Semi-Homomorphic Encryption and
Multiparty Computation

Rikke Bendlin, Ivan Damgard, Claudio Orlandi and Sarah Zakarias

Department of Computer Science, Aarhus University and CFEM*

Abstract. An additively-homomorphic encryption scheme enables us
to compute linear functions of an encrypted input by manipulating only
the ciphertexts. We define the relaxed notion of a semi-homomorphic
encryption scheme, where the plaintext can be recovered as long as the
computed function does not increase the size of the input “too much”.
We show that a number of existing cryptosystems are captured by our
relaxed notion. In particular, we give examples of semi-homomorphic en-
cryption schemes based on lattices, subset sum and factoring. We then
demonstrate how semi-homomorphic encryption schemes allow us to con-
struct an efficient multiparty computation protocol for arithmetic cir-
cuits, UC-secure against a dishonest majority. The protocol consists of
a preprocessing phase and an online phase. Neither the inputs nor the
function to be computed have to be known during preprocessing. More-
over, the online phase is extremely efficient as it requires no cryptographic
operations: the parties only need to exchange additive shares and verify
information theoretic MACs. Our contribution is therefore twofold: from
a theoretical point of view, we can base multiparty computation on a
variety of different assumptions, while on the practical side we offer a
protocol with better efficiency than any previous solution.

1 Introduction

The fascinating idea of computing on encrypted data can be traced back at
least to a seminal paper by Rivest, Adleman and Dertouzos [RAD78] under
the name of privacy homomorphism. A privacy homomorphism, or homomor-
phic encryption scheme in more modern terminology, is a public-key encryption
scheme (G, E, D) for which it holds that D(E(a) ® E(b)) = a & b, where (®,®)
are some group operation in the ciphertext and plaintext space respectively. For
instance, if @ represents modular addition in some ring, we call such a scheme
additively-homomorphic. Intuitively a homomorphic encryption scheme enables
two parties, say Alice and Bob, to perform secure computation: as an example,
Alice could encrypt her input a under her public key, send the ciphertext E(a)
to Bob; now by the homomorphic property, Bob can compute a ciphertext con-
taining, e.g., E(a-b+c¢) and send it back to Alice, who can decrypt and learn the

* Center for Research in the Foundations of Electronic Markets, supported by the
Danish Strategic Research Council

result. Thus, Bob has computed a non trivial function of the input a. However,
Bob only sees an encryption of a which leaks no information on a itself, assum-
ing that the encryption scheme is secure. Informally we will say that a set of
parties Py, ..., P, holding private inputs z1,...,x, securely compute a function
of their inputs y = f(x1,...,2,) if, by running some cryptographic protocol,
the honest parties learn the correct output of the function y. In addition, even
if (up to) n — 1 parties are corrupt and cooperate, they are not able to learn any
information about the honest parties’ inputs, no matter how they deviate from
the specifications of the protocol.

Building secure multiparty computation (MPC) protocols for this case of dis-
honest magority is essential for several reasons: First, it is notoriously hard to
handle dishonest majority efficiently and it is well known that unconditionally
secure solutions do not exist. Therefore, we cannot avoid using some form of
public-key technology which is typically much more expensive than the standard
primitives used for honest majority (such as secret sharing). Secondly, security
against dishonest majority is often the most natural to shoot for in applications,
and is of course the only meaningful goal in the significant 2-party case. Thus,
finding practical solutions for dishonest majority under reasonable assumptions
is arguably the most important research goal with respect to applications of
multiparty computation.

While fully-homomorphic encryption [Gen09] allows for significant improve-
ment in communication complexity, it would incur a huge computational over-
head with current state of the art. In this paper we take a different road: in
a nutshell, we relax the requirements of homomorphic encryption so that we
can implement it under a variety of assumptions, and we show how this weaker
primitive is sufficient for efficient MPC. Our main contributions are:

A framework for semi-homomorphic encryption: we define the notion of a semi-
homomorphic encryption modulo p, for a modulus p that is input to the key
generation. Abstracting from the details, the encryption function is additively
homomorphic and will accept any integer x as input plaintext. However, in con-
trast to what we usually require from a homomorphic cryptosystem, decryption
returns the correct result modulo p only if = is numerically small enough. We
demonstrate the generality of the framework by giving several examples of known
cryptosystems that are semi-homomorphic or can be modified to be so by trivial
adjustments. These include: the Okamoto-Uchiyama cryptosystem [OU98]; Pail-
lier cryptosystem [Pai99] and its generalization by Damgard and Jurik [DJO1];
Regev’s LWE based cryptosystem [Reg05]; the scheme of Damgard, Geisler and
Krgigaard [DGKO09] based on a subgroup-decision problem; the subset-sum based
scheme by Lyubashevsky, Palacio and Segev [LPS10]; Gentry, Halevi and Vaikun-
tanathan’s scheme [GHV10] based on LWE, and van Dijk, Gentry, Halevi and
Vaikuntanathan’s scheme [DGHV10] based on the approximate ged problem.
We also show a zero-knowledge protocol for any semi-homomorphic cryptosys-
tem, where a prover, given ciphertext C' and public key pk, demonstrates that
he knows plaintext « and randomness r such that C' = Epi(z,7), and that x
furthermore is numerically less than a given bound. We show that using a twist

of the amortization technique of Cramer and Damgard [CD09], one can give u
such proofs in parallel where the soundness error is 27" and the cost per instance
proved is essentially 2 encryption operations for both parties. The application
of the technique from [CD09] to prove that a plaintext is bounded in size is new
and of independent interest.

Information-theoretic “online” MPC': we propose a UC secure [Can01] protocol
for arithmetic multiparty computation that, in the presence of a trusted dealer
who does not know the inputs, offers information-theoretic security against an
adaptive, malicious adversary that corrupts any dishonest majority of the par-
ties. The main idea of the protocol is that the parties will be given additive shar-
ing of multiplicative triples [Bea91], together with information theoretic MACs
of their shares — forcing the parties to use the correct shares during the protocol.
This online phase is essentially optimal, as no symmetric or public-key cryptog-
raphy is used, matching the efficiency of passive protocols for honest majority
like [BOGW88,CCDS8S8]. Concretely, each party performs O(n?) multiplications
modulo p to evaluate a secure multiplication. This improves on the previous
protocol of Damgard and Orlandi (DO) [DO10] where a Pedersen commitment
was published for every shared value. Getting rid of the commitments we im-
prove on efficiency (a factor of 2(k), where k is the security parameter) and
security (information theoretic against computational). Implementation results
for the two-party case indicate about 6 msec per multiplication (see the full
version [BDOZ10]), at least an order of magnitude faster than that of DO on
the same platform. Moreover, in DO the modulus p of the computation had to
match the prime order of the group where the commitments live. Here, we can,
however, choose p freely to match the application which typically allows much
smaller values of p.

An efficient implementation of the offline phase: we show how to replace the
share dealer for the online phase by a protocol based solely on semi-homomorphic
encryption!. Our offline phase is UC-secure against any dishonest majority, and
it matches the lower bound for secure computation with dishonest majority of
O(n?) public-key operations per multiplication gate [HIK07]. In the most efficient
instantiation, the offline phase of DO requires security of Paillier encryption and
hardness of discrete logarithms. Our offline phase only has to assume security
of Paillier cryptosystem and achieves similar efficiency: A count of operations
suggests that our offline phase is as efficient as DO up to a small constant fac-
tor (about 2-3). Preliminary implementation results indicate about 2-3 sec to
prepare a multiplication. Since we generalize to any semi-homomorphic scheme
including Regev’s scheme, we get the first potentially practical solution for dis-
honest majority that is believed to withstand a quantum attack. It is not possible
to achieve UC security for dishonest majority without set-up assumptions, and

! The trusted dealer could be implemented using any existing MPC protocol for dis-
honest majority, but we want to show how we can do it efficiently using semi-
homomorphic encryption.

our protocol works in the registered public-key model of [BCNP04] where we
assume that public keys for all parties are known, and corrupted parties know
their own secret keys.

Related Work: It was shown by Canetti, Lindell, Ostrovsky and Sahai [CLOS02]
that secure computation is possible under general assumptions even when con-
sidering any corrupted number of parties in a concurrent setting (the UC frame-
work). Their solution is, however, very far from being practical. For computation
over Boolean circuits efficient solutions can be constructed from Yao’s garbled
circuit technique, see e.g. Pinkas, Schneider, Smart and Williams [PSSWO09].
However, our main interest here is arithmetic computation over larger fields or
rings, which is a much more efficient approach for applications such as bench-
marking or some auction variants. A more efficient solution for the arithmetic
case was shown by Cramer, Damgard and Nielsen [CDNO01], based on threshold
homomorphic encryption. However, it requires distributed key generation and
uses heavy public-key machinery throughout the protocol. More recently, Ishai,
Prabhakaran and Sahai [IPS09] and the aforementioned DO protocol show more
efficient solutions. Although the techniques used are completely different, the
asymptotic complexities are similar, but the constants are significantly smaller
in the DO solution, which was the most practical protocol proposed so far.

Notation: We let Ug denote the uniform distribution over the set S. We use
x + X to denote the process of sampling = from the distribution X or, if X is
a set, a uniform choice from it.

We say that a function f : N — R is negligible if V¢, In. s.t. if n > n, then
f(n) <n~° We will use ¢(-) to denote an unspecified negligible function.

For p € N, we represent Z, by the numbers {—[(p —1)/2],...,[(p —1)/2]}.
If x is an m-dimensional vector, ||X||so := max(|z1], ..., |Zm|). Unless differently
specified, all the logarithms are in base 2.

As a general convention: lowercase letters a,b,c,... represent integers and
capital letters A, B, C, ... ciphertexts. Bold lowercase letters r,s, ... are vectors
and bold capitals M, A, ... are matrices. We call x the computational security
parameter and u the statistical security parameter. In practice u can be set to
be much smaller than k, as it does not depend on the computing power of the
adversary.

2 The Framework for Semi-Homomorphic Encryption

In this section we introduce a framework for public-key cryptosystems, that sat-
isfy a relaxed version of the additive homomorphic property. Let PKE = (G, E, D)
be a tuple of algorithms where:

G(1%,p) is a randomized algorithm that takes as input a security parameter
x and a modulus p;?> It outputs a public/secret key pair (pk,sk) and a set of

2 In the framework there are no restrictions for the choice of p; however in the next
sections p will always be chosen to be a prime.

parameters P = (p, M, R, D% G). Here, M, R are integers, DZ is the description
of a randomized algorithm producing as output d-vectors with integer entries (to
be used as randomness for encryption). We require that except with negligible
probability, D¢ will always output r with |[r|lc < o, for some o < R that
may depend on k. Finally, G is the abelian group where the ciphertexts belong
(written in additive notation). For practical purposes one can think of M and
R to be of size super-polynomial in k, and p and ¢ as being much smaller than
M and R respectively. We will assume that every other algorithm takes as input
the parameters P, without specifying this explicitly.

Epk(x,r) is a deterministic algorithm that takes as input an integer x € Z and a
vector r € Z% and outputs a ciphertext C' € G. We sometimes write E,(z) when
it is not important to specify the randomness explicitly. Given C = Epi(x1,11),
Cy = Epi(z2,12) in G, we have Cy + Co = Epi (21 + 22,11 + 1r2). In other words,
Epk (-,) is a homomorphism from (Z4*!, +) to (G, +)). Given some 7 and p we
call C a (7, p)-ciphertext if there exists x,r with |2| < 7 and ||r||cc < p such
that C = E,x(z,r). Note that given a ciphertext 7 and p are not unique. When
we refer to a (7, p)-ciphertext, 7 and p should be interpreted as an upper limit
to the size of the message and randomness contained in the ciphertext.

D (C) is a deterministic algorithm that takes as input a ciphertext C € G and
outputs 2’ € Z, U {L}.

We say that a semi-homomorphic encryption scheme PKE is correct if, Vp:
Pr[(pk,sk,P) < G(1%,p), x € Z,|z| < M;r € Z%, ||r||0o < R :
Do (Epi(a,1)) # & mod p | < (r)

where the probabilities are taken over the random coins of G and E.
We now define the IND-CPA security game for a semi-homomorphic cryp-
tosystem. Let A = (A1, A2) be a PPT TM, then we run the following experiment:

(pk, sk, P) <= G(17, p)
(mo, mq, state) < A, (1%, pk) with mg,my € Z,
b« {O,].}, C + Epk(mb), b+ Ag(l“,state,C’)

We define the advantage of A as Adv®*4(A, k) = |Pr[b = V'] — 1/2|, where the
probabilities are taken over the random choices of G, E, A in the above experi-
ment. We say that PKE is IND-CPA secure if V PPT A, Adv®* (A, k) < (k).

Next, we discuss the motivation for the way this framework is put together:
when in the following, honest players encrypt data, plaintext x will be chosen
in Z, and the randomness r according to D2, This ensures IND-CPA security
and also that such data can be decrypted correctly, since by assumption on DZ,
[|Ir||cc < o < R. However, we also want that a (possibly dishonest) player P; is
committed to « by publishing C' = Epx(z,r). We are not able to force a player
to choose x in Z,, nor that r is sampled with the correct distribution. But our
zero-knowledge protocols can ensure that C' is a (7, p)-ciphertext, for concrete
values of 7,p. If 7 < M, p < R, then correctness implies that C' commits P; to
x mod p, even if x,r may not be uniquely determined from C.

2.1 Examples of Semi-Homomorphic Encryption

Regev’s cryptosystem [Reg05] is parametrized by p, ¢, m and «, and is given by
(G,E,D). A variant of the system was also given in [BD10], where parameters
are chosen slightly differently than in the original. In both [Reg05] and [BD10)
only a single bit was encrypted, it is quite easy, though, to extend it to elements
of a bigger ring. It is this generalized version of the variant in [BD10] that we
describe here. All calculations are done in Z,. Key generation G(1%) is done
by sampling s € Zy and A € Z7**" uniformly at random and x € Z7' from a
discrete Gaussian distribution with mean 0 and standard deviation %. We then

have the key pair (pk, sk) = ((A, As + x),s). Encryption of a message v € Z,
is done by sampling a uniformly random vector r € {—1,0,1}". A ciphertext
C is then given by C = E,i(y,r) = (a,b) = (ATr,(As + x)Tr + v |q/p)).
Decryption is given by Dy (C) = [(b —s7a) ~p/q]. Regev’s cryptosystem works
with a decryption error, which can, however, be made negligibly small when
choosing the parameters.

Fitting the cryptosystem to the framework is quite straight forward. The
group G = Z! x Zq and p is just the same. The distribution D¢ from which
the randomness r is taken is the uniform distribution over {—1,0,1}™, that is
d=m and o = 1. Given two ciphertexts (a,b) and (a’,b’) we define addition to
be (a+a’, b+b'). With this definition it follows quite easily that the homomorphic
property holds. Due to the choices of message space and randomness distribution
in Regev’s cryptosystem, we will always have that the relation M = Rp/2 should
hold. How M can be chosen, and thereby also R, depends on all the original
parameters of the cryptosystem. First assume that ¢ - o = ¢/q with d > 1.
Furthermore we will need that p < ¢/(4y/q) for some constant ¢ < d. Then
to bound M we should have first that M < ¢/(4p) and secondly that M <
p+/q/(2m) for some s > cd/(d—c). Obtaining these bounds requires some tedious
computation which we leave out here.

In Paillier’s cryptosystem [Pai99] the secret key is two large primes pi,ps, the
public key is N = pips, and the encryption function is E,x(z,7) = (N +
1)*rN mod N? where x € Zy and r is random in Z2- The decryption function
D!, reconstructs correctly any plaintext in Zy, and to get a semi-homomorphic
scheme modulo p, we simply redefine the decryption as D(c) = D’(c) mod p. It
is not hard to see that we get a semi-homomorphic scheme with M = (N —
1)/2,R = co,d = 1,D% = UZ}«V2,O' = o0 and G = Z}.. In particular, note that
we do not need to bound the size of the randomness, hence we set ¢ = R = co.

The cryptosystem looks syntactically a bit different from our definition which
writes G additively, while Z%.. is usually written with multiplicative notation;
also for Paillier we have E, i (z,7) +Epi(2’,7) = Epp(z+2',7-7") and not E,i(z+
x',r 4+ r'). However, this makes no difference in the following, except that it
actually makes some of the zero-knowledge protocols simpler (more details in
Section 2.2). It is easy to see that the generalization of Paillier in [DJ01] can be
modified in a similar way to be semi-homomorphic.

In the full paper [BDOZ10] we show how several other cryptosystems are
semi-homomorphic.

2.2 Zero-Knowledge Proofs

We present two zero-knowledge protocols, Ipopk, IIpocm where a prover P
proves to a verifier V that some ciphertexts are correctly computed and that some
ciphertexts satisfy a multiplicative relation respectively. Ilpopx has (amortized)
complexity O(k+wu) bits per instance proved, where the soundness error is 27%.
ITpocm has complexity O(ku). We also show a more efficient version of Mpocm
that works only for Paillier encryption, with complexity O(k + u). Finally, in
the full paper [BDOZ10], we define the multiplication security property that we
conjecture is satisfied for all our example cryptosystems after applying a simple
modification. We show that assuming this property, Ilpocy can be replaced by
a different check that has complexity O(k +).

IIpopk and Ilpoon will both be of the standard 3-move form with a ran-
dom wu-bit challenge, and so they are honest verifier zero-knowledge. To achieve
zero-knowledge against an arbitrary verifier standard techniques can be used. In
particular, in our MPC protocol we will assume — only for the sake of simplicity
— a functionality Franp that generates random challenges on demand. The Fganp
functionality is specified in detail in the full paper [BDOZ10] and can be imple-
mented in our key registration model using only semi-homomorphic encryption.
In the protocols both prover and verifier will have public keys pkp and pky . By
Ep(a,r) we denote an encryption under pkp, similarly for Ey (a,r).

We emphasize that the zero-knowledge property of our protocols does not
depend on IND-CPA security of the cryptosystem, instead it follows from the
homomorphic property and the fact that the honest prover creates, for the pur-
pose of the protocol, some auxiliary ciphertexts containing enough randomness
to hide the prover’s secrets.

Proof of Plaintext Knowledge. Ilpopk takes as common input u ciphertexts
Ck, k=1,...,u. If these are (7, p)-ciphertexts, the protocol is complete and sta-
tistical zero-knowledge. The protocol is sound in the following sense: assuming
that pkp is well-formed, if P is corrupt and can make V accept with probabil-
ity larger than 27%, then all the C}, are (22utlogur 22utlogu) ciphertexts. The
protocol is also a proof of knowledge with knowledge error 27* that P knows
correctly formed plaintexts and randomness for all the Cj’s.

In other words, Ilpopk is a ZKPoK for the following relation, except that zero-
knowledge and completeness only hold if the C}’s satisfy the stronger condition
of being (7, p)-ciphertexts. However, this is no problem in the following: the
prover will always create the Cy’s himself and can therefore ensure that they are
correctly formed if he is honest.

Rpsil) = {@w)| @ =(pkp,Cr,..., Cu);
w= ((z1,r1),. .., (Tu,Tu)) : Cxr = Ep(zk, r1),

|$k‘ S 22u+logu7_’ HrkHoo S 22u+10gup}

We use the approach of [CD09] to get small amortized complexity of the zero-
knowledge proofs, and thereby gaining efficiency by performing the proofs on

simultaneous instances. In the following we define m = 2u—1, furthermore M, is
an m x u matrix constructed given a uniformly random vector e = (eq,...,€e,) €
{0,1}". Specifically the (i, k)-th entry Me; is given by Me ;1 = €;_p41 for
1 <i—k+1 < u and 0 otherwise. By Mg ; we denote the i-th row of M.
The protocol can be seen in Figure 1. Completeness and zero-knowledge follow
by standard arguments that can be found in the full paper [BDOZ10]. Here we
argue soundness which is the more interesting case: Assume we are given any
prover P*, and consider the case where P* can make V accept for both e and
e, e # €, by sending z, z/, T and T’ respectively. We now have the following
equation:

(Me — Mer)e = (d —d) (1)

What we would like is to find x = (x1,...,2,) and R = (ry,...,r,) such that
Ckx = Ep(xk,r)). We can do this by viewing (1) as a system of linear equations.
First let j be the biggest index such that e; # e’. Now look at the u x u
submatrix of M — M, given by the rows j through j + u both included. This
is an upper triangular matrix with entries in {—1,0,1} and e; — e;» # 0on a
diagonal. Now remember the form of the entries in the vectors ¢, d and d’, we
have C, = Ep(xy, 1), Di = Ep(2k,ti), D), = Ep(2},t},). We can now directly
solve the equations for the x}’s and the ry’s by starting with C,, and going up.
We give examples of the first few equations (remember we are going bottom up).
For simplicity we will assume that all entries in M — Mo/ will be 1.

EP(xuaru) = EP(Zu+j - Z;+j7tu+j - t;ﬁ»j)

EP(xu—la ru—l) + EP(xua ru) = EP(Zu+j—1 - Z;+j_17tu+j—1 - t;.}-j_l)

Since we know all values used on the right hand sides and since the cryptosystem
used is additively homomorphic, it should now be clear that we can find zy
and ry such that Cy = Ep(xg,rg). A final note should be said about what we
can guarantee about the sizes of x; and rp. Knowing that |z;| < 2u—itlogur
|21 < 2urltlogur ||t < 2ulHlosuy and |[|t)]|e < 247 1H8Up we could
potentially have that C; would become a (22u+los ur 22utlogu 5) ciphertext. Thus
this is what we can guarantee.

Proof of Correct Multiplication. Ipscn(u, 7, p) takes as common input u
triples of ciphertexts (Ay, B, Cy) for k = 1,...,u, where Ay is under pkp and
By, and Cj, are under pky (and so are in the group Gy). If P is honest, he will
know ay, and ap < 7. Furthermore P has created C as Cy = ar By + Ev (rg, ti),
where Ey (7, ty) is a random (23¢Hlosur2 g3utlogury) ciphertext. Under these
assumptions the protocol is zero-knowledge.

Jumping ahead, we note that in the context where the protocol will be used,
it will always be known that B in every triple is a (22utlosur g2utlogu)
ciphertext, as a result of executing Ipopk. The choice of sizes for Ey (rg,ty)

Subprotocol IIpepk: Proof of Plaintext Knowledge

PoPK(u, T, p):

1. The input is u ciphertexts {Cx = Ep(zk,rk)}i—;. We define the vectors
c=(Ci,...,Cy) and x = (x1,...,%,) and the matrix R = (r1,...,ry),
where the rp’s are rows.

2. P constructs m (247 Hlos vy gu—ltlosu 5) ciphertexts {A; = Ep(yi,si) }ita,
and sends them to V. We define vectors a and y and matrix S as above.

3. V chooses a uniformly random vector e = (e1,...,e,) € {0,1}*, and sends
it to P.

4. Finally P computes and sends z=y + Me-xand T=S+ M. -R to V.

5. V checks that d = a + Me - ¢ where d = (Ep(21,t1),...,Ep(zm, tm)).
Furthermore, V checks that |z;| < 2471118 %r and ||t;]]e < 247 H10B Y,

Fig. 1. Proof of Plaintext Knowledge.

Subprotocol IIpocm: Proof of Correct Multiplication

PoCM(u, T, p):
1. The input is u triples of ciphertexts {(Ax, Bk,Ck)}i=1, where Ap =
Ep(ak,hk) and Cr = arBr + Ev(T’k,tk).
2. P constructs u uniformly random (23%~1Flesur gdu—ltlogu ;) cinhertexts
D, = Ep(dk,sk) and wu ciphertexts Fr = dxBr + EV(fk7yk)7
where Ev(fi,y,) are uniformly random (24%~1Tlogus2 glu—itlogur ;)
ciphertexts.
V' chooses u uniformly random bits e and sends them to P.
4. P returns {(zx,vk)}iz1 and {(zg,wr)}i—; to V. Here 2 = di + erax,
Vi = s +exhy, v = fr +errr and wi =y, + ety
5. V checks that Dy + exAr = Ep(zk,vk) and that Fi + e,Cr = 23 B +
Ev (zx, wy). Furthermore, he checks that |z| < 23“71H8%r ||y || <
23u71+logup, |-Tk| S 24u—1+logu7_2 and HWkHoo S 24u—1+1ogu7_p.
6. Step 2-5 is repeated in parallel u times.

w

Fig. 2. Proof of Correct Multiplication.

then ensures that C}, is statistically close to a random (23“+1°g“72, 23“+1°g“7p)—
ciphertext, and so reveals no information on ay to V.

Summarizing, pocy is a ZKPoK for the relation (under the assumption
that pkp, pky are well-formed):

R = {(w.w)l @ = (pkp,phy. (A1, B1,C1), ..., (Au, Bu, Cu));
w= (a1, h1,71,t1), ..., (Qu, By, 70, 64))
A = Ep(ag, hy), By € Gy, Cy = ap By + Ev (g, t),
|ak| < 23u+log u7_7 ||hk||oo < 23u+10gup’

|Tk| < 24u—&—10gu7_27 HtkHoo < 24u+logu7_p)}

The protocol can be seen in Figure 2. Note that Step 6 could also be inter-
preted as choosing e as a u-bit vector instead, thereby only calling Fraxp once.
Completeness, soundness and zero-knowledge follow by standard arguments that
can be found in the full paper [BDOZ10].

Zero-Knowledge Protocols for Paillier. For the particular case of Paillier
encryption, Ilpopk can be used as it is, except that there is no bound required
on the randomness, instead all random values used in encryptions are expected
to be in Z},. Thus, the relations to prove will only require that the random
values are in Z};, and this is also what the verifier should check in the protocol.

For IIpocm we sketch a version that is more efficient than the above, us-
ing special properties of Paillier encryption. In order to improve readability, we
depart here from the additive notation for operations on ciphertexts, since mul-
tiplicative notation is usually used for Paillier. In the following, let pky = N.
Note first that based on such a public key, one can define an unconditionally
hiding commitment scheme with public key g = Ey(0). To commit to a € Zy,
one sends com(a,) = g*r" mod N, for random r € Z%.. One can show that the
scheme is binding assuming it is hard to extract N-th roots modulo N? (which
must be the case if Paillier encryption is secure).

We restate the relation Rgg’é’l\’/}) from above as it will look for the Paillier case,
in multiplicative notation and without bounds on the randomness:

Rg;é)l\/[,Paillier = {(x’w” €T = (ka’ka7 (Al’ By, Cl)v ceey (Aw B, Cu))a
w = ((al,hl,rlatl)a) (auahuaruatu)) :
Ay = Ep(ag, hi), By € Zy2,Cy = Bi* - Ev (1, tr),

|ak| < 22u+logu7_, |Tk| < 25u+210g u7_2}

The idea for the proof of knowledge for this relation is now to ask the prover
to also send commitments ¥, = com(ay,), Pr = com(rk, Br),k = 1...u to
the r;’s and ay’s. Now, the prover must first provide a proof of knowledge that
for each k: 1) the same bounded size value is contained in both A; and ¥, and
that 2) a bounded size value is contained in @;. The proof for {®} is simply
Ipopk since a commitment has the same form as an encryption (with (N + 1)
replaced by g). The proof for {W¥, Ax} is made of two instances of IIpopk run in
parallel, using the same challenge e and responses z; in both instances. Finally,
the prover must show that Cj can be written as Cy, = Bp* - Ev (ry, ty), where
ay, is the value contained in ¥}, and ry, is the value in @y. Since all commitments
and ciphertexts live in the same group Z},., where pky = N, we can do this
efficiently using a variant of a protocol from [CDNO1]. The resulting protocol is
shown in Figure 3.

Completeness of the protocol in steps 1-4 of Figure 3 is straightforward by
inspection. Honest verifier zero-knowledge follows by the standard argument:
choose e and the prover’s responses uniformly in their respective domains and
use the equations checked by the verifier to compute a matching first message

Subprotocol ITpocn: Proof of Correct Multiplication (only for Paillier)

1. P sends ¥y = com(ag, ax),Pr = com(rg, Bx),k =1,...,u to the verifier.

2. P uses Ilpopk on @ to prove that, even if P is corrupted, each @, contains a
value ry, with |ry| < 2°uF2lesus2,

3. P uses Ilpopk in parallel on (Ag,%:) (where V' uses the same e in both runs)
to prove that, even if P is corrupted, ¥y and Ay contains the same value ax
and |ay| < 2%vtlosw

4. To show that the C}’s are well-formed, we do the following for each k:

(a) P picks random z,y,v,7,0 < Zy2 and sends D = By Ev(y,v), X =
com(z,vz),Y = com(y,yy) to V.

(b) V sends a random w-bit challenge e.

(¢) P computes z, = z + ear mod N, z, = y + ery mod N.
He also computes qq, ¢r, where = 4+ ea = qo N + 24, y + ery, = ¢ N + 2;..°
P sends zq,zr, w = stBZ“ mod N2, da = Yzajg?® mod N2, and ¢, =
Yo Big? mod N? to V.

(d) V accepts if DCf = B;* Ev (zr, w) mod N? AXWf = com(za, d,) mod NZ A
Y &5 = com(z,,6,) mod N2,

T.

® Since g and By do not have order N, we need to explicitly handle the quotients
¢o and ¢, in order to move the “excess multiples” of N into the randomness
parts of the commitments and ciphertext.

Fig. 3. Proof of Correct Multiplication for Paillier encryption.

D, X,Y. This implies completeness and honest verifier zero-knowledge for the
overall protocol, since the subprotocols in steps 2 and 3 have these properties as
well.

Finally, soundness follows by assuming we are given correct responses in step
7 to two different challenges. From the equations checked by the verifier, we can
then easily compute ay, o, 7k, Bk, Sk such that ¥, = com(ag, o), Pr(rg, Br), Cx =
Bp* Ey (rk, si). Now, by soundness of the protocols in steps 2 and 3, we can also
compute bounded size values aj,, 7}, that are contained in ¥y, $5. By the binding
property of the commitment scheme, we have 7}, = ry, aj, = aj except with neg-
ligible probability, so we have a witness as required in the specification of the
relation.

3 The Online Phase

Our goal is to implement reactive arithmetic multiparty computation over Z, for
a prime p of size super-polynomial in the statistical security parameter u. The
(standard) ideal functionality Fanpc that we implement can be seen in Figure 6.
We assume here that the parties already have a functionality for synchronous?®,

secure communication and broadcast.

3 A malicious adversary can always stop sending messages and, in any protocol for
dishonest majority, all parties are required for the computation to terminate. With-
out synchronous channels the honest parties might wait forever for the adversary

We first present a protocol for an online phase that assumes access to a func-
tionality Frrip which we later show how to implement using an offline protocol.
The online phase is based on a representation of values in Z, that are shared
additively where shares are authenticated using information theoretic message
authentication codes (MACs). Before presenting the protocol we introduce how
the MACs work and how they are included in the representation of a value in
Z,,. Furthermore, we argue how one can compute with these representations as
we do with simple values, and in particular how the relation to the MACs are
maintained.

In the rest of this section, all additions and multiplications are to be read
modulo p, even if not specified. The number of parties is denoted by n, and we
call the parties P, ..., P,.

3.1 The MACs

A key K in this system is a random pair K = («a,) € Zf,, and the authentication
code for a value a € Z,, is MACk (a) = aa + mod p.

We will apply the MACs by having one party P; hold a, MACk(a) and an-
other party P; holding K. The idea is to use the MAC to prevent P; from lying
about a when he is supposed to reveal it to P;. It will be very important in the
following that if we keep o constant over several different MAC keys, then one
can add two MACs and get a valid authentication code for the sum of the two
corresponding messages. More concretely, two keys K = («a, 8), K’ = (o/, ') are
said to be consistent if « = o/. For consistent keys, we define K+ K’ = («, 8+ 3)
so that it holds that MACk (a) + MACk/ (a') = MACk 4k (a + a’).

The MACs will be used as follows: we give to P; several different values
mi,ms,... with corresponding MACs ~1,72,... computed using keys K; =
(o, B;) that are random but consistent. It is then easy to see that if P; claims a
false value for any of the m;’s (or a linear combination of them) he can guess an
acceptable MAC for such a value with probability at most 1/p.

3.2 The Representation and Linear Computation

To represent a value a € Z;,, we will give a share a; to each party P;. In addition,
P; will hold MAC keys K, ,...,K; . He will use key K, a, to check the share of
P;, if we decide to make a public. Finally, P; also holds a set of authentication

codes MAC ;s (a;). We will denote MAC s (a;) by mj(a;) from now on. Party

P; will use m;(a;) to convince P; that a; is correct, if we decide to make a public.
Summing up, we have the following way of representing a:

la] = [{as, {Ko, - mj(ai) i Had

to send his messages. Synchronous channels guarantee that the honest parties can
detect that the adversary is not participating anymore and therefore they can abort
the protocol. If termination is not required, the protocol can be implemented over
an asynchronous network instead.

Opening: We can reliably open a consistent representation to P;: each P; sends
ai,m;(ai) to Pj. P; checks that mj;(a:;) = MAC,; (a:) and broadcasts OK or
fail accordingly. If all is OK, P; computes a = il a;, else we abort. We can
modify this to opening a value [a] to all parties, by opening as above to every
P;.

Addition: Given two key-consistent representations as above we get that

o+ o] = [+af, K + Ky m(ai) + mj (@)} o]

is a consistent representation of a+a’. This new representation can be computed
only by local operations.

Multiplication by constants: In a similar way, we can multiply a public con-
stant 0 “into” a representation. This is written d[a] and is taken to mean that
all parties multiply their shares, keys and MACs by §. This gives a consistent
representation [da].

Addition of constants: We can add a public constant § into a representation.
This is written ¢ + [a] and is taken to mean that P, will add ¢ to his share a;.
Also, each P; will replace his key K2, = (a],8,) by Kgﬁé = (af,Bl, —dad).
This will ensure that the MACs held by P; will now be valid for the new share
a1 + 9§, so we now have a consistent representation [a +].

Fig. 4. Operations on [-]-representations.

where {a;, { K| flj ,mj(a;)}7_;} is the information held privately by P, and where
we use [a] as shorthand when it is not needed to explicitly talk about the shares
and MACs. We say that [a] = [{ai,{K;j,mj(ai)}}’zl};‘:l] is consistent, with
a=>,a;if mj(a;) = MACKgi (a;) for all ¢, j. Two representations

la] = {ai, {Ka;my(ai) i bl (o] = Hag, {KG, my ()} b

are said to be key-consistent if they are both consistent, and if for all ¢,j the
keys K , K, are consistent. We will want all representations in the following
J

to be key-consistent: this is ensured by letting F; use the same aj-value in keys
towards P; throughout. Therefore the notation K = (aj, B}lj) makes sense and
we can compute with the representations, as detailed in Figure 4.

3.3 Triples and Multiplication

For multiplication and input sharing we will need both random single values [a]
and triples [a], [b], [c] where a,b are random and ¢ = ab mod p. Also, we assume
that all singles and triples we ever produce are key consistent, so that we can
freely add them together. More precisely, we assume we have access to an ideal
functionality Frrip providing us with the above. This is presented in Figure 5.

The principle in the specification of the functionality is that the environment
is allowed to specify all the data that the corrupted parties should hold, including
all shares of secrets, keys and MACs. Then, the functionality chooses the secrets

Functionality Frrip

Initialize: On input (init,p) from all parties the functionality stores the modulus
p. For each corrupted party P; the environment specifies values aé, ji=1...,n,
except those a; where both P; and P; are corrupt. For each honest P;, it chooses
aj,j=1,...,n at random.

Singles: On input (singles,u) from all parties P;, the functionality does the fol-
lowing, for v =1,... u:

1. It waits to get from the environment either “stop”, or some data as specified
below. In the first case it sends “fail” to all honest parties and stops. In the
second case, the environment specifies for each corrupt party P;, a share a;
and n pairs of values (m;(a;), Béj),j =1,...,n, except those (m;(a;), ﬁfl])
where both P; and P; are corrupt.

2. The functionality chooses a € Z, at random and creates the representation
[a] as follows:

(a) First it chooses random shares for the honest parties such that the sum
of these and those specified by the environment is correct: Let C be the
set of corrupt parties, then a; is chosen at random for P; ¢ C, subject
toa=73",a.

(b) For each honest P;, and j =1,...,n, /Béj is chosen as follows: if P; is
honest, ﬂflj is chosen at random, otherwise it sets ﬂéj =my(aj)— aﬁaj.
Note that the environment already specified m;(a;), a;, so what is done
here is to construct the key to be held by P; to be consistent with the
share and MAC chosen by the environment.

(¢) Foralli=1,...,n,5=1,...,n it sets Kflj = (oz;,ﬂ,ij), and computes
m; (al) = MACK(JI (al)

(d) Now all data “for [a] is created. The functionality sends
{as, {K;j,mj (ai)}j=1,...n} to each honest P; (no need to send
anything to corrupt parties, the environment already has the data).

Triples: On input (¢riples,u) from all parties P;, the functionality does the follow-
ing, forv=1,...,u:

1. Step 1 is done as in “Singles”.

2. For each triple to create it chooses a,b at random and sets ¢ = ab. Now it
creates representations [a], [b], [c], each as in Step 2 in “Singles”.

Fig. 5. The ideal functionality for making singles [a] and triples [a], [b], [c]-

to be shared and constructs the data for honest parties so it is consistent with
the secrets and the data specified by the environment.

Thanks to this functionality we are also able to compute multiplications in
the following way: If the parties hold two key-consistent representations [z], [y],
we can use one precomputed key-consistent triple [a], [b], [c] (with ¢ = ab) to
compute a new representation of [zy].

To do so we first open [z] — [a] to get a value €, and [y] —[b] to get 0. Then, we
have zy = (a+¢)(b+0) = c+eb+da+ed. Therefore, we get a new representation
of zy as follows:

[zy] = [c] + €[b] + d]a] + &d.

Functionality Fampc

Initialize: On input (init, p) from all parties, the functionality activates and stores
the modulus p.

Rand: On input (rand, P;, varid) from all parties P;, with varid a fresh identifier,
the functionality picks r < Z, and stores (varid,r).

Input: On input (input, P;, varid,) from P; and (input, P;, varid, ?) from all other
parties, with varid a fresh identifier, the functionality stores (varid, x).

Add: On command (add, varidi, varids, varids) from all parties (if varidi, varids
are present in memory and varids is not), the functionality retrieves (varid,),
(varids,y) and stores (varids, x + y mod p).

Multiply: On input (multiply, varidi,varids, varids) from all parties (if
varidi, varide are present in memory and wvarids is not), the functionality re-
trieves (varidi, z), (varids,y) and stores (varids, x - y mod p).

Output: On input (output, P;, varid) from all parties (if varid is present in mem-
ory), the functionality retrieves (varid,x) and outputs it to P;.

Fig. 6. The ideal functionality for arithmetic MPC.

Protocol ITanpc

Initialize: The parties first invoke Frrip(init,p). Then, they invoke
Frrip(triples,u) and Frrip(singles,u) a sufficient number of times to
create enough singles and triples.

Input: To share P;’s input [z;] with identifier varid, P; takes a single [a] from the
set of available ones. Then, the following is performed:

1. [a] is opened to P;.
2. P; broadcasts § = z; — a.
3. The parties compute [z;] = [a] + 4.

Rand: The parties take an available single [a] and store with identifier varid.

Add: To add [z], [y] with identifiers varid:, varids the parties compute [z] = [z]+][y]
and assign [z] the identifier varids.

Multiply: To multiply [z],[y] with identifiers varidi, varids the parties do the
following;:

1. They take a triple ([a], [0], [¢]) from the set of the available ones.

2. [z] — [a] = € and [y] — [b] = ¢ are opened.

3. They compute [z] = [c] + €[b] + d[a] + &b

4. They assign [z] the identifier varids and remove ([al, [b], [¢]) from the set of
the available triples.

Output: To output [z] with identifier varid to P; the parties do an opening of [z]
to Pl

Fig. 7. The protocol for arithmetic MPC.

Using the tools from the previous sections we can now construct a protocol
IIanpc that securely implements the MPC functionality Fanpc in the UC se-
curity framework. Faypco and IMaype are presented in Figure 6 and Figure 7
respectively. The proof of Theorem 1 can be found in the full paper [BDOZ10].

Theorem 1. In the Frrip-hybrid model, the protocol llanipe implements Fanvpc
with statistical security against any static*, active adversary corrupting up to
n — 1 parties.

4 The Offline Phase

In this section we describe the protocol IItgrp which securely implements the
functionality Frgrip described in Section 3 in the presence of two standard func-
tionalities: a key registration functionality Fxgyreq and a functionality that gen-
erates random challenges Franp°. Detailed specifications of these functionalities
can be found in the full paper [BDOZ10].

4.1 (-)-representation

Throughout the description of the offline phase, E; will denote E,;, where pk;
is the public key of party P;, as established by Fxpyrec. We assume the cryp-
tosystem used is semi-homomorphic modulo p, as defined in Section 2. In the
following, we will always set 7 = p/2 and p = o. Thus, if P; generates a ci-
phertext C = E;(x,r) where z € Z, and r is generated by D¢, C will be a
(7, p)-ciphertext. We will use the zero-knowledge protocols from Section 2.2.
They depend on an “information theoretic” security parameter u controlling,
e.g., the soundness error. We will say that a semi-homomorphic cryptosystem is
admissible if it allows correct decryption of ciphertext produced in those proto-
cols, that is, if M > 25u+2losur2 apnd R > 24utlogur),

In the following (xj) will stand for the following representation of zj; €
Z,: each P; has published E;(zy;) and holds xj,; privately, such that z; =
> Tk, mod p. For the protocol to be secure, it will be necessary to ensure that
the parties encrypt small enough plaintexts. For this purpose we use the IIpopk
described in Section 2.2, and we get the protocol in Figure 8 to establish a set
(xg),k =1,...,u of such random representations.

4.2 (-)-multiplication

The final goal of the IIrgip protocol is to produce triples [ak], [bk], [ck] with
arby = ¢ mod p in the []-representation, but for now we will disregard the
MACs and construct a protocol II,, yyurr which produces triples {(ag) , (bx) , {ck)
in the (-)-representation.b

We will start by describing a two-party protocol. Assume F; is holding a set
of w (7, p)-encryptions E;(x)) under his public key and likewise P; is holding u

4 ITampc can actually be shown to adaptively secure, but our implementation of Frrip
will only be statically secure.

5 Fraxp is only introduced for the sake of a cleaner presentation, and it could easily
be implemented in the Fkeyree model using semi-homomorphic encryption only.

5 In fact, due to the nature of the MACs, the same protocol that is used to compute
two-party multiplications will be used later in order to construct the MACs as well.

Subprotocol Ilspare

Share(u):

1. Each P; chooses xr,; € Z, at random for k¥ = 1,...,u and broadcasts
(7, p)-ciphertexts {E;(xk,:) }ree1-

2. Each pair P;, Pj,i # j, runs Hpopx(u, 7, p) with the E;(zx,:)’s as input.
This proves that the ciphertexts are (22¢F1°8 % 92utlog 5)_ciphertexts.

3. All parties output (zx) = (E1(zk,1),. .., En(Tk,n)), for K =1,...,u, where
x is defined by xx = Zl Zk,; mod p. P; keeps the z1 ; and the randomness
for his encryptions as private output.

Fig. 8. Subprotocol allowing parties to create random additively shared values.

Subprotocol ITo.murT

2-Mult(u, 7, p):

1. Honest P; and P; input (7, p)-ciphertexts {E;(zx)}i—1, {E;(yx)}iz1. (At
this point of the protocol it has already been verified that the ciphertexts
are (22utlos vy g2utloet 5) cinhertexts.)

2. For each k, P; sends Cr, = z E;j(yx)+E; (%) to P;. Here E;(ry) is a random
(23utlogur2 gdutlogur) encryption under P;’s public key. P; furthermore
invokes ITpocnt (u, T, p) with input Ci, E;i(zx), E;j(yr), to prove that the Cy’s
are constructed correctly.

3. For each k, P; decrypts Cy to obtain v, and outputs 2z ; = vy mod p. P;
outputs z,; = —r, mod p.

Fig. 9. Subprotocol allowing two parties to obtain encrypted sharings of the product
of their inputs.

Subprotocol IL,-murr

n-Mult(u):
1. The input is {(ax), (bx),k = 1,...,u, created using the Ilsgare protocol.
Each P; initializes variables cy,; = ag,ibr,; mod p,k =1,..., u.
2. Each pair P;, Pj,i # j, runs Ilomurr using as input the ciphertexts
Ei(ak,i),E;j(bk,;),k = 1,...,u, and adds the outputs to the private vari-

ables ck i, ck,j, i.e., for k =1,...,u, P; sets ck,; = ck,i + 2k,; mod p, and P;
sets ck,j = Ck,j + Zk,s mod p.
3. Each P; invokes Ilsyare, where ck i,k = 1,...,u is used as the numbers

to broadcast encryptions of. Parties output what Ilsgare outputs, namely
(cx),k=1,...,u.

Fig. 10. Protocol allowing the parties to construct (cx = arbr mod p) from (ax) , (bx).

(T, p)-encryptions E;(yx) under his public key. For each k, we want the protocol
to output 2y, zx,; to Pj, P;, respectively, such that ziyr = 21, + 2x,; mod p.
Such a protocol can be seen in Figure 9. This protocol does not commit parties
to their output, so there is no guarantee that corrupt parties will later use their

Subprotocol ITappmacs

Initialize: For each pair P;, P;,i # j, P; chooses a;- at random in Zy, sends a (7, p)-
ciphertext E;(}) to P; and then runs Ilpopk (u, 7, p) with (Ei(cj), ..., Ei(a}))
as input and with P; as verifier.

AddMacs(u):

1. The input is a set (ax),k = 1,...,u. Each P; already holds shares ay, ; of
ax, and will store these as part of [ax].

2. Each pair P;, P; i # j invokes Ilo.vurr (u, 7, p) with input Ei(oz;-), ..., E; (Oc;-)
from P; and input E;(ak,;) from P;. From this, P; obtains output z;, and
P; gets z,;. Recall that IIo vyt ensures that a;ak,j = Zk,i + 2k,j mod p.
This is essentially the equation defining the MACs we need, so therefore,
as a part of each [ag], P; stores aé,ﬂék,j = —2z,; mod p as the MAC key
to use against P; while P; stores m;(ax,;) = zk,; as the MAC to use to
convince P; about a,;.

Fig. 11. Subprotocol constructing [ax] from (az).

Protocol IItrip

Initialize: The parties first invoke Fiuyrea(p) and then Initialize in ITappmacs.
Triples(u):
1. To get sets of representations {(ax) , (bx) , (fx), (gr) } =1, the parties invoke
IIsparge 4 times.
2. The parties invoke IT, vurr twice, on inputs {{ax), (bx)}i—1, respectively
{{fr), (gr)}=1- They obtain as output {(ck)}i—1, respectively {(hxr)}i_.
3. The parties invoke ITappmacs on each of the created sets of the represen-
tations. That means they now have {[ax], [bx], [ck], [fx], [gk], [Pr] }i=1-
4. The parties check that indeed arbr = cx mod p by “sacrificing” the triples
(fx, gk, hie): First, the parties invoke Frano to get a random u-bit challenge
e. Then, they open efax] — [fx] to get ek, and open [bx] — [gr] to get Ix.
Next, they open e[ck] — [hi] — Ok[fx] — €klgx] — €xdrx and check that the
result is 0. Finally, parties output the set {[ax], [bk], [ck]}1=1-
Singles(u):
1. To get a set of representations {(a)}i—1, Isuare is invoked.
2. The parties invoke ITappmacs on the created set of representations and
obtain {[ax]}r—1-

Fig. 12. The protocol for the offline phase.

output correctly — however, the protocol ensures that malicious parties know
which shares they ought to continue with. To build the protocol I, yurT, the
first thing to notice is that given (ax) and (by) we have that ¢, = arby =
> Zj ak,;by, j. Constructing each of the terms in this sum in shared form is
exactly what Ilo vurr allows us to do. The II,, yupT protocol can now be seen
in Figure 10. Note that it does not guarantee that the multiplicative relation in
the triples holds, we will check for this later.

4.3 From (-)-triples to [-]-triples

We first describe a protocol that allows us to add MACs to the (-)-representation.
This consists essentially of invoking the Ils \yrT a number of times. The protocol
is shown in Figure 11. The full protocol IITgp, which also includes the possibility
of creating a set of single values, is now a straightforward application of the
subprotocols we have defined now. This is shown in Figure 12. The proof of
Theorem 2 can be found in the full paper [BDOZ10].

Theorem 2. If the underlying cryptosystem is semi-homomorphic modulo p,
admissible and IND-CPA secure, then Iltrip tmplements Frrip with computa-
tional security against any static, active adversary corrupting up to n—1 parties,
in the (FkeyRec, FRanp) -hybrid model.

References

[BCNP04] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Universally
composable protocols with relaxed set-up assumptions. In FOCS, pages
186-195, 2004.

[BD10] Rikke Bendlin and Ivan Damgard. Threshold decryption and zero-
knowledge proofs for lattice-based cryptosystems. In T'CC, pages 201-218,
2010.

[BDOZ10] Rikke Bendlin, Ivan Damgard, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorhic enryption and multiparty computation (full version). In The
Eprint Archive, report 2010/514, 2010.

[Bea91] Donald Beaver. Efficient multiparty protocols using circuit randomization.
In Joan Feigenbaum, editor, CRYPTO, volume 576 of Lecture Notes in
Computer Science, pages 420-432. Springer, 1991.

[BOGWS88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness
theorems for non-cryptographic fault-tolerant distributed computation (ex-
tended abstract). In STOC, pages 1-10, 1988.

[Can01] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In FOCS, pages 136-145, 2001.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty uncondi-
tionally secure protocols (extended abstract). In STOC, pages 11-19, 1988.

[CD09] Ronald Cramer and Ivan Damgéard. On the amortized complexity of zero-
knowledge protocols. In CRYPTO, pages 177-191, 2009.

[CDNO1] Ronald Cramer, Ivan Damgard, and Jesper Buus Nielsen. Multiparty com-
putation from threshold homomorphic encryption. In EUROCRYPT, pages
280-299, 2001.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally
composable two-party and multi-party secure computation. In STOC, pages
494-503, 2002.

[DGK09] Ivan Damgard, Martin Geisler, and Mikkel Krgigaard. A correction to
‘efficient and secure comparison for on-line auctions’. IJACT, 1(4):323-324,
2009.

[DGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan.
Fully homomorphic encryption over the integers. In EUROCRYPT, pages
24-43, 2010.

[DJO1]

[DO10]

[Gen09]
[GHV10]

[HIKO07]

[IPS09)]

[LPS10]

[0U9S]
[Pai99]

[PSSW09)

[RAD7S]

[Reg05)]

Ivan Damgard and Mads Jurik. A generalisation, a simplification and some
applications of paillier’s probabilistic public-key system. In Public Key
Cryptography, pages 119-136, 2001.

Ivan Damgard and Claudio Orlandi. Multiparty computation for dishonest
majority: From passive to active security at low cost. In CRYPTO, pages
558-576, 2010.

Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC,
pages 169-178, 2009.

Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. A simple bgn-type
cryptosystem from lwe. In FUROCRYPT, pages 506-522, 2010.

Danny Harnik, Yuval Ishai, and Eyal Kushilevitz. How many oblivious
transfers are needed for secure multiparty computation? In CRYPTO, pages
284-302, 2007.

Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Secure arithmetic com-
putation with no honest majority. In TCC, pages 294-314, 2009.

Vadim Lyubashevsky, Adriana Palacio, and Gil Segev. Public-key crypto-
graphic primitives provably as secure as subset sum. In TCC, pages 382-400,
2010.

Tatsuaki Okamoto and Shigenori Uchiyama. A new public-key cryptosystem
as secure as factoring. In FUROCRYPT, pages 308-318, 1998.

Pascal Paillier. Public-key cryptosystems based on composite degree resid-
uosity classes. In FEUROCRYPT, pages 223-238, 1999.

Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams.
Secure two-party computation is practical. In ASTACRYPT, pages 250-267,
20009.

Ron Rivest, Leonard Adleman, and Michael Dertouzos. On data banks
and privacy homomorphisms. Foundations of Secure Computation, pages
169-178, 1978.

Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In STOC, pages 84-93, 2005.

