7]. In details, we generate a pair of one-block
messages (X1, X

′
1) which forms an internal collision. Then, for any given target

message M1‖M2‖ · · · ‖Mt, we replace M1 with X1 and query X1‖M2‖ · · · ‖Mt.
The corresponding tag is also the valid tag for X ′

1‖M2‖ · · · ‖Mt.

Hardness of Almost Universal Forgery Attack on Prefix-Free MACs.
The above attack cannot be applied for prefix-free MACs such as LPMAC in an
easy manner. Regarding LPMAC, if the length (not value) of the target message
is given to the attacker, the almost universal forgery attack can be performed
with the attack presented in Sect. 3.2. However, if the length is not given, per-
forming the precomputation on LPMAC is hard. This is because, in LPMAC,
the length-prepend value changes depending on the length of the message to be
processed. Hence, without the knowledge of the length of the target message,
performing the precomputation seems hard.

A simple method to deal with various length-prepend values in advance is
performing the internal state recovery attack in Sect. 3.2 many times. Suppose
that you apply the almost universal forgery attack for a message of ` blocks
where 1 ≤ ` ≤ t, but the exact value of ` is unknown during the precomputation
stage. You first assume ` = 1 and apply the internal state recovery attack with
the O(2n/2) complexity. Then, the value of ` is changed into 2, 3, . . . , t and the
internal state recovery attack is performed for each of `. Finally, the almost
universal forgery attack can be performed for any `-block message where 1 ≤
` ≤ t with t times O(2n/2) queries where each query consists of at most t-blocks.

In the following part, we show another approach with the same complexity
as the simple method at the order level, but seems to have more applications.

4.2 Overall Strategy

Our idea is constructing an internal multi-collision starting from various length-
prepend values as shown in Fig. 5. Assume that a one-block message X makes a
multi-collision for ` = 2, 3, . . . , 9, that is, h(h(IV,K‖2), X) = h(h(IV, K‖3), X) =
· · · = h(h(IV,K‖9), X). Also assume that the attacker knows the collision value
denoted by Y . Then, for any message with the block length 2 to 9, we know that
replacing the first block with X results in the chaining variable Y , and thus the
computation for the remaining message blocks can be simulated at offline.

Finding a multi-collision within one block is very inefficient. For the Merkle-
Damg̊ard structure, several constructions of the multi-collision are known as
explained in Sect. 2.3. Considering that our multi-collision needs to start from
different values due to different length-prepend values, the diamond structure
[22] and multi-pipe diamonds [27] are suitable. The diamond structure was pro-
posed for the herding attack and the multi-pipe diamonds were proposed for the
herding attack on more complicated structures such as the cascaded construction
or zipper hash. So far, we have not discovered the way to utilize the multi-pipe
diamonds. We thus construct the multi-collision based on the diamond structure.
The construction is described in Fig. 6.

IV h h

K||2 X

IV h h

K||3

IV h h

K||9

Y

Fig. 5. Length Adjustment
with Multi-collision

IV h
K||3+1

IV h
K||3+7

IV h
K||3+3

IV h
K||3+2

IV h
K||3+4

IV h
K||3+5

IV h
K||3+6

IV h
K||3+8

h

M1
1

h

M1
2

h

M1
3

h

M1
4

h

M1
5

h

M1
6

h

M1
7

h

M1
8

h

M2
1

h

M2
2

h

M2
3

h

M2
4

h

M3
1

h

M3
2

H4

t = 8, d=log2t = 3

M(6):=M1
6||M2

3||M3
2

(=H*)

Fig. 6. Multi-Collision with Diamond Structure for t = 8

4.3 Multi-Collision with Diamond Structure

We explain how to construct a multi-collision with the diamond structure. Be-
cause our attack target is a MAC with secret information and the length prepend-
ing scheme, we need to detect an internal collision only with queries and tag
values. In Alg. 2, we show the procedure to generate a collision starting from
` = t and ` = t + 1, which is also described in Fig. 7. It is easy to see that if a
collision can be generated, the entire diamond can be constructed by iteratively
generating collisions.

In this attack we fix all message words but M1 and M ′
1 to identical value.

Therefore, the collision generated by M1 and M ′
1 can be observed as a collision

IV h h

K||t M1

IV h

K||t+1

H1

σh

M
t
||P

h

M2

H2

h

M3

h

M1’

H1’

σ ’h

M
t
’

h

M2’

H2’

h

M3’

h

M
t+1’||P’

h

M
t

s

=M
t
||P=M2 =M3

=M
t+1’||P’

co
ll

is
io

n
?

fixed fixed fixed

desired internal collision noise collisions

offline comp.

H3

H3’

H
t

H
t
’

Fig. 7. Construction of an Internal Collision for ` = t and t + 1

Algorithm 2 Construction of an Internal Collision for ` = t and t + 1
Input: ` = t (and t + 1)
Output: a pair of message M t

1 and M t+1
1 such that h(h(IV, K‖t), M t

1) =
h(h(IV, K‖t + 1), M t+1

1)
1: Fix the values of M2, M3, . . . , Mt so that the padding string P is included in the

same block as Mt.
2: Set M ′

i ← Mi for i = 2, 3, . . . , t− 1. Set M ′
t ← Mt‖P .

3: Fix the value of M ′
t+1 so that the padding string P ′ is included in the same block

as M ′
t+1.

4: for 2n/2 different values of M ′
1 do

5: Query M ′
1‖M ′

2‖ · · · ‖M ′
t+1 to obtain the corresponding tag σ′.

6: Store the pair of (M ′
1, σ

′) in a table T .
7: end for
8: for 2n/2 different values of M1 do
9: Query each M1‖M2‖ · · · ‖Mt and obtain the corresponding tag σ.

10: Compute temp ← h(σ, M ′
t+1‖P ′) at offline.

11: Check if the same value as temp exists in T .
12: if the same value exists then
13: Choose a value of M2 such that M2 6= M2.
14: Set M ′

2 ← M2.
15: Query M ′

1‖M ′
2‖M ′

3‖ · · · ‖M ′
t+1 to obtain the corresponding tag σ′.

16: Query M1‖M2‖M3‖ · · · ‖Mt to obtain the corresponding tag σ, and compute
temp ← h(σ, M ′

t+1‖P ′).
17: if σ′ = temp then
18: Return M1 and M ′

1.
19: end if
20: end if
21: end for

of the tag. Because we try 2n/2 different M1 at Step 8 and 2n/2 different M ′
1 at

Step 4, we will obtain a collision H2 = H ′
2 with probability 1 − e−1. Note that

even if H2 6= H ′
2, we have other opportunities of obtaining collisions H3 = H ′

3,
H4 = H ′

4, and so on. These are noise to obtain a collision at H2, and thus need
to be filtered out. For this purpose, for all tag collisions, we replace M2 and M ′

2

with another fixed value and check if another collision is generated (Step 17).
The complexity of the attack is as follows. At Step 4, it queries (t + 1) · 2n/2

message blocks and requires a memory to store 2n/2 tags. At Step 8, it queries
t ·2n/2 message blocks and computes h at offline 2n/2 times. We expect to obtain
one desired internal collision and t noise collisions. Therefore Steps 15 and 16
are computed t + 1 times and it requires to query 2(t + 1)2 message blocks
and 2(t + 1)2 offline computations. Overall, the cost of Alg. 2 is approximately
(2t+1) · 2n/2 queries and 2n/2 offline computations and a memory for 2n/2 tags.
Note that the attack can be memoryless as discussed in Sect. 3.

Hereafter we denote the value of the multi-collision at Hd+1 by H∗. We also
denote the d-block message starting from ` = i and reaching H∗ by M (i). For
example, in Fig. 6, M (1) := M1

1 ‖M1
2 ‖M1

3 and M (6) := M6
1 ‖M3

2 ‖M2
3 .

Algorithm 3 Forging Procedure
Output: a pair of message in which the first d blocks are modified and valid tag

Offline phase
1: Construct the diamond structure which can be used to forge the message whose

length is longer than d blocks and shorter than or equal to d+t blocks with 2t2 ·2n/2

queries and t · 2n/2 offline computations.

Online phase
2: Receive a target message M∗ whose length is ` blocks where d < ` ≤ d + t, that is,

M∗ = M∗
1 ‖M∗

2 ‖ · · · ‖M∗
` .

3: Replace the first d blocks of M∗ with M (`).
4: Compute the tag value by using Hd+1(= H∗) and M∗

d+1‖M∗
d+2‖ · · · ‖M∗

` , which is
denoted by σ∗.

5: return a pair of message and valid tag (M (`)‖M∗
d+1‖M∗

d+2‖ · · · ‖M∗
` , σ∗).

Complexity for Entire Diamond Structure. By using Alg. 2, we evaluate
the complexity for constructing the entire structure. Assume that we generate
a diamond structure which can be used to forge the message whose length is
longer than d blocks and shorter than or equal to d + t blocks where d = log2 t.

The complexity of generating one collision starting from two different ` is
determined by the bigger value of `. In this example, the biggest value of ` is
d + t and thus the complexity for generating collisions with other ` is smaller
than this case. According to Alg. 2, the complexity for the case ` = d + t is
(2(d + t) + 1) · 2n/2 queries and 2n/2 offline computations. The number of the
leaf in the diamond structure is t, and thus we need to generate a collision t− 1
times. Hence, the total complexity is less than (t− 1)(2t + 2d + 1) · 2n/2 queries
and (t − 1) · 2n/2 offline computations. If only the head term is considered, the
complexity is 2t2 · 2n/2 queries and t · 2n/2 offline computations.

4.4 Forging Procedure

Finally, we show how to produce a forged tag in Alg. 3. The construction of the
diamond structure is completely independent of the online phase. As long as the
block length ` of the given message M∗ is in the valid range, by replacing the
first d(= log2 t) blocks of M∗ with M (`), the tag for M (`)‖M∗

d+1‖M∗
d+2‖ · · · ‖M∗

`

is computed only with one t-block offline computation.

4.5 Comparison between Simple Method and Diamond Structure

We compare the simple method in Sect. 4.1 (applying the internal state recovery
attack t times) and the diamond structure. As long as only the almost universal
forgery attack is considered, the simple method is better than the diamond
structure. The simple method does not require the offline computation in the
precomputation phase, and the number of message blocks we need to replace is
only 1 which is shorter than d = log2 t.

h

M
d+1

h

M
d+2

h

A Multi-collision with

the diamond structure
M

t-1

H*

H
t

Long message attack

H*

H
t

Herding attack

Fig. 8. Examples of potential applications of the diamond structure. The application
is finding a message which connects the multi-collision H∗ to one of chaining variables.
The length information cannot be adjusted in advance.

On the other hand, the diamond structure has a unique property; it achieves
a common internal state value for various length-prepend values. So far, good
applications of this property have not been discovered. However, we show an
example that gives some intuition to use the property. Let us consider the con-
nection problem; the goal is finding a message block for the compression function
h, which the input chaining variable is fixed to a given value and there are several
target output values with different message lengths. The long-message second
preimage attack and herding attack in Fig. 8 are such problems, though these
problems are for the key-less situations. Finding suitable applications is an open
problem.

5 Concluding Remarks

In this paper, we presented two cryptanalyses on LPMAC. Our first result
was a generic distinguishing-H attack on LPMAC instantiating a narrow-pipe
Merkle-Damg̊ard hash function with a complexity of O(2n/2). This showed that
the widely believed assumption that a secure hash function should have the
n-bit security against the distinguishing-H attack was not correct. Note that
although previous results were updated by our generic attack with respect to
the distinguish-H attack, the approach was very different. Finding a new prob-
lem which the previous differential distinguishers can work faster than a generic
attack is an open problem. Our attacks are based on the new technique which
generates an internal collision starting from different length-prepend values. One
of such colliding messages can be regarded as the prefix of the other colliding mes-
sage, and thus the core of the security of LPMAC, which is the prefix-freeness,
is completely broken.

Our second result was an almost universal forgery attack on LPMAC. With
the precomputation of 2t2 · 2n/2 queries and t · 2n/2 offline computations, we
constructed the diamond structure which could realize an identical intermediate

value from t different length-prepend values. Hence, by modifying the first log2 t
message blocks into the value of the attacker’s choice, the internal state was
recovered and the valid tag of the modified message was forged with only 1
offline computation. Our results show that the security of the length-prepending
structure can be totally broken with O(2n/2) queries, and thus it is not enough
to achieve a secure MAC.

Acknowledgements

The author would like to thank Lei Wang for his comments about the simple
method of the almost universal forgery attack on LPMAC. The author also
would like to thank the participants of Dagstuhl-Seminar (Jan. 2012), especially
Orr Dunkelman and Adi Shamir for their comments on the memoryless meet-in-
the-middle attack. Finally, the author would like to thank anonymous referees
of Eurocrypt2012 for their helpful comments and suggestions.

References

1. Tsudik, G.: Message authentication with one-way hash functions. In: ACM SIG-
COMM Computer Communication Review. Volume 22(5)., ACM (1992) 29–38

2. U.S. Department of Commerce, National Institute of Standards and Technology:
Federal Register /Vol. 72, No. 212/Friday, November 2, 2007/Notices. (2007) http:
//csrc.nist.gov/groups/ST/hash/documents/FR Notice Nov07.pdf.

3. Wang, X., Wang, W., Jia, K., Wang, M.: New distinguishing attack on MAC
using secret-prefix method. In Dunkelman, O., ed.: Fast Software Encryption 2009.
Volume 5665 of Lecture Notes in Computer Science., Berlin, Heidelberg, New York,
Springer-Verlag (2009) 363–374

4. Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited: The
cascade construction and its concrete security. In: FOCS. (1996) 514–523

5. Dunkelman, O., Keller, N., Shamir, A.: ALRED blues: New attacks on AES-based
MACs. Cryptology ePrint Archive, Report 2011/095 (2011) http://eprint.iacr.
org/2011/095.

6. Kim, J., Biryukov, A., Preneel, B., Hong, S.: On the security of HMAC and NMAC
based on HAVAL, MD4, MD5, SHA-0 and SHA-1. In Prisco, R.D., Yung, M., eds.:
Security in Communication Networks SCN 2006. Volume 4116 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, Heidelberg, New York (2006) 242–256

7. Preneel, B., van Oorschot, P.C.: MDx-MAC and building fast MACs from hash
functions. In Coppersmith, D., ed.: Advances in Cryptology — CRYPTO 1995.
Volume 963 of Lecture Notes in Computer Science., Berlin, Heidelberg, New York,
Springer-Verlag (1995) 1–14

8. Chang, D., Nandi, M.: General distinguishing attacks on NMAC and HMAC with
birthday attack complexity. Cryptology ePrint Archive, Report 2006/441 (2006)
http://eprint.iacr.org/2006/441.

9. Jia, K., Wang, X., Yuan, Z., Xu, G.: Distinguishing and second-preimage attacks
on CBC-like MACs. In Garay, J.A., Miyaji, A., Otsuka, A., eds.: Cryptology
and Network Security, CANS 2009. Volume 5888 of Lecture Notes in Computer
Science., Berlin, Heidelberg, New York, Springer-Verlag (2009) 349–361

10. Yuan, Z., Wang, W., Jia, K., Xu, G., Wang, X.: New birthday attacks on some
MACs based on block ciphers. In Halevi, S., ed.: Advances in Cryptology —
CRYPTO 2009. Volume 5677 of Lecture Notes in Computer Science., Berlin, Hei-
delberg, New York, Springer-Verlag (2009) 209–230

11. Contini, S., Yin, Y.L.: Forgery and partial key-recovery attacks on HMAC and
NMAC using hash collisions. In Lai, X., Chen, K., eds.: Advances in Cryptology —
ASIACRYPT 2006. Volume 4284 of Lecture Notes in Computer Science. Springer-
Verlag, Berlin, Heidelberg, New York (2006) 37–53

12. Fouque, P.A., Leurent, G., Nguyen, P.: Full key-recovery attacks on
HMAC/NMAC-MD4 and NMAC-MD5. In Menezes, A., ed.: Advances in Cryp-
tology — CRYPTO 2007. Volume 4622 of Lecture Notes in Computer Science.,
Berlin, Heidelberg, New York, Springer-Verlag (2007) 15–30

13. Lee, E., Kim, J., Chang, D., Sung, J., Hong, S.: Second preimage attack on 3-pass
HAVAL and partial key-recovery attacks on NMAC/HMAC-3-pass HAVAL. In
Nyberg, K., ed.: Fast Software Encryption — 15th International Workshop, FSE
2008. Volume 5086 of Lecture Notes in Computer Science., Berlin, Heidelberg, New
York, Springer-Verlag (2008) 189–206

14. Rechberger, C., Rijmen, V.: On authentication with HMAC and non-random
properties. In Dietrich, S., Dhamija, R., eds.: Financial Cryptography 2007. Vol-
ume 4886 of Lecture Notes in Computer Science., Berlin, Heidelberg, New York,
Springer-Verlag (2007) 119–133

15. Rechberger, C., Rijmen, V.: New results on NMAC/HMAC when instantiated
with popular hash functions. Journal of Universal Computer Science 14(3) (2008)
347–376

16. Wang, L., Ohta, K., Kunihiro, N.: New key-recovery attacks on HMAC/NMAC-
MD4 and NMAC-MD5. In Smart, N.P., ed.: Advances in Cryptology — EURO-
CRYPT 2008. Volume 4965 of Lecture Notes in Computer Science. Springer-Verlag,
Berlin, Heidelberg, New York (2008) 237–253

17. Wang, X., Yu, H., Wang, W., Zhang, H., Zhan, T.: Cryptanalysis on
HMAC/NMAC-MD5 and MD5-MAC. In Joux, A., ed.: Advances in Cryptol-
ogy — EUROCRYPT 2009. Volume 5479 of Lecture Notes in Computer Science.
Springer-Verlag, Berlin, Heidelberg, New York (2009) 121–133

18. Qiao, S., Wang, W., Jia, K.: Distinguishing attack on secret prefix MAC instan-
tiated with reduced SHA-1. In Lee, D., Hong, S., eds.: ICISC 2009. Volume 5984
of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Heidelberg, New
York (2010) 349–361

19. Wang, G.: Distinguishing attacks on LPMAC based on the full RIPEMD and
reduced-step RIPEMD-{256, 320}. In Lai, X., Yung, M., Lin, D., eds.: Inscrypt
2010. Volume 6584 of Lecture Notes in Computer Science., Berlin, Heidelberg, New
York, Springer-Verlag (2011) 199–217

20. Yu, H., Wang, X.: Distinguishing attack on the secret-prefix MAC based on the
39-step SHA-256. In Boyd, C., Nieto, J.M.G., eds.: Information Security and
Privacy, 14th Australasian Conference, ACISP 2009. Volume 5594 of Lecture Notes
in Computer Science., Berlin, Heidelberg, New York, Springer-Verlag (2009) 185–
201

21. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of applied cryptog-
raphy. CRC Press (1997)

22. Kelsey, J., Kohno, T.: Herding hash functions and the Nostradamus attack. In
Vaudenay, S., ed.: Advances in Cryptology — EUROCRYPT 2006. Volume 4004
of Lecture Notes in Computer Science., Berlin, Heidelberg, New York, Springer-
Verlag (2006) 183–200

23. Yasuda, K.: How to fill up Merkle-Damg̊ard hash functions. In Pieprzyk, J., ed.:
Advances in Cryptology — Aasiacrypt 2008. Volume 5350 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, Heidelberg, New York (2008) 272–289

24. Joux, A.: Multicollisions in iterated hash functions. Application to cascaded con-
structions. In Franklin, M., ed.: Advances in Cryptology — CRYPTO 2004. Vol-
ume 3152 of Lecture Notes in Computer Science., Berlin, Heidelberg, New York,
Springer-Verlag (2004) 306–316

25. Dean, R.D.: Formal aspects of mobile code security. Ph.D Dissertation, Princeton
University (1999)

26. Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much less
than 2n work. In Cramer, R., ed.: Advances in Cryptology — EUROCRYPT
2005. Volume 3494 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,
Heidelberg, New York (2005) 474–490

27. Andreeva, E., Bouillaguet, C., Dunkelman, O., Kelsey, J.: Herding, second preim-
age and Trojan message attacks beyond Merkle-Damg̊ard. In Jacobson Jr., M.J.,
Rijmen, V., Safavi-Naini, R., eds.: Selected Areas in Cryptography SAC 2009. Vol-
ume 5867 of Lecture Notes in Computer Science., Berlin, Heidelberg, New York,
Springer-Verlag (2009) 393–414

