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Abstract. Given ann-bit to n-bit MAC (e.g, a fixed key blockcipher) with MAC
securitye againstg queries, we design a variable-length MAC achieving MAC
securityO(eq poly(n)) against queries of total lengtn. In particular, our con-
struction is the first to break the “birthday barrier” for MAddmain extension
from noncompressing primitives, since our security bosndéaningful even for

g = 2" /poly(n) (assuming: is the best possibl®(1/2™)). In contrast, the pre-
vious best construction for MAC domain extension febit to n-bit primitives,
due to Dodis and Steinberger [11], achieved MAC securitp¢fq>(log q)?),
which means thag cannot cross the “birthday bound” 2¢/2.

1 Introduction

Most primitives in symmetric-key cryptography are builbiin block ciphers, such as
AES. In this paper, we will concentrate on the question ofglesg variable-input-
length (VIL) message authentication codes (MACs) from klciphers. This question
is very well studied, as we survey below. However, with feweptions, most existing
constructions and their analyses make the following twamggions: (a)Pseudoran-
domness the block cipher is modeled as a pseudorandom permutdi@R); and (b)
Secrecy of Intermediate Resultsthe attacker only learns the input/output behavior of
the corresponding VIL-MAC, but does not learn any of therimtediate results. As ob-
served by Dodis et al. [9-11], each of these assumptionstreititer be unnecessarily
strong, or simply too unrealistic in the following two sceina.

DOMAIN EXTENSION OF MACS. This is our main question. Since the desired MAC
primitive only needs to benpredictableit would be highly desirable to only assume
that the block cipher is unpredictable as well, as opposesdeadorandom. Indeed, it
seems that assuming the block cipher is unpredictableisch weakeassumption than
assuming full pseudorandomness: to break the latter, alherds to do is to predict one
bit of “random-looking” information about the block ciphwith probability just a little
over1/2, while the former requires one to fully compute the valuehaf block cipher
on a new point with non-trivial probability. For example, timle non-uniform model,
any block cipher (in fact, even non-trivial pseudorandomegator) with am-bit key
can be very efficiently distinguished from random with adege2—"/2 [8, 11]. To the
best of our knowledge, no such lower bounds are known forkdimgainpredictability,
meaning that close " MAC security might be possible for such a block cipher. To
put it differently, while we hope that existing block cipkeare actually PRPs, it seems



quite reasonable to assume that their MAC security coultbitieeably bettethan their
PRP security. Thus, if we can design a VIL-MAC whose secusitiightly related to
the unpredictabilityof the block cipher, this VIL-MAC might be more secure thaa th
MAC whose analysis assumes {heudorandomnessd the cipher.

Of course, one might hope that existing block-cipher basddMWACs, such as
CBC-MAC [5,26] and HMAC [3, 6] (whose compression functionder the hood, also
uses a block cipher), are already secure when the blockrdiphepredictable. Unfor-
tunately, as detailed in Dodis et al. [9-11] (see espedally), this is not the case: with
few exceptions mentioned shortly, standard constructoesompletely insecurehen
instantiated with unpredictable block ciphers, — oftenpiteshaving simple proofs of
security when one models the block cipher as a PRP.

RESILIENCE TO SIDE-CHANNELS. Even if the block cipher is a very good PRP, in
practice many cryptographic implementations fall preyadous forms of side-channel
attacks [13,15-17, 28], where the physical realization afy@tographic primitive can
leak additional information, such as the computation-fipmver-consumption, radi-
ation/noise/heat emission etc. Thus, hardware people arag special attention to
securing block ciphers, such as AES, against such sidenehattacks. Although this
might be a daunting task, it appears reasonable that sieddlardware implementa-
tions of AES might be pretty resistent to common forms of silannel attacks. On the
other hand, when the block cipher is used in some more coatpticapplication, such
as the design of a VIL-MAC, it might be hard or impractical tesign a specialized
“leakage-resilient” implementation for each such appiarg instead of doing so for a
single, fixed-length building block (such as AES). Motivatey these considerations,
Dodis et al. [9-11] proposed the model where the internate@block cipher imple-
mentation are assumed secure, as usual, but all the exiipngbutput behavior of the
block cipher could potentially leak to the attacker (sag, side-channel attack).

To give this model a name while simultaneously making it ng@eeral, we say that
a construction of a (deterministic) MA€ using some lower level keyed primitive(s)
f istransparent(w.r.t. ), if (&) the key forP only consists of one of more keys f¢r
(b) when making a query/ to P, the attacker not only get8(M), but also gets all
the input/output pairs for every call t6 made during the evaluation &f(M). Since
P is deterministic and all keys reside “insidg; this indeed provides the attacker with
the entiretranscriptof P(M ), short of what is happening during the callsftaComing
back to our setting, we are interested in buildirntgeasparent/IL-MAC out of a block
cipher. As we will see, this question is highly non-triviales if the block cipher is
assumed pseudorandom, let alone unpredictable. Indeetdsasved by [9-11], most
existing VIL-MACs, including CBC-MAC [5, 26] and HMAC [3, 6]arecompletely
insecurewhen the intermediate results are leaked, even when ietehivith a PRP.

OUR MAIN RESULT. Motivated by these applications, we ask the same quession
Dodis et al. [9-11], which simultaneously addresses bothe@hbove concerns.

Question 1.Can one build @ransparent/IL-MAC P out of a block cipherf which is
only assumednpredictablé@

As already mentioned, most standard VIL-MACs built fromdKaiphers fail to
address either MAC-preservation or transparency (evemaiRRP). So we turn to the



known secure approaches. As it turns out, all of them foltbwhee principle of An
and Bellare [2] of first constructing a compressigakly Collision ResistaftVCR)
hash functionF’ from m to n bits, for some fixedn > n, then iterating this fixed-
length WCRE using some variant of the Merkle-Damgard transform, anallfircom-
posing the output with a freshly keyed block cipher. As atjbg Preneel and van
Oorschot [27], any construction of this kind can achieve asnbirthday security
Translated to the MAC-preservation setting, even if ougioal MAC f cannot be
forged with probabilitye usingq queries, the resulting VIL-MAQ cannot have secu-
rity greater tharO(e¢?), meaning that; cannot cros€™/2, even ist is assumed to be
(the best possible)/2.

Interestingly, even achieving birthday security turnstoute challenging when the
block cipher is only assumed unpredictable. The first secomstruction of Dodis and
Puniya [10], based on the Feistel network, only achievedritgaO(¢°). The bound
was then improved t®(sq*) by Dodis, Pietrzak and Puniya [9] using the “enhanced
CBC” construction. Finally, Dodis and Steinberger [11] wied (nearly) birthday se-
curity O(qu) using a new analysis of the Shrimpton-Stam [29] compredsioction.
All these constructions were also transparent.

We ask the question if it is possible to build (hopefullynsparent) VIL-MACs
from block ciphers withbeyond birthday securityMost ambitiously, if f cannot be
forged with probability= usingq queries, we would like to build a VIL-MAQ” with
security close t@(sq), meaning our security is meaningful even for valueg afp-
proaching2™, provided: is assumed to be (the best possill&)™. As our main result,
we answer this question in the affirmative. Informally (seet®n 4 for more details),

Theorem 1. There exist fixed polynomialgn) and b(n) and a construction” of a
transparent VIL-MAC from an-bit block cipherf, such that the rateof P is a(n) and
the MAC security’ of P againstq’ queries of total lengthyn is at mostO(b(n)qe),
wheree is the MAC-security of againstg queries. In particular, this bound is mean-
ingful for ¢ (and¢q’) approaching2™.

OTHERRELATED WORK. Aswe mentioned, the question of achieving beyond-birghda
security for building VIL-MACs from unpredictable blockatiers was open prior to our
work. In fact, the only domain extension results for MACshlieyond birthday secu-
rity we obtained just recently by Yasuda [31] and Lee andrBiiger [18]. However,
both results started with a shrinking MAC from strictly mdh@n2n to n bits. As we
will see below, building such shrinking MACs (with beyondthday security) from
unpredictable block ciphers is highly non-trivial, andMaié one of the key challenges
we resolve on route to proving our main result. (However, wnhat our result does
not® simply reduce to building an to n bit MAC from ann-bit to n-bit MAC.)

Another related area is that of for building Vitsseudorandom function®RFs)
with beyond birthday security from PRPs, or more generéitkgd-length PRFs. In

1 WCR security states that it is infeasible to find collisiongi given oracle access 6.

2 Defined as the average number of calls to the block cighger n-bit input block.

3 We cannot just build (say) a beyond birthday to n bit MAC and then compose it with the
beyond birthday VIL-MAC constructions of [18, 31], as eadmstruction would lose a factor
of ¢ in exact security, resulting in already known “birthdaytsegty O(sq?).



particular, several such constructions were found by [20423-25]. However, it is
easy to see that none of them work either for the MAC domaiaresion, or even for
building VIL-MACs (let alone PRFs) when the intermediatengutation results are
leaked. For example, the corollary of our main result, givirtransparentViL-MAC
from a(q, ¢,-,)-secure PRP with security,., + O(q/2"), appears to be new.

Perhaps the closest work to ours is a paper of Maurer androgd224, who showed
how to build a variable-length random oracle fromsato-n bit random oracle. Their
construction, analyzed in the indifferentiability framak of [7, 21], has fixed poly-
nomial rate (just like our construction) and secutity—", for anys > 0. However,
the two settings appear incomparable. On the one hand, thieekaiessaro paper has
to build an “indifferentiability simulator” for their sdttg (which required “input ex-
traction” not required in our setting). However, they asedra truly random function,
and could use various probability calculations in derivihgir result. In our setting,
the block cipher is only unpredictable, and we have to makexticit reduction to
unforgeability, which makes matters substantially monedee.

1.1 Ouitline of Our Construction

Our construction is quite involved, although we abstraattio several self-contained
layers. As a side benefit, some of these layers (see belowj potentially independent
interest, and could be used for other purposes.

STEP 1: REDUCING TO 3n-T0-2n WCR AND 2n-TO-n MAC. First, we notice that
the above mentioned birthday limitation [27] of the An-Be#l approach no longer
holds provided we build a WCR hash functiéhfrom m to 2n bits (for somen > 2n,
saym = 3n). Namely, “birthday or2n bits” might still give good enough securigy'.
However, even if we succeed in doing so with beyond birthdsgusty (which will
be one of our key results), we now also have to build a “final” & from 2n to n
bits. Thus, using known techniques but with different pagtars (see Lemma 1 and
Figure 1), our problem reduces to building beyond birthda@R\WF' from 3n to 2n bits
and a beyond birthday MAG from 2n to n bits.

STEP 2: REDUCING TO COVER-FREE FUNCTIONS. It so turns out that both of these
tasks—i.e. the construction of the WCR functiéhand the construction of the MAC
G—can be achieved from a more powerful (keyed) primitive i@ introduce, called
acover-fregfunction. Informally, a keyed functiog from {0, 1} (recall, we will have
m = 3n) to ({0,1}")! (for some paramete), whereg(s) = (21(s),...,2(s)) €
({0,1}™), is calledcover-free(CF) if, given oracle access tg, it is infeasible to
produce a sequence of (distinct) querigsss, ..., s, € {0,1}™ such that, for some
1<j<gq,z¢(s;) € {ze(s1),...,20(s5-1)} forall £ € [t]. In other words, for each new
querys; one of the coordinates @f(s;) must be “uncovered” by previous coordinates
of that index. The case = 1 corresponds to the standafidto n bit WCR security,
however better (and in particular beyond-birthday) cdvee security can be achieved
with larger values of.

First, as depicted on the left side of Figure 2, we can compoS€ g with ¢ in-
dependently keyed block ciphefs, ... fi, by settingG(s) = fi(z1) & ... & fi(z:),
whereg(s) = (z1,...,2:). We show that the resulting is easily seen to be a secure
MAC from m bits ton bits. More precisely, the MAC security @F is tightly related



to the CF security of; and the MAC security off (see Lemma 2). Intuitively, a new
forgery for G will give a new forgery for at least one of th'’s, by the CF security of
g. Sincem = 3n > 2n, this already gives us the need&dto n bit MAC.

More interestingly, as depicted on the right side of Figures@ show how to com-
pose a CF functiog with 2¢ independently keyed block ciphefs, ... fi, f1,..., fi
(in a variant of the “double-pipe” mode of [19]) to get a WCRhéttion F' from m bits
to 2n bits. Moreover, the WCR security & will be “roughly” O(¢’ + ¢¢), wheres’ is
the CF security ofy ande is the MAC security off (see Lemma 3). Thus, as long as
we can build CFy with securitye’ close toO(qe), the WCR security of will also be
such. The proof of this result critically uses the bin-fijjinin-guessing games of Dodis
and Steinberger [11].

Summarizing the discussion above, our task of building aMIAC P thus reduces
to building a CF functiory with securitye’ =~ O(qe) wheree is the MAC security of
the underlying:-bit to n-bit primitive f. We also wish to build the CF functignwith
t as small as possible (which is relevant since the efficiefidy,ancluding the size of
the key, is proportional t6). See Lemma 4.

STEP3: BUILDING CF FUNCTIONS. Thisis, by far, the most involved part of our con-
struction. The inspiration for this construction came fritva afore-mentioned paper of
Maurer and Tessaro [22], who showed how to build a VIL randoacle from am-to-n

bit random oracle. As we mentioned already, the setting 2fiRincomparable to our
setting, especially since we cannot assume that our blgatieciis (pseudo)random.
However, our actual construction of CF functions is quitaikir to the correspond-
ing “cover-free” layer of the construction of [22], althdugve made some changes
(actually, simplifications) to the construction of [22],daaur analyses are completely
different. Our CF construction has three layers which wenmfally call combinatorial,
cryptographic and algebraic. An impatient reader can Iddkigure 3 for a concrete
example (witht = 3 and other notation explained below).

STEP 3A: USING INPUT-RESTRICTING FAMILIES. This purely combinatorial step is
precisely the same as in [22], and is also the most expent&peo$ our construction.
We will use anunkeyedunction E from {0,1}™ to ({0,1}™)" (herer is a parameter)
called aninput-restricting function familyIRFF; see Definition 1). Intuitively, an IRFF
has the property that after agyqueriess; ... s, to E, the number) of new inputss
for which ther-tuple E(s) is covered by the union dF(s1),. .., E(s,) is “not much
larger” thang, and this should be true even wheis almost2™. Recall, our final goal
is to ensure that it is hard to produary such new inpus. While IRFFs do not (and
cannot)* quite get us there, they ensure that there are not that masigeshfor the
attacker of which new inputs to “cover” by old inputs.

We discuss the known constructions of IRFFs in Section 4ptauition that the con-
structions of IRFFs are completely combinatorial, and elpselated to constructions
of certain types of highly unbalanced bipartite expandapps. While well-studied,
these types of expander graphs are not yet completely unddrsand in particular the
“extreme” setting of parameters relevant to our case hadeen the object of much
attention. Therefore, although the existence of IRFFs fgtod parameters” is known

4 Because they do not have a key and do not rely on any commahtssumptions.



(and lead to the asymptotic bound claimed in Theorem 1), timerete constructions
are pretty inefficient. Nevertheless, as these parametersfficiency are improved by
future research in computational complexity, so will ouafioonstruction.

STEPS3B-C: ADDING CONFUSION AND MIXING. Recall, IRFFs convert our input
into anr-tuple (z;. ..., z,). To get the finat-tuple(z4, ..., z;) for our CF functiong,
we can imagine repeating the following two-step precedstepé 3b and 3d)times,
each time with a freshly keyed block ciphEr(so the total number of block cipher
keys forg will be t). First, we pass alt valuesz;, . .., z, through the block cipheF
(“confusion step”), getting the values. . . . , y,.. This is the cryptographic “confusion”
layer. Then we algebraically “mix” altr values(x; ...z, y1 .. .y,) through a fixed,
degreer multivariate polynomiap (see Equation 3). This gives us one of trmutputs
valuesz; ... z;.

The intuition for these last two steps is hard to explain (amdeed, our analysis is
quite involved). At a high level, the confusion step (evah@F (z1) ... F(x,)) is cer-
tainly needed to make a reduction to unforgeability, whike iixing step uses the fact
that low-degree polynomials have few roots, so a “nondiiollision on the output
of p will enable one to guess one of the valygsve are trying to forge. Of course, the
difficulty is to make a successful guess for when and wheradhetrivial collision top
will happen, with probability roughly /@, where( is the guarantee given by IRFF (so
Q is close tag). It turns out, there is a trivial strategy to make such a guégth “birth-
day” probabilityl /Q? ~ 1/42, even whert = 1. Of course, such probability is too low,
and this is why we repeat steps 3b-ttmes, for an appropriately chosen parameter
We then show that the required guessing strategy can beeddothe analysis of two
bin-filling bin-guessing games. The relevance of such gaméise domain extension
of MACs was first introduced by Dodis and Steinberger [11]fdstunately, these two
games are significantly more complicated than the game ¢fithan the game used
in the proof of Lemma 3. Nevertheless, as our most involvelngal step, we show
that both games can be won with probability roughly@ - Q*/*). Thus, by choosing
t > log @ (say,t = n), we get the desired bourtd(1/Q) ~ O(1/q).

EFFICIENCY. Our final VIL-MAC construction usest keys for f, where we recall that
the minimal value of =~ logq¢ < n. Theoretically, we can reduce key material down
to a single key forf, by “keying” f via fixed, reserved input bits. Namely, to simulate
(at most)5n keys this way we need to reserfeg, (5n)] bits of input (and “truncate”
the same number of bits in the output), effectively redudimg block length of the
construction fromn down ton’ = n — [log,(5n)]. Due to the output truncation, we
now also need to guess the missiigg,(5n)] output bits not returned by our forger,
incurring an (acceptable) addition@(n) degradation of the security bound.

Our final VIL-MAC also achieves rate roughly proportional@rt) = O(rn).
Achieving a low value of- (coming from the combinatorial IRFF part) is more prob-
lematic (see Section 4), although existentially one caa alsaker = O(n). So the
best rate we can hope to achieve using our approadkris). Therefore, we primarily
view our result as an importafiasibility result, much like the result of Maurer and
Tessaro [22]. Nevertheless, our feasibility opens the dmofuture, potentially more
efficient constructions.



2 Preliminaries

A keyed function familis a mapf : {0,1}* x Dom(f) — {0, 1}* whereDom(f) C
{0,1}*. The strings in{0, 1}" are thekeysof f and we writefy(x) for f(k,z) for
k € {0,1}% andx € Dom(f).

For MACs we consider the following game, whedeis a halting adversary with
oracle access tf:

Game Forgé4, f):
ko {0,1}% (z,y) « A
If 2 € Dom(f), fr(z) = y andx was not a query oft then A
wins, otherwised looses.

We define the insecurity of as a MAC to be

InSec; (T, q, ) := max Pr[A wins Forge(A, f)]

where the maximum is taken over all adversardesaking at most; queries of total
combined length at mogt (after padding, if any) and of “running time” at most
The “running time” is defined to be the total running time of #xperiment, including
the time necessary to compute the answeré'saqueries. Moreover we “bill” the final
verification queryfi (z) (and its length) tod (so that4 must in fact make — 1 queries
if © € Dom(f); seen another way, we askto verify its own forgery, if it attempts
one). Whenf has fixed input length (i.dDom(f) = {0, 1} for somem € N) thenu
is a function ofg and it is convenient to elide the last argument, writin§ec;““ (7', q)
instead ofnSec;*(T, ¢, ).

Theweak collision resistancer “wcr” security of a function familyf is measured
as the maximum advantage of an adversary in finding a cailigipa randomly keyed
member off when given oracle access to this member. We wni8ec;“* (T, ) for the
maximum such advantage over all adversadawaking at most; queries of running
time at mosft'. (Here we do not measure the total query length, as we wiyl ordasure
the wer security of fixed input length constructions.) Wepskiformal pseudocode-
based definition of this standard notion, but mention thatativersary must make the
queries verifying its collision, not merely output a coitid pair.

Given a block lengthh and a message, we letPad,, (z) be a suffix-free encoding
of z of length a multiple of: bits (for example, the standard Merkle-Damgard padding
of z, which appends the length ofas the last bloc®. Furthermore, given two keyed
compression functions : {0,1}"1 x {0,1}3" — {0,1}*", G : {0,1}*2 x {0,1}*>" —
{0, 1}™ we define a keyed functiolD[F, G] : {0, 1}"17%2 x {0,1}* — {0,1}" by

MDIF, Gli: k3 (x) = Gz (Frr (x| Frr (wp—1 - - Fiz (21[]0°™) -+ -)))

wherePad,, (z) = 129 -- -2, and eachr; hasn bits, for all ki € {0,1}"1, k5 €
{0,1}"2 (see Fig 1).
The proof of the following (standard) lemma is given in in ta#é version [12]:

5 This limits the message length to at m@a&t blocks, but this is not a serious limitation for
practical values ofi.
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Fig. 1: A high-level view of our constructioRID[F, G]. The inputz is padded in a suffix-free
manner inton-bit blocks z1, ..., z;. All wires shown carryn-bit values.Fy: : {0, 13" -
{0,1}>" andGy; : {0, 1}*" — {0,1}™ are compression functions keyed by independent keys
kT, k3.

Lemma 1. LetF : {0,1}%1x{0,1}3" — {0,1}*",G : {0,1}"2x{0,1}*" — {0,1}™,
and consideMD|F, G] as a function of key spad#, 1}*1*2. Then, forg = p/n,

InSecyiiy(r,c (T G, 1) < InSecy™ (T, q) + InSec;™ (T, )

Informally speaking, Lemma 1 reduces our task to buildingyfann-bit to n-bit prim-
itive f, compression functiong andG such thatF' has beyond-birthday wcr security
andG has beyond-birthday mac security, where these securitiss Ine based only the
mac security off (i.e., breaking the wcr security df must imply breaking the mac
security of f, and breaking the mac security 6f must likewise imply breaking the
mac security off).

To the latter end we introduce in this paper the notion adeer-freekeyed function
family g : {0,1}% x {0,1}™ — ({0,1}™)*. Heret is a parameter of the definition and
we write the output of, (z) as(zf (z), .. ., 2F(z)) € ({0, 1}")* wherezF(z) € {0, 1}
for eachi; later we will simply write(z;(x), . . ., z:(z)) when the dependence on a key
k is understood. In the cover-free game, an adversary agfptjueriesy, on distinct
pointssi, se,... € {0,1}™, and wins if for somej each block of output ofix(s;) is
“covered” by a previous output, in the sense thfts;) € {25 (si) :i < j}, 1 <L <t
The following game formalizes this:

Game Cove4, g):
k — {0,1}";
If A% makes distinct queries, ..., s, € {0,1}™ to g such that
28 (sj) € {25 (si) i < j}, 1 <€ <t forsomej < g,
ThenA wins; Otherwise A looses.

We define the cover-free (CF) insecuritypés

InSec,™* (T, q) := max Pr[A wins Cover(A4, g)]

where the maximum is taken over all adversaremaking at most; queries and of
running time at most’, with the same conventions as above on the running time. We
(informally) say that a function family isover-freeto mean it has small cover-free
insecurity.
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Fig. 2: On the left, the compositiatf 0 g) kk, ...k, : {0,1}™ — {0, 1}™. Onthe right, the parallel
COMPOSItioN(f S g) ki, ket -oky + {0, 1™ — {0, 137"

Given a (cover-free) function family : {0,1}* x {0,1}™ — ({0,1}")* where
the ¢-th block of g, is given by the function:} : {0,1}™ — {0,1}" and a function
family f : {0,1}* x {0,1}* — {0,1}" we define the composed function family
fog:{0,1}7H% < {0,1}™ — {0,1}" by

(f 0 Qkrk, (5) = €D Fro (2 (5))
=1

wherek € {0,1}" andkq,...,k: € {0, 1}"', andkk, - - - k; is a shorthand for the
concatenation of;, k1,...,k;. See Figure 2. We also defineparallel composition
fog:{0,1}+2% x {0,1}™ — {0,1}2" of f andg, defined by

(fOD kb kol (8) = (f © Diekey -k, ()1 (f © 9 ks ook (5)-

In other wordsf © g is simply the concatenation of two functiofis g instantiated with
the samey-key but independent-keys.
Recall that our constructidli D [F,, G] takes as parameters keyed compression func-
tionsF : {0,1}%1 x{0,1}3" — {0,1}*" andG : {0,1}*2x{0,1}?" — {0,1}". Given
a cover-free function family : {0, 1}* x {0,1}*" — ({0,1}")! and a function family
£ 40,1} x {0,1}" — {0,1}", we will setk; = k + 2t/ kg = k + tr, and define

Fiz(s) = (fo9)k; () 1)
Gr; (r) = (fog)i; (0"[r) @)

forall s € {0,1}*", r € {0,1}?>", ki € {0,1}", k3 € {0,1}*2. The specification
of our construction is thus now reduced to defining the cdree-function familyg.



We note that the:-bit to n-bit function family f is a parameter of the scheme (not
constructed from any lower-level primitive) whereasust be instantiated frorfi, and

its cover-free security reduced to the mac security;fee the next section for details
on the construction of.

Recall that, by Lemma 1, we are interested in bounthiSgc, " (T, ¢) andinSec:**(T), q)
in terms ofInSec;*(T, ¢). Towards this goal, we give two lemmas that upper bound
InSecys, (T, q) andInSecm“C(T, q) as afunction oSec ™ (T, ¢) andIinSec;**(T', q).
The proofs of both Iemmas are given in the full version [12].

Lemma 2. Letg : {0,1}% x {0,1}™ — ({0,1}™), f : {0,1}* x {0,1}" — {0,1}".
Then
InSec’sy (T, q) < InSec;™ (T, q) +t - InSec?*“(T, q).

Lemma 3. Letg: {0,1}" x {0,1}™ — ({0,1}™)t, f : {0,1}* x {0,1}" — {0,1}".
Then

InSecys, (T, q) < InSecy™ (T, q) + 2tqlog q - InSecy (T + O(q), q)-
(We note that, unlike Lemmas 1 and 2, the proof of Lemma 3 isantiviality. In
particular, it requires the analysis of a balls-and-binsigaf the type used in [11].)
Combining Lemmas 1, 2 and 3 we directly obtain:

Lemma 4. Letg : {0,1}% x {0,1}3" — ({0,1}™)%, f: {0,1}*" x {0,1}" — {0,1}"
and letF, G be asin(1), (2). Then, ifg = u/n,

InSechisir ¢ (T, G, 1) < 2-1nSeci™ (T, q) + (2tqlog ¢ +t) - InSect**(T'+ O(q), q)

Lemma 4 reduces our problem to constructing the cover-tneetion familyg from the
function family f such thatnSec;”"* (T, ¢) can be bounded in terms wiSec;* (T, ¢).
This is the topic of the next section, and the paper's mainrt@al achlevement

When a keyed function is built from a smaller primitive, wlhehe function’s key
consists of a finite set of keys for the smaller primitive (ethis potentially called
several times with different keys), the notions of MAC, WORlaover-free securities
naturally extend to &ransparentmodel, where the adversary receives a full transcript
of the function’s computation at each query, up to calls éoghimitive (namely, calls to
the lower-level primitive appear as oracle calls in the $a@ipt, so as not to reveal the
primitive’s keys). In factall results and proofs of this paper can be (easily) interpreted
and are valid in this stronger “transparent” model. Howget@keep the presentation
simple, we will not further remind this from here on.

3 Building Cover-Free Function Families from MACs

This section contains our main result, the construction ofer-free function family
based om-bit to n-bit primitives, that achieves beyond-birthday securitguaming only
good MAC security from the primitives. We note in passing iiaunkeyedunctiong :

{0,1}™ — ({0,1}™)* cannot be cover-free against information-theoretic asbries



unlesst2™ > 2™ or unlesg is as large as the desired query security, which gives values
of ¢ that are too large to be practical for most settings.

Our construction uses the notion of sput-restricting function famil§IRFF), in-
troduced by Maurer and Tessaro [22]. The following defimiti® slightly modified for
our purposes.

Definition 1. Let K = K(n) < 2™ and letm > n. A (m,n,r,d, K)-IRFFis a set€ of
functionsEy, ..., E,. : {0,1}™ — {0,1}" such that(i) » > 2 and E},(s) # En(s) for
all s € {0,1}™ and allh # 1/, (i) forall s # s’ € {0,1}™ there existd € {1,...,r}
such thatk}, (s) # En(s'), and(iii) for any subset/ C {0,1}" such thatfi/| < rK we
have

|{s € {0,1}" : Ey(s) eUforall h =1...r}| < 5U|.

The constructions of input-restricting function famile® discussed in Section 4.

p7L
. / jpn
/_
(22}
pn

Fig. 3: lllustration of the cover-free functio’;”;' : {0,1}™ — ({0,1}")" for parameters
r = 2, t = 3. Additional wires not shown on the diagram carry the inpueathF* to thei-th
copy ofp.

Our cover-free function family is also adapted from [22].eT¢pnstruction takes
as parametersy > n as well as integers,t > 1 and a(m,n,r,d, K)-IRFFE =
{Ey,...,E.}. LetFl ... F! ben-bit to n-bit primitives (later to be instantiated as
members of function family : {0,1}"x {0,1}"™ — {0, 1}", possibly fixed-key block-
ciphers). The construction also uses a (concrete, unkdyad)ionp : {0,1}*™ —
{0,1}" described below. LeZs;"! : {0,1}™ — ({0,1}")" be defined by

Z350(s) = (21()s s 2(9))
where
Z@(S) = p(El (S)a s aET(S)’ FZ(El (S))7 SRR Fé(ET(S)))
for1 < ¢ <t (see Figure 3). Froern{”-rt we obtain a keyed function family of signature

n

{0,1} x {0,1}™ — ({0, 1}")* by instantiating eack* with a member of a function



family f : {0,1}* x {0,1}™ — {0, 1}"; however, we opt for the unkeyed notation (in
whichF!, ... F? are implicitly keyed) when possible to reduce notationartread.
As for the functiorp, it is the polynomial

T

p(iﬂl,---,xmyl,---ayr)Zzsziy;- 3)

j=1i=1

wherezy, ..., y, aren-bit strings treated as elements of the filg . The only prop-
erties ofp that matter are the two following:

I. Invertibility. Foranyl < j <randanyvalues:,...,Tr, Y1, Yj—1,Yj+1s--->Yrs
z € Fon such thatz,, ..., x, are not all zero, there are few valugssuch that
p(z1,...,2r,Y1,-..,Yr) = 2, and these valuag are efficiently enumerable.

IIl. Collision Invertibility. Foranyl < j, j/ <randanyvalues,...,z,, y1,...,Yj—1,
Ykl s Y T oo s T Yoo o3 Yy 15 Yo yqs - -+ Yy € Fan suchthatay, ... z,) #

(z1,..., ;) there are few valueg; = y/, such that

p(‘rlﬁ --7xray17-- '7y7') :p(x?[7 '7x'/r‘1y/17" "y;)?
and these values are efficiently enumerable.

Both properties are easily verifiable from the fact thaty,...,z,,y1,...,y,) iS @
polynomial ofy; of the typec + z1y; + - - - + z,y}, wherec does not depend ogy.
Maurer and Tessaro use a different construction insteadagfich does not obviously
satisfy either property above, that requires enlargingtieof functions{F*} to a set
{F*v} wherev ranges from 1 tgm /n + 1].

To state our main theorem, IetvTime (&, ¢) be the amount of time required to list
the values{s € {0,1}"™ : Ey,(s) = vandE(s) € U forh # hy} for any given
ho € [r], v € {0,1}™ and set/ C {0, 1}" such thai/| < rq. We have:

Theorem 2. Let€ be a(m,n,r, 0, K)-IRFF, letf : {0,1}" x {0,1}"™ — {0,1}" be a
function family, and considélﬁif;f as a keyed function family of key spg@e 1}~ by
settingF* = f, foranyk; -- -k, € {0,1}**. Then

InSec,=7: (T, q) < GTQtSQl/t ) |nsec.1;1ac(Tmac, q) (4)

Zo Tt
foranyq < K, where@ = ¢ré and
Tmac= T + O(Qt) + qrinvTime(&, q) + RootTime,(n)

whereRootTime,.(n) is the time required to find all the roots of a polynomial of ey
r in a field of sizéf,x. In particular, whert = n andq < 2™ /(rd), we have

In ;o%'crt (T,q) < (12r%6n3) - q - InSecy* (Tmac, q)
Proof. Let A’ be an adversary for the game CoveZ<,"") that runs in timel” and that
has success probability . It suffices to design an adversdsyfor the game Forge, f)

with advantage at least
ea (6rQE3QYH) !



and that runs in timé&,...

B has access to a random memifgrof f. B chooses random keys, ..., k: €
{0,1}", and selects a random indéx € [t]. ThenB simulatesA’ with oracleZ:;",

instantianting the functiol* with £y, if £ # ¢, and instantianting*‘ with f , using
its oracle. MoreoveB proceeds to “forget” the value @§, treats each of the functions
F! as an oracle, and tries to forge any one of them (predictiay tutput on an un-
queried input), making only one such forgery attempt duthigy game. Sincé3 has
chancel /t of forging F% if it does make a correct forgery, it suffices fBrto make
such a forgetful forgery with chance at least

ea (6rQE*QY") ™!

in order for it to forgef,, with chance at leasta (6rQt>Q'/*)~1.

Itis easier to consider a modified version4sf which we call simplyA, that directly
issuesF-queries rather thaiZs;"-t-queries; more preciselyl issues a sequence of
queriesty, . . ., z, Whereq’ < gr and eachr; € {0,1}"; B answers the query; with
the tuple(F!(z;), ..., F!(z;)). We can assumd never makes the same query twice.
We letQ; = {z; : j <i}andletS; = {s € {0,1}" : Ep(s) € Q;for1 < h <r} for
0 <4 < ¢ (with @y = Sy = 0). Note that

| < 1Sy < 1Qy0 < qrd =Q

by the input-restricting property &. We also letAS; = S;\S;—1 for1 < i < ¢
and putz,(C) = {z¢(s) : s € C} foranyC C {0,1}™ (which B can compute after
it answersA’s i-th query as long a€ C S;). We sayA “wins the generous cover-free
game” at thei-th query if there exists an € S; such thatzy(s) € z,(S;\{s}) for
1 < ¢ < t. Clearly, there exists ad of same running time ad’ whose advantage,
in the generous game is at least as greatassince A can simply simulated’ and
ask the variou¥-queries needed to compute the answerd’te queries; by definition,
A wins if A" wins CovetA’, Z&;h). (It is easy to check that ift’ makes (distinct)
querieszy,...z; € {0,1}™ such thatz,(s;) € {ze(s;) : ¢ < j}, then A wins the
generous cover-free game by the time it has finished askmgjuleries necessary to
compute the answer to the queryof A’.) Thus it is sufficient to havé forge one of
the F-functions with probability at least, (6rQt>Q'/*)~1. We now viewB as simply
answeringA’s F-queries (as opposed to computing answelz;‘,.gj-queries) though
in reality B is running the whole computation, including the simulatiém’ by A.

We view each value € S; as a “bin” with¢ “slots”; the /-th slot of bins “receives
a ball” or “becomes full” at query > i if s € S; (namely, if the bin already exists at
that point), ifz¢(s) € z¢(S;\{s}), and if eithers ¢ S;_1 or z;(s) ¢ z/(Sj—1\{s}).
Once a bin receives a ball in a slot, the slot remains full.cAshnnot receive more than
one ball, and bins are never removed; we note that no bing &xike start, and that
|AS;| bins are added at theth query. Under these definitiond,wins the “generous”
cover-free game precisely if some bin becomes full (a# its slots become full). It is
helpful to pictureA and B as playing an adversarial game in whidhwins if it fills a
bin without B forging one of the functionB!, . .., F*, and whereB wins otherwise (in
fact, we may even picturd as choosing the answers to its queries, wiilebserves
and tries to guess an answer before it is revealed).



We say that ball of a bins € AS,; is “early” if z¢(s) € z¢(S;\{s}) and “late” oth-
erwise; thus a ball is early if and only if it is added to a birthet sameA-query which
creates the binB plays one of two different forging strategies with equallgbility.
The first strategy is designed to prevent too many early Ials appearing in bins
while the second strategy is designed to prevefitom filling a bin (the second strat-
egy only functions well if not too many early balls appeariind)whence the necessity
of the first strategy). We name the two strategies “early gméen” and “late preven-
tion”; despite these names, we emphasize the two stratagiest played sequentially;
instead,B flips a coin at the start to decide which strategy to use.

We start by describing’s early prevention strategy. L€l = ¢r¢; as noted above,
Q > |Sy|, soQ is an upper bound for the total number of bins created dutieg t
game. The goal oB’s early prevention strategy is to prevehfrom creating, for every
1 < k < t, Q'"%/* or more bins that each haveor more early balls in them. In
other words, we only require this strategy to work.(farge a functiorF* with “good
enough” probability) if there is some < k < t such thatQ'—*/* or more bins are
created withk or more early balls in them.

We model the early prevention strategy via a slightly sifigadi balls-in-bins game
described below. To connect this balls-in-bins game with“teal” game played by
andA, it is helpful to first review the process via which bins areated and early balls
are added to them. Consider a querynade byA. Then

AS; = {s€{0,1}™: Ep,(s) = x; for somehg € [r] andEy,(s) € Q;—1 for h # ho}

and the elements of\S; are the new bins created by this query. Eachdia AS;
hast slots and the “value’,(s) of the /-th slot of s is revealed wherB makes the
queryF*(z;); after the value(s) is revealed, an early ball is added to thth slot ofs
according to whether there exists&re S;\{s} such that,(s) = z,(s") or not (notice
thatz,(s’) is known at this point for alt’ € S;). Thus, the process of filling the newly
created bins with early balls consiststirfphases” (the querieF!(z;), ..., Fi(x;),
which are made sequentially by), where the/-th phase simultaneously reveals the
values of the/-th slots of all the new bins, and whether these slots reesvy balls or
not. The following balls-in-bins game thus abstracts tteepss of creation of new bins
and early balls:

‘EARLY PREVENTION' BALLS-AND-BINS GAME. This game is played between two
adversariesl and B. Parameters are integérg’, Q > 1. Rules are as follows:

— The game proceeds ifi rounds. At round, A announces some numbegr> 0 of
bins suchthap ., v; < Q.

— At the beginning of each round the bins are empty. Each bin haslots. Each
round consists of phases. At thé-th phase A reveals which of the; bins have
their ¢-th slot “filled” by a “ball”.

— Before each phase of each rouri#ljs allowed to secretly predict a bin that will
receive a ball at that phasB;wins if it makes a correct guess, but it is only allowed
to make one guess during the entire game.

— Let by ; be the number of bins that receikeor more balls at round, and let
b, = >, b, Wwhere the sum is taken over all the rounds. THeis required to fill
bins such thab, > Q*~*/* for at least one value df, 1 < k < t.



In the full version [12] we exhibit a strategy fd8 that gives it at leas{t>Q"/*)~!
chance of winning the above game, regardlesd’sfstrategy. Thus, i)' ~*/* or more
bins each receivie or more early balls for some < k < ¢, and if B uses this strategy3
has chancé?Q'/*)~" of correctly predicting, before the answer to some quyz; )

is given, that the value returned by this query will resulsiat ¢ of some (specific)
bin s € AS; receiving an early ball. To gue®’(z;), B further chooses a random
s’ € S;\{s}, and solves,(s) = z(s") in order to gues®*(z;) (sinces receives an
early ball in slot? precisely when there exists ahe S;\{s} such that,(s) = z¢(s")).

To see that(s) = z¢(s’) is really “solvable” two different cases must be considered
according to whethes’ € AS; or not. If s’ ¢ AS,; thens’ was created by an earlier
A-query and the value of its slots are known, in particulangieez,(s") of its ¢-th slot

is known. Letz;, = Ej(s) for1 < h < r, lethy € [r] be the unique index such that
Zn, = x; and lety, = F'(z;,) for 1 < h < r. Then all the valuesy, ..., Z,, 7, ...,

7, are known taB except for the valug,, , which it needs to guess using the equation

p(fla"'aTTvyla"'ayr):ZZ(SI)' (5)

By condition (i) of Definition 1(z1, ..., =) # (0, ..., 0) so, by the ‘Invertibility’ prop-
erty of p, there are few valugg, , that solve (5). More precisely, sinp€z, ...,7,) isa
nonzero polynomial of degree at mesh 7, , B has to choose from the at mostoots
of p(Z1,...,7,) — ze(s), wherez,(s') is just a constant. In the second cases AS;

andz(s’) is not known (likez.(s), it is about to be revealed). Lat, = E;,(s'), let

hy € [r] be the unigue index such thﬁj;6 = x; and lety;, = F¢(7;) for1 < h < r.

Then all the values, ..., 7., 7}, ..., 7. are known toB excepty;%, andB needs to
solve

p(Tl7""fT’y17"'7yT) :p(fi""’f’ll‘7yi7""y7‘) (6)

(this is z¢(s) = z(s")) for 7, 7}, (or at least forg,, ). Buty, = 7, ; SiNCET,, =
T;L& = x;; also, by the injectivity of, (z1,...,T,) # (7},...,T.), so it follows by the
‘Collision Invertibility’ property ofp that there are few valugg, = y;lé solving (6); in
fact these are the at mastifferent roots ofp(z1, .. .,7,) — p(Z}, . .., 7..), considered
as a polynomial iy, = y;%. The termRootTime,.(n) in Theorem 2 accounts fd8’s
root-finding costs, which are incurred only once in the cotafon.

Naturally, B’s further guessing of and of the correctrogp, = erodes its probability
of making a correct forgery even it has correctly guessedaaly all is about to be
added to a bin slot, but it is easy to bound this erosi®as chance at leasf |S;| >
1/Q of correctly guessing’ and chance at leadt/r of correctly guessing the root.
Thus, if Q' ~*/* or more bins each receiveor more early balls for some < k < ¢
and if B is using its ‘early prevention’ strategy (which we have jirsished describing),

thenB has chance at least )

TQtQQl/t
of forging. As B uses this strategy with probabilit%/, we can therefore assume that

fewer thanQ'—*/* bins receivek early balls for everyl < k < ¢, or elseB already
reaches the requisite probability of success of6rQt>Q*/*) .



We now discus$3’s ‘late prevention’ strategy. HerB attempts to preved from
filling a bin with ¢ balls by guessing the arrival of late balls. We note that, diuary
F*(z;) results in some late ball being placed in thth slot of bins, thens ¢ AS; (by
definition of ‘late’) and so the values (s), ..., z:(s) are already known prior to the
answer of the quer¥*(z;). Moreover the fact that the queRf (z;) results in a late
ball appearing in birs means there is som¢ € AS; such that ()E}, (s") = z; for
somehy € [r], (i) the queriesF*(E},(s")) have already been matifor h # hg, and
(iii) z¢(s) = z(s") (the valuez,(s’) will become known wherF*(x;) is answered).
LetT) = Ei(s),..., T, = Ex(s') (s0T},, = z;) andy = F(z)),...,7. = F'(z,),
all of which are known ta3 excepty;, . Then, if B has correctly guessed a late ball is
going to appear in théth slot of bins andhas correctly guessed the valuesbE AS;,
it can predic’(x;) by solving

(T T Yy T) = 2e(S) (7)
for 775, , for which there are at most solutions. (This is the second (and last) place
we require the ‘Invertibility’ property op.) Given these observations, the following
balls-and-bins game clearly modé#ss ‘late prevention’ task, up to but not including
guessing the root of (7):

‘L ATE PREVENTION" BALLS-AND-BINS GAME. This game is played between two
adversariesl and B. Parameters are integérg’, Q > 1. Rules are as follows:

— The game involves “bins” witht slots each, where each slot can contain either
contain a ball or not. At the beginning of the game, there ardins. Bins are
added to the game as described below, and never removed.

— The game proceeds ii rounds, each of which consistsiofphases”.

— Atthe beginning of round, A announces some numher> 0 such thad ., v; <
Q. If v; = 0, the round is skipped.

— At phase/ of roundi, 1 < ¢ < t, A chooses a subset (possibly empty) of the
currently existing bins that do not yet have a ball in tifeih slot, and places balls
in all of their ¢-th slots, simultaneously. Moreovet, labels each ball placed with
a number from 1 t;. (Multiple balls with the same label are allowed, and not all
labels are required to appear.)

— At the end of round;, A introducesy; new bins to the game, each possibly al-
ready containing some balls. Throughout the game, the totaber of new bins
introduced withk or more balls already in them must be less tigdm*/* for all
1<k<t.

— Before each phase of each rour#ljs allowed to secretly predict a bin that will
receive a ball at that phase and a label for that allwins if it guesses both
correctly. It is only allowed to make one guess during the gam

— A must fill some bin with balls by the end of the game.

We note that the new bins introduced at the end of raucmirespond to the elements
of AS; and thatv; corresponds tdAS;|. The “label” for a ball placed in a bin at

® This means4 has made the querids;, (s") for h # hy so that, in fact, all querieB”’ (En(s")
for 1 < ¢’ <tandh # ho have already been made (not jést= ¢).



phase’ corresponds to an elemetite AS; such that,(s) = z(s"), discussed above.
(In the ‘real game’ betweeB and A several such elements may exist, so that more
accurate modelization would allov to choose a nonempty list of labels rather than a
single label for each ball; however, seeking to minimizeghessing advantage &f,

A would automatically make each of these lists a singletorvany)

In the full version [12] we exhibit a strategy f@t in the ‘late prevention’ game that
succeeds with probabilit3Qt2Q'/*)~! regardless ofi’s strategy. The ‘late preven-
tion’ strategy of B consists simply of coupling th8-strategy mentioned above with a
guessing of the root of (7). Thus, as long as fewer tan*/* bins receivek or more
early balls forl < k < t, as long asA fills some bins witht balls and as long aB uses
its late prevention strategyg has chance at least

1
3rQrQ/!

of forging. SinceB uses the ‘late prevention’ strategy with probabi%t,ythis concludes
the proof.

4 Implications

Replacingg in Lemma 4 by our cover-free functidhﬁij‘,f and using Theorem 2 with
m = 3n, we obtain:

Theorem 3. Let & be a(3n,n,r, 6, K)-IRFF, let f : {0,1}* x {0,1}" — {0,1}",
and consideZ{ " as a keyed function family of key sp&eke 1}~ like in Theorem 2.

3n,n
DefineF, G by (1), (2) with g = Z5;"!. Then
In {\H/IE]BC[F,G] (T,q,p) < 127’Qt3Q1/t ) |nsecr}nac(Tmac, q) (8)

+ (2tqlog g +t) - InSecy**(T + 0(q),q)
whereq = p/n and@ = ¢ré as long as; < K, and where
Tmac=T + O(Qt) + grinvTime(E, q) + RootTime, (n).
In particular, whent = n and@ < 2™ (i.e.q < 2"/rd) andg < K we have

+ (2ngqlogq +n) - InSecy**(T' + 0(q),q)

By default we shall apply the second part of Theorem 3, clmgpaisi= n. In order to
interpret (9) we need to know what valuesrod and K are achievable via IRFFs and
to knowInvTime(€&, q) for those IRFFs, as this term dominafs.,..

The question of instantiating the IRFFwas already studied by Maurer and Tes-
saro [22], who reduced it to the construction of certain $ypé highly unbalanced
bipartite expander graphs. While well-studied, these sygfeexpander graphs are not
yet completely understood, and in particular the settingahmeters relevant to our



case has not been the object of much attention. Here we médmionds achieved by
two explicit constructions as well as those achieved by aexgiicit, probabilistic con-
struction. In all cases we set = 3n. We note thatnvTime(€, ¢) can always be upper
bounded byy? by appending three functions to the IRFF that read off eaobkobf
input via the identity. Moreover, we can easily enforce dbad (i) of Definition 1 as
long asr < 2". Since the family sizes in question are anyway polynomial in we
assume these tweaks without further mention.

Existential construction. A probabilistic construction [22] achievegan, n, r, §, K)-
IRFF & with r = O(n), § ~ 1 andK = 2(Z-). In this cas& = ¢ré = O(ng). Then
the right-hand side of (9) becomes

O(n®q) - InSec;*(Tmac q)-

AssumingInSec;*“(Tmae, ) ~ 1/2", MDIF, G] achieves query security up to=
£2(2"/n’). However, this construction is inexplicit.

Expanders of [30]. Expanders of Ta-Shma, Umans and Zuckerman yield an explicit
(3n,n, 7,6, K)-IRFF € with r = poly(n), § = poly(n) andK = 2(zrm). In this
case@ = gpoly(n). The right-hand side of (9) becomes

O(poly(n)q) - INSeCF*(Tmac q)-

AssumingInSec;*‘(Tmac, q) =~ 1/2" we can then achieve query security upgte=
£2(2"/poly(n)). (We note this construction is strictly better from all stppints than
the one presented by Maurer and Tessaro [22].)

Expanders of [14].Expanders of Guruswami, Umans and Venkatesan yield ancixpli
(3n,n,r,8, K)-IRFF & with r = n°(2), § = poly(n) andK = 2"(1-) for anye €
(0,1). In this case = gpoly(n)n®(). We can set = log(Q) = logq + O(% logn).
For constant the right-hand side of (9) again becomes

O(poly(n)q) - INSEC]* (Tinac, ).

AssumingInSec;*(Tmac, ) ~ 1/2" the insecurity thus remains negligible as long as

g < K =271-¢) The advantage of this construction is that it affords effitinver-
sion time ofO(q poly(n)) (as opposed t®(q?) for the previous two constructions).

Interpretation. The assumptionnSec;*(Tmac, ¢) =~ 1/2" is only realistic as long
asT.. does not allow to do an exhaustive search over the key spafeassuming
the latter has size” > 2", this implies that our upper bounds are only meaningful if
Tiac ~ INVTiMe (&, q) < 2" (sinceTi.. is dominated byinvTime(&, q)). The first
two constructions, which are only known to hawTime(&,q) = O(¢?), therefore
only give a meaningful bound far < 2%/3. Thus, with the current understanding of
InvTime(&, q), they might become beyond birthday onlyxif> 3n/2 (and approach

g ~ 2" only if K > 3n). However, the last construction, havityTime(&,q) =
O(qpoly(n)), yields beyond-birthday security even#f = n, which is the case of



AES-128. Once again, though, we stress that the currentalimns of our approach
are due only to the limitations in the current constructiohexpander graphs, and are
not related to any “cryptographic” difficulties. Needlesssay, future advances in the
constructions of expander graphs will not only improve cagmeters, but will likely
have other applications in many areas of theoretical coenmagience.

Heuristic Instantiation. In practice, we expect to nearly match the good IRFF param-
eters of the existential construction (including= O(n) andé = O(1)) by simply im-
plementing eact; : {0,1}3" — {0,1}" as the XOR of three (independently keyed)
fixed key blockciphers, i.€2; (z||y||2) = fr,,(z) ® fr,, () ® fr, (). We note that in
this case th&r keysky 1, .. ., k» 3 do not constitute key material, but are instead fixed
constants of the construction.
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