Dual Projective Hashing and its Applications
— Lossy Trapdoor Functions and More

Hoeteck Wee*

George Washington University
hoeteckQgwu.edu

Abstract. We introduce the notion of dual projective hashing. This is similar
to Cramer-Shoup projective hashing, except that instead of smoothness, which
stipulates that the output of the hash function looks random on NO instances,
we require invertibility, which stipulates that the output of the hash function on
NO instances uniquely determine the hashing key, and moreover, that there is a
trapdoor which allows us to efficiently recover the hashing key.

— We show a simple construction of lossy trapdoor functions via dual projec-
tive hashing. Our construction encompasses almost all known constructions
of lossy trapdoor functions, as given in the works of Peikert and Waters
(STOC ’08) and Freeman et al. (PKC ’10).

— We also provide a simple construction of deterministic encryption schemes
secure with respect to hard-to-invert auxiliary input, under an additional
assumption about the projection map. Our construction clarifies and encom-
passes all of the constructions given in the recent work of Brakerski and
Segev (Crypto ’11). In addition, we obtain a new deterministic encryption
scheme based on LWE.

1 Introduction

In [14], Cramer and Shoup introduced a new primitive called smooth projective hashing
as an abstraction of their earlier chosen-ciphertext (CCA) secure encryption scheme
[13]. This primitive has since found numerous applications beyond CCA security,
notably password-authenticated key exchange, two-message oblivious transfer, and
leakage-resilient encryption [20, 22, 31]. In each of these cases, the connection to
smooth projective hashing provided two important benefits: first, a more intuitive
description and analysis of previous (sometimes seemingly ad-hoc) schemes given
respectively in [27], [30, 1] and [2]; second, new instantiations based on different cryp-
tographic assumptions, such as quadratic residuocity (QR) and decisional composite
residuocity (DCR) [33].

Informally, smooth projective hashing refers to a family of hash functions {Hj } indexed
by a hashing key k£ and whose input u comes from some “hard” language. The projective

* Supported by NSF CAREER Award CNS-0953626.

property stipulates that there is a projective map « defined on hashing keys such that
for all YES instances u, the hash value Hy(u) is completely determined by v and «(k).
In contrast, the smoothness property stipulates that on NO instances, H(-) should be
completely undetermined. Typically in applications, the hash value Hy () is used to
“mask” and hide an input (e.g. the plaintext in encryption, or sender’s input in oblivious
transfer).

1.1 Our contributions

We introduce the notion of dual projective hashing. As with smooth projective hashing,
we consider a family of projective hash functions {Hy} indexed by a hashing key &
and whose input © comes from some “hard” language. As before, we require that on
YES instances u, the hash value Hy () is completely determined by u and (k). On the
other hand, for NO instances u, we require invertibility — that «(k) and Hy, () jointly
determine k; moreover, there is some inversion trapdoor that allows us to efficiently
recover k given (a(k), Hi(u)) along with u. We proceed to describe two applications
of dual projective hashing. In both of these applications, we will think of u as an index
and k as an input to some hash function. As such, we will henceforth use A (k) to
denote Hy (u) whenever we refer to dual projective hashing.

Lossy trapdoor functions. Lossy trapdoor functions (TDF) [34] is a strengthened
variant of the classical notion of trapdoor functions and were introduced with the main
goal of enabling simple and black-box constructions of CCA-secure encryption. A
collection of lossy trapdoor functions consists of two families of functions. Functions in
one family are injective and can be efficiently inverted using a trapdoor. Functions in the
other family are “lossy,” which means that the size of their image is signicantly smaller
than the size of their domain. The only computational requirement is that a description
of a randomly chosen function from the family of injective functions is computationally
indistinguishable from a description of a randomly chosen function from the family of
lossy functions.

Lossy trapdoor functions were introduced by Peikert and Waters [34], who showed that
they imply fundamental cryptographic primitives such as trapdoor functions, collision-
resistant hash functions, oblivious transfer, and CCA-secure public-key encryption.
In addition, lossy trapdoor functions have already found various other applications,
including deterministic public-key encryption [7], OAEP-based public-key encryption
[28], “hedged” public-key encryption for protecting against bad randomness [5],
security against selective opening attacks [6], and efficient non-interactive string
commitments [32].

Starting from dual projective hashing, we may derive a family of lossy trapdoor
functions indexed by u and given by:

Fu:z— alx)||Al(z)
The injective mode is given by uniformly sampling u from NO instances, and the lossy

mode is given by uniformly sampling v from YES instances. The injective property
guarantees that if « is a NO instance, then we can efficiently recover x from the output

of the function. On the other hand, the projective property guarantees that if w is a YES
instance, then the output is fully determined by «(x), and therefore reveals at most
log |a()] bits of information about x.

Deterministic Encryption. Deterministic public-key encryption (where the encryption
algorihtm is deterministic) was introduced by Bellare, Boldyreva and O’Neil [3],
with additional constructions given in [7, 4, 11] and in concurrent works [19, 26].
Deterministic encryption has a number of practical applications, such as efficient search
on encrypted data and securing legacy protocols. Our framework further clarify the
constructions of deterministic encryption schemes of Boldyreva, Fehr and O’Neill [7]
for high-entropy inputs and of Brakerski and Segev [11] for hard-to-invert auxiliary
input (which in particular, generalize high-entropy inputs). The former combines lossy
trapdoor functions and extractors, whereas the latter rely on algebraic properties of
specific instantiations of lossy trapdoor functions. Specifically, the latter presented two
seemingly different schemes, one based on DDH/DLIN and the other based on QR and
DCR.

We consider the deterministic encryption scheme that follows from our lossy trapdoor
function (following the approach used in [7]):

— the public key is a random NO instance u and the secret key is the inversion
trapdoor;

— to encrypt a message M, we output ao(M)|| A (M).
We show that:

— if a(-) is a strong extractor (where the seed is provided by the public parameter)
for high min-entropy sources, then we obtain a deterministic encryption for high
min-entropy message distributions;

— if a() is a “reconstructive” extractor (which is similar to a hard-core function), then
we obtain a deterministic encryption secure with respect to hard-to-invert auxiliary
input.

In particular, a reconstructive extractor is also a strong extractor [35], and random
linear functions are both good strong extractors and good reconstructive extractors (via
the left-over hash lemma [23], the Goldreich-Levin theorem [21] and generalizations
there-of). These results provide a unifying framework for deterministic encryption and
clarify the relation between the previous schemes and the connections to the literature
on pseudorandomness. It is also interesting to contrast this construction with leakage-
resilient public-key encryption derived from smooth projective hashing [31], where the
extractor comes from the hash function instead of the projection map (and the seed
comes from the instance instead of the public parameter).

Instantiations. We present instantiations of dual projective hashing from all three
major classes of cryptographic assumptions: (1) Diffie-Hellman assumptions like DDH
and DLIN, (2) number-theoretic assumptions like QR and DCR, and (3) lattice-based
assumptions like LWE. Most of these instantiations are already implicit in recent works.
In fact, the early constructions of hash proof systems based on DDH and QR in [14]

already satisfy the invertibility property, albeit inefficiently. However, since the hashing
key k is encoded in the exponent, efficiently recovering the key seems as hard as
computing discrete log. Instead, we will rely on hashing keys that are vectors and/or
matrices over {0, 1}. (Similar constructions have been used in KDM-security [9, 10]
for different technical issues.) On the other hand, the DCR-based hash proof system
in [14, 12] does yield a dual projective hash function, since we can efficiently solve
discrete log for base 1 + NN over Z};., given the factorization of V.

Combining these instantiations with our generic transformations, we obtain:

— a unified treatment of almost all known constructions of lossy trapdoor functions,
as given in [34, 18] (the exceptions being the QR-based constructions in [18, 29]
and the one based on the ®-hiding assumption in [28]);

— a unified treatment of both of the deterministic encryption schemes secure with
respect to hard-to-invert auxiliary input given in [11];

— the first lattice-based deterministic encryption scheme that is secure with respect to
hard-to-invert auxiliary input.

Relation to smooth projective hashing. Having presented the applications, we would
like to highlight several conceptual differences between smooth projective hashing and
dual projective hashing. In smooth projective hashing, we are interested in quantifying
what the projected key and the instance tells us about the hash value, whereas in
dual projective hashing, we want to know what the projected key and hash value
tells us about the hashing key. Moreover, in essentially all applications of smooth
projective hashing, YES instances are used for functionality/correctness and NO are used
to establish security; it is the other way around for dual projective hashing. Finally, in
smooth projective hashing, we use the hash value to hide information; in dual projective
hashing, we publish the hash value as part of the output.

1.2 Previous work

Comparison with previous constructions. Peikert and Waters constructed lossy
trapdoor functions from the DDH and LWE assumptions, and more generally, from
any homomorphic encryption schemes with reusable randomness. The description of
the trapdoor functions in their constructions are a matrix of ciphertexts, and evaluation
corresponds to matrix multiplication. Hemenway and Ostrovsky [24] constructed lossy
trapdoor functions from smooth projective hashing where the hash function is homo-
morphic, which may in turn be instantiated from the QR, DDH and DCR assumptions.
The construction is syntactically very similar to the matrix-based construction in [34]
(although the analysis is somewhat different): the description of the trapdoor functions
are a matrix of hash values, and evaluation corresponds to matrix multiplication.

Freeman et al. [18] gave direct constructions of lossy trapdoor functions from the QR,
DCR and DLIN assumptions. Each of these constructions are fairly different and there
is no evident unifying theme to these constructions. Specifically, the DLIN construction
is a variant of the matrix-based scheme in [34]. Mol and Yilek [29] and Bellare et al.
[4] independently constructed lossy trapdoor functions from the QR and the DCR

assumptions respectively. We note that the QR-based schemes in these two papers only
handle bounded lossiness.

In contrast to the Hemenway-Ostrovsky construction, our construction does not rely
on smoothness nor any algebraic structure on the underlying hash proof system; we
also have a more direct transformation from the hash function to the lossy trapdoor
function, which are syntactically and conceptually quite different from that in [24].
(For instance, we use NO instances for injective functions and YES instances for lossy
functions, and it is the other way around in [24].) On the other hand, in order to
instantiate the hash functions, we do rely on a vector/matrix of values, similar to the
constructions developed in the different context of key dependent message security and
leakage resilience [9, 31, 10].

Additional related work. A lossy encryption scheme is a standard public-key
encryption scheme where the public key may be generated in one of two modes:
in the injective mode, the ciphertext uniquely determines the plaintext and there is
an associated secret key which allows correct decryption, and in the lossy mode,
the ciphertext reveals no information about the plaintext [6]. Given a lossy trapdoor
function, it is easy to construct a lossy encryption scheme [6]. Hemenway et al. [25]
gave a direct construction of a lossy encryption scheme from any hash proof system.
In the construction, the public key is also an instance from the language. However, the
usage is reversed: for lossy encryption, the injective mode uses a YES instance, and the
lossy mode uses a NO instance.

Organization. We formalize dual projective hashing in Section 2. We present both
the definition and our results on lossy trapdoor functions in Section 3, and those for
deterministic encryption in Section 4. We present the instantiations of dual projective
hashing in Sections 5 through 8.

Notation. We denote by s <y S the fact that s is picked uniformly at random
from a finite set .S and by x,y,z < S that all x,y, z are picked independently and
uniformly at random from S. We denote by negl(-) a negligible function. By PPT,
we denote a probabilistic polynomial-time algorithm. Throughout, we use 1* as the
security parameter. We use - to denote multiplication (or group operation) as well as
component-wise multiplication. We use boldface to denote vectors (always column
vectors) and matrices.

2 Dual Projective Hashing

In this section, we describe dual projective hashing more formally. We warn the reader
that we use slightly different notation from the outline given in the introduction (in
particular, we denote the input to A% (-) by x instead of k).

Setup. There is a setup algorithm Setup that given the security parameter 17, outputs
the public parameters HP for the hash function. All algorithms are given HP as part of its
input; we omit HP henceforth whenever the context is clear. Associated with each HP are
a pair of disjoint sets Iy and Iy corresponding to YES and NO instances respectively.
We require that the uniform distributions over each of Ily and Ily be efficiently
samplable. Specifically, there exist a pair of sampling algorithms: SampYes(HP) outputs
arandom pair of values (u, w) where the first output « is uniformly distributed over IIy
and w is the corresponding witness; SampNo(HP) outputs a random pair of values (u, 7)
where the first output v is uniformly distributed over Iy and 7 is the corresponding
trapdoor. We discuss the roles of the witness and the trapdoor below.

Subset membership assumption. The subset membership assumption states that the
uniform distributions over IIy and Iy are computationally indistinguishable, even
given HP. More formally, for an adversary A, we consider the advantage function
AdvSubset()) given by

Pr [A(HP,u) =1: HP + Setup(1*), u < IIy] — Pr [A(HP,u) = 1: HP + Setup(1*), u < ILy]

The subset membership assumption states that for all PPT A, the advantage AdeubsetA()\)
is a negligible function in A.

Projective hashing. Fix a public parameter HP. We consider a family of hash functions
{A%(-)} indexed by an instance u € II, UIIy. We also require that the hash function be
efficiently computable; we call the algorithm for computing A (+) the private evaluation
algorithm. We say that A} (-) is projective if there exists a projection map «(-) such that
for all u € IIy and for all inputs x, a(z) completely determines A (). Specifically, we
require that there exists an efficient public evaluation algorithm Pub that on input «(z)
and for all (u, w) < SampYes(HP), outputs A% (x). That is,

Pub(a(z),u,w) = Al (x)

Invertibility. We say that A’ (+) is invertible if there is an efficient trapdoor inversion
algorithm TdInv that for all (u,7) < SampNo(HP) and for all z, recovers x given
(a(z), A% (z)) and the trapdoor 7. That is,

Tdinv(r, a(x), Al (z)) =

We note here that for two of our factoring-related instantiations, SampNo(HP) also
requires as input the coin tosses used to sample HP in order to compute the inversion
trapdoor (there, HP is a public RSA modulus N and 7 is the factorization of V). For
these instantiations, we cannot treat HP as a global system parameter; instead, it will be
part of the public key in the case of deterministic encryption and part of the function
index in the case of lossy trapdoor functions. We suppress this subtlety in our main
constructions since SampNo is only used for functionality and not in the proof of
security.

3

Lossy Trapdoor Functions

In this section, we present our results on lossy trapdoor functions. We first describe the
definition of lossy TDFs given in [34].

Definition 1 (Lossy Trapdoor Functions). A collection of (m,k)-lossy trapdoor
functions is a 4-tuple of probabilistic polynomial-time algorithms (G, G, F, F~1) such
that:

1.
2.

(SAMPLING A LOSSY FUNCTION.) Go(1*) outputs a function index .
(SAMPLING AN INJECTIVE FUNCTION.) G; (1*) outputs a pair (u, 7) where u is a
function index and 7 is a trapdoor.

(EVALUATION OF LOSSY FUNCTIONS.) For every function index u produced by
Gy, the algorithm F(u,-) computes a function f, : {0,1}"* — {0,1}*, whose
image is of size at most 2™,

(EVALUATION OF INJECTIVE FUNCTIONS.) For every pair (u, 7) produced by Gy,
the algorithm F(w, -) computes a injective function f, : {0,1}™ — {0, 1}*.
(INVERSION OF INJECTIVE FUNCTIONS.) For every pair (u,7) produced by G;
and every = € {0,1}™, we have F~1(7,F(0,2)) = =.

(SECURITY.) The first outputs of Go(1*) and G; (1) are computationally indistin-
guishable.

Here) is the security parameter, and the value £ is called the lossiness.

Our construction. Given a dual projective hash function, we may construct a family
of lossy trapdoor functions, as shown in Fig 1.

Lossy TDF

(SAMPLING A LOSSY FUNCTION.) Go(1*): Run (u,w) < SampYes(HP). Output HP||w.

(SAMPLING AN INJECTIVE FUNCTION.) Gi(1*): Run (u,7) < SampNo(HP). Output

(HP||u, 7).

(EVALUATION.) F(u,z): Output a(z)|| A} ().

(INVERSION.) F™!(7,y0|ly1): Output TdInv(7, yo, 1)

Note: We assume here all algorithms receive as input HP < Setup(1*).

Fig. 1. Lossy TDF from dual projective hashing

Theorem 1. Under the subset membership assumption, the above construction yields

a collection of (m, m — log | Im «

)-lossy trapdoor functions.

Proof. Correctness for injective functions follows readily from the invertibility prop-
erty. Lossiness for lossy functions follows readily from the projective property, which
implies that for v € Ily, |Im f,| < |Ima|. Security is equivalent to the subset
membership assumption. ad

4 Deterministic Encryption

In this section, we present our results for deterministic encryption. We begin with the
definition, then some results about extractors, and finally our construction.

4.1 Deterministic encryption

A deterministic encryption scheme is a triplet of algorithms (Gen, Enc, Dec) where Gen
is randomized and Enc, Dec are deterministic. Via (PK, SK) < Gen(1?*), the random-
ized key-generation algorithm, produces public/secret keys for security parameter 17
Enc on input a public key PK and a message M, produces a ciphertext. Dec(SK, ') on
input a secret key SK and a ciphertext 1, outputs a message. We require correctness,
namely that with overwhelming probability over (PK, SK), for all M, Dec(Enc(M)) =
M.

Hard-to-invert auxiliary inputs. Following [11, 16, 17], we consider auxiliary
input f(x) from which it is hard to recover z. The source of hardness may be any
combination of information-theoretic hardness (where the function is many-to-one) and
computational hardness (e.g. if f is a one-way permutation). An efficiently computable
function F = {f\} is d-hard-to-invert w.r.t. an efficiently samplable distribution D
if for every PPT algorithm .4, it holds that Pr[A(1*, f(z)) = z] < § where the
probability is taken over x <—; D and over the internal coin tosses of .A.

Security with auxiliary input. We follow the definition of security for deterministic
encryption with auxiliary input from [11, 3, 4, 7].! For simplicity, we will only consider
security while encrypting a single message, although our proofs of security extend to
multiple messages and block-wise hard-to-invert auxiliary inputs. For an adversary .4,
auxiliary input function F and message distribution M over {0, 1}, we define the
advantage function

(MQ, Ml) < M,

(PK, SK) < Gen(1*);
AdvPrivSInd T M(X) := Pr [b =1 : b+ {0,1}; N

¥ < Enc(PK, My);

v <+ A(PK, 1, f(Mo), f(My))

A deterministic encryption scheme is (F, M)-PrivSind secure if for all PPT A, the
advantage AdvPrivSInd“ () is a negligible function in \.

N |

! Specifically, we use the notion of strong indistinguishability (PRIV-sIND) [11, Definition 4.4]
restricted to single messages.

4.2 Extractors

Reconstructive extractors. A (e,d)-reconstructive extractor is a pair of functions
(Ext, Rec):

— an extractor Ext : {0,1}" x {0,1}¢ — %
— a (uniform) oracle machine Rec that on input (1™, 1/€) runs in time poly(n, 1/¢,log |3|).

that satisfy the following property: for every € {0,1}" and every function D such
that
Pr [D(r,Ext(z,r))=1] — Pr [D(r,o) =1]| > €

r<{0,1}4 r<5{0,1}4 0%
we have:
Pr[Rec”(1",1/e) = x] > §

where the probability is over the coin tosses of Rec.

It was shown in [35] that any (e, §)-reconstructive extractor is a (strong) extractor for
sources of min-entropy roughly log 1/4. It is also easy to show that the output of any
(e, §)-reconstructive extractor is pseudorandom for ¢ - negl(-)-hard-to-invert auxiliary
mputs.

Extractors from linear functions. It turns out that random linear functions are not
only good randomness extractors (a fact commonly referred to as the left-over hash
lemma), but also good reconstructive extractors.

Lemma 1 ([21, 17, 10]). Let q be a prime. Then, the function Ext : {0, 1}" x Zyl — Z,

given by (x,a) — x'aisa (e -reconstructive extractor.

3

€
3T
That is, Ext maps (x1,...,Z,), (a1,...,a,) to a1z1 + - - apx, (mod q). Moreover,
the lemma extends to the following settings:

— ¢ is arandom RSA modulus, assuming that factoring is hard on average.
— G is a group of prime order ¢ with generator g, and we consider the extractor
Ext: {0,1}"™ x G™ — G given by (x, g*) — g<'a.

4.3 Our construction

Given a dual projective hash function, we may construct a deterministic encryption
scheme, as shown in Fig 2. For this construction, it is important that we state explicitly
that the projection map «(-) takes the public parameter HP as its first input.

Theorem 2. If (z,HP) — «(HP,x) is a (¢, d)-reconstructive extractor and the subset
membership assumption holds, then the encryption scheme as shown above is PrivSInd-
secure with respect to hard-to-invert auxiliary input.

Correctness of the encryption scheme follows readily the invertibility property of dual
projective hashing. IND-PRIV security follows from the next technical claim.

Deterministic Encryption Scheme
(KEY GENERATION.) Gen(1%): Run HP < Setup(1*) and (u,7) < SampNo(HP).
Output
PK := HP|lu and SK:=7
(ENCRYPTION.) Enc(PK, M): On input PK = HP||u and message M, output the ciphertext
a(HP, M)[|AL (M)
(DECRYPTION.) Dec(SK, 1): On input SK = 7 and ciphertext 1) = yo||y1, output

TdInv(7,yo,y1)

Fig. 2. Deterministic encryption scheme from dual projective hashing

Lemma 2. Let A be an adversary against (F, M)-PrivSind security of the above
encryption scheme (Gen, Enc, Dec). Then, we can construct adversaries Ay and Ay
such that for any e:

either AdvPrivSInd7 M () < AdvSubset™® (\) + 2¢
or PI‘]\4<_M [.Al(f(M)) = M] 2 de

The running time of Ao is roughly that of A and the running time of A; is
poly(n,1/e,log |X|) times that of A.

Proof. We proceed via a sequence of games. We start with Game 0 as in the PrivSind
experiment and end up with a game where the view of A is statistically independent
of the challenge bit b. We write u € Il to denote the public key PK in Game 0. This
means that the view of the adversary A is given by:

(HP[lu, a(1P, My) || A} (M), f(Mo), (M))

GAME 1: SWITCHING TO u < IIy. We replace u < IIy with sampling (u,w) <
SampYes(HP). Clearly, Game 0 and | are computationally indistinguishable by
hardness of subset membership, and the advantage of the adversary changes by at
most AdvSubset(\).

GAME 2: ENCRYPTING USING Pub. In the challenge ciphertext, we replace A’ (M})
with Pub(a(HP, M}),u,w). By the projective property, Games 1 and 2 are
identically distributed.

GAME 3: SWITCHING THE OUTPUT OF «(-) TO RANDOM. We replace «(HP, Mp) in
the challenge ciphertext with a random o <— Y. That is, we change the ciphertext
from

a(HP, My)||Pub(a(HP, M}), u,w) to o|Pub(o,u,w)

If the advantage of the adversary from Game 2 to Game 3 changes by at most 2e,
then we are done. Otherwise, we may use A to construct a distinguisher D such
that

Pr[D(He, a(sp,m), f(M)) = 1] = Pr[D(sp, 0, (M) = 1]| > 2¢

where HP + Setup(1*), M + M, o < %. (D simply chooses b +— {0, 1}, uses
its input as My, chooses M7 _p, <y M, simulates the view of A using Pub(-, u, w)
to obtain an output b’ and outputs 1 if ¥’ = b.) By an averaging argument, with
probability € over M < M, D achieves distinguishing probability €, upon which
we can use Rec” to compute M from f(M) with probability §. This means that
we can invert f on the distribution M with probability € - 6.

We conclude by observing that in Game 3, the view of the adversary is statistically
independent of the challenge bit b. Hence, the probability that b’ = b is exactly 1/2.
O

Remark 1. Tt follows fairly readily from the analysis that if (z,HP) — «(HP,x) is
a strong extractor (which is a weaker guarantee than a reconstructive extractor), then
the above encryption scheme is PrivSInd-secure with respective to high min-entropy
inputs. We defer the details and a more precise statement to the full version of this
paper. We also point out here that the distribution for HP must be independent of the
message distribution M (for the same reason the seed to an extractor must be chosen
independently of the weaker random source). For this reason, all known constructions
of deterministic encryption only achieve security for message distributions that do not
depend on the public key.

5 Instantiations from DDH and DLIN

Let G be a group of prime order ¢ specified using a generator g. The DDH assumption
asserts that g?° is pseudorandom given g, g%, g” where g < G; a, b < Z,. The d-LIN

assumption asserts that ggfi”*” is pseudorandom given g1,...,9d+1,91" ;- -, 9y’
where g1,...,94+1 =& G;r1,...,7q <= Zq. DDH is equivalent to 1-LIN. We present

the DLIN-based hash proof system in [9, 31], also used in [18, 11]. When instantiated
with our generic transformations, this yields the DLIN-based (m,m — dlog g)-lossy
trapdoor functions given in [18] and the DLIN-based deterministic encryption scheme
in [11].

Setup. HP := (G, g%), P < Z{*™. The language is given by
I = {gWP W € Z?Xd} and Iy := {gA cA € Zg™ with full rank}

A uniformly chosen matrix A < Zg"*™ has full rank with overwhelming
probability, so Ily is efficiently samplable via rejection sampling. The uniform
distributions over IIy and Iy are computationally distinguishable under the d-LIN
assumption as shown in [31, 9].

Hashing. The hashing input is given by x € {0, 1}, with
a(g”,x) == g7
Private and public evaluation are given by:
AG(x) =U* e G™ and Pub(¢F*, U, W) := gWPx
where (U*); := Y-, U} Observe that for U = g"V¥ € Ily, we have

AG(x) = gWhx — Pub(gPX7U,W)

Inversion. The inversion trapdoor is A~ Observe that for U = gA € Iy, we have
A (x) = g™

Given the inversion trapdoor A ! and A};(x), we can compute ¢g* and thus x.

6 Instantiations from QR

Fix a Blum integer N = P() for safe primes P, = 3 (mod 4) (such that P = 2p+1
and () = 2¢ + 1 for primes p, g). Let J denote the subgroup of Z}; with Jacobi
symbol +1, and let QR denote the cyclic subgroup of quadratic residues. Observe
that [Jx| = 2pg = 2|QRy|. The QR assumption states that the uniform distributions
over QR and J \ QR are computationally indistinguishable.

First construction. We present a QR-based hash proof system based on the IBE
scheme of Boneh et. al [8]. When instantiated with our generic transformations, this
yields a new family of QR-based (log ¢(NN) — 1, 1)-lossy trapdoor functions; however,
it is less efficient than that given in [18].

Setup. HP := (V). The language is given by
I, := QRy and IIy:=Jy\QRy

The uniform distributions over 1Iy and IIy are computationally indistinguishable
under the QR assumption.

Hashing. The hashing input is given by « € Z},/{%1}, with

a(z) == 2?

Private and public evaluation are given by:
A (x) := f(x) and Pub(N,u, w) := g(w)
where f, g are the polynomials obtained by running the “IBE compatible algo-

rithm” [8, Section 4] on inputs z2, u. For u = w? € Ily, we have f(z) = g(w) by
correctness of the IBE compatible algorithm.

Inversion. The inversion trapdoor (which depends on HP) is the factorization of N.
For u = —w? € Ily, we have J(f(x)) is equally likely to be 1 and —1 given z2.
Given the inversion trapdoor (i.e. the factorization of V'), we can compute all four

square roots +x¢, £z of 2 along with both J(f(z¢)) and J(f(z1)); we can then
recover .

Second construction. We present a QR-based hash proof system implicit in [11, 24],
which is a matrix analogue of original Cramer-Shoup construction [14]. When instanti-
ated with our generic transformations, this yields the QR-based (m,m — log |¢(N)|)-
lossy trapdoor functions in [24]. and the QR-based deterministic encryption scheme in
(11]

Setup. HP := (N, gP),p = Z'/29 <& QRy. The language is given by

Iy = {g""pT CWE Z%/z} and Ly == {(—1)1"" -gpr TWE ZWN}

where in the expression for Ily, the matrix dot product refers to element-wise
multiplication. The uniform distributions over IIy and IIy are computationally
indistinguishable under the QR assumption as shown in [11, 24, 10].

Hashing. The hashing input is given by x € {0, 1}, with
a(gPx) = g* * € Zy
Here, A{; : {0,1}™ — (Z},)™, with private and public evaluation given by:
AG(x) =U* and Pub(PK, U, w) := PK™
where (U*); := Z;nzl Ufjj . Observe that for U = g%P' ¢ Ily, we have
Ay (x) = g™P' % = (P *)¥ = Pub(PK, U, w)

Inversion. The inversion trapdoor is the vector w. Observe that for U = (—1)In -

g""pT € IIy, we have

Ap(x) = (-1 g"P % = (~1)* - PK™

Given the inversion trapdoor w and A§;(x), we can compute (—1)* and thus x.

7 Instantiations from DCR

Fix a Blum integer N = P(Q) for safe primes P,Q = 3 (mod 4) (such that P = 2p+1
and Q = 2q + 1 for primes p, q). Let m € Z7T be a parameter. The group Liyymsr 18
isomorphic to Zg(n) X Zym.

First construction. We present the Cramer-Shoup DCR-based hash proof system
[14], extended to the Damgard-Jurik scheme [15]. When instantiated with our generic
transformation, this yields the DCR-based (mlog N, mlog N — log |¢p(N)|)-lossy
trapdoor functions given in [18].

Setup. HP := (N, g™"), g <& Z%ms:. The language is given by

I, = {gNm“’:wEZNm} and Iy := {gNm“’(lJrN) :wGZNm}

The uniform distributions over 1Iy and IIy are computationally indistinguishable
under the DCR assumption, as shown in [15].

Hashing. The hashing input is given by z € Zym, with
Nm

"z

a(gN" x) =g

Private and public evaluation are given by:
A (z) ==u” and Pub(PK, u,w) := PK¥
Observe that for u = gN Tw 11y, we have

A(x) = gNm“’x = (gNT'Lx)'w = Pub(PK, u, w)

Inversion. The inversion trapdoor (which depends on HP) is the factorization of V. For
u=gN""(1+ N) € Ily, we have

AL (e) = (14 N

Given the inversion trapdoor (i.e. factorization of V), we can efficiently compute =
from gV w* (1 + N)Z, c.f. [15].

Second construction. There is a second DCR-based hash proof system implicit in
[11], which is a matrix analogue of original Cramer-Shoup construction [14]. It is
similar to the second QR-based construction, except we replace (—1) with 1+ N. When
instantiated with our generic transformations, this yields the DCR-based deterministic
encryption scheme in [11].

8 Instantiations from LWE

We present the LWE-based construction, which is based on the lossy trapdoor functions
in [34, Section 6.3]. For a real parameter 5 € (0, 1), we denote by ¥z the distribution
over R/Z of a normal variable with mean 0 and standard deviation 3/+/2 7 then reduced
modulo 1. Denote by W 4 the discrete distribution over Z, of the random variable [g X |
mod g where the random variable X has distribution W g.

In the following, we consider the standard LWE parameters m, n, g as well as additional
parameters 7, p such that

m=0(nlogq) and a=0©(1l/q) and p<g/dn and @ =m/logp
In particular, fix v < 1 to be a constant. Then, we will set
¢=0m"7) and p=0(n'/")
When instantiated with our generic transformations, this yields the LWE-based lossy
trapdoor functions in [34] and a new LWE-based deterministic encryption scheme.
Setup. HP := A < Zgy™™. The language is given by
II, <« ATS+E and IIy+: ATS+E+G

where S ¢ Z™" E ¢ (Ug)™*" Here, G € Zyp*™ is a fixed public matrix
with special structure for which the bounded error-decoding problem is easy (see
[34, Section 6.3.2]). These distributions are computationally distinguishable under
LWE.

Hashing. The hashing input is given by a column vector x < {0, 1}™, with
a(A,x) = Ax € Zy
Here, A{; : {0,1}" — Z’;, with private and public evaluation given by:
AG(x) :=x"U and Pub(p,U,S) :=p'S
The projective property is approximate, that is,
x (ATS+E) = (Ax)'S

In fact, for all x, with overwhelming probability over E, we have x'E C [¢/p]".
That is, the projective property holds up to an additive error term in [q/p]™.

Inversion. The inversion trapdoor is the matrix S. For U <« Ily, we have
(a(A,x), Ay (%)) = (Ax, (Ax)'S + X E + X G)

Given S, we can recover X' E+ x" G. The quantity x" E has small norm, so we can
do bounded-error decoding to recover X" G and thus x.

Lossy TDF. For lossy TDF, in the lossy mode, we can bound the size of the image by
| Im |- (¢/p)™, where the latter term accounts for the error incurred by the approximate
projective property. That is, the lossiness is given by

m— (nlogq+ mlogq) =1 —~)m—nlogq
logp "~ p

Deterministic Encryption. For deterministic encryption, the adversary .4; will guess
the error term x" E, which incurs a multiplicative loss of (p/q)™ = 1/27™. The rest of
the security loss is ¢" - poly(m, \). This means that for every constant v < 1, we have
a deterministic encryption scheme for m-bit messages, secure with respect to 277 -
hard-to-invert auxiliary input, based on the hardness of solving certain lattice problems
with approximation factor better than O (n?>+1/7),

Acknowledgments. I would like to thank Gil Segev and the anonymous referees for
helpful and detailed comments.

References

(1]
(2]
(3]
(4]

(5]

(6]
(71
(8]
[9]

(10]

[11]
[12]
[13]

[14]

[15]

[16]
[17]

(18]

W. Aiello, Y. Ishai, and O. Reingold. Priced oblivious transfer: How to sell digital goods.
In EUROCRYPT, pages 119-135, 2001.

A. Akavia, S. Goldwasser, and V. Vaikuntanathan. Simultaneous hardcore bits and
cryptography against memory attacks. In TCC, pages 474-495, 2009.

M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently searchable
encryption. In CRYPTO, pages 535-552, 2007.

M. Bellare, M. Fischlin, A. O’Neill, and T. Ristenpart. = Deterministic encryption:
Definitional equivalences and constructions without random oracles. In CRYPTO, pages
360-378, 2008.

M. Bellare, Z. Brakerski, M. Naor, T. Ristenpart, G. Segev, H. Shacham, and S. Yilek.
Hedged public-key encryption: How to protect against bad randomness. In ASIACRYPT,
pages 232-249, 2009.

M. Bellare, D. Hofheinz, and S. Yilek. Possibility and impossibility results for encryption
and commitment secure under selective opening. In EUROCRYPT, pages 1-35, 2009.

A. Boldyreva, S. Fehr, and A. O’Neill. On notions of security for deterministic encryption,
and efficient constructions without random oracles. In CRYPTO, pages 335-359, 2008.

D. Boneh, C. Gentry, and M. Hamburg. Space-efficient identity based encryption without
pairings. In FOCS, pages 647-657, 2007.

D. Boneh, S. Halevi, M. Hamburg, and R. Ostrovsky. Circular-secure encryption from
Decision Diffie-Hellman. In CRYPTO, pages 108-125, 2008.

Z. Brakerski and S. Goldwasser. Circular and leakage resilient public-key encryption under
subgroup indistinguishability - (or: Quadratic residuosity strikes back). In CRYPTO, pages
1-20, 2010. Also, Cryptology ePrint Archive, Report 2010/522.

Z. Brakerski and G. Segev. Better security for deterministic public-key encryption: The
auxiliary-input setting. In CRYPTO, pages 543-560, 2011.

J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of discrete
logarithms. In CRYPTO, pages 126144, 2003.

R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In CRYPTO, pages 13-25, 1998.

R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In EUROCRYPT, pages 45-64, 2002. Also,
Cryptology ePrint Archive, Report 2001/085.

I. Damgard and M. Jurik. A generalisation, a simplification and some applications of
Paillier’s probabilistic public-key system. In Public Key Cryptography, pages 119-136,
2001.

Y. Dodis, Y. T. Kalai, and S. Lovett. On cryptography with auxiliary input. In STOC, pages
621-630, 2009.

Y. Dodis, S. Goldwasser, Y. T. Kalai, C. Peikert, and V. Vaikuntanathan. Public-key
encryption schemes with auxiliary inputs. In TCC, pages 361-381, 2010.

D. M. Freeman, O. Goldreich, E. Kiltz, A. Rosen, and G. Segev. More constructions of lossy
and correlation-secure trapdoor functions. In PKC, pages 279-295, 2010. Also, Cryptology
ePrint Archive, Report 2009/590.

[19]

(20]
(21]

[22]

(23]
[24]

[25]

[26]
(27]
(28]
[29]
(30]
(31]
(32]
(33]
[34]

(35]

B. Fuller, A. O’Neill, and L. Reyzin. A unified approach to deterministic encryption: New
constructions and a connection to computational entropy. In 7CC, 2012. To appear, also
Cryptology ePrint Archive, Report 2012/005.

R. Gennaro and Y. Lindell. A framework for password-based authenticated key exchange.
ACM Trans. Inf. Syst. Secur., 9(2):181-234, 2006.

O. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions. In STOC,
pages 25-32, 1989.

S. Halevi and Y. T. Kalai. Smooth projective hashing and two-message oblivious transfer.
Cryptology ePrint Archive, Report 2007/118, 2007. Preliminary version in EUROCRYPT
2005.

J. Hastad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any
one-way function. SIAM J. Comput., 28(4):1364-1396, 1999.

B. Hemenway and R. Ostrovsky. Lossy trapdoor functions from smooth homomorphic hash
proof systems. Electronic Colloquium on Computational Complexity (ECCC), 2009.

B. Hemenway, B. Libert, R. Ostrovsky, and D. Vergnaud. Lossy encryption: Constructions
from general assumptions and efficient selective opening chosen ciphertext security. In
ASIACRYPT, pages 70-88, 2011. also Cryptology ePrint Archive, Report 2009/088.

O. R. Ilya Mironov, Omkant Pandey and G. Segev. Incremental deterministic public-key
encryption. In Eurocrypt, 2012. To appear.

J. Katz, R. Ostrovsky, and M. Yung. Efficient and secure authenticated key exchange using
weak passwords. J. ACM, 57(1), 2009.

E. Kiltz, A. O’Neill, and A. Smith. Instantiability of RSA-OAEP under chosen-plaintext
attack. In CRYPTO, pages 295-313, 2010.

P. Mol and S. Yilek. Chosen-ciphertext security from slightly lossy trapdoor functions. In
PKC, pages 296-311, 2010.

M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In SODA, pages 448-457,
2001.

M. Naor and G. Segev. Public-key cryptosystems resilient to key leakage. In CRYPTO,
pages 18-35, 2009.

R. Nishimaki, E. Fujisaki, and K. Tanaka. Efficient non-interactive universally composable
string-commitment schemes. In ProvSec, pages 3—18, 2009.

P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
EUROCRYPT, pages 223-238, 1999.

C. Peikert and B. Waters. Lossy trapdoor functions and their applications. In STOC, pages
187-196, 2008.

L. Trevisan. Extractors and pseudorandom generators. JACM, 48(4):860-879, 2001.

