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Abstract. The goal of this paper is to further study the index calcu-
lus method that was first introduced by Semaev for solving the ECDLP
and later developed by Gaudry and Diem. In particular, we focus on the
step which consists in decomposing points of the curve with respect to
an appropriately chosen factor basis. This part can be nicely reformu-
lated as a purely algebraic problem consisting in finding solutions to a
multivariate polynomial f(X1,...,Xm) = 0 such that x1,...,Xm all be-
long to some vector subspace of Fan /Fz. Our main contribution is the
identification of particular structures inherent to such polynomial sys-
tems and a dedicated method for tackling this problem. We solve it by
means of Groébner basis techniques and analyze its complexity using the
multi-homogeneous structure of the equations. A direct consequence of
our results is an index calculus algorithm solving ECDLP over any bi-
nary field Fan in time O(2“"), with ¢ ~ n/2 (provided that a certain
heuristic assumption holds). This has to be compared with Diem’s [14]
index calculus based approach for solving ECDLP over Fq» which has
complexity exp(O(n log(n)l/z)) for ¢ = 2 and n a prime (but this holds
without any heuristic assumption). We emphasize that the complexity
obtained here is very conservative in comparison to experimental results.
We hope the new ideas provided here may lead to efficient index calculus
based methods for solving ECDLP in theory and practice.
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1 Introduction

Elliptic curves were independently introduced to cryptography by Miller and
Koblitz in 1985 [37,32]. The security of curve-based cryptosystems often relies on
the difficulty of solving the well-known Discrete Logarithm Problem on Elliptic
Curves (ECDLP). Given a finite cyclic group G = (P) and given an element Q
in G, the discrete logarithm problem asks for an integer k£ such that Q = kP.
For an elliptic curve F defined over a finite field K, the group G can chosen to
be the set E(K) of rational points on F.

One of the main method for solving (EC)DLP is Index Calculus. This ap-
proach, which was first introduced by Kraitchik [33] and later optimized by
Adleman [1], can be seen as a general framework [15]. To summarize, Index
Calculus algorithms are composed of the following three steps:

1. Factor Basis definition. Identify a subset F = {m,..., 75} C G.

2. Sieving step. Collect more than #F relations of the form aP + bQ =
>-i_, e;m; where a,b are random integers.

3. Linear Algebra step. From these relations, construct a matrix with a non-
trivial kernel. Then, find a non-trivial vector in this kernel and deduce k (a
discrete logarithm) from such vector.

While the last step is independent of the choice of G, the efficiency of the first
two steps relies on specific properties of the group. Depending on the ability to
find a factor basis together with an algorithm for computing relations during the
sieving step, the index calculus method may achieve a subexponential complexity.
For instance, subexponential algorithms have been obtained for multiplicative
groups of finite fields [3,2,4,30] and for Jacobian groups of hyperelleptic curves
with large genus [3,27,26].

Related Works and Contributions. Our results are related to the sieving step of
the ECDLP index calculus method proposed by Semaev [40] and later developed
by Gaudry [28] and Diem [13,14]. The main idea introduced by Semaev is the use
of so-called summation polynomials. As soon as a factor basis is fixed, summation
polynomials can be used for sieving elements of an elliptic curve E and thus
an index calculus method follows. The main problem to get an efficient index
calculus is to find a factor basis together with an efficient algorithm for solving
summation polynomials. During the ECC conference following publication of
Semaev’s result, Gaudry and Diem independently proposed such solutions. More
precisely, when E is defined over an extension Fy» with n > 1 a composite integer,
Gaudry [28] proposed to use the following set F = {(x,y) € E(Fq) | x €
F,} as a factor basis and provides an algorithm for solving the ECDLP with a
complexity better than generic methods. Next, the problem of finding P, ..., Py,
in F such that R = P, + --- + P, for a given R € E is reduced to solve
the equation Syt1((P1)zy---, (Pm)z, Re) = 0, where S, is the r-th Semaev’s
summation polynomial [40] and (P), stands for the z-coordinate of P. Diem
proposed a generalization of this approach by considering (in a simpler form
here) the factor basis Fy := {(x,y) € E(K) | x € V}, with V a vector subspace



of Fyn /F,. Thus, the main computational tool for sieving here is an algorithm
solving efficiently a specific polynomial system.

Recently, Diem presented in [14] new complexity results for this generaliza-
tion. He succeeds to prove — without any heuristic assumption — some subexpo-
nential complexity results for solving ECDLP. But, for ¢ = 2 and n is a prime —
the setting considered here — he has an index calculus algorithm of exponential

complexity e (n log(”)l/2). The polynomial systems occurring in [14] are solved
with a geometrical algorithm proposed by Rojas [39]. Whilst such algorithm has
a good complexity estimate, it is well known that its hard to implement it in
practice.

In this work, we focus on the specific case ¢ = 2 and n prime. We show that
the polynomial systems occurring have a very specific structure. We provide a
new (heuristic) algorithm taking advantage of the structure for the sieving step.
We focus our study on the following point decomposition problem related to
some vector space:

Problem 1 (Point Decomposition Problem associated to a vector space V). Let
V be a vector space of Fan /Fo. Given a point R € E(Fan ), the problem is to find
— if any — m points P, ..., P, such that R = P; + - - - 4+ P, with the additional
constraint that (P;), € V for all i € {1,...,m}.

This problem can be reduced to a polynomial system solving problem using
Semaev’s summation polynomials (or using any other polynomial system mod-
eling). Here, we show that the multi-homogeneous structure of the system con-
structed from Semaev’s summation polynomials can be used to design a Grébner
based algorithm. To be more precise, we design an efficient algorithm for:

Problem 2. Let t > 1, V be a vector space of Fan /Fg and £ € Fon[x1,...,Xm] be
any multivariate polynomial of degree bounded by 2! — 1 in each variable. The
problem is to find (z1,...,2m) € V™ such that f(z1,...,2m) = 0.

Since Fan is a vector space over Fg, f can be rewritten (or deployed) as a poly-
nomial system of m equations over Fy and then can be solved using Grobner
bases algorithms. The prominent observation is to remark that this system is
(affine) multi-homogeneous. While the complexity of solving bi-linear systems
using Grobner bases — that is to say polynomials of bi-degree (1,1) — is now
well understood [24], the general case is not known. Consequently, we propose a
simple ad-hoc algorithm to take advantage of the multihomogeneous structure.
This is of independent interest in the more general context of computer algebra.
The main idea is to show that starting from the unique equation f = 0, we
can generate many low-degree equations by deploying the equations mf = 0
over 5 for a large number of appropriately chosen monomials m. Another main
difference with unstructured polynomials is that — in some degree d — the number
of monomials occurring in the polynomials coming from mf is much smaller than
the number of all possible monomials in degree d. Indeed, due to the choice of
m, the monomials occurring in the equations constructed from mf have still a
multi-homogeneous structure and their degrees are well controlled.



As usual, to estimate the maximum degree D reached during the computa-
tion we study the number of equations minus the number of monomials. When
this number is > 0, and under a reasonable linear independence assumption
confirmed by our experimental results, the computation is finished. Using the
structure of the polynomials, we prove that this degree D is much smaller than
expected; assuming that a reasonable heuristic is true. It is worth noticing that
although we describe our algorithm as a linearization method [35], Grébner basis
algorithms like Fy or F5 [16,17] can be advantageously used in practice to solve
the corresponding polynomial systems. The algorithm presented in this paper,
together with its complexity analysis, can thus be understood as a method to
(heuristically) bound the complexity of computing the corresponding Grébner
basis similarly to the Macaulay’s bound obtain by Lazard [34] to bound the
complexity of Grobner bases in the general case. More precisely, we obtain:

Theorem 2. Assuming some linear independence assumption (see Assumption
1, p. 10), Problem 2 can asymptotically be solved in time O(2*7) and memory
O(2°7), where w is the linear algebra constant and T ~ n/2. Under the same
hypothesis, there exists an index calculus based algorithm solving ECDLP over
Fan in the same time complezity.

The index calculus algorithm presented here has a better complexity than the
one proposed recently by Diem [14]. Moreover, we propose a novel approach for
solving the sieving step. We consider that it is a major open challenge to further
exploit the intrinsic algebraic structure of Problem 2 using Grébner bases algo-
rithms. The complexity obtained here for solving ECDLP is still exponential. We
hope that the structures identified here can be further used to get a complexity
better than generic algorithms (see preliminary experiments in Section 5.2) or
to get a subexponential algorithm in a near future. Finally, we emphasize that
the complexity analysis of our algorithm relies on a heuristic assumption on the
rank of a linearized system. The validity of this assumption was experimentally
checked (see Section 5.1). Whilst we pushed the experiments as far as possible,
we pointed out that — due to the size of the systems involved — it is very difficult
to verify experimentally the assumption for large parameters. Consequently, it
is an open issue to prove Assumption 1.

Outline. The remaining of this paper is organized as follows. In Section 2,
we detail our notations and we provide some background on Groébner bases.
In Section 3, we introduce and analyze our algorithm for solving Problem 2. In
Section 4, we apply our new result to the ECDLP over binary fields. In Section 5,
we present experimental results to give first evidences for Assumption 1. Section 6
concludes the paper and introduces future extensions of our work.

2 Preliminaries

In this section, we introduce definitions, notations and recall well known results
concerning polynomial system solving.



2.1 Definition and Notation

Let 5 be the finite field of cardinality 2. We will consider a degree n extension
Fon of Fy. We will often see Faon as an n dimensional vector space over Fa. Let
{61,...,0,} be a basis of Faon over Fy. We will use bold letters for elements,
variables and polynomials over Fon and normal letters for elements, variables
and polynomials over Fs. If =1, ..., z,, are algebraic independent variables over
a finite field K, we write R = K[z1,..., 2] for the polynomial ring in those
variables. Given a set of polynomials {f1,..., fr} € R, the ideal generated by
this set will be denoted by (fi,...,fs) C R. We write Res,,(f1, f2) for the
resultant of fi € R and fo € R with respect to the variable z;. A power product,
i.e. Hle x;* where e; € N, is called a monomial. Finally, we introduce a structure
which will be very useful in this paper.

Definition 1 ([24]). Let X1UXoU---UXy = {z1,...,2m} be a partition of the
variables set. We shall say that a polynomial f € Klzq,...,z,] = K[X1, ..., X{]
is multi-homogeneous of multi-degree (dy,ds, ..., d;) if:

V(Oq,...,Oét) € Kt, f(Ole,...,O(tXt) = O[‘lil "'Oédtf(Xl,...,Xt).

For all i,1 < i <t, let X; = {xi1,.--,%in, }. We shall say that f is affine
multi-homogeneous if there exists f* € K[X1, ..., X;] a multi-homogeneous poly-
nomial of same degree such that when one replaces (homogenization) variables
Tin; by 1 we obtains f, i.e.: f(X11,. ., T1m—1, - s Tty s Ttn,—1) 5 equal
to fi(x11,. 21 n—1, 1o Te1y o Teny—1, 1). Finally, we shall say that f
has a multi-homogeneous structure if it is multi-homogeneous or affine multi-
homogeneous. A system of equation has a multi-homogeneous structure if each
equation has a multi-homogeneous structure (the equations can have different
multi-degrees).

Given a number e = Y7 €;2° with e; € {0, 1}, we define its Hamming weight as
the number of non-zero elements in its binary expansion, i.e. W(e) := Y77 e;.
We write (Z) for the number of choices of k elements among a set of n elements
without repetition. We write O for the “big O” notation: given two functions
f and g of n, we say that f = O(g) if there exist N,c¢ € Z* such that n >
N = f(n) < ¢g(n). The notation log stands for the binary logarithm. Finally,
we write w for the linear algebra constant. Depending on the algorithm used for

linear algebra, we have 2.376 < w < 3.

2.2 Grobner Bases [10]

Recent methods such as Faugére’s Fy and F5 [16,17] algorithms reduce Grob-
ner basis computation to Gaussian eliminations on several matrices. The link
between linear algebra and Grobner bases has been established by Lazard [34].
He showed that computing a Grébner basis is equivalent to perform Gaussian
elimination on the so-called Macaulay matrices as defined below:

Definition 2 (Macaulay Matrix [35,36]).



my > mg > ... Let F ={f1,..., f¢e} C R be a set of polynomials
of degree < d. Let B={my >ms > ---} C R be
the sorted set (w.r.t. a fized monomial ordering)
of degree < d monomials. The set B is a basis
of the vector space of degree < d polynomials in
R. The Macaulay matrix My(F) of degree d is
defined as follows. We consider all the polynomials t; ;f; of degree < d with
ti; € B and f; € F. Rows of My(F) correspond to the coefficients vectors

(ci; ¢} ,-.) of these polynomials t; j f; = 3, cF smy with respect to the basis B.

s 1 2
tigfi Cii Cij

Precisely, Lazard [34] proved the following fundamental result:

Theorem 1. Let F = {f1,..., f¢e} C R. There exists a positive integer D for
which Gaussian elimination on all matrices My (F), Ma(F),...,Mp(F) com-
putes a Grobner basis of (f1,..., fe).

F4 [16] can be seen as another way to use linear algebra without knowing an
a priori bound. It successively constructs and reduces matrices until a Grébner
basis is found. The same is true for F5 when considered in “Fy-style” [25].

It is clear that an important parameter in Groébner basis computation is
the maximal degree D reached during the computation. This maximal degree
is called the degree of regularity. However, it is a difficult problem to estimate
a priori the degree of regularity. This degree is known and well mastered for
specific families of systems called regular and semi-regular [5,6,7]. It is classical to
assume that the regularity of regular/semi-regular systems provides an extremely
tight upper bound on the regularity of random system of equations (most of the
times, we have equality). For example, the regularity degree of a regular sequence
fi,ooo,fe € R(with £ <n)is D=1+ Zle(deg(fi) —1). Ideals with special
structures — typically arising in cryptography — may have a much lower regularity
degree, hence a much better time complexity. This has permitted Grébner bases
techniques to successfully attack many cryptosystems (e.g. the Hidden Field
Equation cryptosystem (HFE) [38,31,18,29], Multi-HFE [9]). In many cases, the
algebraic systems appearing in these applications were not generic and could be
solved more efficiently than generic systems, sometimes using dedicated Grébner
basis algorithms.

In our case, the algebraic system considered in Problem 2 has a multi-
homogeneous structure (more precisely multi-linear). Interestingly, the formal
study of computing Grébner basis of multi-homogeneous systems has been initi-
ated by Faugere, Safey El Din and Spaenlehauer for bilinear systems [24] leading
already to new cryptanalytic results [19,23,21]. However, the general case (more
blocks, larger degrees) remains to be investigated.

As a consequence, we design in this paper a simple ad hoc algorithm to
take advantage of the multi-homogeneous structure arising in Problem 2. Basi-
cally, the idea is to generate a submatrix of the Macaulay matrix at a degree
Dy, which allows to linearize the system derived from Problem 2. To do so,
we strongly exploit the multi-homogeneous structure of the equations. The fun-
damental remark is that many low-degree relations exist and can be explicitly



predicted. Moreover, the number of columns in the Macaulay matrix is less than
usual. This is due to the fact that all monomials occurring have still the multi-
homogeneous structure. Roughly, this allows to predict many zero columns for
a suitably chosen subset of the rows. In section 3.2, we derive a bound on the
degree Dr;, which needs to be considered.

It is worth noticing that although we describe our algorithm as a linearization
method, computing a Grébner basis with Fy or Fi [16,17] can be advantageously
used in practice to solve the corresponding polynomial systems. The Dy;, ob-
tained has to be understood as an upper bound on the real regularity degree
of the system. Any new result on multi-homogeneous systems would allow to
improve the complexity of solving Problem 2 (partial results are presented in
Section 5.2).

3 Solving Multivariate Polynomials with Linear
Constraints

In this section, we describe the main result of this paper: an algorithm for solving
Problem 2. Let V be a Fa-vector subspace C Fan of dimension n’ and let f €
Fan[X1,...,Xm] be a multivariate polynomial with degree < 2! in each variable.
We want to solve f(X1,...,Xm) = 0 under the linear constraints x1,...,Xm € V.
To tackle this problem, we generalize the algorithm and analysis of [22] from the
multi-linear case (¢t = 1) to arbitrary values of ¢. From now on, we assume that
m -n’ &~ n so that the problem has about one solution on average.

3.1 Modeling the Linear Constraints

Let {v1,...,vp} C Fan be a basis of V' as a Fa-vector space. Let y; ; be m - n/
variables defined by =; = v1y;1 +vayi2 + - - + Vn Y. We apply a Weil descent
to Problem 2 (see e.g. [11, Chapter 7]). By replacing the variables x; in the poly-
nomial f, we get a new polynomial fyy € Fan[y11,...,Ym,n| with m-n’ variables.
The linear constraints on f are translated to Galoisian constraints by constrain-
ing the solutions of fi, to Fo. Using the field equations, fy is viewed more pre-
cisely as a a polynomial in the affine algebra A(Fan) :=Fon[y1.1, - - -, Ym,n']/(Ste)
where (Sg) is the 0-dimensional ideal generated by the field equations:

.2 1<j<n’
Ste ={Yi; — Vijh<izm-

Problem 2 is then equivalent to compute a Grobner basis of the ideal (fy, S) C
Fonly11s-- -, Ym,n]. It is generally more efficient to consider its resolution over Fs.
To do so, we consider A(Fzn) as a module over A(F3) = Faly1,1,-- - Ym,n']/(Ste)
whose basis is {61,...,0,}. We consider fy, as an element of A(Fan) and we
deploy it as a A(Fs)-linear combination of the basis {61, ...,0,}. Namely:

fv = [fv]y 01 + [fv]5 02 + - + [fv],, On (1)



for some [fVH b [fv]fl € A(F2) that depend on f and the vector subspace
V. Due to the linear independence of the 64, ...,60,, Problem 2 is equivalent to
solve:

Sag:  [f]i = [fv]y = =[fv], = 0. (2)

In order to solve S.ig, we will generate many new equations by deploying mul-
tiples of £ € Fan[X1,...,Xm] over the vector subspace V. The key point of this
strategy is the existence of abnormally high number of low-degree equations
arising as algebraic combinations of the equations in (2).

From now on, we represent the classes of polynomials gy € A(Fan) and
[gv}f € A(Fs3) corresponding to g € Fan[zy,...,2y,] by their minimal elements,
in other words by their normal forms modulo Z¢ (whose generators form a
Grobner basis). By abuse of notation, we use the same symbol for a class and
its minimal representative in the underlying polynomial ring. When the context
is not clear, we precise the algebra where the element is lying.

3.2 Low-Degree Equations

Let e1,...,e,, € N and let m = H:il x;% be a monomial of Fon[X1,...,Xm].
Following the descent described in Section 3.1, we have

A(Fz) 3 (mf)y = [(mf)v]; 0, with [(mf)v]; € A(Fan).
k=1

The equation f = 0 clearly implies mf = 0, hence [(mf)v]i =0fork=1,...,n.
We can then add these new equations to the polynomial system (2). The equa-
tions obtained in this way all share the same structure. More precisely, their
minimal representatives, due to the normal form computation modulo Zs., are
all affine multi-linear in Fon[y11,...,Ym,n]. Moreover, thanks to the evalua-
tions done during the deployments, each block of variables X; = {yi1,.. . Yin'}
naturally corresponds to the variable x;. From these structures, we deduce the
following result.

Lemma 1. Let f € Fon[X1,...,Xm] be a multivariate polynomial with degree
< 2% in each variable. Let eq,...,em € N and m = [[" | x;% be a monomial
of Fon[X1,...,Xm]. There exist polynomials p;jr € Faly11,...,Ymn/| such that

[(mf)v]t =D i1 Pik [fv]j- Each polynomial p;, has degree < W(e;) with re-
spect to every block of variables X; = {yi1,...Yin}, 1 <1 < m. Moreover, each
minimal representative of [(mf)v]t has degree < maxo<cs <ot W(e; + €;) w.r.t.
each block of variables X;,1 < i < m.

This lemma implies that the new equations (obtained from mf) are algebraic
combinations of the original ones (obtained from f). In particular, they can
a priori be recovered “in a hidden form” with any Grébner basis algorithm
at degree Dgpriori = mt + Z;’;l W (e;). The value Dgyprior; is the degree that

the equations [(mf )V],lC should have a priori from the algebraic dependencies of



Lemma 1. It is the sum of the degree of the deployments of f (at most mt) and the
degree of each polynomial p;; (at most Z;n:l W (e;)). However, Lemma 1 also

implies that the [(mf)v],iC only have degree Dyciyar = Z?:l(maxoge}<2t W(e; +
e)). Thus:
Dapriori —mt S Dactual S Dapriori~

Therefore, [(mf)v},lc may have a degree drop as large as mt depending on the
monomial m chosen. The existence such low-degree relations compared generic
systems makes Grobner basis algorithms faster in practice and allows a lineariza-
tion strategy.

Following the general method of Macaulay [35], we will linearize the poly-
nomial system S U{...,..., [(mf)v]% , [(mf)v]é Seeey [(mf)v]i yevns...} using
the low-degree equations identified in this section. The choice of the monomials
m used to generate the equations are particularly important for the efficiency
of the linearization strategy. In particular, the equations with the lowest degrees
are the most interesting ones since they involve less monomial terms. Of course,
this strategy requires that a substantial subset of all low-degree relations are
linearly independent.

3.3 Linear Dependencies

In the previous section, we explained how low-degree relations can be produced.
To be used in a linearization strategy, these equations must be linearly indepen-
dent. In this section, we describe two sources of linear dependencies.

Frobenius Transforms. The first source of linear dependencies is due to the
Frobenius endomorphism (as identified in [22]). Let {61,...,60,} be a basis
of Fan/Fy. The set {6%,...,02} is another basis of Fan/Fo. Let a;; € Fy be

such that 9J2» = Y, a;;0;. We have fy? = 2?21 [fVQ]j 6;. However, fv? =
2

(E?Zl [fv]j Gj) =30 [fv]é 07 = >0, (E?Zl a;j [fv}ﬁ) 6;. Thus, we obtain

[fVQ]j = Z;Zl a;j [fv]j. In other words, the polynomials [fVQ] i, .

% ey [fv]i. Decomposing fy; as a sum of monomials,

.. [fVQ]i are
linear combinations of [fy]

we deduce that [fv2]i = 2 mevon(fy) [(mf)v]f = D1 Qi [fvE- This provides
a non trivial linear relation between some low-degree equations. More generally,
we obtain similar relations if we replace f by m'f in the above equation (for any
monomial m’). These linear dependencies can be easily detected and prevented.
Indeed, we can simply avoid every monomial m that is the leading term of (m'f)
for some m’.

Vector Dependencies. Another source of dependency, that we call vector de-
pendencies, is induced by the vector space V. To illustrate the phenomena,
consider the simplest polynomial g = x3 € Fan[x1,...,Xm|. We have gy =
Viyia + vayie + 0 4 Uy € A(Fan). More generally, (g2 )v = vy +



V%i Yyio+ -+ Z/TQJ Y1,n' € A(Fan). Since y1.1, ... ,Y1,n are linearly independent, we
obtain for any k > n' a non trivial linear dependency by considering different
9%s,ie. 3B, ..., B € Fan \{(0,...,0)} such that 31 (g% )v +f2(g* " )v +- -+
ﬂk(g2'k)v = 0. This simple example can be easily generalized to g = mf with
m a monomial. Such linear dependency can be clearly prevented during the gen-
. . 1 . . . m e, .
eration of equations [(mf)y|;’s by considering monomials m = [[;”; x;%, with
0<e <2 <2m,

3.4 Description of the Linearization Algorithm

For any positive integer d, let MLinMonB(d) be the set of multi-linear mono-
mials in Faly11,...,Ymn] of degrees < d with respect to each block X; =
{¥i1,---,Yin}. The image of MLinMonB(d) in A(Fs) is a basis of the vector
subspace A(F2)q composed of elements in A(F2) with a minimal representative
having degrees < d with respect to each block X;. Let also Mon(d) be the set
of monomials m = [, x;¢ € Fon[X1,...,Xn] with 1 < ¢; < 27" such that
all [(mf)v],lC (1 <k < n) are in A(F3)4. Finally, let E(d) := n - #Mon(d) and
M(d) := #MLinMonB(d).

We are now ready to describe Algorithm 1, a simple linearization algorithm
for solving Problem 2. The algorithm constructs a sub-matrix of the Macaulay
(see Definition 2) matrix M, for system 2. We first gather M(d) equations
[(mf)v]i with m € Mon(d). By definition, all these equations are in A(Fg)q4.
Hence, they can be decomposed with respect to the basis MLinMonB(d). We then
form the corresponding linear system Sj;,, over Fy, where each row corresponds
to the coefficients involves in the equations and each column corresponds to
an element in MLinMonB(d). We finally solve the linear system. This simple
algorithm, that we call Sub-Macaulay, is not aimed to be optimal in practice
but to derive complexity bounds. The general linearization strategy and our
analysis below rely on a heuristic assumption formalized below:

Assumption 1. With a probability exponentially close to one, the equations
generated by Algorithm 1 are linearly independent.

Particularly, the assumption states that the solutions of Sj;;, are in one-to-one
correspondence with the solutions of Problem 2.

3.5 Complexity Bounds for Solving Problem 2

We now derive an upper bound on the complexity of Algorithm 1. The main
task is to estimate the values of M(d) (number of columns in Sjy,) and E(d)
(number of equations in Sj;;,). Due to the field equations, we only have multi-
linear monomials, i.e. variables can only have exponents 0 or 1. Therefore, the
number of monomials of total degree d’,0 < d’ < d involving variables of the
block X; is (Z:) For the m blocks, we get:

M) - (Z_j (Zf))m- o)



Input: f € Fan[x1,...,Xm] of degree in each variable is bounded by 2t — 1, and
V a Fa-vector subspace C Fan of dimension n'.
Result: If not empty, the finite set {s1,...} C V™ such that f(s;) = 0.
1 begin
2 Let d be the smallest integer such that F(d) > M(d);
3 Mon « [|; Saig <[] // Empty lists of monomials and equations
4 for k=1,...,[E(d)/n] do
5 Randomly pick a monomial m € Mon(d) \ Mon;
6

Let [(mf)v]!,...,[(mf)v]} € Fa[yi1,. .., Ymn,] be such that
(mf)v = 3p_, [(mf)v]; 0x;
7 Satg — Saig U ([(mf)v]1, ..., [(mf)v]}); Mon < Mon U [m];
8 end
9 Construct Siin the linear system over Fa obtained by linearizing Saig;
10 If Siin has solutions then solve Si;, and return {si1,..., } else return no
solution end;
11 end

Algorithm 1: Sub-Macaulay.

By definition, the degree of each variable x; occurring in the monomials of f may
have any degree between 0 and 2! — 1. By Lemma 1, the degree of [(mf)v]t with

respect to X; is maxo<er <ot Wie; +ef) =W (L;—%J) +t. Therefore, the number

of exponents ¢},1 < e} < 2"’ leading to degree d’ with respect to the block X; is

!’
2¢(", 7). As a consequence?

d'—t
E(d) = n2™ <Z (Zf_ f))m 4

d’'=t

We derive the following asymptotic bound (proven in Appendix A) on the min-
imal value d that allows linearization.

Lemma 2. Let o be such that 1 —a < 1/2 < a < 1. Assuming that n' =
n®m =n'"% and t = m — 1, then E(d) > M(d) for d = %~ when n is large
enough.

In the next table, we have computed the smallest dyea such that E(dyea) >
M (dyea1) for different values of n and «. Then, we compute Srear = log,, (dreal)-
According to Lemma 2, the theoretical value predicted for 5 = log,,(d) is Biheo =

o — m. The last column columns shows that SBineo is extremely close to Sreal-

3 Note that we assume that d > ¢.



n dreal (e} 6real (a - @) - ﬁreal
100000 1114 {2/3| 0.6093 -0.0029
1000000 5102 |2/3]0.617956 -0.0014
10000000 | 23466 | 2/3 | 0.62435 -0.00069

100000000 |108353(2/3 | 0.62936 -0.00032
1000000 1285 10.55| 0.51815 -0.018
10000000 | 4331 |0.55| 0.51951 -0.012
100000000 | 14738 |0.55| 0.52105 -0.0089
1000000000 | 50577 |0.55| 0.52266 -0.0061
10000000000{174773]|0.55| 0.52425 -0.0043

Finally, we obtain an estimate on the complexity:

Theorem 2. Let a,n',m,t be as in Lemma 2. Under Assumption 1, Problem 2
can asymptotically be solved in time O(27) and memory O(227), where w is the

linear algebra constant and T~ 3 .

Proof. The above linearization algorithm reduces the problem to linear algebra
on a matrix of rank M (d). According to Lemma 4 (Appendix A), we get that

log(M(d)) ~ m log ("3) ~ n(1=®) nf(a — B)log(n) = n(*"Tetm) = 2, 0

4 Application to ECDLP over Binary Fields

4.1 Diem’s Variant of Index Calculus

Let E be an elliptic curve defined over Fon by the equation
E:y* +ay = 2° + 2% + ag, for some ag € Fan. (5)

Semaev’ summation polynomials S, [40] are multivariate polynomials with the
following property: Sy(x1,...,X,) = 0 for some x31,...,%x; € Fon if and only if
there exist yi,...,yr € Fan such that (x;,yi) € E(Fan) and (x1,y1) + -+ +
(Xr,¥r) = Poo.

Proposition 1 ([40]). The summation polynomials of the elliptic curve (5) are
recursively given by: Sa(X1,X2) := X2 +X1, S3(X1,X2,X3) := X12X2? +x1%x3% +
X1X2X3+X22x324ag and forr > 4 and any k,1 < k < r—3, the r-th summation
polynomial is

Sr(x1,..., %) := Resx (Sr—k(X1, - -, Xm—-k-1, X), Skt+2(Xr—k, - - - , X, X)).

Moreover, the polynomial Sy is symmetric and has degree 2”2 in each variable

Xj as soon as r > 2. The cost of constructing this polynomial is bounded by
20((r=1)%)

Following Diem [14], we use summation polynomials in the sieving stage of an
index calculus algorithm. Let V' be a vector subspace of Fan /Fo with a dimension
n' to be fixed later. We define the factor basis Fy as

Fv = {(x,y) € BE(Fan)|x € V).



Since the abscissas of points € E are uniformly distributed in F,» [13,14], we can
assume that the set Fy has size about 2" During the sieving stage, we compute
about 2™ relations Po, = a; P +b;Q + > PieFy e} P; with P; € Fy for randomly
chosen integer couples (a4, b;). Each relation is obtained by solving an instance
of the following problem, for some integer parameter m to be fixed later.

Problem 3. Let a;, b; be fixed random integers and R = a; P + b;Q. Find - if any
- (X1,...,Xm) € V™ such that Sp41(X1,. .., Xm, (R)z) = 0.

Clearly, this problem is a particular instance of Problem 2.

4.2 A Linearization Strategy for Solving ECDLP over Fa-

We now apply the analysis of Section 3 to Problem 3. Let «,1/2 < a < 1. be a
parameter that will be optimized later. We set n’ := n® and m := n!'~® as in
Lemma 2. According to Proposition 1, the (m+1)th Semaev’s polynomial Sy, 11
can be computed in time O(2"'), where

toam? A p2-a)

For each relation computed in the sieving stage, we generate and solve an in-
stance of Problem 2 where f has degree 2™~ with respect to each of the m
variables. According to Theorem 2, each instance can be solved in time O(2¥7)
and memory O(227), where 7 ~ n/2. The probability that a point R can be
written as a sum of m factor basis elements is = [14]. Hence, we need mi2"
trials on average to obtain 2" valid relations. Since log(m!) ~ n1=2) Jogn1—a),
the total cost of the sieving stage is bounded by O(2!2) where

to ~n(=1logn=) £ n* 4w g

Finally, the last step of our algorithm consists in (sparse) linear algebra on a
matrix of rank about 2" with elements of size about n bits. The computation
time of this part can be approximated by O(2%), where t3 &~ w'n®, w’ being the
sparse linear algebra constant. Finally, we obtain the following theorem.

Theorem 3. Under Assumption 1, ECDLP over Fon can asymptotically be
solved in time O(2"), where t ~ n/2.

This has to be compared with the algorithm presented [14] which is was so far
the best algebraic index calculus based approach. For ¢ = 2 and n prime, the

algorithm of [14] has complexity ¢ (n10s()*72) (but such complexity holds with-
out any heuristic assumption). The complexity of our approach is also very close
to O(2"/2); the complexity of generic algorithms (e.g. Pollard’s rho algorithm).



5 Experimental Results

5.1 Validation of the Heuristic Assumption

We have experimentally checked the validity of Assumption 1 using the com-
puter algebra system MAGMA. During the sieving stage, most of polynomial
systems generated have no solution (only 1/m! polynomial systems will pro-
duce a solution). Thus we mainly check the assumption for polynomial sys-
tems with no solution in the vector space V. In order to validate this assump-
tion we proceeded in the following way. We chose many random polynomials
f with degree 2 < 2™~! in each of its m < 5 variables. The coefficients
are in Fon with n a prime less than 40. Then, for each of these polynomials,
we construct a large binary matrix 90 of size N x M. This matrix represents
the deployed polynomials [(mf)VH Yoy [(mf)v]fb for all monomials in Mon(d)
(with d is the smallest integer with M (d) < E(d)). We avoid the ones corre-
sponding to possible linear dependencies as identified in Section 3.3. We want
to demonstrate that a random square submatrix of size M x M of 90 is full
rank. We recall that the probability that a random N x M boolean matrix has

r—1 r—1 r—1
rank r is P(N,M,r) = 2_NMH(2N — 27 H(QM —2j)/H(2T —27). Hence
§=0 §=0 §=0

P(100, 100, 100) is only 28.8% but P(105,100,100) = 96.9%. For this reason, we
consider submatrices I’ of M of size (M +5) x M. We check that the rank is M
or M —1 or M — 2; for a random Boolean matrix the probability is 99.999982%.
We repeated the test 100 times and deduced an approximation of the success
probability. In all our experiments we always obtain ~ 100% of success. In par-
ticular, we validated the assumption for Problem 3 using Semaev’s summation
polynomials with m + 1 variables (m = 2,...,4). These validations represent a
huge computational effort since some of the matrices 9 encountered during the
experiments had more than 10000 columns.

5.2 Grobner Basis Computations

We performed actual Grobner basis computation using the FGb software [20] to
compare the theoretical number of operations with a more realistic value.

n|m Number of |Theoretical bound| For instance, for n = 131, m =

Operations (GB)| bound (Algo 1) 2 we can solve the point decom-
411 2 2255 M(d)* = 2% position problem in 2745 opera-
67| 2 2°T7 M(d)* ~ 2% tions using a variant of the hybrid
7] 2 27 M(d)* ~ 2™ method [8]. We compare the cost
131] 2 27? M{(d)” ~ 2™ of solving Semaev’s equations us-

ing Algorithm 1 (complexity of solving a linear system of rank M(d)) and a
Grobner basis computation. This is the dominating part in the complexity of
our index calculus based algorithm. Remark that the number of operations re-
ported in this table are much below the theoretical estimate for Algorithm 1. We



have a gain of (at least) a factor 2 in the exponent in favor of Grébner computa-
tions. Further experiments suggest that a more advanced approach (i.e. Grobner
basis instead of linearization) can lead to an algorithm of better complexity. One
can hope a gain of a factor m in the exponent. However, we are, for the moment,
not able to provide theoretical evidences supporting such an improvement.

6 Conclusion and Perspectives

As a conclusion, we emphasize that the algorithm of Section 3 is of independent
interest in the more general context of polynomial system solving. It shows that
algebraic systems arising by deploying a multivariate polynomial equation from
Fan to Fy are easier to solve than generic systems. We have underlined the
intrinsic structures which help for solving such systems. This is an open problem
how to use such structure in an Fy/F5 based algorithm. We hope that such
improvements may lead to a subexponential algorithm. Finally, the approach
generalizes quite easily to other composite fields with “small” characteristics,
resulting in similar algorithms with comparable asymptotic complexities. All
these extensions will be discussed in an extended version. Finally, although the
paper is mainly theoretical, we hope that it could be the building block towards
the development of more efficient methods to solve the ECDLP problem.
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Proof of Lemma 2

In order to show Lemma 2, We use the following well-known technical result (a
proof is given in [22] for instance).



Lemma 3. Let n be an integer and let 6,0 < § < 1/2 be a number such that
on € N. Finally, let v := %—6' Then, the following inequalities hold:

(1) <3< ()

We can now come back to the proof of Lemma 2.

Proof (of Lemma 2). We recall that 1 —a < 1 < a < 1, and n’ = n® m =

n1=%) + = m—1. The number of equations in the system generated in Algorithm

1is E(d) = n2t™ (Zfl,:t (Z,,:tt)) and the number of columns is M(d) =

(ZZ':O (Z:))m We try to find 8,1/2 < 8 < a < 1 such that E(d) > M(d),

where d = n? for n big enough.
A sum of binomials can be bounded from above by the last binomial occurring
in the sum. We then get:

1 1 ¢ d TL/ —t 1 ¢ TL/ —t
E(d) m —=nm 2 Z d/ _ t Z nm 2 d _ t .
d'=t

Now, let § := T% and v := ﬁié. When n is large enough, we have § < % This

leads to v < % and 17% < 2. We are now in position to apply Lemma 3.
!/
M(d)w < 2(7;). (6)

Hence, we want to find d such that nw 2¢ (Z/__td) > 2(7;/). We search now for the
equality and consider the logarithm of each side of (6):

n n —t n'
log(nm)thJrlog(d_t)1+log<d). (7)

The following result is useful to derive an asymptotical equivalent of this equality:
x_ Y
Zﬂ 727) ~

Lemma 4. Lety < 1/2 < 8 < a < 1. Forn large enough, we have: log(
(n” —n7) (e — B) log(n).
Proof. We have log ("a_”w) ~ (n®—n7) log(n® —n") — (n” —n?) log(n? —n") —

nb—ny
(n® —nP) log(n® — n”) and thus
log (Z; :Z;{) ~ (n® —n")alog(n) — (n® —n") B log(n) — (n® — n®) a log(n)

= —n" a log(n) — (n® —n") B log(n) + n® a log(n) = (n® —n") (o — B) log(n)
Taking v = 0, we deduce log (Z:) ~ n?(a— B)log(n). Then, using v =1 — a we

ne_pl—a

get log (", " ) = (n? —n'=)(a — B)log(n). As a consequence (7) yields:
n®tlogn +n'= + (nf — n'=%)(a — B)log(n) = log(2) + n®(a — 3) log(n)
n® Llogn +n'=* —n!=%(a — B)log(n) = log(2) and n'~* ~ n'=%(a — B)log(n)

So that 1 ~ (a—3)log(n). Thus, 3 ~ a—1/log(n) and d° ~ n(a_bgl(")) =n®/2.
This concludes the proof of Lemma 2. ad



