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Abstract. We construct the first public-key encryption scheme in the
Bounded-Retrieval Model (BRM), providing security against various forms
of adversarial “key leakage” attacks. In this model, the adversary is al-
lowed to learn arbitrary information about the decryption key, subject
only to the constraint that the overall amount of “leakage” is bounded by
at most ` bits. The goal of the BRM is to design cryptographic schemes
that can flexibly tolerate arbitrarily leakage bounds ` (few bits or many
Gigabytes), by only increasing the size of secret key proportionally, but
keeping all the other parameters — including the size of the public key,
ciphertext, encryption/decryption time, and the number of secret-key
bits accessed during decryption — small and independent of `.
As our main technical tool, we introduce the concept of an Identity-Based
Hash Proof System (IB-HPS), which generalizes the notion of hash proof
systems of Cramer and Shoup [CS02] to the identity-based setting. We
give three different constructions of this primitive based on: (1) bilinear
groups, (2) lattices, and (3) quadratic residuosity. As a result of inde-
pendent interest, we show that an IB-HPS almost immediately yields an
Identity-Based Encryption (IBE) scheme which is secure against (small)
partial leakage of the target identity’s decryption key. As our main result,
we use IB-HPS to construct public-key encryption (and IBE) schemes in
the Bounded-Retrieval Model.

1 Introduction

Traditionally, the security of cryptographic schemes has been analyzed in an
idealized setting, where an adversary only sees the specified “input/output be-
havior” of a scheme, but has no other access to its internal secret state. Unfortu-
nately, in the real world, an adversary may often learn some partial information
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about secret state via various key leakage attacks. Such attacks come in a large
variety and include side-channel attacks, where the physical realization of a cryp-
tographic primitive can leak additional information, such as the computation-
time, power-consumption, radiation/noise/heat emission etc. The cold-boot at-
tack of Halderman et al. [HSH+08] is another example of a key-leakage attack,
where an adversary can learn (imperfect) information about memory contents
of a machine, even after the machine is powered down. Lastly, and especially
relevant to this work, we will also consider key-leakage attacks where a remote
adversary hacks into a target computer, or infects it with some malware, allow-
ing her to download large amounts of secret-key information from the system.
Schemes that are proven secure in an idealized setting, without key leakage, may
become completely insecure if the adversary learns even a small amount of in-
formation about the secret key. Indeed, even very limited leakage attacks have
been shown to have devastating consequences for the security of many natural
schemes.

In this work, we study the design of leakage-resilient public-key encryption
schemes, which are provably secure even in the presence of some limited key-
leakage attacks. In particular, we will assume that the attacker can learn any
efficiently computable function of the secret key, subject only to the constraint
that the total amount of information learned (i.e. the output size of the leakage
function) is bounded by ` bits, where ` is some arbitrary “leakage parameter”
of the system. Clearly, at this level of generality, the secret-key size s must be
strictly greater than the leakage-parameter `. In the literature, there seems to
be a distinction between two related models of leakage, which differ in how they
treat the leakage-parameter ` in relation to the secret-key size s.

Relative-Leakage Model. In the model of relative leakage, firs studied by
Akavia Goldwasser and Vaikuntanathan, [AGV09], the key-size s is chosen in
the same way as in standard (non leakage-resilient) cryptographic schemes: it is
based on a security parameter, and is usually made as small as possible (e.g.
1024 bits) to give the system some sufficient level of security. Once the key-size
s is determined, the allowed leakage ` should be relatively large in proportion to
s so that e.g. up to 50% of the key can be leaked without compromising security.
Therefore, the relative-leakage model implicitly assumes that, no matter what
the key-size is, a leakage attack can reveal at most some relatively small fraction
of the key. This assumption is very reasonable for some attacks, such as the
cold-boot attack, where all memory contents decay uniformly over time.

Bounded-Retrieval Model (BRM). The Bounded-Retrieval Model (BRM)
[Dzi06,CLW06,ADW09] is a generalization of the relative-leakage model. In this
model, the leakage-parameter ` is an arbitrary and independent parameter of the
system, which is based on practical considerations about how much leakage the
system needs to tolerate on an absolute scale. The secret-key size s is then chosen
flexibly, depending on the security parameter and the leakage parameter `, so
as to simultaneously provide a sufficient level of security while allowing up to `
bits of leakage. Therefore, we can tolerate settings where the leakage ` might be
small (several bits) or huge (several Gigabytes) by flexibly increasing the secret-



key size s depending on (and necessarily exceeding) the leakage parameter `.4

Of course, the key-size s should be as small as possible otherwise, so that the
allowed leakage ` is a large relative portion of s as well.

With the additional flexibility in secret-key size, the BRM imposes an added
efficiency requirement: the public-key size, ciphertext size, encryption-time and
decryption-time must remain small, only depending on the security parame-
ter, and essentially independent of the leakage-parameter `. In other words, `
could potentially grow to the order of Gigabytes, and still result in a usable
system, where the secret key is huge, but the public-key size, ciphertext size
and encryption/decryption times are not much different from those of standard
cryptosystems. This also means that the number of secret-key bits accessed dur-
ing decryption (called locality from now on) must remain small and essentially
independent of the flexibly growing secret-key size.

The flexibility of the BRM seems necessary to protect against large classes
of key-leakage attacks. For example, if the key size is (only) proportional to
the security parameter, several consecutive side-channel readings of a handful of
bits might already leak the entire secret key. Therefore, for natural side-channel
attacks (such as radiation/heat/noise emission) it might already make sense to
make ` moderately large (say on the order of Megabytes) to get security. The
main intention of the BRM in prior works, which we also focus on here, is to
offer a novel method for protecting systems against hacking/malware attacks,
where an adversary can download large amounts of information from an attacked
system. It is clear that no security can be achieved using standard-sized (e.g.
1,024 bit) secret keys, as the adversary can download such keys in their entirety.
However, it may be conceivable that the adversary still cannot download too
much (e.g. many Gigabytes) worth of information because: (1) the bandwidth
between the attacker and the system may be too slow to allows this, (2) the
operating-system security may detect such large levels of leakage, or (3) such
attacks would simply not be cost-effective. Therefore we can conceivably protect
against such attacks by just making the leakage-parameter ` large enough (e.g.
potentially many Gigabytes), and using a proportionally larger secret-key-size
s. Having a large secret key may, by itself, not be a major concern due to the
increasing size and affordability of local storage. On the other hand, it is crucial
that the other efficiency measures of the system – ciphertext and public-key
sizes, encryption and decryption times – must not degrade with the growth of `.

1.1 Our Results
As our main contribution, we construct the first leakage-resilient Public-Key
Encryption (PKE) scheme in the BRM. Along the way, we develop new notions
and get results of independent interest. In particular, we:

– Develop a new notion of an Identity-Based Hash Proof System (IB-HPS),
which naturally yields Identity-Based Encryption (IBE) schemes.

4 Historically, the BRM setting envisioned ` as being necessarily huge. Here we take
a more general view of the BRM, insisting only that the key size can be set flexibly
based on the leakage `.



– Give three constructions of IB-HPS based on the ideas behind three prior IBE
schemes: [Gen06,BGH07,GPV08]. In particular, we show that the notion
of IB-HPS unifies these seemingly unrelated constructions under a single
framework. As a result, we get constructions of IB-HPS under (1) a bilinear
Diffie-Hellman type assumption (2) the quadratic-residuosity assumption (3)
the Learning With Errors (LWE) assumption. The first scheme is secure
in the standard model, while the latter two rely on Random Oracles or,
alternatively, non-standard interactive assumptions.

– Show that an IBE based on IB-HPS can easily be made leakage-resilient, in
the relative-leakage model.

– Show how to use IB-HPS to construct public-key encryption (PKE) schemes
in the BRM, allowing for arbitrary large leakage-bounds, while preserving
efficiency. Our techniques also naturally extend to allow for the construction
of IBE schemes in the BRM.

– Develop new information-theoretic tools to analyze our construction of PKE
in the BRM. Namely, we define a new notion of approximate hash func-
tions (where only elements that are far in Hamming distance are unlikely to
collide) and generalize the Leftover-Hash Lemma to approximate hashing.

– Show how to achieve CCA security for our leakage-resilient IBE and PKE
in BRM constructions.

Before describing our construction of PKE in the BRM, it is instructive to un-
derstand why this problem is non-trivial, and therefore we begin with some näıve
approaches, which we improve in several steps.

Näıve Approach: Inflating the Security Parameter. As the first step
of getting a PKE in the BRM, we would like to simply design a leakage-resilient
PKE scheme that allows for arbitrarily large leakage-bounds `, without neces-
sarily meeting the additional efficiency requirements of the BRM. Luckily, there
are several recent PKE schemes in the relative-leakage model [AGV09,NS09]
where the leakage-bound `(λ) is a large portion of the key-size s(λ) which, in
turn, depends on a security parameter λ. Therefore, one simple solution is to
simply artificially inflate the security parameter λ sufficiently, until s(λ) and,
correspondingly, `(λ) reach the desired level of leakage we would like to toler-
ate. Unfortunately, it is clear that this approach gets extremely inefficient very
fast – e.g. to allow for Gigabytes worth of leakage, we may need to perform
exponentiations on group elements with Gigabyte-long description sizes.

Better Approach: Leakage-Amplification via Parallel Repetition.
As an improvement over the previous suggestion, we propose an alternative
which we call parallel-repetition. Assume we have a leakage-resilient PKE scheme
in the relative-leakage model, tolerating `-bits of leakage, for some small `. We
can create a new “parallel-repetition scheme”, by taking n independent copies
of the above PKE with key-pairs (pk1, sk1), . . . , (pkn, skn) and setting the secret-
key of the new scheme to be sk = (sk1, . . . , skn) and the public key to be pk =
(pk1, . . . , pkn). To encrypt under the repetition scheme, a user would n-out-of-n
secret-share the message m, and, encrypt each share mi under the public key



pki. One may hope to argue that, if an adversary learns fewer than n` bits about
the secret-key sk of the repetition scheme, then there is at least one secret key ski
about which the adversary learns fewer than ` bits, thus maintaining security.
Therefore, the hope is that parallel-repetition amplifies leakage-resilience from
` bits to n` bits, and thus lets us meet any leakage-bound just by increasing n
sufficiently. In terms of efficiency, the parallel-repetition approach will usually
be more efficient than artificially inflating the security parameter, but it is still
far from the requirements of the BRM: the public-key size, ciphertext size, and
encryption/decryption times are all proportional to n, and therefore must grow
as we strive to tolerate more and more leakage.

Security of Parallel-Repetition? Surprisingly, we do not know how to
formalize the hope that parallel-repetition amplifies leakage-resilience generically
via a reduction. Such a reduction would need to use an attacker that expects
a public key and n` bits of leakage on its secret key in the repetition scheme,
to break the original scheme with ` bits of leakage. Unfortunately, it does not
seem like there is any way to embed a challenge public key pki into pk, and
faithfully simulate the output of an arbitrary leakage-function f(sk) with n`-bit
output, by only learning g(ski) for some g(·) with ` bit output. In fact, as a
subject of future work, we believe that there is a black-box separation showing
that no such reduction can succeed in general. Luckily, we show that (a variant
of) parallel-repetition amplifies leakage for schemes of a special form, which we
will discuss later. For now, let us get back to the issue of efficiency, which we
still need to resolve.

Improvement I: Improved Efficiency via Random Selection. To de-
crease ciphertext size and encryption/decryption times, the encryptor selects
some random subset {r1, . . . , rt} ⊆ {1 . . . n} of t indices, and targets the cipher-
text to the corresponding public keys pkr1 , . . . , pkrt

(e.g. t-out-of-t secret-shares
the message m and encrypts each share mi under the public key pkri

). Intu-
itively, if an adversary learns much less than n` bits of leakage about sk, then
there should be many component-keys ski for which the adversary learns less
than ` bits. Therefore the encryptor should select at least one index correspond-
ing to such a key with large probability, when t is made proportional to the se-
curity parameter, and potentially much smaller than n. Although the ciphertext
size and encryption/decryption times (and locality) are now only proportional
to the security parameter, the size of the public key still grows with n, and so
this scheme is still not appropriate for the BRM in terms of efficiency.

Improvement II: Small Public-Key Size via IBE. A natural solution
to having a short public key is to use identity-based encryption (IBE) instead
of standard PKE. This way, the public key of the repetition scheme is simply a
short master public key of an IBE scheme, while the secret key sk = (sk1, . . . , skn)
consists of secret-keys for some fixed “identities” ID1, . . . , IDn. Together, the
above two improvements yield a scheme which meets the efficiency requirements
of the BRM: the public-key size, ciphertext size, encryption/decryption times are



now only proportional to the security parameter and independent of n, which
can grow flexibly.

Security of the IBE-Based PKE in BRM Construction? In order to
show that the resulting scheme, utilizing the two proposed improvements, is a
PKE in the BRM we need to show the following. If we start with a leakage-
resilient IBE that allows for `-bits of leakage, then the construction amplifies
this to any desired amount `′ just by increasing the number of secret keys n
sufficiently. Unfortunately, it turns out that this is not the case in general and,
in the full version of this work [ADN+09], we construct a counterexaple. That
is, we can construct an artificial IBE scheme which is leakage-resilient in the
relative leakage model, with leakage `, but the above construction does not
amplify leakage-resilience beyond `′ = `, no matter how large n is. The problem
is that, conceivably, after observing all n secret keys for n identities, it might
be possible to come up with a very short “compressed” key (e.g. whose size is
independent of n) which allows one to decrypt ciphertexts for each one of the
given n identities. Our main result is to show that (a variant of) the construction
is secure, if the leakage-resilient IBE has some additional underlying structure,
which we call an Identity-Based Hash Proof System (IB-HPS).

Hash Proof Systems and Identity-Based Hash Proof Systems. Re-
cently, Naor and Segev [NS09] showed how to use a hash proof system (HPS) to
construct leakage-resilient PKE in the relative-leakage model. Following,
[KPSY09,NS09], we view an HPS as a key-encapsulation mechanism (KEM) with
special structure.5 A KEM consists of a key-generation procedure (pk, sk) ←
KeyGen(1λ), an encapsulation procedure (c, k) ← Encap(pk) which produces ci-
phertext/randomness pairs (c, k), and a decapsulation procedure k = Decap(c, sk),
which uses the secret key sk to recover the randomness k from a ciphertext c.
A KEM allows a sender that knows pk, to securely agree on randomness k with
a receiver that possesses sk, by sending an encapsulation-ciphertext c. A hash
proof system is a KEM with the following two properties:
– There exists an invalid-encapsulation procedure c ← Encap∗(pk), so that

ciphertexts generated by Encap∗(pk) are computationally indistinguishable
from those generated by Encap(pk), even given the secret key sk.

– For a fixed pk and invalid ciphertext c generated by Encap∗(pk), the output of
Decap(c, sk) is statistically uniform, over the randomness of sk. This property
can only hold if a fixed pk leaves statistical entropy in sk.

Notice the difference between valid and invalid ciphertexts. For a fixed pk, a
valid c, produced by (c, k)← Encap(pk), always decapsulated to the same value
k, no matter which secret key sk is used to decapsulate it. On other hand, an
invalid c produced by c ← Encap∗(pk), decapsulated to a statistically random
value based on the randomness of sk.
5 Our informal description and definition of HPS here, which will also be a basis of

our formal definition of IB-HPS in Section 3.1, is a simplified version of the standard
one. Although the two are not technically equivalent, the standard definition implies
ours, which is in-turn sufficient for leakage-resilience and captures the main essence
of HPS.



The above two properties are sufficient to prove KEM security, showing that
for (c, k) ← Encap(pk), an attacker given c cannot distinguish k from uniform.
The proof proceeds in two steps:

1. We replace the honestly generated (c, k)← Encap(pk) with c′ ← Encap∗(pk)
and k′ ← Decap(c′, sk).

2. The value k′ = Decap(c′, sk) is statistically uniform over the choice of sk,
which is unknown to the adversary.

As Naor and Segev noticed in [NS09], this proof also works in the presence
of leakage since step (1) holds even if the adversary saw all of sk, and step (2) is
information-theoretic, so we can argue that ` bits of leakage about sk will only
reduce the statistical entropy of k′ by at most ` bits. To agree on a uniform
value k in the presence of leakage, we just compose the KEM with a randomness
extractor.

The main benefit of this proof strategy is that, after switching valid/invalid ci-
phertexts in the first step, we can argue about leakage using a purely information-
theoretic analysis. We observe that it is therefore relatively easy to show that (a
variant of) parallel repetition amplifies leakage-resilience, since it amplifies the
statistical entropy of the secret key sk = (sk1, . . . , skn). In this work, we gener-
alize the notion of HPS to the identity-based setting by defining Identity-Based
Hash Proof System (IB-HPS) in a natural way. First of all, this gives us a general
framework for constructing leakage-resilient IBE schemes in the relative-leakage
model. Second of all, it also allows us to prove that a variant of the previously
proposed leakage-amplification technique (using an IB-HPS rather than just any
IBE) can indeed be used to get PKE (and IBE) schemes in the BRM.

1.2 Related Work

Restricted Models of Leakage-Resilience. Several other models of leakage-
resilience have appeared in the literature. They differ from the model we de-
scribed in the that they restrict the type, as well as amount, of information that
the adversary can learn. For example, the work on exposure resilient cryptogra-
phy [CDH+00,DSS01,KZ03] studies the case where an adversary can only learn
some small subset of the physical bits of the secret key. Similarly, [ISW03] studies
how to implement arbitrary computation in the setting where an adversary can
observe a small subset of the physical wires of a circuity. Unfortunately, these
models fail to capture many meaningful side-channel attacks, such as learning
the hamming-weight of the bits or their parity.

In their seminal work, Micali and Reyzin [MR04] initiated the formal mod-
eling of side-channel attacks under the axiom that “only computation leaks in-
formation”, where each invocation of a cryptographic primitive leaks a function
of only the bits accessed during that invocation. Several primitives have been
constructed in this setting including stream ciphers [DP08,Pie09] and signa-
tures [FKPR10]. On the positive side, this model only imposes a bound on the
amount of information learned during each invocation of a primitive, but not



on the overall amount of information that the attacker can get throughout the
lifetime of the system. On the negative side, this model fails to capture many
leakage-attacks, such as the cold-boot attack of [HSH+08], where all memory
contents leak information, even if they were never accessed.

Certainly, all of the restricted models fail to capture hacking/malware at-
tacks, where it is very conceivable that an attacker can compute even complicated
functions of all information stored on the system.

Relative-Leakage Model. Several constructions of primitives in the relative-
leakage model have appeared recently. The works of [AGV09,NS09] construct
public-key encryption schemes in this model, and [KV09] constructs signatures.
The works of [DKL09,DGK+10] considers a yet-stronger model of leakage-resilience,
called the auxiliary input model, where the leakage-function need only be one-
way (and not necessarily length-bounded), and constructs symmetric-key and
public-key encryption in this model.

BRM. The Bounded-Retrieval Model was (concurrently) proposed by Di Crescenzo
et al. [CLW06] and Dziembowski [Dzi06]. The name serves as an analogy to the
Bounded Storage Model (BSM) of [Mau92], which restricts the amount of data
that an adversary can store after observing a huge public random string, rather
than the amount of data an adversary can retrieve from a huge secret key. With
the exception of [ADW09], all of the work on the BRM is in the symmetric-key
setting, where two parties share a huge secret key. The recent work of Alwen et
al. [ADW09] gave the first public-key results in the BRM, by constructing identi-
fication schemes, (variants of) signatures, and authenticated-key-agreement pro-
tocols. However, these primitives cannot be used to encrypt a message non-
interactively, as is done in the current work. Moreover, the authenticated-key
agreement protocols of [ADW09] required the use of Random Oracles, while we
offer (some) constructions in the standard model. We note that many of the prior
schemes in the BRM and BSM employ ideas similar to the “parallel repetition”
and “random-subset selection” that we described in the introduction. However,
the proof-techniques in this paper differ significantly from previous works.

2 Preliminaries

Notation. For an integer n, we use the notation [n] to denote the set [n] def=
{1, . . . , n}. For a randomized function f , we write f(x; r) to denote the unique
output of f on input x with random coins r. We write f(x) to denote a random
variable for the output of f(x; r), over the random coins r. For a set S, we let
US denote the uniform distribution over S. For an integer v ∈ N, we let Uv
denote the uniform distribution over {0, 1}v, the bit-strings of length v. For a
distribution or random variable X we write x ← X to denote the operation of
sampling a random x according to X. For a set S, we write s← S as shorthand
for s← US .

Entropy. The min-entropy of a r.v. X is H∞(X) def= − log(maxx Pr[X = x]).
This is a standard notion of entropy used in cryptography, since it measures the
worst-case predictability of X. The average conditional min-entropy [DORS08]



of X given Z is defined by H̃∞(X|Z) def= − log
(
Ez←Z

[
2−H∞(X|Z=z)

])
. This

measures the worst-case predictability of X by an adversary that may observe
a correlated variable Z.

Statistical Distance and Extractors. The statistical distance between
X,Y is defined by SD(X,Y ) = 1

2

∑
x |Pr[X = x]− Pr[Y = x]| . We write X ≈ε

Y to denote SD(X,Y ) ≤ ε, and X ≈ Y to denote that the statistical distance is
negligible. An extractor [NZ96] can be used to extract uniform randomness out
of a weakly-random value which is only assumed to have sufficient min-entropy.
Our definition follows that of [DORS08], which is defined in terms of conditional
min-entropy.

Definition 1 (Extractors). We say that an efficient randomized function Ext :
{0, 1}u → {0, 1}v is an (m, ε)-extractor if for all X,Z such that X is distributed
over {0, 1}u and H̃∞(X|Z) ≥ m, we get (Z,R,Ext(X;R)) ≈ε (Z,R,Uv) where
R is a random variable for the coins of Ext.

Due to space constraints, almost all the proofs are omitted from the confer-
ence version of this paper. Please see the full version [ADN+09] for proofs and
additional details.

3 Identity-Based Hash Proof System (IB-HPS)

3.1 Definition

An Identity-Based Hash Proof System (IB-HPS) consists of PPT algorithms:
Setup, KeyGen, Encap, Encap∗, Decap. The algorithms have the following syntax.

(mpk,msk)← Setup(1λ) : The setup algorithm takes as input a security parameter
λ and produces the master public key mpk and the master secret key msk. The
master public key defines an identity set ID, and an encapsulated-key set K.
All other algorithms KeyGen,Encap,Decap,Encap∗ implicitly include mpk as an
input.

skID ← KeyGen(ID,msk) : For any identity ID ∈ ID, the KeyGen algorithm uses the
master secret key msk to sample an identity secret key skID.

(c, k)← Encap(ID) : The valid encapsulation algorithm creates pairs (c, k) where
c is a valid ciphertext, and k ∈ K is the encapsulated-key.

c← Encap∗(ID) : The alternative invalid encapsulation algorithm which samples
an invalid ciphertext c.

k ← Decap(c, skID) : The decapsulation algorithm is deterministic, and takes an
identity secret key skID and a ciphertext c and outputs the encapsulated key k.

We require that an Identity-Based Hash Proof System satisfies the following
properties.

I. Correctness of Decapsulation. For any values of mpk,msk produced
by Setup(1λ), any ID ∈ ID we have:

Pr
[
k 6= k′

∣∣∣∣ skID ← KeyGen(ID,msk)
(c, k)← Encap(ID) , k′ = Decap(c, skID)

]
≤ negl(λ)



II. Valid/Invalid Ciphertext Indistinguishability. The valid ciphertexts
generated by Encap and the invalid ciphertexts generated by Encap∗ should be
indistinguishable even given the identity secret key. In particular, we define the
following distinguishability game between an adversary A and a challenger.

VI-IND(λ)

Setup: The challenger computes (mpk,msk) ← Setup(1λ) and gives mpk to the
adversary A.

Test Stage 1: The adversary A adaptively queries the challenger with ID ∈ ID
and the challenger responds with skID.

Challenge Stage: The adversary selects an arbitrary challenge identity ID∗ ∈ ID.
The challenger chooses b← {0, 1}.
If b = 0 the challenger computes (c, k)← Encap(ID∗).
If b = 1 the challenger computes c← Encap∗(ID∗).
The challenger gives c to the adversary A.

Test Stage 2: The adversary A adaptively queries the challenger with ID ∈ ID
and the challenger responds with skID.

Output: The adversary A outputs a bit b′ ∈ {0, 1} which is the output of the
game. We say that A wins the game if b′ = b.

Note: In test stages 1,2 the challenger computes skID ← KeyGen(ID,msk) the first
time that ID is queried and responds to all future queries on the same ID with the
same skID.

Note that, during the challenge phase, the adversary can choose any identity
ID∗, and possibly even one for which it has seen the secret key skID∗ in Test
Stage 1 (or the adversary can simply get skID∗ in Test Stage 2). We define the
advantage ofA in distinguishing valid/invalid ciphertexts to be AdvVI-IND

IB-HPS,A(λ) def=
|Pr[A wins ]− 1

2 |. We require that AdvVI-IND
IB-HPS,A(λ) = negl(λ).

III. Universality/Smoothness/Leakage-Smoothness. Other than prop-
erties I and II, we will need one additional information theoretic property. Essen-
tially, we want to ensure that there are many possibilities for the decapsulation
of an invalid ciphertext, which are left undetermined by the public parameters
of the system. We define three flavors of this property as follows.

Definition 2 (Universal IB-HPS). We say that an IB-HPS is (m, ρ)-universal
if, for any fixed values of mpk,msk produced by Setup(1λ), and any fixed ID ∈ ID
the following two properties hold:

1. Let SK← KeyGen(ID,msk) be a random variable. Then H∞(SK) ≥ m.
2. For any fixed distinct values skID 6= sk′ID in the support of SK, we have

Pr
c←Encap∗(ID)

[Decap(c, skID) = Decap(c, sk′ID)] ≤ ρ.

Notice the significant difference between valid and invalid ciphertexts. For valid
ciphertexts c, the correctness of decapsulation ensures that there is a single value



k ∈ K such that Decap(c, skID) = k for (virtually) all choices of skID (of which
there are many by (1)). On the other hand, for invalid ciphertexts c, (2) ensures
that it is highly unlikely that any two distinct secret-keys skID will decapsulate
c to the same value k.

Definition 3 (Smooth/Leakage-Smooth IB-HPS). We say that an IB-HPS
is smooth if, for any fixed values of mpk,msk produced by Setup(1λ), any ID ∈
ID, we have:

SD( (c, k) , (c, k′) ) ≤ negl(λ)

where c← Encap∗(ID), k′ ← UK and k is sampled by choosing skID ← KeyGen(ID,msk)
and computing k = Decap(c, skID). We say that an IB-HPS is `-leakage-smooth
if, for any (possibly randomized) function f(·) with `-bit output, we have:

SD( (c, f(skID), k) , (c, f(skID), k′) ) ≤ negl(λ)

where c, k, skID, k
′ are sampled as above. Note, for this property, f need not be

efficient.

3.2 Relations Between Universality, Smoothness and
Leakage-Smoothness.

The following theorem is a simple consequence of the leftover hash lemma.

Theorem 1. Assume that an IB-HPS, with key set K = {0, 1}v, is (m, ρ)-
universal. Then it is also `-leakage smooth as long as ` ≤ m − v − ω(log(λ))
and ρ ≤ 1

2v (1 + negl(λ)).

We also show how to convert a smooth IB-HPS (Setup,KeyGen,Encap,Encap∗,Decap)
into a leakage-smooth IB-HPS using an extractor Ext : K → {0, 1}v. We define:

- Encap2(ID): Choose (c, k) ← Encap(ID), k′ ← Ext(k; r) where r is a random
seed. Output c′ = (c, r), k′.

- Encap∗2(ID) : Choose a random seed r and c← Encap∗(ID). Output c′ = (c, r).
- Decap2(c′,msk): Parse c′ = (c, r). Compute k = Decap(c,msk), k′ = Ext(k; r).

Output k′.

Theorem 2. Assume that an IB-HPS is smooth and that |K| = 2m. Let Ext : K →
{0, 1}v be an (m − `, ε)-extractor for some ε = negl(λ). Then the above trans-
formation produces an `-leakage-smooth IB-HPS.

4 Constructions of IB-HPS

4.1 A Construction of IB-HPS Based on Bilinear Groups

Background: Let G,GT be two (multiplicative) groups of prime order p and
let g be a generator of G. Let e : G×G→ GT be a map from G to the target
group GT . We say that the group G is bilinear if we have



1. Bilinearity: For all u, v ∈ G and a, b ∈ Zp we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: For the generator g of G, we get e(g, g) 6= 1.
3. Efficiency: Operations (multiplication, exponentiation) in G,GT and the

map e can be computed efficiently.

We assume the existence of a group-generation algorithm G(1λ) which outputs
a tuple (G,GT , g, e(·, ·), p) where G is a bilinear group of prime order p.

We will rely on the truncated augmented bilinear Diffie-Hellman exponent
assumption (q-TABDHE ) from [Gen06]. We define the two distributions

D
(0)
λ,q =

(
g, gα, g(α2), . . . , g(αq), g′, g′(α

q+2), e
(
g(q+1), g′

))
and

D
(1)
λ,q =

(
g, gα, g(α2), . . . , g(αq), g′, g′(α

q+2), Z
)

where (G,GT , g, e(·, ·), p) ← G(1λ), g′ ← G, α ← Zp, and Z ← GT . For any
algorithm B, the distinguishing advantage of B in the q-TABDHE problem is
AdvTABDHE

B (λ, q) def=
∣∣∣Pr
[
B
(
D

(0)
λ,q

)
= 0
]
− Pr

[
B
(
D

(1)
λ,q

)
= 0
]∣∣∣ .

Definition 4. We say that the q-TABDHE assumption holds if, for any PPT B,
AdvTABDHE

B (λ, q) = negl(λ). We say that the TABDHE assumption holds if q-
TABDHE holds for all polynomial q.

Construction: We now present the construction of IB-HPS which is based
directly on Gentry’s IBE [Gen06].

Setup(1λ) : Let (G,GT , g, e, p)← G(1λ). Let h← G, α← Zp and g1 := gα.
Set mpk = (G,GT , g, e, p, g1, h) and set msk = α.
The identity set is ID = Zp \ {α} and the encapsulated-key set is K = GT . a

KeyGen(ID,msk) : For ID ∈ ID, choose rID ← Zp and compute hID =
(hg−rID)1/(α−ID). Output skID = (rID, hID).

Encap(ID) : Choose random s ∈ Zp and compute u = gs1g
−sID, v = e(g, g)s and

output c = (u, v), k = e(g, h)s.
Encap∗(ID) : Choose a random pair (s, s′) ∈ Zp subject to the constraint s 6= s′.

Let u = gs1g
−sID, v = e(g, g)s

′
and output c = (u, v).

Decap(c, skID) : Parse c = (u, v) and output k = e(u, hID)vrID .

a The set ID is defined in terms of the secret α. Given ID ∈ Zp, one can efficiently

check if ID ∈ ID by checking if gID ?
= g1.

Essentially, various parts of Gentry’s proof already show that the scheme satisfies
the properties of IB-HPS. We provide a moularized proof of the following theorem
in the full version [ADN+09].

Theorem 3. Under the TABDHE assumption, the above construction is an IB-
HPS which is simultaneously smooth and (m, ρ)-universal for ρ = 0 and m =
log(p). More precisely, the valid/invalid ciphertext indistinguishability property
holds under the q-TABDHE assumption for any adversary making at most q
secret-key and leakage queries.



4.2 Parameters of Three IB-HPS Constructions

In the full version of this work [ADN+09], we give two additional constructions
of IB-HPS based on the recent IBE schemes of [BGH07,GPV08]. Here we, just
give a short note on each construction and explain its parameters. We will be
interested in the following:

1. The actual identity-key size m̂: the number of bits needed to efficiently rep-
resent an identity secret key skID.

2. The encapsulated-key size v = log(|K|): the size of the encapsulated key.
3. The min-entropy m and the universality ρ: the values for which the scheme

is (m, ρ)-universal.

An important parameter is the ratio m
m̂ , which determines the amount of relative

leakage that our IBE and PKE in BRM constructions can handle. We note that
all of the schemes satisfy the definition of smoothness.

A Scheme Based on Bilinear Groups. The parameters of our construction
from the previous section, based on Gentry’s IBE, are:

m̂ = 2 log(p) +O(1) , m = log(p) ,
m

m̂
≈ 1

2
, v = log(p) , ρ = 0.

where p is the (prime) order of an appropriate bilinear-group G.

A Scheme Based on Quadratic Residuosity. We show that the IBE
scheme of Boneh, Gentry and Hamburg [BGH07] contains a IB-HPS. The con-
struction and proof essentially follow [BGH07] (with a minor modification in
how identity secret keys are chosen, to get universality). The scheme is secure
under the Quadratic Residuosity assumption in the Random Oracle model, or
under a non-standard interactive quadratic residuosity assumption in the stan-
dard model. The parameters of interest are:

m̂ = log(N) , m = 1 ,
m

m̂
=

1
log(N)

, v = 1 , ρ = 0.

where N is an appropriately sized RSA modulus. Unfortunately, it is not clear
how to make the scheme leakage-smooth for any ` > 0, since the secret-key
entropy m is too small to extract even a single bit. This problem can be fixed,
as will be done in the BRM, by using parallel-repetition to amplify the entropy.
Still, the relative leakage of the scheme will be poor because of the poor ratio of
the entropy m to actual-key-size m̂.

A Scheme Based on Lattices. We show how to get a construction of IB-HPS
using the IBE scheme of Gentry, Peikert and Vaikuntanathan [GPV08]. Note that
this IBE construction was already observed to be leakage-resilient by [AGV09],
but this does not imply that it is an IB-HPS. In fact, we need to make some
simple modifications so that the scheme satisfies our definition. The security of
the scheme is based on a (decisional) Learning With Errors (LWE) assumption,
in the random oracle model. Note that this assumption can be reduced to the
GapSVP problem for lattices, using the techniques of [Reg05,Pei09].6 We show
6 We note that our construction requires that we use some (slightly) super-polynomial

modulus q in the LWE problem, which means that we need to assume GapSVP is
hard against some (slightly) super-polynomial time adversaries.



that, for any constant ε > 0, there exists some setting of the actual-key-size m̂
so that:

m = (1− ε)m̂ ,
m

m̂
= (1− ε) , v = 1 , ρ =

1
2

(1 + negl(λ)).

Note that, by Theorem 2, this construction is therefore already `-leakage smooth,
for any ` ≤ m− ω(log(λ)), without any need to apply an extractor.

5 Leakage-Resilient IBE From IB-HPS

We define what it means for an Identity-Based Encryption (IBE) scheme to be
resistant to key leakage attacks and show how to use an IB-HPS to construct
such an IBE scheme. Our notion of leakage-resilience only allows leakage-attacks
against the secret keys of the various identities, but not the master secret key.
Also, we only allow the adversary to perform leakage attacks before seing the
challenge ciphertext. As noted by [AGV09,NS09,ADW09], this limitation is in-
herent to (non-interactive) encryption schemes since otherwise the leakage func-
tion can simply decrypt the challenge ciphertext and output its first bit.

Definition. Recall an IBE scheme consists of four PPT algorithms Setup,
KeyGen, Encrypt, and Decrypt. We omit discussion of the usual correctness re-
quirements. We define the semantic security game, parameterized by a security
parameter λ and a leakage parameter ` as the following game between an adver-
sary A and a challenger.

IBE-SS(λ, `)

Setup: Challenger computes (mpk,msk)← Setup(1λ), gives mpk to the adv. A.

Test Stage 1: The adv. A adaptively makes the following queries:
Secret-Key Queries: On input ID ∈ ID, the challenger replies with skID.

Leakage Queries: On input ID ∈ ID, a PPT function f : {0, 1}∗ → {0, 1},
the challenger replies with f(skID).

Challenge Stage: The adversary selects two messages m0,m1 ∈ M and a chal-
lenge identity ID∗ ∈ ID which never appeared in a secret-key query and ap-
peared in at most ` leakage queries. The challenger chooses b← {0, 1} uniformly
at random and computes c← Encrypt(ID∗,mb) and gives c to the adversary A.

Test Stage 2: The adversary gets to make secret-key queries for arbitrary ID 6=
ID∗. The challenger replies with skID.

Output: The adversary A outputs a bit b′ ∈ {0, 1}. We say that the adversary
wins the game if b′ = b.

Note: In test stages 1,2 the challenger computes skID ← KeyGen(ID,msk) the first
time that ID is queried (in a secret-key or leakage query) and responds to all future
queries on the same ID with the same skID.

The advantage of an adversary A in the semantic security game with leakage `
is AdvIBE-SS

IBE,A (λ, `) def=
∣∣Pr[A wins ]− 1

2

∣∣.
Definition 5 (Leakage-Resilient IBE). An IBE scheme is `-leakage-resilient,
if the advantage of any any PPT adversary A in the semantic security game



with leakage `, is AdvIBE-SS
IBE,A (λ, `) = negl(λ). We define the relative leakage of the

scheme to be α def= `/m̂, where m̂ is the number of bits needed to efficiently store
identity secret keys skID.

Construction: The construction of a leakage-resilient IBE from a leakage-
smooth IB-HPS is almost immediate, by simply using the encapsulated key as
a one-time-pad to encrypt a message. In particular, given an IB-HPS where the
encapsulated key set K has some group structure (K,+) (e.g. bit-strings with
⊕), we construct an IBE scheme with the same identity set ID and message set
M = K. The Setup,KeyGen algorithms are the same for both primitives and
Encrypt,Decrypt are defined by:

Encrypt(ID,m): Choose (c1, k)← Encap(ID) and let c2 = k + m.
Output c = (c1, c2).

Decrypt(c, skID): For c = (c1, c2), compute k = Decap(c1, skID).
Output m = c2 − k.

Note that the Encap∗ algorithm of the IB-HPS is not used in the construction,
but will be used to argue security.

Theorem 4. Assume that we start with an `-leakage-smooth IB-HPS. Then the
above construction yields an `-leakage-resilient IBE.

6 Leakage Amplification of IB-HPS

We now show how to construct an `-leakage-smooth IB-HPS, for arbitrarily large
values of `, meeting the efficiency requirements of the BRM. This will be the
main step towards building PKE (and IBE) schemes in the BRM. We start with
a IB-HPS scheme Π1 = (Setup,KeyGen1,Encap1,Encap∗1,Decap1) and compile
it into a new IB-HPS scheme Π2 = (Setup,KeyGen2,Encap2,Encap∗2,Decap2),
where the identity secret keys can be made arbitrarily large, so as to achieve
`-leakage-smoothness for a large `. We will assume there is a one-to-one function
H : ID2 × [n] → ID1 where ID1, ID2 are the identity sets of Π1, Π2 respec-
tively. In the constructed scheme, the identity secret key of each ID ∈ ID2 con-
sists of n components skID = (skID[1], . . . , skID[n]), where each component skID[i]
is an independently sampled identity secret key for an identity H(ID, i) ∈ ID1

of the original scheme. Here, n will be a key-size parameter, which gives us
flexibility in the size of the identity secret key in the constructed scheme, and
will depend on the desired leakage-parameter `. The encapsulation procedure
Encap2(ID) will target only a small subset of t-out-of-n of the identities H(ID, i),
and decapsulation Decap2 will only need to read the values skID[i] associated with
these t identities. Here t will be a locality-parameter which can be much smaller
than (and independent of) n. A formal description of the construction appears
in Figure 1. It is described abstractly in terms of arbitrary parameters n, t, v. In
the theorem that follows, we show how to instantiate these appropriately based
on the setting of `, λ.



Let Π1 = (Setup,KeyGen1,Encap1,Encap∗1,Decap1) be a IB-HPS with encapsulated-
key-set K and identity-set ID1.
Let n, t, v ∈ Z+. We call n a key-size parameter, t a locality parameter and v a
output-size parameter.
Let H : ID2 × [n]→ ID1 be a one-to-one function for some set ID2.a

Let G be a 1
2v -universal hash function family of functions g : Kt → {0, 1}v.

Define Π2 = (Setup,KeyGen2,Encap2,Encap∗2,Decap2) as follows:

Setup(1λ): The setup procedure is the same as that of Π1.
KeyGen2(ID,msk): For i ∈ [n], sample skID[i] ← KeyGen1(H(ID, i),msk). Output

skID = (skID[1], . . . , skID[n]).
Encap2(ID): Choose t random indices r = (r1, . . . , rt)← [n]t. Choose g ← G.

For i ∈ {1, . . . , t}, compute: (ci, ki)← Encap1(H(ID, ri)). Let c = (c1, . . . , ct).
Output: C = (r, c, g), k = g(k1, . . . , kt).

Encap∗2(ID): Choose t random indices r = (r1, . . . , rt)← [n]t. Choose g ← G.
For i ∈ {1, . . . , t}, compute: ci ← Encap∗1(H(ID, ri)). Let c = (c1, . . . , ct). Out-
put: C = (r, c, g).

Decap2(C, skID): Parse C = (r, c, g). Compute ki = Decap1(ci, skID[ri]) for i ∈
{1, . . . , t}. Output k = g(k1, . . . , kt).

a A collision-resistant hash function (CRHF) would suffice here as well.

Fig. 1. Leakage-Amplification of an IB-HPS: Construction of Π2 from Π1.

For the analysis of the construction, we need to define a new parameter
called the effective key size m′. This is the minimal value such that, for any
fixed mpk,msk, ID, the number of values that skID ← KeyGen(ID) can take on
is bounded by 2m

′
. If the actual key size is m̂ and the key entropy is m, then

m̂ ≥ m′ ≥ m. Note that in all of our constructions, m/m′ is a constant (even
when m/m̂ is not, as is the case for our QR-based construction).

Theorem 5. Assume Π1 is an (m, ρ)-universal IB-HPS with effective key size
m′, where ρ < 1 and m/m′ > 0 are constants. Then, for any constant ε >
0 and any polynomial v(λ), there exists some t = O(v + λ) so that, for any
polynomial n(λ), the above construction of Π2 with parameters (n, t, v) is an `-
leakage-smooth IB-HPS where `(λ) = (1−ε)nm−v−λ. The encapsulated-key-set
of Π2 is K = {0, 1}v.

The full proof of the above theorem appears in [ADN+09]. We give some intu-
ition here. It is easy to see that Π2 satisfies correctness. Also, the valid/invalid
ciphertext indistinguishability property of Π2 follows by a simple hybrid argu-
ment. Therefore, we only need to show `-leakage smoothness, for the ` given by
the theorem statement. For a fixed mpk,msk, ID in Π2, the entropy of the ran-
dom variable SKID ∼ KeyGen2(ID,msk), is amplified to H∞(SKID) ≥ nm, since it
consists of n independently sampled secret keys of Π1. If we could show that the
scheme is also ρ′-universal, for some small ρ′ ≤ ( 1

2v +negl(λ)), then we could rely
on Theorem 1 to show leakage-smoothness. Unfortunately, this is not the case.
The problem is that, if two values skID 6= sk′ID in the constructed scheme differ



in only one position j, then Decap2(C, skID) = Decap(C, sk′ID) as long as the ci-
phertext C does not “select” j, which happens with large probability. Therefore,
to analyze the leakage smoothness of the construction, we define a new notion
called approximately universal hashing, where we only insist that values which
are far from each other in Hamming distance (over some alphabet) are unlikely
to collide. We then show a variant of the leftover-hash lemma, called the ap-
proximate leftover-hash lemma holds for approximate hashing. Lastly, we show
that the decapsulation procedure Decap2(C, skID) of the amplified scheme Π2 is
approximately universal, for appropriate parameters, when C ← Encap∗(ID).7

Combining these results, we get the parameters of the theorem.

7 Public-Key Encryption and IBE in the BRM

A public-key encryption (PKE) scheme in the BRM consists of the algorithms
(KeyGen, Encrypt, Decrypt), which are all parameterized by a security parameter
λ and a leakage parameter `. The syntax and the correctness property of an
encryption scheme follow the standard notion of public-key encryption. We define
the following semantic-security game with leakage ` between an adversary A and
a challenger.

SemS(λ, `)

Key Generation: The challenger computes (pk, sk) ← KeyGen(1λ, 1`) and gives
pk to the adversary A.

Leakage: The adversary A selects a PPT function f : {0, 1}∗ → {0, 1}` and gets
f(sk) from the challenger.

Challenge: The adversary A selects two messages m0,m1. The challenger chooses
b← {0, 1} uniformly at random and gives c← Encrypt(mb, pk) to the adversary
A.

Output: The adversary A outputs a bit b′ ∈ {0, 1}. We say that A wins the game
if b′ = b.

For any adversary A, the advantage of A in the above game is defined as
AdvSemS

PKE,A(λ, `) def=
∣∣Pr[A wins ]− 1

2

∣∣.
Definition 6 (Leakage-Resilient PKE). A public-key encryption scheme PKE
is leakage-resilient, if for any polynomial `(λ) and any PPT adversary A, we have
AdvSemS

PKE,A(λ, `(λ)) = negl(λ).

Definition 7 (PKE in the BRM). We say that a leakage-resilient PKE
scheme is a PKE in the BRM, if the public-key size, ciphertext size, encryption-
time and decryption-time (and the number of secret-key bits read by decryption)
are independent of the leakage-bound `. More formally, there exist polynomials
pksize, ctsize, encT, decT, such that, for any polynomial ` and any (pk, sk) ←
KeyGen(1λ, 1`(λ)), m ∈M, c← Encrypt(m, pk), the scheme satisfies:
7 For approximate universality, we think of the “big key” skID as consisting of n al-

phabet symbols, with one symbol for each component key skID[i].



1. Public-key size is |pk| ≤ O(pksize(λ)), ciphertext size is |c| ≤ O(ctsize(λ, |m|)).
2. Run-time of Encrypt(m, pk) is ≤ O(encT(λ, |m|)).
3. Run-time of Decrypt(c, sk), and the number of bits of sk accessed, is ≤

O(decT(λ, |m|)).
The relative-leakage of the scheme is α def= `/|sk|.

We can generalize the above definition to IBE schemes. A leakage-resilient IBE
is an IBE in the BRM if the master-public-key size, master-secret-key size, ci-
phertext size and encryption/decryption times are bounded by polynomials in-
dependent of `.

Theorem 6 (PKE and IBE in BRM). Assume that we have an (m, ρ)-
universal IB-HPS satisfying the conditions of Theorem 5 and having actual key
size m̂. Then, for any constant ε > 0 and any polynomial v, we get PKE (resp.
IBE) schemes in the BRM with message space M = {0, 1}v and:
1. Public-key size (resp. master public/secret key size) is the same as that of

the underlying IB-HPS.
2. The locality-parameter is t = O(v + λ). The # of secret-key bits accessed

during decryption is tm̂.
3. Ciphertext-size/encryption-time/decryption-time differ by a factor of t from

those of the underlying IB-HPS.
4. Relative leakage is α ≥ m

m̂ (1− ε), for sufficiently large values of the leakage-
parameter `. In particular, for large enough `, the secret-key size (resp.
identity-secret-key size) is ≤ m̂

m (1 + ε)`.

Proof. Follows directly from leakage-amplification (Theorem 5). For any leakage-
parameter `, the key-size parameter n in the construction of Π2 in Figure 1 is
made just large enough so that ` ≤ (1− ε)nm−v−λ. Therefore, Π2 is `-leakage
smooth. By Theorem 4, this yields an `-leakage resilient IBE. The efficiency
parameters are obvious from the construction, so it is easy to see that we get an
IBE in the BRM. By ignoring all identities except for a single one, we naturally
get a PKE in the BRM. The relative leakage is α = `

m̂n ≈
m
m̂ (1− ε), for ` large

enough in relation to v, λ. �

8 Extensions

In the full version [ADN+09] of this work, we show several extensions to the
results from the previous section. We describe them briefly here.

CCA Security. We show that the main ideas underlying our approach can
be extended to deal with chosen-ciphertext attacks. We present constructions
of encryption schemes that are resilient to leakage even under chosen-ciphertext
attacks. That is, these schemes are semantically secure even against an adver-
sary that is allowed to submit both leakage queries and decryption queries. We
first consider identity-based encryption, and show that the CCA-secure variant
of Gentry’s scheme [Gen06] can be generalized to deal with leakage. We then



consider public-key encryption in the BRM, and observe that the generic trans-
formation from chosen-plaintext security to chosen-ciphertext security, using the
Naor-Yung paradigm [NY90], also applies in the BRM.

Shorter Ciphertexts via Anonymous Encapsulation. We notice that
two of our IB-HPS constructions, based on lattices and quadratic residuosity,
have additional structure, which allows for a more efficient version of our leakage-
amplification construction. In the construction shown in Figure 1, the ciphertext
C of the constructed scheme Π2 contains t ciphertexts c1, . . . , ct of the under-
lying scheme Π1, where t = O(λ + v). We show how to reduce this to a single
ciphertext if we start with an IB-HPS construction Π1 that has an additional
property, which we call anonymous encapsulation. Such a scheme has two addi-
tional procedures:

– (c, s)← EncapC(), which samples a ciphertext c together with a trapdoor s
without knowing the target ID.

– k = EcnapK(c, s, ID), which (deterministically) computes k for any ID, given
c and a trapdoor s.

Note that the procedures EncapC,EcnapK (like Encap) are implicitly parameter-
ized by the master public key mpk.

Definition 8 (Anonymous Encapsulation). An IB-HPS has anonymous en-
capsulation if there exist efficient procedures EncapC,EcnapK as above, such that,
for any fixed mpk,msk, ID, sampling (c, k)← Encap(ID) is equivalent to sampling
(c, s)← EncapC() and computing k = EcnapK(c, s, ID).

For the lattice and quadratic-residuosity based constructions, the procedures
EncapC, EcnapK are already implicitly defined by Encap, which first samples c
anonymously (independently of ID) and then computes k for a given ID using
the randomness s that was used to generate c.

There are several advantages to IB-HPS schemes that have the anonymous-
encapsulation property. Firstly, it’s easy to see that the IBE constructed from
such schemes has anonymity, in that the ciphertext does not reveal the target
identity. Perhaps more importantly, anonymous encapsulation can be used to get
an improved leakage-amplification scheme with shorter ciphertexts.8 In particu-
lar, we modify the procedure Encap2(ID) of the constructed Π2 scheme, so that
it samples a single ciphertext/trapdoor pair (c, s) ← EncapC1() of the under-
lying scheme Π1, and computes ki = EcnapK1(c, s,H(ID, ri)) for each of of the
t random indices ri ∈ [n]. The ciphertexts of the constructed scheme therefore
consist of C = (r, c, g), and contain only a single ciphertext c of the underlying
scheme. To reduce the ciphertext size still further, we can employ the following
optimizations:

1. Instead of sampling the indices r ← [n]t uniformly at random, and com-
municating this choice in the ciphertext, we use use a hitting sampler to

8 A similar technique is implicitly used to get shorter ciphertexts relative to the mes-
sage length in the IBE constructions of [BGH07,GPV08].



sample r ∈ [n]t efficiently. This choice can then be communicated using a
seed of description size log(n) + O(λ + v), rather than the previous size
t log(n) = O((λ+ v) log(n)) needed to communicate r explicitly.

2. Use a γ-universal, instead of fully universal, hash function g, where γ =
1
2v (1 + negl(λ)). As observed in [SZ99], such hash functions can have de-
scription sizes O(v + λ), only proportional to the output size, and not the
somewhat larger input size.

We show that leakage-amplification still holds for the modified constructions,
by showing that Decap2(C, ·) is an approximately-universal hash function with
appropriate parameters, when C ← Encap∗(ID). Unfortunately, the setting of
the parameters requires that ρ ≤ 1

2v in the original scheme, which is only the
case for our QR-based scheme but not the lattice-based scheme.

9 Comparison of PKE (and IBE) in BRM Constructions

In Table 1, we compare the efficiency and relative-leakage of our various IBE and
PKE in BRM constructions. We assume that the plaintext size is v = O(λ).9

In all of the schemes, the leakage-parameter ` can be arbitrarily large and the
relative leakage column indicates the ratio of leakage to secret-key size. The
public-key size of all schemes is the same as the master-public-key size of the
corresponding IB-HPS and the encryption/decryption times (and the number
of bits accessed) differ by a multiplicative factor of t = O(λ) from those of
the underlying IB-HPS. The “CT expansion” column indicates the ratio of the
ciphertext size in the BRM to that of the underlying IB-HPS. The “CT size in
BRM” column measures the size of the ciphertext in the BRM on an absolute
scale.10 The value ε > 0 can be an arbitrary constant.

Scheme Assumption
Relative
Leakage

CT Size
in BRM

CT Expansion

Bilinear-Groups
[Gen06]

TABDHE ( 1
2
− ε) O(λ2) O(λ)

Quadratic Residuosity
[BGH07]

QR † 1
O(λ)

O(λ) O(1)

Lattices
[GPV08]

LWE/GapSVP † (1− ε) O(λ4) O(λ)

† = Random Oracle Model/Interactive Assumption
Table 1. Comparison of Our PKE in BRM Constructions

9 To encrypt larger messages, it is sufficient to encrypt a short O(λ) sized key for a
symmetric-key encryption scheme.

10 Note that, to make a fair comparison, we assume that RSA moduli and bilinear-
group elements have description sizes O(λ). For our LWE based construction, the
modulus q needs to be (slightly) super-polynomial, and we are pessimistic by just
bounding its description size by O(λ).
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