
Quantum Proofs of KnowledgeDominique UnruhUniversity of Tartu, EstoniaAbstra
t. We motivate, de�ne and 
onstru
t quantum proofs of knowledge,proofs of knowledge se
ure against quantum adversaries. Our 
onstru
tionsare based on a new quantum rewinding te
hnique that allows us to extra
twitnesses in many 
lassi
al proofs of knowledge. We give 
riteria under whi
ha 
lassi
al proof of knowledge is a quantum proof of knowledge. Combiningour results with Watrous' results on quantum zero-knowledge, we show thatthere are zero-knowledge quantum proofs of knowledge for all languages in NP(assuming quantum 1-1 one-way fun
tions).1 Introdu
tionCryptographi
 proto
ols, with few ex
eptions, are based on the assumption that
ertain problems are 
omputationally hard. Typi
al examples in
lude spe
i�
number-theoreti
 problems su
h as the di�
ulty of �nding dis
rete logarithms,and general problems su
h as inverting one-way fun
tions. It is well-known, how-ever, that many su
h problems would be
ome easy in the advent of quantum
omputers. Shor's algorithm [16℄, e.g., e�
iently solves the dis
rete logarithmproblem and allows to fa
tor large integers. While quantum 
omputers do notexist today, it is not unreasonable to expe
t quantum 
omputers to be availablein the future. To meet this threat, we need 
ryptographi
 proto
ols that arese
ure even in the presen
e of an adversary with a quantum 
omputer. We stressthat this does not ne
essarily imply that the proto
ol itself should make useof quantum te
hnology; instead, it is preferable that the proto
ol itself 
an beeasily implemented on today's readily-available 
lassi
al 
omputers.Finding su
h quantum-se
ure proto
ols, however, is not trivial. Even whenwe have found suitable 
omplexity-theoreti
 assumptions su
h as the hardnessof 
ertain latti
e problems, a 
lassi
al proto
ol based on these assumptions mayfail to be se
ure against quantum 
omputers. The reason for this is that many
ryptographi
 proofs use a te
hnique 
alled rewinding. This te
hnique requiresthat it is possible, when simulating some ma
hine, to make snapshots of thestate of that ma
hine and then later to go ba
k to that snapshot. As �rst ob-served by van de Graaf [9℄, 
lassi
al rewinding-based proofs do not 
arry over tothe quantum 
ase. Two features unique to the quantum setting prohibit (naive)rewinding: The no-
loning theorem [21℄ states that quantum-information 
annotbe 
opied, so we 
annot make snapshots. Furthermore, measurements destroyinformation, so intera
ting with a simulated ma
hine may destroy informationthat would be needed later.



This leads to the following observation: Even if a 
lassi
al proto
ol is provense
ure based on the hardness of some problem, and even if that problem ishard even for quantum 
omputers, we have no guarantee that the proto
ol isse
ure against quantum 
omputers. The redu
tion of the proto
ol's se
urity tothe problem's hardness may be based on inherently 
lassi
al features su
h as thepossibility of rewinding.An example of a proto
ol 
onstru
tion that su�ers from this di�
ulty iszero-knowledge proofs. Zero-knowledge proofs are intera
tive proofs with thespe
ial property that the veri�er does not learn anything ex
ept the validity ofthe proven statement. Zero-knowledge proofs are inherently based on rewinding(at least as long as we do not assume additional trusted setup su
h as so-
alled
ommon-referen
e strings). Yet, zero-knowledge proofs are one of the most pow-erful tools available to the 
ryptographer; a multitude of proto
ol 
onstru
tionsuse zero-knowledge proofs. These proto
ol 
onstru
tions 
annot be proven se-
ure without using rewinding. To resolve this issue, Watrous [19℄ introdu
ed aquantum rewinding te
hnique. This te
hnique allows to prove the quantum se-
urity of many 
ommon zero-knowledge proofs. One should note, however, thatWatrous' te
hnique is restri
ted to a spe
i�
 type of rewinding: If we use Wa-trous' te
hnique, whenever some ma
hine rewinds another ma
hine to an earlierpoint, the rewinding ma
hine forgets everything it learned after that point (we
all this oblivious rewinding). That is, we 
an only use Watrous' te
hnique toba
ktra
k if the rewinding ma
hine made a mistake that should be 
orre
ted, butit 
annot be used to 
olle
t and 
ombine information from di�erent bran
hes ofan exe
ution.Constru
ting quantum zero-knowledge proofs solves, however, only half of theproblem. In many, if not most, appli
ations of zero-knowledge proofs one needszero-knowledge proofs of knowledge. A proof of knowledge [7,3℄ is a proof systemwhi
h does not only show the truth of a 
ertain statement, but also that theprover knows a witness for that statement. This is made 
learer by an example:Assume that Ali
e wishes to 
onvin
e Bob that she (the prover) is in possessionof a signature issued by some 
erti�
ation authority. For priva
y reasons, Ali
edoes not wish to reveal the signature itself. If Ali
e uses a zero-knowledge proof,she 
an only show the statement �there exists a signature with respe
t to theCA's publi
 key�. This does not, however, a
hieve anything: A signature alwaysexists in a mathemati
al sense, even if it has never been 
omputed. What Al-i
e wishes to say is: �I know a signature with respe
t to the CA's publi
 key.�To prove su
h a statement, Ali
e needs a zero-knowledge proof of knowledge; aproof of knowledge would 
onvin
e Bob that Ali
e indeed knows a witness, i.e.,a signature. Very roughly, the de�nition of a proof of knowledge is the following:Whenever the prover 
an 
onvin
e the veri�er, one 
an extra
t the witness fromthe prover given ora
le a

ess to the prover. Here ora
le a

ess means that one
an intera
t with the prover and rewind him. Thus, we have the same problemas in the 
ase of quantum zero-knowledge proofs: To get proofs of knowledgethat are se
ure against quantum adversaries, we need to use quantum rewind-ing. Unfortunately, Watrous' oblivious rewinding does not work here; proofs of



knowledge use rewinding to produ
e two (or more) di�erent proto
ol tra
es and
ompute the witness by 
ombining the information from both tra
es. Thus, weare ba
k to where we started: to make 
lassi
al 
ryptographi
 proto
ols work ina quantum setting, we need (in many 
ases) quantum zero-knowledge proofs ofknowledge, but we only have 
onstru
tions for quantum zero-knowledge proofs.Our 
ontribution.We de�ne and 
onstru
t quantum proofs of knowledge. Ourproto
ols are 
lassi
al (i.e., honest parties do not use quantum 
omputation or
ommuni
ation) but se
ure against quantum adversaries. Our 
onstru
tions arebased on a new quantum rewinding te
hnique (di�erent fromWatrous' te
hnique)that allows us to extra
t witnesses in many 
lassi
al proofs of knowledge. Wegive 
riteria under whi
h a 
lassi
al proof of knowledge is a quantum proof ofknowledge. Combining our results with Watrous' results on zero-knowledge, we
an show that there are zero-knowledge quantum proofs of knowledge for alllanguages in NP (assuming quantum 1-1 one-way fun
tions). (We leave it as anopen question whether un
onditionally se
ure proto
ols exist for more restri
tedlanguages related, e.g., to latti
e-problems.)Also, we believe that the use of our rewinding te
hnique is not limited toQPoKs. For example, we en
ourage the reader to try to prove the followingwithout using our te
hnique: Given a quantum 
omputationally binding 
om-mitment s
heme, �rst let the adversary 
ommit, and then give a random value vto the adversary. Then the probability that the adversary opens the 
ommitmentto v is negligible.1Follow-up work. In subsequent work, Lunemann and Nielsen [14℄ and Hallgren,Smith, and Song [12℄ developed zero-knowledge QPoKs with the additional ad-vantage of allowing to simultaneously simulate an intera
tion with the mali
iousprover and extra
t the witness; this property is ne
essary in some multi-party
omputations. (In 
ontrast, in our setting the initial state of the prover 
ould belost after extra
ting.) We stress, however, that this powerful feature 
omes at a
ost: They need 
onsiderably stronger assumptions, namely quantum mixed 
om-mitments (while we only need quantum 1-1 one-way fun
tions). Both their zero-knowledge property and their extra
tability hold only against polynomial-timeadversaries. In 
ontrast, we get un
onditional extra
tability and 
omputationalzero-knowledge; and by adapting our 
onstru
tion to un
onditionally hiding 
om-mitments, we 
ould instead make the zero-knowledge property un
onditional �this would be ne
essary, e.g., for 
onstru
tions that a
hieve everlasting se
urity.Finally, note that the proto
ols from [14,12℄ are mu
h more involved than their
lassi
al 
ounterparts while we only slightly modify existing 
lassi
al proto
ols.Thus, [14,12℄ give valuable alternatives to our proto
ols but do not supersedethem.1 The de�nition of a 
omputationally binding 
ommitment only guarantees that theadversary 
annot simultaneously produ
e opening information for two di�erent val-ues. Thus, to get a 
ontradi
tion, we need to rewind the adversary to extra
t twovalues. If the 
ommitment is stri
tly binding (De�nition 9), our rewinding te
hnique
an be used.



Organization. In Se
tion 1.1, we give an overview over the te
hniques under-lying our results. In Se
tion 2 we present and dis
uss the de�nition of quantumproofs of knowledge (QPoKs). In Se
tion 3, we give 
riteria under whi
h a proofsystem is a QPoK. In Se
tion 4, we show that zero-knowledge QPoKs exist forall languages in NP. Omitted proofs and de�nitions are presented in the fullversion [18℄.1.1 Our te
hniquesDe�ning proofs of knowledge. In the 
lassi
al setting, proofs of knowledgeare de�ned as follows:2 A proof system 
onsisting of a prover P and a veri�er V isa proof of knowledge (PoK) with knowledge error κ if there is a polynomial-timema
hine K (the extra
tor) su
h that the following holds: For any prover P∗, if P∗
onvin
es V with probability PrV ≥ κ, then KP
∗ (the extra
tor K with rewindingbla
k-box a

ess to P∗) outputs a witness with probability PrK ≥ 1

p
(PrV−κ)d forsome polynomial p and 
onstant d > 0. In order to transfer this de�nition to thequantum setting, we need to spe
ify what it means that K has quantum rewindingbla
k-box a

ess to P∗. We 
hoose the following de�nition: Let U denote theunitary transformation des
ribing one a
tivation of P∗ (if P∗ is not unitary, thisneeds to work for all puri�
ations of P∗). K may invoke U (this 
orresponds torunning P∗), he may invoke the inverse U † of U (this 
orresponds to rewinding

P∗ by one a
tivation), and he may read/write a shared register N for ex
hangingmessages with P∗. But K may not make snapshots of the state of P∗. Allowing
K to invoke U † is justi�ed by the fa
t that all quantum 
ir
uits are reversible;given a 
ir
uit for U , we 
an e�
iently apply U †. Note that previous bla
k-box
onstru
tions su
h as Watrous' rewinding te
hnique and Grover's algorithm [10℄make use of this fa
t. We 
an now de�ne quantum proofs of knowledge: (P,V)is a quantum proof of knowledge (QPoK) with knowledge error κ i� there is apolynomial-time quantum algorithm K su
h that for all mali
ious provers P∗,
KP

∗ (the extra
tor K with quantum rewinding bla
k-box a

ess to P∗) outputs awitness with probability PrK ≥ 1
p
(PrV−κ)d for some polynomial p and 
onstant

d > 0.We illustrate that QPoKs a

ording to this de�nition are indeed useful foranalyzing 
ryptographi
 proto
ols. Assume the following toy proto
ol: In phase
1, a 
erti�
ation authority (CA) signs the pair (Alice, a) where a is Ali
e'sage. In phase 2, Ali
e uses a zero-knowledge QPoK with negligible knowledgeerror κ to prove to Bob that she possesses a signature σ on (Alice, a′) for some
a′ ≥ 21. That is, a witness in this QPoK would 
onsist of an integer a′ ≥ 21 anda signature σ on (Alice, a′) with respe
t to the CA's publi
 key. We 
an nowshow that, if Ali
e is underage, i.e., if a < 21, Bob a

epts the QPoK only withnegligible probability: Assume that Bob a

epts with non-negligible probability
ν. Then, by the de�nition of QPoKs, KAlice will, with probability 1

p
(ν − κ)d,2 This is one of di�erent possible de�nitions, loosely following [11℄. It permits us toavoid the use of expe
ted polynomial-time. We dis
uss alternatives in Se
tion 2.2�On the su

ess probability of the extra
tor�.



output an integer a′ ≥ 21 and a (forged) signature σ on (Alice, a′) with respe
tto the CA's publi
 key (given the information learned in phase 1 as auxiliaryinput). Noti
e that 1
p
(ν − κ)d is non-negligible. However, the CA only signed

(Alice, a) with a < 21. This implies that KAlice 
an produ
e with non-negligibleprobability a valid signature of a message that has never been signed by the CA.This 
ontradi
ts the se
urity of the signature s
heme (assuming, e.g., existentialunforgeability [8℄). This shows the se
urity of our toy proto
ol.Relation to 
lassi
al proofs of knowledge. Noti
e that a quantum proof ofknowledge a

ording to our de�nition is not ne
essarily a 
lassi
al PoK be
ausethe quantum extra
tor might have more 
omputational power. (E.g., in a proofsystem where the witness is a fa
torization, a quantum extra
tor 
ould just 
om-pute this witness himself.) We stress that this �paradox� is not parti
ular to ourde�nition, it o

urs with all simulation-based de�nitions (e.g., zero-knowledge[19℄, universal 
omposability [17℄). If needed, one 
an avoid this �paradox� byrequiring the extra
tor/simulator to be 
lassi
al if the mali
ious prover/veri�eris. (This would a
tually be equivalent to requiring that the s
heme is both a
lassi
al ZK PoK and a quantum one.)Ampli�
ation. Our toy example shows that QPoKs with negligible knowledgeerror 
an be used to show the se
urity of proto
ols. But what about QPoKs withnon-negligible knowledge error? In the 
lassi
al 
ase, we know that the knowl-edge error of a PoK 
an be made exponentially small by sequential repetition.Fortunately, this result 
arries over to the quantum 
ase; its proof follows thesame lines.Elementary 
onstru
tions. In order to understand our 
onstru
tions ofQPoKs, let us �rst revisit a 
ommon method for 
onstru
ting 
lassi
al PoKs.Assume a proto
ol that 
onsists of three messages: the 
ommitment (sent bythe prover), the 
hallenge (pi
ked from a set C and sent by the veri�er), andthe response (sent by prover). Assume that there is an e�
ient algorithm K0that 
omputes a witness given two 
onversations with the same 
ommitmentbut di�erent 
hallenges; this property is 
alled spe
ial soundness. Then we 
an
onstru
t the following (
lassi
al) extra
tor K: KP
∗ runs P∗ using a random 
hal-lenge ch. Then KP

∗ rewinds P∗ to the point after it produ
ed the 
ommitment,and then K
P
∗ runs P∗ with a random 
hallenge ch ′. If both exe
utions lead to ana

epting 
onversation, and ch 6= ch

′, K0 
an 
ompute a witness. The probabilityof getting two a

epting 
onversations 
an be shown to be Pr2V, where PrV is theprobability of the veri�er a

epting P
∗'s proof. From this, a simple 
al
ulationshows that the knowledge error of the proto
ol is 1/#C.If we dire
tly translate this approa
h to the quantum setting, we end upwith the following extra
tor: K runs one step of P∗, measures the 
ommitment

com , provides a random 
hallenge ch, runs the se
ond step of P∗, measures theresponse, runs the inverse of the se
ond step of P∗, provides a random 
hallenge
ch

′, runs the se
ond step of P∗, and measures the response resp′. If ch 6= ch′,and both (com , ch, resp) and (com , ch ′, resp′) are a

epting 
onversations, thenwe get a witness using K0. We 
all this extra
tor the 
anoni
al extra
tor. The



problem is to bound the probability F of getting two a

epting 
onversations. Inthe 
lassi
al setting, one uses that the two 
onversations are essentially indepen-dent (given a �xed 
ommitment), and ea
h of them is, from the point of viewof P∗, the same as an intera
tion with the honest veri�er V. In the quantumsetting, this is not the 
ase. Measuring resp disturbs the state of P∗; we hen
e
annot make any statement about the probability that the se
ond 
onversationis a

epting.How 
an we solve this problem? Note that we 
annot use Watrous' obliviousrewinding sin
e we need to remember both responses resp and resp′ from twodi�erent exe
ution paths of P∗. Instead, we observe that, the more informationwe measure in the �rst 
onversation (i.e., the longer resp is), the more we destroythe state of P∗ used in the se
ond 
onversation. Conversely, if would measureonly one bit, the disturban
e of P∗'s state would be small enough to still get asu�
iently high su

ess probability. But if resp would 
ontain only one bit, itwould 
learly be too short to be of any use for K0. Yet, it turns out that this
on�i
t 
an be resolved: In order not to disturb P∗'s state, we only need that the
resp information-theoreti
ally 
ontains little information. For K0, however, evenan information-theoreti
ally determined resp is still useful; it might, for example,reveal a value whi
h P∗ was already 
ommitted to. To make use of this observa-tion, we introdu
e an additional 
ondition on our proof systems, stri
t soundness.A proof system has stri
t soundness if for any 
ommitment and 
hallenge, thereis at most one response that makes the 
onversation a

epting. Given a proofsystem with spe
ial and stri
t soundness, we 
an show that measuring resp doesnot disturb P∗'s state too mu
h; the 
anoni
al extra
tor is su

essful with prob-ability approximately Pr3V. A pre
ise 
al
ulation shows that a proof system withspe
ial and stri
t soundness has knowledge error 1/√#C.QPoKs for all languages in NP. Blum [4℄ presents a 
lassi
al zero-knowledgePoK for showing the knowledge of a Hamiltonian 
y
le. Using a suitable 
om-mitment s
heme (it should have the property that the opening information isuniquely determined by the 
ommitment), the proof system is easily seen tohave spe
ial and stri
t soundness, thus it is a QPoK. By sequential repetition,we get a QPoK for Hamiltonian 
y
les. Using the Watrous' results, we get thatthe QPoK is also zero-knowledge. Using the fa
t that the Hamiltonian 
y
leproblem is NP-
omplete, we get zero-knowledge QPoKs for all languages in NP(assuming quantum 1-1 one-way fun
tions).1.2 PreliminariesGeneral. A non-negative fun
tion µ is 
alled negligible if for all c > 0 and allsu�
iently large k, µ(k) < k−c. ⊕ denotes the XOR operation on bitstrings. #Cis the 
ardinality of the set C.Quantum systems.We 
an only give a terse overview over the formalism usedin quantum 
omputing. For a thorough introdu
tion, we re
ommend the text-book by Nielsen and Chuang [15, Chap. 1�2℄. A (pure) state in a quantum system



is des
ribed by a unit ve
tor |Φ〉 in some Hilbert spa
e H. We always assume adesignated orthonormal basis for ea
h Hilbert spa
e, 
alled the 
omputationalbasis. The tensor produ
t of several states (des
ribing a joint system) is written
|Φ〉 ⊗ |Ψ〉. We write 〈Ψ | for the linear transformation mapping |Φ〉 to the s
alarprodu
t 〈Ψ |Φ〉. The norm ‖|Φ〉‖ is de�ned as √〈Φ|Φ〉. A unit ve
tor is a ve
torwith ‖|Φ〉‖ = 1. The Hermitean transpose of a linear operator A is written A†.2 Quantum Proofs of Knowledge2.1 De�nitionsIntera
tive ma
hines. A quantum intera
tive ma
hine M (ma
hine, for short)is a ma
hine that gets two inputs, a 
lassi
al input x and a quantum input |Φ〉.
M operates on two quantum registers; a network register N and a register SM forthe state. SM is initialized with |Φ〉. The operation of M is des
ribed by a unitarytransformation Mx (depending on the 
lassi
al input x). In ea
h a
tivation of M,
Mx is applied to N,SM. We write 〈M(x, |Φ〉),M′(x′, |Φ′〉)〉 for the 
lassi
al outputof M′ in an intera
tion where M is a
tivated �rst (and where M and M′ sharethe register N). Often, we will omit the quantum input |Φ〉 or |Φ′〉. In this 
ase,we assume the input |0〉.Ora
les algorithms with rewinding. A quantum ora
le algorithm A is analgorithm that has ora
le a

ess to a ma
hine M. In an exe
ution A

M(x′,|Φ〉)(x),two registers N,SM are used for the 
ommuni
ation with and the state of M. A'sbehavior is des
ribed by a quantum 
ir
uit; A has a

ess to two spe
ial gates
� and �

† that invoke the unitary transformations Mx′ and M
†
x′ , respe
tively.This 
orresponds to running and rewinding M. A is not allowed to a

ess SMdire
tly, and he is allowed to apply � and �

† only to N,SM. (I.e., A has noa

ess to the internal state and the quantum input of the prover. Any a

ess tothis information is done by 
ommuni
ating with M.) Details on the de�nitions ofintera
tive quantum ma
hines and quantum ora
le algorithms are given in thefull version [18℄.Proof systems. A quantum proof system for a relation R is a pair of twoma
hines (P,V). We 
all P the prover and V the veri�er. The prover expe
ts a
lassi
al input (x,w) with (x,w) ∈ R, the veri�er expe
ts only the input x. We
all (P,V) 
omplete if there is a negligible fun
tion µ su
h that for all (x,w) ∈ R,we have that Pr[〈P(x,w),V(x)〉 = 1] ≥ 1−µ(|x|). (Remember that, if we do notexpli
itly spe
ify a quantum input, we assume the quantum input |0〉.) Althoughwe allow P and V to be quantum ma
hines, and in parti
ular to send and re
eivequantum messages, we will not need this property in the following; all proto
ols
onstru
ted in this paper will 
onsist of 
lassi
al ma
hines. We 
all a (P,V) soundwith soundness error s i� for all mali
ious prover P∗, all auxiliary inputs |Φ〉, andall x with ∄w : (x,w) ∈ R, we have Pr[〈P∗(x, |Φ〉),V(x)〉 = 1] ≤ s(|x|). A proofsystem is 
omputational zero-knowledge i� for all polynomial-time veri�ers V∗there is a polynomial-time ma
hine S (the simulator) su
h that for all auxiliary



inputs |Φ〉, and all (x,w) ∈ R, we have that the quantum state of V∗ after anintera
tion 〈P(x,w),V∗(x, |Φ〉)〉 is 
omputationally indistinguishable from theoutput of S(x, |Φ〉); we refer to [19℄ for details.Quantum Proofs of Knowledge.We 
an now de�ne quantum proofs of knowl-edge (QPoKs). Roughly, a quantum proof system (P,V) is a QPoK if there is aquantum ora
le algorithm K (the extra
tor) that a
hieves the following: When-ever some mali
ious prover P∗ 
onvin
es V that a 
ertain statement holds, theextra
tor KP
∗ with ora
le a

ess to P∗ is able to return a witness. Here, we allowa 
ertain knowledge error κ; if P∗ 
onvin
es V with a probability smaller than κ,we do not require anything. Furthermore, we also do not require that the su

essprobability of KP

∗ is as high as the su

ess probability of P∗; instead, we onlyrequire that it is polynomially related. Finally, to fa
ilitate the use of QPoKs assubproto
ols, we give the mali
ious prover an auxiliary input |Φ〉. We get thefollowing de�nition:De�nition 1 (Quantum Proofs of Knowledge). We 
all a proof system
(P,V) for a relation R quantum extra
table with knowledge error κ if there existsa 
onstant d > 0, a polynomially-bounded fun
tion p > 0, and a polynomial-timequantum ora
le ma
hine K su
h that for any intera
tive quantum ma
hine P∗,any state |ψ〉, and any x ∈ {0, 1}∗, we have that

Pr[〈P∗(x, |ψ〉),V(x)〉 = 1] ≥ κ(|x|) =⇒

Pr[(x,w) ∈ R : w ← K
P
∗(x,|ψ〉)(x)] ≥ 1

p(|x|)

(

Pr
[

〈P∗(x, |ψ〉),V(x)〉 = 1
]

−κ(|x|)
)d

.A quantum proof of knowledge for R with knowledge error κ (QPoK, for short)is a 
omplete3 quantum extra
table proof system for R with knowledge error κ.Note that by quantifying over all unitary provers P∗, we impli
itly quantify overall puri�
ations of all possible non-unitary provers. Note that extra
tabilitywith knowledge error κ implies soundness with soundness error κ. We thus donot need to expli
itly require soundness in De�nition 1. The knowledge error κ
an be made exponentially small by sequential repetition:Theorem 2. Let n be a polynomially bounded and e�
iently 
omputable fun
-tion. Let (P,V) be extra
table with knowledge error κ. Let (P′,V′) be the proofsystem 
onsisting of n-sequential exe
utions of (P,V). Then (P′,V′) is extra
tablewith knowledge error κn.2.2 Dis
ussionIn this se
tion, we motivate various design 
hoi
es made in the de�nition ofQPoKs.A

ess to the bla
k-box prover's state and input. The extra
tor has noa

ess to the prover's state nor to its quantum input. (This is modeled by the fa
t3 I.e., for honest prover and veri�er, the proof su

eeds with overwhelming probability.



that an ora
le algorithm may not apply any gates ex
ept for �,�† to the register
ontaining the ora
le's state and quantum input.) In this, we follow [3℄ who arguein Se
tion 4.3 that a proof of knowledge is supposed to �
apture the knowledgeof the prover demonstrated by the intera
tion� and that thus the extra
tor is notsupposed to see the internal state of the prover. We stress, however, that ourresults are independent of this issue; they also hold if we allow the extra
tor toa

ess the prover's state dire
tly.Unitary & invertible provers � te
hni
al view. Probably the most im-portant design 
hoi
e in our de�nition is to require the prover to be a unitaryoperation, and to allow the extra
tor to also exe
ute the inverse of this oper-ation. We begin with a dis
ussion of this design 
hoi
e from a te
hni
al pointof view. First, we stress that seems that these assumptions are ne
essary: Sin
ein a quantum world, making a snapshot/
opy of a state is not possible or evenwell-de�ned, we have to allow the extra
tor to run the prover �ba
kwards�. Butthe inverse of a non-unitary quantum operation does not, in general, exist. Thusrewinding seems only possible with respe
t to unitary provers. Se
ond, the prob-ably most important question is: Does the de�nition, from an operational pointof view, make sense? That is, does our de�nition behave well in 
ryptographi
,redu
tion-based proofs? A �nal answer to this question 
an only be given whenmore proto
ols using QPoKs have been analyzed. However, the toy proto
ol dis-
ussed on page 4 gives a �rst indi
ation that our de�nition 
an be used in asimilar fashion to 
lassi
al proofs of knowledge. Third, we would like to remindthe reader that any non-unitary prover 
an be transformed into a unitary one bypuri�
ation before applying the de�nition of QPoKs. Thus allowing only unitarymali
ious provers does not seem to be a restri
tion in pra
ti
e.Unitary & invertible provers � philosophi
al view. Intuitively, a QPoKshould guarantee that a prover that 
onvin
es the veri�er �knows� the witness.4The basi
 idea is that if an extra
tor 
an extra
t the witness using only whatis available to the prover, then the prover �knew� the witness (or 
ould have
omputed it). In parti
ular, we may allow the extra
tor to run a puri�ed (unitary)version of the prover be
ause the prover himself 
ould have done so. Similarlyfor the inverse of that operation. Of 
ourse, this leaves the question why we givethese two 
apabilities to the extra
tor but not others (e.g., a

ess to the 
ir
uit ofthe prover)? We would like to stress that analogous questions are still open (froma philosophi
al point) even in the 
lassi
al 
ase: Why is it natural to allow anextra
tor to rewind the prover?Why is it natural to give a trapdoor for a 
ommonreferen
e string to the extra
tor? We would like to point out one justi�
ation forthe assumption that the prover is unitary, though: [3℄ suggests that we �
apturethe knowledge of the prover demonstrated by the intera
tion�. A prover thatperforms non-unitary operations is identi
al in terms of its intera
tion to onethat is puri�ed. Thus, by restri
ting to unitary provers, we 
ome 
loser to only
apturing the intera
tion but not the inner workings of the prover.4 We believe, though, that this issue is se
ondary to the te
hni
al suitability; it ismu
h more important that a QPoK is useful as a 
ryptographi
 subproto
ol.



On the su

ess probability of the extra
tor. We require the extra
torto run in polynomial-time and to su

eed with probability 1
p
(PrV − κ)d where

PrV is the probability that the prover 
onvin
es the veri�er. (We 
all this anA-style de�nition.) In 
lassi
al PoKs, a more 
ommon de�nition is to requirethe extra
tor to have expe
ted runtime p
PrV−κ and to su

eed with probability 1.(We 
all this a B-style de�nition.) This de�nition is known to be equivalentto the de�nition in whi
h the extra
tor runs in expe
ted polynomial-time andsu

eeds with probability 1

p
(PrV − κ). (We 
all this a C-style de�nition.) Theadvantage of an A-style de�nition (whi
h follows [11℄) is that we 
an 
onsiderpolynomial-time extra
tors (instead of expe
ted polynomial-time extra
tors). Toget extra
tors for B-style and C-style de�nitions, one has to in
rease the su

essprobability of an extra
tor by repeatedly invoking it until it outputs a 
orre
twitness. In the quantum 
ase, however, this does not work dire
tly: If the invokedextra
tor fails on
e, the auxiliary input of the prover is destroyed. The obliviousrewinding te
hnique by Watrous' would seem to help here, but when tryingto apply that te
hnique one gets the requirement that the invoked extra
tors'su

ess probability must be independent of the auxiliary input. This 
ondition isnot ne
essarily ful�lled. To summarize, all three styles of de�nitions have theiradvantages, but it is not 
lear how one 
ould ful�l B- and C-style de�nitionsin the quantum 
ase. This is why we 
hose an A-style de�nition. There are,however, appli
ations that would bene�t from a proof system ful�lling a C-stylede�nition. For example, general multi-party 
omputation proto
ols su
h as [5℄use extra
tors as part of the 
onstru
tion of the simulator for the multi-party
omputation; these extra
tors must then su

eed with probability 
lose to 1. Weleave the 
onstru
tion of C-style QPoKs as an open problem.3 Elementary 
onstru
tionsIn this se
tion, we show that under 
ertain 
onditions, a 
lassi
al PoK is alsoa QPoK (i.e., se
ure against mali
ious quantum provers). The �rst 
onditionrefers to the outer form of the proto
ol; we require that the proof systems isa proto
ol with three messages (
ommitment, 
hallenge, and response) with apubli
-
oin veri�er. Su
h proto
ols are 
alled Σ-proto
ols. Furthermore, we re-quire that the proof system has spe
ial soundness. This means that given twoa

epting 
onversations between prover and veri�er that have the same 
ommit-ment but di�erent 
hallenges, we 
an e�
iently 
ompute a witness. Σ-proto
olswith spe
ial soundness are well-studied in the 
lassi
al 
ase; many e�
ient 
las-si
al proto
ols with these properties exist. The third 
ondition (stri
t soundness)is non-standard. We require that given the 
ommitment and the 
hallenge of a
onversation, there is at most one response that would make the veri�er a

ept.We require stri
t soundness to ensure that the response given by the prover doesnot 
ontain too mu
h information; measuring it will then not disturb the stateof the prover too mu
h. Not all known proto
ols have stri
t soundness (the prooffor graph isomorphism [6℄ is an example). Fortunately, many proto
ols do satisfy



stri
t soundness; a slight variation of the proof for Hamiltonian 
y
les [4℄ is anexample (see Se
tion 4).De�nition 3 (Σ-proto
ol). A proof system (P,V) is 
alled a Σ-proto
ol if Pand V are 
lassi
al, the intera
tion 
onsists of three messages com , ch, resp (sentby P, V, and P, respe
tively, and 
alled 
ommitment, 
hallenge, and response),and ch is uniformly 
hosen from some set Cx (the 
hallenge spa
e) that may onlydepend on the statement x. Furthermore, the veri�er de
ides whether to a

eptor not by a deterministi
 polynomial-time 
omputation on x, com , ch, resp. (We
all (com , ch, resp) an a

epting 
onversation for x if the veri�er would a

eptit.) We also require that it is possible in polynomial time to sample uniformlyfrom Cx, and that membership in Cx should be de
idable in polynomial time.De�nition 4 (Spe
ial soundness). We say a Σ-proto
ol (P,V) for a relation
R has spe
ial soundness if there is a deterministi
 polynomial-time algorithm
K0 (the spe
ial extra
tor) su
h that the following holds: For any two a

epting
onversations (com , ch, resp) and (com , ch ′, resp′) for x su
h that ch 6= ch

′ and
ch, ch ′ ∈ Cx, we have that w := K0(x, com , ch, resp, ch

′, resp′) satis�es (x,w) ∈
R.De�nition 5 (Stri
t soundness).We say a Σ-proto
ol (P,V) has stri
t sound-ness if for any two a

epting 
onversations (com, ch, resp) and (com , ch, resp′)for x, we have that resp = resp′.Canoni
al extra
tor. Let (P,V) be a Σ-proto
ol with spe
ial soundness andstri
t soundness. Let K0 be the spe
ial extra
tor for that proto
ol. We de�nethe 
anoni
al extra
tor K for (P,V). K will use measurements, even though ourde�nition of quantum ora
le algorithms only allows for unitary operations. Thisis only for the sake of presentation; by purifying K one 
an derive a unitaryalgorithm with the same properties. Given a mali
ious prover P∗, KP

∗(x,|Φ〉)(x)operates on two quantum registers N,SP∗ . N is used for 
ommuni
ation with
P∗, and SP∗ is used for the state of P∗. The registers N,SP∗ are initialized with
|0〉, |Φ〉. Let P∗

x denote the unitary transformation des
ribing a single a
tivationof P. First, K applies P∗
x to N,SP∗ . (This 
an be done using the spe
ial gate �.)This 
orresponds to running the �rst step of P∗; in parti
ular, N should now
ontain the 
ommitment. Then K measures N in the 
omputational basis; 
allthe result com . Then K initializes N with |0〉. Then K 
hooses uniformly randomvalues ch, ch ′ ∈ Cx. Let Uch denote the unitary transformation operating on

N su
h that Uch |x〉 = |x ⊕ ch〉. Then K applies P∗
xUch . (Now N is expe
ted to
ontain the response for 
hallenge ch.) Then K measures N in the 
omputationalbasis; 
all the result resp. Then K applies (P∗

xUch)
† (we rewind the prover). Then

P∗
xUch′ is applied. (Now N is expe
ted to 
ontain the response for 
hallenge ch ′.)Then N is measured in the 
omputational basis; 
all the result resp′. Then

(P∗
xUch′)† is applied. Finally, K outputs w := K0(x, com , ch, resp, ch

′, resp′).Analysis of the 
anoni
al extra
tor. In order to analyze the 
anoni
al ex-tra
tor (Theorem 8 below), we �rst need a lemma that bounds the probabilitythat two 
onse
utive binary measurements Pch and Pch′ with random ch 6= ch′



su

eed in terms of the probability that a single su
h measurement su

eeds. Ina 
lassi
al setting (or in the 
ase of 
ommuting measurements), the answer issimple: the out
omes of the measurements are independent; thus the probabilitythat two measurements su

eed is the square of the probability that a singlemeasurement su

eeds. In the quantum 
ase, however, the �rst measurementmay disturb the state; this makes the analysis 
onsiderably more involved. We�rst prove some inequalities needed in the proof:Lemma 6. Let C be a set with #C = c. Let (Pi)i∈C be orthogonal proje
torson a Hilbert spa
e H. Let |Φ〉 ∈ H be a unit ve
tor. Let V :=
∑

i∈C
1
c
‖Pi|Φ〉‖2and F :=

∑

i,j∈C
1
c2
‖PiPj |Φ〉‖2. Then F ≥ V 3.Proof. To prove the lemma, we �rst show two simple fa
ts:Claim. For any positive operator A on H and any unit ve
tor |Φ〉 ∈ H, we havethat (〈Φ|A|Φ〉)3 ≤ 〈Φ|A3|Φ〉.Sin
e A is positive, it is diagonalizable. Thus we 
an assume without loss ofgenerality that A is diagonal (by applying a suitable basis transform to A and

|Φ〉). Let ai be the i-th diagonal element of A, and let fi be the i-th 
omponentof |Φ〉. Then
(〈Φ|A|Φ〉)3 =

(

∑

i

|fi|2ai
)3 (∗)

≤
∑

i

|fi|2a3i = 〈Φ|A3|Φ〉.Here (∗) uses Jensen's inequality [13℄ and the fa
ts that ai ≥ 0, that ai 7→ a3i is a
onvex fun
tion on nonnegative numbers, and that ∑i|fi|2 = 1. This 
on
ludesthe proof of Lemma 3.Claim. For ve
tors |Ψ1〉, . . . , |Ψc〉 ∈ H, it holds that ‖ 1c ∑i|Ψi〉‖2 ≤ 1
c

∑

i‖|Ψi〉‖2.To show the 
laim, let |Ψ̄〉 := ∑

i
1
c
|Ψi〉. Then

∑

i

(

‖|Ψi〉‖2 − ‖|Ψ̄〉‖2
)

=
∑

i

(

‖|Ψi〉‖ − ‖|Ψ̄〉‖
)(

‖|Ψi〉‖ − ‖|Ψ̄〉‖+ 2‖|Ψ̄〉‖
)

=
∑

i

(

‖|Ψi〉‖ − ‖|Ψ̄〉‖
)2

+ 2‖|Ψ̄〉‖
∑

i

(

‖|Ψi〉‖ − ‖|Ψ̄〉‖
)

≥ 2‖|Ψ̄〉‖
∑

i

(

‖|Ψi〉‖ − ‖|Ψ̄〉‖
)

= 2‖|Ψ̄〉‖
(

∑

i

‖|Ψi〉‖ − ‖n|Ψ̄〉‖
) (1)

= 2‖|Ψ̄〉‖
(

∑

i

‖|Ψi〉‖ −
∥

∥

∥

∑

i

|Ψi〉
∥

∥

∥

) (2)From the triangle inequality, it follows that ∑

i‖|Ψi〉‖ ≥ ‖
∑

i|Ψi〉‖, hen
e with(2), we have ∑

i

(

‖|Ψi〉‖2 − ‖|Ψ̄〉‖2
)

≥ 0. Sin
e 1
c

∑

i‖|Ψi〉‖2 − ‖ 1c
∑

i|Ψi〉‖2 =

1
c

∑

i

(

‖|Ψi〉‖2 − ‖|Ψ̄〉‖2
)

≥ 0, Lemma 3 follows.



We pro
eed to prove Lemma 6. Let A :=
∑

i
1
c
Pi, let |Ψij〉 := PjPi|Φ〉. Then

A is positive. Furthermore,
V 3 =

(

∑

i

1
c
〈Φ|Pi|Φ〉

)3

=
(

〈Φ|A|Φ〉
)3 (∗)

≤ 〈Φ|A3|Φ〉 =
∑

i,j,k

1
c3
〈Φ|PiPjPk|Φ〉

=
∑

i,j,k

1
c3
〈Ψij |Ψkj〉 =

∑

j

1
c

(

∑

i

1
c
〈Ψij |

)(

∑

k

1
c
|Ψkj〉

)

=
∑

j

1
c

∥

∥

∥

∑

i

1
c
|Ψij〉

∥

∥

∥

2

(∗∗)

≤
∑

j

1
c

∑

i

1
c
‖|Ψij〉‖2 = F.Here (∗) uses Lemma 3 and (∗∗) uses Lemma 3. Thus we have F ≥ V 3 andLemma 6 follows.Lemma 7. Let C be a set with #C = c. Let (Pi)i∈C be orthogonal proje
torson a Hilbert spa
e H. Let |Φ〉 ∈ H be a unit ve
tor. Let V :=

∑

i∈C
1
c
‖Pi|Φ〉‖2and E :=

∑

i,j∈C,i6=j
1
c2
‖PiPj |Φ〉‖2. Then, if V ≥ 1√

c
, E ≥ V (V 2 − 1

c
).Proof. Let F be as in Lemma 6. Then

E =
∑

i,j∈C
i6=j

1

c2
‖PiPj |Φ〉‖2 =

∑

i,j∈C

1

c2
‖PiPj |Φ〉‖2 −

∑

i∈C

1

c2
‖PiPi|Φ〉‖2

(∗)
=

∑

i,j∈C

1

c2
‖PiPj |Φ〉‖2 −

∑

i∈C

1

c2
‖Pi|Φ〉‖2 = F − V

c

(∗∗)

≥ V 3 − V

c
= V (V 2 − 1

c
)Here (∗) uses that Pi = PiPi sin
e Pi is a proje
tion, and (∗∗) uses Lemma 6. ⊓⊔Theorem 8. A Σ-proto
ol (P,V) for a relation R with spe
ial and stri
t sound-ness and 
hallenge spa
e Cx is extra
table with knowledge error 1√

#Cx

.Proof. To show that (P,V) is extra
table, we will use the 
anoni
al extra
tor K.Fix a mali
ious prover P∗, a statement x, and an auxiliary input |Φ〉. Let PrVdenote the probability that the veri�er a

epts when intera
ting with P∗. Let
PrK denote the probability that KP

∗(x,|Φ〉)(x) outputs some w with (x,w) ∈ R.We will show that PrK ≥ PrV · (Pr2V − 1
#Cx

). For PrV ≥ 1√
#Cx

, we have that
PrV(Pr

2
V
− 1

#Cx

) ≥ (PrV− 1√
#Cx

)3. Sin
e furthermore K is polynomial-time, thisimplies that (P,V) is extra
table with knowledge error 1√
#Cx

.In order to show PrK ≥ PrV · (Pr2V − 1
#Cx

), we will use a short sequen
e ofgames. Ea
h game will 
ontain an event Succ, and in the �rst game, we willhave Pr[Succ : Game 1] = PrK. For any two 
onse
utive games, we will have
Pr[Succ : Game i] ≥ Pr[Succ : Game i+ 1], and for the �nal game, we willhave Pr[Succ : Game 7] ≥ PrV · (Pr2V − 1

#Cx

). This will then 
on
lude the proof.The des
ription of ea
h game will only 
ontain the 
hanges with respe
t to thepre
eding game.



Game 1. An exe
ution of KP
∗(x,|Φ〉)(x). Succ denotes the event that K outputsa witness for x. By de�nition, PrK = Pr[Succ : Game 1].Game 2. Succ denotes the event that (com , ch, resp) and (com , ch ′, resp′) area

epting 
onversations for x and ch 6= ch

′. (The variables (com , ch, resp) and
(com , ch ′, resp′) are as in the de�nition of the 
anoni
al extra
tor.) Sin
e (P,V)has spe
ial soundness, if Succ o

urs, K outputs a witness. Thus Pr[Succ :Game 1] ≥ Pr[Succ : Game 2].Game 3. Before K measures resp, it �rst measures whether measuring
resp would yield an a

epting 
onversation. More pre
isely, it measures Nwith the orthogonal proje
tor Pch proje
ting onto Vch := span{|resp〉 :
(com , ch, resp) is a

epting}. Analogously for the measurement of resp′ (usingthe proje
tor Pch′ .) Sin
e a 
omplete measurement (of resp and resp′, respe
-tively) is performed on N after applying the measurement Pch and Pch′ , in-trodu
ing the additional measurements does not 
hange the out
omes resp and
resp′ of these 
omplete measurements, nor their post-measurement state. Thus
Pr[Succ : Game 2] = Pr[Succ : Game 3].Game 4. Succ denotes the event that ch 6= ch′ and both measurements Pch and
Pch′ su

eed. By de�nition of these measurements, this happens i� (com , ch, resp)and (com , ch ′, resp′) are a

epting 
onversations. Thus Pr[Succ : Game 3] =
Pr[Succ : Game 4].Game 5. We do not exe
ute K0, i.e., we stop after applying (P∗

xUch′)†. Sin
eat that point, Succ has already been determined, Pr[Succ : Game 4] = Pr[Succ :Game 5].Game 6. We remove the measurements of resp and resp′. Note that the out-
omes of these measurements are not used any more. Sin
e (P,V) has stri
tsoundness, Vch = span{|resp0 〉} for a single value resp0 (depending on com and
ch, of 
ourse). Thus if the measurement Pch su

eeds, the post-measurementstate in N is |resp0〉. That is, the state in N is 
lassi
al at this point. Thus,measuring N in the 
omputational basis does not 
hange the state. Hen
e, themeasurement of resp does not 
hange the state. Analogously for the measurementof resp′. It follows that Pr[Succ : Game 5] = Pr[Succ : Game 6].Game 7. First, N and SP∗ are initialized with |0〉 and |Φ〉. Then the unitarytransformation P∗

x is applied. Then com is measured (
omplete measurementon N), and N is initialized to |0〉. Random ch, ch′ ∈ Cx are 
hosen. Then
P∗
xUch is applied. Then the measurement Pch is performed. Then (P∗

xUch)
† isapplied. Then P∗

xUch′ is applied. Then the measurement Pch′ is performed. Then
(P∗
xUch′)† is applied. The event Succ holds if ch 6= ch′ and both measurementssu

eed. Games 6 and 7 are identi
al; we have just re
apitulated the game for
larity. Thus, Pr[Succ : Game 6] = Pr[Succ : Game 7].In Game 7, for some value d , let pd denote the probability that com = dis measured. Let |Φd〉 denote the state of N,SP∗ after measuring com = d andinitializing N with |0〉. (I.e., the state dire
tly before applying P∗

xUch .) Let Kddenote the probability that starting from state |Φd〉, both measurements Pch and



Pch′ su

eed. Let c := #Cx. Then we have that Pr[Succ : Game 7] = ∑

d pdKdand
Kd =

∑

ch,ch′∈Cx

ch 6=ch
′

1

c2
‖(P∗

xUch′)†Pch′(P∗
xUch′)(P∗

xUch)
†Pch(P

∗
xUch)|Φd〉‖2

=
∑

ch,ch′∈Cx

ch 6=ch
′

1

c2
‖P ∗

ch′P ∗
ch |Φd〉‖2where P ∗

ch
:= (P∗

xUch)
†Pch (P

∗
xUch). Sin
e Pch is an orthogonal proje
tor and

P∗
xUch is unitary, P ∗

ch
is an orthogonal proje
tor. Let ϕ(v) := v(v2 − 1

c
) for

v ∈ [ 1√
c
, 1] and ϕ(v) := 0 for v ∈ [0, 1√

c
]. Then, by Lemma 7, Kd ≥ ϕ(Vd) for

Vd :=
∑

ch∈Cx

1
c
‖P ∗

ch
|Φd〉‖2.Furthermore, by 
onstru
tion of the honest veri�er V, we have that

PrV =
∑

d

pd
∑

ch∈Cx

1
c
‖PchP

∗
xUch |Φd〉‖2

(∗)
=

∑

d

pd
∑

ch∈Cx

1
c
‖(P∗

xUch)
†Pch(P

∗
xUch)|Φd〉‖2 =

∑

d

pdVdwhere (∗) uses that (P∗
xUch)

† is unitary. Finally, we have
PrK = Pr[Succ : Game 1] ≥ Pr[Succ : Game 7]

=
∑

d

pdKd ≥
∑

d

pdϕ(Vd)
(∗)

≥ ϕ(PrV).Here (∗) uses Jensen's inequality [13℄ and the fa
t that ϕ is 
onvex on [0, 1]. Asdis
ussed in the beginning of the proof, PrK ≥ ϕ(PrV) = PrV · (Pr2V − 1
c
) for

PrV ≥ 1√
c
implies that (P,V) is a QPoK with knowledge error 1/√#Cx.4 QPoKs for all languages in NPIn the pre
eding se
tion, we have seen that 
omplete proof systems with stri
tand spe
ial soundness are QPoKs. The question that remains to be asked is: dosu
h proof systems, with the additional property of being zero-knowledge, existfor interesting languages? In this se
tion, we will show that for any languagein NP (more pre
isely, for any NP-relation), there is a zero-knowledge QPoK.(Assuming the existen
e of quantum 1-1 one-way fun
tions.) Here and in thefollowing, by zero-knowledge we mean quantum 
omputational zero-knowledge.The starting point for our 
onstru
tion will be the Blum's zero-knowledgePoK for Hamiltonian 
y
les [4℄. In this Σ-proto
ol, the prover's 
ommits to theverti
es of a graph using a perfe
tly binding 
ommitment s
heme. In the prover'sresponse, some of these 
ommitments are opened. That is, the response 
ontainsthe opening information for some of the 
ommitments. The problem is thatstandard de�nitions of 
ommitment s
hemes do not guarantee that the opening



information is unique; only the a
tual 
ontent of the 
ommitment has to be deter-mined by the 
ommitment. This means that the prover's response is not unique.Thus, with a standard 
ommitment s
heme we do not get stri
t soundness. In-stead we need a 
ommitment s
heme su
h that the sender of the 
ommitments
heme is 
ommitted not only to the a
tual 
ontent of the 
ommitment, but alsoto the opening information.De�nition 9 (Stri
t binding). A 
ommitment s
heme COM is a determinis-ti
 polynomial-time fun
tion taking two arguments a, y, the opening information
a and the message y. We say COM is stri
tly binding if for all a, y, a′, y′ with
(a, y) 6= (a′, y′), we have that COM(a, y) 6= COM(a′, y′).Furthermore, in order to get the zero-knowledge property, we will need thatour 
ommitment s
hemes are quantum 
omputationally 
on
ealing. We refer to[19℄ for a pre
ise de�nition of this property. In [2℄, an un
onditionally binding,quantum 
omputationally 
on
ealing 
ommitment s
heme based on quantum 1-1one-way fun
tion is presented.5 Unfortunately, to the best of our knowledge, no
andidates for quantum 1-1 fun
tions are known. Their de�nitions di�er some-what from those of [19℄, but as mentioned in [19℄, their proof 
arries over tothe de�nitions from [19℄. Furthermore, in the s
heme from [2℄, the 
ommitment
ontains the image of the opening information under a quantum 1-1 one-wayfun
tion. Thus the stri
t binding property is trivially ful�lled. Thus stri
tly bind-ing, quantum 
omputationally 
on
ealing 
ommitment s
hemes exist under theassumption that quantum 1-1 one-way fun
tions exist.Given su
h a 
ommitment s
heme COM, we 
an 
onstru
t the proof system
(P,V). This proof system di�ers from the original proof system for Hamiltonian
y
les [4℄ only in the following aspe
t: The prover does not only 
ommit tothe verti
es in the graph π(x), but also to the permutation π and the 
y
le H .Without these additional 
ommitments, we would not get stri
t soundness; theremight be several permutations leading to the same graph, or the graph might
ontain several Hamiltonian 
y
les. The full des
ription of the proto
ol is givenin Figure 1.Theorem 10. Let (x,w) ∈ R i� w is a Hamiltonian 
y
le of the graph x. As-sume that COM is a stri
tly binding, quantum 
omputationally 
on
ealing 
om-mitment s
heme. Then the proof system (P,V) is a zero-knowledge QPoK for Rwith knowledge error 1√

2
.The zero-knowledge property is proven using the te
hniques from [19℄. Ex-tra
tability is shown by proving spe
ial and stri
t soundness. The stri
t sound-ness follows from the fa
t that the prover is 
ommitted to all the informationsent in his response using a stri
tly binding 
ommitment.5 In [2℄, the result is stated for quantum one-way permutations f : {0, 1}n → {0, 1}n.(To the best of our knowledge, no 
andidates for quantum one-way permutationsare known.) Inspe
tion of their proof reveals, however, that the result also holds forfamilies of quantum 1-1 one-way fun
tions fi : {0, 1}n → D for arbitrary domain

D and e�
iently samplable indi
es i, assuming that given an index i, it 
an bee�
iently veri�ed that fi is inje
tive.



Inputs: A dire
ted graph x (the statement) with verti
es W , and a Hamiltonian
y
le w in x (the witness).Proto
ol:1. P pi
ks a random permutation π on W . Let A be the adja
en
y matrix of thegraph π(x). Let H := {(π(i), π(j)) : (i, j) ∈ w}. Using COM, P 
ommits to π, H ,and to ea
h entry Aij of A. P sends the resulting 
ommitments to V.2. V pi
ks ch ∈ {0, 1} and sends ch to P.3. If ch = 0, P opens the 
ommitments to π and A. If ch = 1, P opens the 
ommit-ments to H and to all Aij with (i, j) ∈ H .4. If ch = 0, V 
he
ks that the 
ommitments are opened 
orre
tly, that π is a permu-tation, and that A is the adja
en
y matrix of π(x). If ch = 1, V 
he
ks that the
ommitments are opened 
orre
tly, that H is a 
y
le, that exa
tly the Aij with
(i, j) ∈ H are opened, and that Aij = 1 for all (i, j) ∈ H . If all 
he
ks su

eed, Voutputs 1. Fig. 1. A QPoK (P,V) for Hamiltonian 
y
les.Corollary 11 (QPoKs for all languages in NP). Let R be an NP-relation.6Then there is a zero-knowledge QPoK for R with negligible knowledge error.A
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