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Abstract. We present a family of verifiable random functions which
are provably secure for exponentially-large input spaces under a non-
interactive complexity assumption. Prior constructions required either an
interactive complexity assumption or one that could tolerate a factor 2n

security loss for n-bit inputs. Our construction is practical and inspired
by the pseudorandom functions of Naor and Reingold and the verifiable
random functions of Lysyanskaya. Set in a bilinear group, where the
Decisional Diffie-Hellman problem is easy to solve, we require the `-
Decisional Diffie-Hellman Exponent assumption in the standard model,
without a common reference string. Our core idea is to apply a simulation
technique where the large space of VRF inputs is collapsed into a small
(polynomial-size) input in the view of the reduction algorithm. This view,
however, is information-theoretically hidden from the attacker. Since the
input space is exponentially large, we can first apply a collision-resistant
hash function to handle arbitrarily-large inputs.

1 Introduction

Verifiable Random Functions (VRFs) were proposed by Micali, Rabin, and Vad-
han [24]. VRFs behave similar to Pseudo Random Functions (PRFs) [16] in that
an (efficient) attacker should not be able to distinguish the value of fK(x) from
a random value even if it is given oracle access to the function fK(·) at sev-
eral other points. However, VRFs have the additional property that the party
holding the seed will publish a commitment to the function and is able to non-
interactively convince a verifier that a given evaluation is correct (i.e., matches
the public commitment) without sacrificing the pseudorandom property on other
inputs. In addition, the proof must be verifiable without the benefit of a common
reference string (CRS). Finally, the verification should remain secure even if the
public commitment were setup in a malicious manner.
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The VRF definition of security limits the types of tools we can apply to solv-
ing the problem and restricts us from using several “traditional” approaches. For
example, at first glance it might seem possible to construct VRFs in a straightfor-
ward manner by applying PRFs together with a Non-Interactive Zero Knowledge
Proof [4, 5] (NIZK) system. A tempting approach is to publish a commitment
to a PRF seed and then the seed holder can apply the NIZK machinery to pro-
duce non-interactive proofs. A typical proof would at one stage allow a reduction
algorithm to simulate proofs (via knowledge of the CRS setup) even when the
algorithm has no knowledge of the function’s seed. However, since the definition
of a Verifiable Random Function disallows the use of a trusted setup, the NIZK
paradigm cannot be applied.

Without being able to simulate proofs, any reduction algorithm that proves
pseudorandomness faces the following predicament. First, for any x for which it
is asked to give out fK(x) and a proof it must be able to produce the actual
(unique) output of fK(x). Since there is no interaction or trusted setup, the
algorithm is not able to “lie” at any stage. Second, the reduction must be able
to use an attacker that can distinguish fK(x∗) from a random value at a certain
x∗. In order to make use of this attacker, it follows that the reduction algorithm
must not know how to evaluate fK(·) at certain points.

Meeting these two restrictions will require a new approach to constructing
pseudorandom functions that moves past traditional constructions. For instance,
to prove that the Goldreich, Goldwasser and Micali PRF construction [16] is
pseudorandom one must go through several hybrid experiments, where the re-
duction algorithm will not know how to correctly evaluate the PRF on any input.
This approach will not work for proving VRFs, since the reduction algorithm
must provide an evaluation and prove (without lying) that it is correct.

Constructing and Proving Security of VRFs. For the reasons above, existing
VRF systems employ a different strategy when proving the security of VRFs.
Almost all proofs of VRF constructions (that do not rely on interactive as-
sumptions) [24, 14, 1] use a type of “all but one” technique for proving pseudo-
randoness. In these proofs a reduction algorithm will first guess the attacker’s
challenge input as some random string w in {0, 1}n, where n is the bit length of
inputs. Next, it will set up the commitment such that it knows the function at all
2n− 1 inputs values x 6= w. The algorithm then must “hope” that the challenge
input lands on w. For instance, the Micali-Rabin-Vadhan (VUF3) reduction [24]
publishes a commitment r (mod N) such that it knows 2n − 1 roots of r for
primes px where x 6= w and hopes that the attacker provides it the pw-th root
of r.

The main drawback of this style of proof is that the error and time com-
ponent of the reduction respectively degrade and blowup by a factor 2n, which

3 VUF stands for verifiable unpredictable function. It relaxes the pseudorandomness
requirement of the VRF, so that an (efficient) attacker should not be able to predict
the value of fK(x) even if it is given oracle access to the function fK(·) and its proof
at several other points.



is exponential in the input length n. The error reduction decreases by a factor
of 2n from the guessing of the challenge input and the time of the reduction
requires 2n − 1 steps to “plant” knowledge of fK(x) for all x 6= w. For this rea-
son these VRF systems when applied to large input sizes need to rely on strong
assumptions that can absorb the loss of security. Furthermore, in the `-type
assumptions used in bilinear map constructions of Dodis-Yampolskiy [14], the
number of terms (i.e., `) associated with the assumption increases exponentially
in n. 4 In general, we would like to prove security for large input spaces based on
a “smaller” and more standard complexity assumption, which contains at most
a polynomial number of terms.

Indeed, in their recent paper, Abdalla, Catalano and Fiore [1] stated that an
open problem was to construct a VRF “supporting exponentially large (in the
security parameter) identity spaces and provably secure under non interactive
assumptions”.

Our Approach. In this work, we aim to realize VRFs with large input sizes
without applying complexity leveraging or interactive assumptions. Our main
technique is that we apply a reduction technique where the input space of size
2n is compressed in the reduction algorithm’s view to a much smaller space.
We can parameterize this compression such that the reduction algorithm knows
the PRF value for all but a set S of size ≈ 1/q(λ) of the input, where q(λ) is
the (polynomial) number of queries made by an attacker and λ is a security
parameter. We then “hope” that the challenge input lands in S and can finish
the simulation without aborting a non-negligible fraction of the time.

Our construction makes use of bilinear groups. It has a similar structure to
the PRF of Naor-Reingold [27] and the VRF of Lysyanskaya [23]. The setup
algorithm will choose a group G of prime order p along with random group ele-
ments g, h, U0 = gu0 , . . . , Un = gun for random u0, . . . , un ∈ Zp. The evaluation
of the VRF on input x = x1 . . . xn is

e(gu0
Qn

i=1 u
xi
i , h).

Proofs of the VRF are given using a step ladder approach in a manner similar
to that appearing in other works [23, 1].

We prove the security of our scheme under the `-Decisional Diffie-Hellman
Exponent assumption [7] for ` = O(q(λ)·n). This assumption gives the reduction
algorithm ga

i

for i = 1 to 2` except for a “hole” at i = `. In our reduction, we
associate each Ui value with a value ga

yj for some yj . (The terms are further
randomized so as to information-theoretically hide yj from the outside. We ignore
the randomization terms for this discussion.) For any input x, the reduction can
evaluate the function and give a proof if y0 +

∑n
i=1 y

xi
i 6= `. For all other inputs

x ∈ S such that y0 +
∑n
i=1 y

xi
i = `, the reduction algorithm can successfully use

an answer to defeat the DDHE assumption.

4 We note that the second construction of Abdalla-Catalano-Fiore [1] has a polynomial
number of assumption terms, but exponential degradation in the input size.



To achieve a polynomial (in n) reduction we must find a way to put a proper
fraction of the inputs in S and to make the distribution of inputs in S close to
random across the coins of the reduction. For this final goal, we parameterize
and analyze our scheme in a manner similar to the Waters’ [29] Identity-Based
Encryption system. In this system, Waters showed how to partition a fraction
of ≈ 1/q(λ) of the inputs into what he called a challenge set S. We will apply
a similar partitioning approach, except we must adapt it to the multiplicative
structure of our VRF.

We finally note that once we achieve a VRF for large enough input size n, we
can apply one of two techniques to get a VRF for the input domain of {0, 1}∗.
First, we could simply let the setup algorithm choose a collision resistant hash
function H : {0, 1}∗ → {0, 1}n. The VRF would first hash the input down to
n bits and then apply the core VRF. It is fairly straightforward to show that
an attack would imply either finding a collision or attacking the core VRF.
Another technique is to apply the tree-based extension given by Micali, Rabin,
and Vadhan (MRV) [24] which allows extension to unbounded size inputs. This
tree-based technique works if there are no collisions discovered in the core VRF
applied at each node (i.e., no two nodes have the same label). In order for this
to occur, the core input size must be large, which requires complexity leveraging
in the MRV RSA construction, but does not when using our techniques.

1.1 Related Work

The concept of pseudorandom functions was proposed by Goldreich, Goldwasser
and Micali [16]. They provided a definition and gave a generic method of con-
structing them from any one-way permutation. An efficient PRF based on the
Decisional Diffie-Hellman assumption was proposed by Naor and Reingold [27].

Micali, Rabin and Vadhan [24] proposed the extension to verifiable random
functions. They gave an RSA-type construction and proved security under what
they called the RSA s(k)-Hardness Assumption. Roughly, for input length a(k),
the security of the VRF was s′(k) = s(k)1/3/(poly(k)·2a(k)). They then provided
a tree-based method for extending the input size to {0, 1}∗. Their construction
elegantly showed how to first give a Verifiable Unpredictable Function (VUF)
and then apply the Goldreich-Levin [17] hard core bit technique to get a VRF.

Lysyanskaya [23] provided the first VRF scheme from bilinear maps, which
was also constructed as a transformation from a VUF. Our VRF construction
follows a similar structure and is inspired by that of Lysyanskaya, although we
will give a direct VRF construction without first providing a VUF. Dodis [13]
extended the work of Lysyanskaya and showed how to give efficient constructions
of a VRF directly (i.e., without going through any generic transformations). His
VRF was also distributed in the sense that a collection of servers can hold shares
of the seed and a certain threshold of these servers must cooperate to compute
fK(x) or distinguish its outputs from random. Unfortunately, both of these works
rely on interactive complexity assumptions (for large input spaces.)

Dodis and Yampolskiy [14] gave a very efficient VRF under a non-interactive
assumption by applying the deterministic version of Boneh-Boyen [6] signatures.



In a bilinear group G of prime order p, its seed is a single element of Zp and
its proof is a single element of G. Its main drawback is that its security only
holds for small input spaces. For n-bit inputs, the scheme’s security relies on
the (` = 2n)-Decisional Diffie-Hellman Inversion assumption with a 2n factor
blowup in the time component.

Recently, Abdalla, Catalano and Fiore [1] gave two VRF constructions and
showed some connections to Identity-Based Encryption [28, 8]. In particular,
they showed that any IBE scheme with certain properties (e.g., deterministic
key generation) implies VRFs, although some of these properties only appear in
random oracle constructions of IBE systems.

Chase and Lysyanskaya [12] introduced a concept that they called a si-
multable VRF. Simultable VRFs allow the use of a common reference string
(CRS) in order to simulate a proof of the PRF output. Connections to multi-
theorem NIZKs were given. We note that reintroducing a CRS removes some of
the fundamental challenges in constructing a VRF that we described above.

Brakerski, Goldwasser, Rothblum and Vaikuntanathan [10] introduced a re-
laxation of VRFs that they called weak VRFs. A weak VRF is similar to a VRF
except it only needs to be secure if the attacker is allowed to see queries at inputs
chosen randomly. While this does not meet the full goals of VRFs, the authors
showed that weak VRFs imply NIZKs and provided constructions of weak VRFs
from simple assumptions.

Applications of VRFs. VRFs have a variety of interesting applications, partially
because they allow a short commitment to an exponential number of pseudoran-
dom bits. Abdalla et al. [1] provide a nice summary of applications where VRFs
are used as a building block, including resettable zero-knowledge proofs [25],
micropayment schemes [26], updatable zero-knowledge databases [22] and verifi-
able transaction escrow schemes [21], to name a few. It also appears likely to us
that suitable VRFs could be a useful alternative in several applications which, as
part of the system, output the value of the PRF together with a proof (interac-
tive or non-interactive) that the evaluation was correct and has some additional
properties. Examples of this include compact e-cash [11], keyword search [15],
set intersection protocols [18], and adaptive oblivious transfer protocols [20].

2 Definition

Definition 1 (Verifiable Random Function). Let F : {0, 1}seed(λ)×{0, 1}in(λ)

→ {0, 1}out(λ), where seed, in, out are all polynomials in the security parameter
1λ, be an efficient function. We say that F is a verifiable random function if
there exist algorithms (Setup,Prove,Verify) such that

– Setup(1λ) outputs a pair of keys (pk , sk);
– Provesk (x) outputs a pair (Fsk (x), πsk (x)), where Fsk (x) is the function value

and πsk (x) is the proof of correctness; and
– Verifypk (x, y, π) verifies that y = Fsk (x) using the proof π.



Formally, we require the following properties:

1. Provability: For all (pk , sk) ∈ Setup(1λ) and inputs x ∈ {0, 1}in(λ), if
(y, π) = Provesk (x), then Verifypk (x, y, π) = 1.

2. Uniqueness: For all (pk , sk) ∈ Setup(1λ) and inputs x ∈ {0, 1}in(λ), there
does not exist a tuple (y1, y2, π1, π2) such that:
(1) y1 6= y2, (2) Verifypk (x, y1, π1) = 1, and (3) Verifypk (x, y2, π2) = 1.

3. Pseudorandomness: For all p.p.t. distinguishers D = (D1, D2), there ex-
ists a negligible function µ such that:

Pr[(pk , sk)← Setup(1λ); (x, s)← D
Prove(·)
1 (1λ, pk); y0 = Fsk (x);

y1 ← {0, 1}out(λ); b← {0, 1}; b′ ← D
Prove(·)
2 (yb, s) :

b = b′ ∧ x 6∈ S] ≤ 1
2

+ µ(λ),

where S is the set of all inputs that D queries to its oracle Prove.

3 Algebraic Settings

We describe a scheme set in bilinear groups of prime order.

Bilinear Groups. Let G and GT be algebraic groups. A bilinear map is an efficient
mapping e : G × G → GT which is both: (bilinear) for all g ∈ G and a, b ← Z,
e(ga, gb) = e(g, g)ab; and (non-degenerate) if g generates G, then e(g, g) 6= 1.

3.1 Assumption

We will consider the following previously used assumption.

Assumption 1 (`-Decisional Diffie-Hellman Exponent [7, 9]) Let G,GT

be groups of prime order p ∈ Θ(2λ). For all p.p.t. adversaries A, there exists a
negligible function µ such that

Pr[g, h← G; a← Zp; y0 = e(g, h)a
`

; y1 ← GT ; b← {0, 1};

b′ ← A(g, h, ga, . . . , ga
`−1
, ga

`+1
, . . . , ga

2`

, yb) : b = b′] ≤ 1
2

+ µ(λ).

4 VRF Construction from the DDHE Assumption

Setup(1λ) We describe a system for inputs of length n, a polynomial in 1λ.5

The setup algorithm first chooses a bilinear group G of prime order p. It selects
5 Due to the fact that n can be polynomial in the security parameter, we can accept

inputs of arbitrary length by first applying a collision resistant hash function.



random generators g, h ∈ G. It next selects random values u0, u1, . . . , un ∈ Zp
and sets U0 = gu0 , U1 = gu1 , . . . , Un = gun . It then sets the keys as:

pk = (G, p, g, h, U0, . . . , Un), sk = (G, p, g, h, u0, . . . , un).

Evaluate(sk , x) For x ∈ {0, 1}n, the function Fsk evaluates x = x1x2...xn as:

Fsk (x) = e(gu0
Qn

i=1 u
xi
i , h)

Prove(sk , x) This algorithm outputs Fsk (x) together with a proof π comprised as
follows. For i = 1 to n, compute πi = g

Qi
j=1 u

xj
j . Next, compute π0 = gu0

Qn
j=1 u

xj
j .

Output the proof
π = (π0, π1, . . . , πn).

We observe that this formulation of π is redundant. It is not necessary to
include πi when xi = 0, since in this case, we have πi = πi−1 (for i > 1) and
π1 = g (for i = 1).

Verify(pk , x, y, π) The first step is to verify that all parts of the input are prop-
erly encoded group elements; in particular, that the proof π = (π0, . . . , πn) con-
tains legal encodings of elements in G. Next, the proof is verified in a step-by-step
manner by checking that

e(π1, g) =

{
e(g, g) if x1 = 0;
e(U1, g) otherwise.

and then for i = 2 to n, it holds that

e(πi, g) =

{
e(πi−1, g) if xi = 0;
e(πi−1, Ui) otherwise.

and finally that
e(π0, h) = y.

Output 1 if and only if all checks verify.

Efficiency Discussion. The output of the PRF Fsk (·) is one element in GT . As
noted above, our representation of π is redundant and can be simplified. For an
n-bit input x, the proof π requires at most ones(x) + 1 ≤ n + 1 elements in
G, where ones(·) counts the number of bits set to 1 in the input. (Individual)
verification of the VRF output requires ones(x) + 1 ≤ n+ 1 pairings, if e(g, g)
is provided in the public key.

For applications where several VRF outputs need to be verified at the same
time, one can apply standard batching techniques [2] to perform N verifications
for n-bit inputs at a cost of ≤ 3n = O(n) total pairing operations. The batch
verification algorithm takes as input N tuples of the form (xi, yi = fsk (xi), πi)



and outputs 1 if and only if all individual proofs verify, with an error rate of 2−k

for security parameter k.
The batching algorithm would first verify the respective group member-

ships of all yi and all values in πi = (πi,0, . . . , πi,n). It then chooses random
r0, . . . , rN ∈ {0, 1}k and verifies that:

e(
N∏
i=1

πri
i,1, g) = e(g

PN
j=1(1−xj)rj · U

PN
i=1 xiri

1 , g)

and then for t = 2 to n, it holds that

e(
N∏
i=1

πri
i,t, g) = e(

N∏
i=1

πxiri
i,t−1, g) · e(

N∏
i=1

πxiri
i,t−1, Ut)

To see the above, recall that e(1, g) = 1. Finally, we check that

e(
N∏
i=1

πri
i,0, h) =

N∏
i=1

yri
i .

Output 1 if and only if all checks verify.

5 Proof of DDHE VRF

Theorem 2. The VRF construction in Section 4 is secure with respect to Def-
inition 1 under the `-DDHE assumption.

Proof. The provability property is verifiable in a straightforward manner from
the construction. The uniqueness property also follows easily from the group
structure; that is, for any input, there is only one group element in G that is
the valid output and moreover, that it is not possible (even for an unbounded
adversary) to devise a valid proof for another element.

Showing pseudorandomness will require more work. To show pseudorandom-
ness, we will employ a proof technique from the Waters IBE system [29] that
allows us to partition the inputs into two sets: those the simulator can prop-
erly answer and those we hope the adversary chooses as a challenge. The main
difficulty in adapting this technique is that Waters was able to manipulate the
randomness in the IBE keys during simulation, whereas we are now dealing with
a deterministic function evaluation. Nevertheless, by strengthening the complex-
ity assumption and making subtle changes throughout the proof, we are able to
complete the argument.

Suppose there is a p.p.t. distinguisher D which makes Q Prove queries in the
pseudorandomness game and succeeds with probability 1

2 +ε. Then we show how
to use D to create an adversary B which breaks the `-DDHE assumption with
probability 1

2 + 3ε
64Q(n+1) , where ` = 4Q(n + 1) and n is the bit length of the

VRF input.
On input (G, p, g, h, ga, . . . , ga`−1

, ga
`+1
, . . . , ga

2`

, Y ), our `-DDHE solver B
proceeds as:



Setup The simulator first sets an integer m = 4Q and chooses an integer, k,
uniformly at random between 0 and n. Recall that Q is the number of queries
made by the distinguisher and n is the bit length of the VRF input. It then
chooses random integers r1, . . . , rn, r′ between 0 and m − 1. Additionally, the
simulator chooses random values s1, . . . , sn, s′ ∈ Zp. These values are all kept
internal to the simulator. Intuitively, the r values will be used to embed the
challenge, while the s values will be used as blinding factors to present the
proper distribution to the distinguisher.

For x ∈ {0, 1}n, let X ⊆ {1, . . . , n} be the set of the all i for which xi = 1.
To ease our analysis, we define the functions:

C(x) = m(1 + k) + r′ +
∑
i∈X

ri , Ĉ(x, i) =
i∑

j=1

xjrj

J(x) = s′
∏
i∈X

si , Ĵ(x, i) =
i∏

j=1

s
xj

j

For inputs x ∈ {0, 1}n, we define the binary function

K(x) =

{
0 if r′ +

∑n
j=1 xjrj ≡ 0 mod m;

1 otherwise.

The simulator sets U0 = (ga
m(1+k)+r′

)s
′

and Ui = (ga
ri )si for i = 1 to n. It

outputs the public key as (G, p, g, h, U0, . . . , Un), where implicitly the secret key
contains the values u0 = am(1+k)+r′s′ and {ui = arisi}i∈[1,n].

Prove The distinguisher, D, will ask for VRF evaluations and proofs. On query
input x, the simulator first checks if C(x) = ` and aborts if this is true. Otherwise,
it outputs the value

F (x) = e((ga
C(x)

)J(x), h).

It also computes π0 = (ga
C(x)

)J(x) and πi = (ga
Ĉ(x,i)

)Ĵ(x,i) for i = 1 to n, and
then outputs the proof π = (π0, π1, . . . , πn).

Given the above settings, it is easy to verify that for any value of x ∈ {0, 1}n:

1. The maximum value of C(x) is m(1 +n) + (1 +n)(m− 1) < 2m(1 +n) = 2`.
2. For any i ∈ [1, n], the maximum value of Ĉ(x, i) is (m−1)n < m(n+ 1) = `.

Thus, if C(x) 6= `, then the simulator can always correctly answer all parts of
the query.

Response Eventually D will provide a challenge input x∗. If C(x∗) = `, B will
return the value Y . When D responds with a guess b′, B will also output b′ as
its `-DDHE guess. If C(x∗) 6= `, B outputs a random bit as its `-DDHE guess.

This ends our description of `-DDHE adversary B.



A Series of Games Analysis. We now argue that any successful adversary D
against our scheme will have success in the game presented by B. To do this, we
first define a sequence of games, where the first game models the real security
game and the final game is exactly the view of the adversary when interacting
with B. We then show via a series of claims that if D is successful against Game
j, then it will also be successful against Game j + 1.

Game 1: This game is defined to be the same as the VRF security game in
Definition 1.

Game 2: The same as Game 1, with the exception that we keep a record of each
query made by D, which we’ll denote as −→x = (x(1), . . . , x(Q), x∗), where x∗

is the challenge input. At the end of the game, we set m = 4Q and choose
random integers −→r = (r1, . . . , rn, r′) between 0 and m − 1 and a random
integer k between 0 and n. We define the regular abort indicator function:

τ(−→x ,−→r , k) =

{
1 if r′ +

∑n
j=1 x

∗
jrj 6= m(n− k)

∨Q
i=1 K(x(i)) = 0;

0 otherwise.

This function τ(−→x ,−→r , k) evaluates to 0 if the queries −→x will not cause
a regular abort for the given choice of simulation values −→r , k. Consider
the probability over all simulation values for the given set of queries −→x as
ζ(−→x ) = Pr−→r ,k[τ(−→x ,−→r , k) = 0].
As in [29], the simulator estimates ζ(−→x ) as ζ ′ by evaluating τ(−→x ,−→r , k) with
fresh random −→r , k values a total of O(ε−2 ln(ε−1)ζ−1

min ln(ζ−1
min)) times. This

does not require running the distinguisher again.
D’s success in the game is then determined as follows:
1. Regular Abort. If τ(−→x ,−→r , k) = 1, then flip a coin b ∈ {0, 1} and say that
D wins if b = 0 and loses otherwise.

2. Balancing (Artificial) Abort.6 Let ζmin = 1
8Q(n+1) as derived from Claim 5.

If ζ ′ ≥ ζmin, B will abort with probability ζ′−ζmin

ζ′ (not abort with proba-
bility ζmin

ζ′ ). If it aborts, flip a coin b ∈ {0, 1} and say that D wins if b = 0
and loses otherwise.

3. Otherwise, D wins if it correctly guessed b′ as in the real security game.
Game 3: The same as Game 2, with the exception that B tests if any abort

conditions are satisfied, with each new query, and if so, follows the abort
procedure immediately (i.e., flips a coin b ∈ {0, 1} and says that D wins if
b = 0.)

Game 3 is exactly the view of D when interacting with B. We will shortly
prove that if D succeeds in Game 1 with probability 1

2 + ε, then it succeeds in
Game 3 with probability ≥ 1

2 + 3ε
64Q(n+1) .

6 In Waters [29], this is called the artificial abort. Recently, Bellare and Ristenpart
provided an analysis of the Waters’ IBE without the artificial abort [3]. We could
use their techniques here for an alternative, tighter analysis, but we would need
to expand the input size of our `-DDHE assumption by a factor of 1/ε, where the
distinguisher’s advantage is 1/2 + ε.



Establishing Three Claims about the Probability of Aborting. Before doing so, we
establish one claim which was used above and two claims which will be needed
shortly. Our first claim helps us establish a minimum probability that a given
set of queries do not cause a regular abort. We use this minimum during our
balancing abort in Game 2, to “even out” the probability of an abort over all
possible queries. In the next two claims, we employ Chernoff Bounds to establish
upper and lower bounds for any abort (regular or balancing) for any set of
queries. The latter two claims will be used in the analysis of D’s probability of
success in Game 2.

Claim. Let ζmin = 1
8Q(n+1) . For any query vector −→x , ζ(−→x ) ≥ ζmin.

Proof of Claim 5 is similar to a related argument in [29] and appears in
Appendix A.

Claim. For any set of queries −→x , the probability that there is an abort (i.e.,
regular or balancing) is ≥ 1− ζmin − 3

8ζminε.

Proof. Let ζx = ζ(−→x ), as defined in Section 5, be the probability that a set of
queries−→x do not cause a regular abort. In Game 2, T = O(ε−2 ln(ε−1)ζ−1

min ln(ζ−1
min))

samples are taken to approximate this value as ζ ′x. By Chernoff Bounds, we have
that for all −→x ,

Pr[Tζ ′x < Tζx(1− ε

8
)] < e−[128ε−2 ln((ε/8)−1)ζ−1

min ln(ζ−1
min )(ζmin)(ε/8)

2/2],

which reduces to
Pr[ζ ′x < ζx(1− ε

8
)] < ζmin

ε

8
.

Recall that for a measured ζ ′x an artificial abort will not happen with probability
ζmin/ζ

′
x. The probability of aborting is

Pr[abort] = 1− Pr[abort] = 1− Pr[RA] Pr[AA] = 1− ζx Pr[AA]

≥ 1− ζx(ζmin
ε

8
+

ζmin

ζx(1− ε/8)
)

≥ 1− (ζmin
ε

8
+

ζmin

1− ε/8
)

≥ 1− (
ζminε

8
+ ζmin(1 +

2ε
8

))

≥ 1− ζmin − ζmin
3ε
8

Claim. For any set of queries −→x , the probability that there is no abort (i.e.,
regular or balancing) is ≥ ζmin − 1

4ζminε.

Proof. Let ζx = ζ(−→x ), as defined in Section 5, be the probability that a set of
queries−→x do not cause a regular abort. In Game 2, T = O(ε−2 ln(ε−1)ζ−1

min ln(ζ−1
min))



samples are taken to approximate this value as ζ ′x. By Chernoff Bounds, we have
that for all −→x ,

Pr[Tζ ′x > Tζx(1 +
ε

8
)] < e−[256ε−2 ln((ε/8)−1)ζ−1

min ln(ζ−1
min )](ζmin)(ε/8)

2/4],

which reduces to
Pr[ζ ′x > ζx(1 +

ε

8
)] < ζmin

ε

8
.

The probability of not aborting is equal to the probability of not regular aborting
times the probability of not artificial aborting. Recall that for a measured ζ ′x an
artificial abort (AA) will not happen with probability ζmin/ζ

′
x. Therefore, for any

x, the Pr[AA] ≥ (1− ζminε
8 ) ζmin

ζx(1+ε/8) . It follows that

Pr[abort] ≥ ζx(1− ζminε

8
)

ζmin

ζx(1 + ε/8)
≥ ζmin(1− ε

8
)2 ≥ ζmin(1− 1

4
ε).

Analyzing D’s Probability of Success in the Games. Define D’s probability of
success in Game x as AdvD[Game x]. We reason about the probability of D’s
success in the series of games as follows.

Lemma 1. If AdvD[Game 1] = 1
2 + ε, then AdvD[Game 2] ≥ 1

2 + 3·ε
64Q(n+1) .

Proof. We begin by observing that AdvD[Game 2] is

= AdvD[Game 2|abort] · Pr[abort] + AdvD[Game 2|abort] · Pr[abort] (1)

=
1
2

Pr[abort] + AdvD[Game 2|abort] · Pr[abort] (2)

=
1
2

Pr[abort] + Pr[b = b′|abort] · Pr[abort] (3)

=
1
2

Pr[abort] + Pr[b = b′] · Pr[abort|b = b′] (4)

=
1
2

Pr[abort] + (
1
2

+ ε) · Pr[abort|b = b′] (5)

≥ 1
2

(1− ζmin − s1) + (
1
2

+ ε)(ζmin − s2) (6)

≥ 1
2

+ ε · ζmin − (s1 + s2) (7)

=
1
2

+
3 · ε · ζmin

8
(8)

=
1
2

+
3 · ε

64Q(n+ 1)
(9)

Equation 2 follows from the fact that, in the case of abort, D’s success is
determined by a coin flip. It would be very convenient if we could claim that
AdvD[Game 2 | abort] = AdvD[Game 1], but unfortunately, this is false. The
event that D wins Game 2 and the event of an abort are not independent;
however, we have inserted the balancing abort condition in the attempt to lessen



the dependence between these events. Equation 3 simply states that, when there
is no abort, D wins if and only if it guesses correctly. Equation 4 follows from
Bayes’ Theorem. In Equation 5, we observe that Pr[b = b′] is exactly D’s success
in Game 1.

Now, the purpose of our balancing abort is to even the probability of aborting,
for all queries of D, to be roughly ζmin. This will also get rid of the conditional
dependence on b = b′. There will be a small error, which must be taken into
account. Suppose that Pr[abort] ≥ 1− ζmin− s1 and Pr[abort] ≥ ζmin− s2, which
must hold for some error values s1, s2, then we derive Equation 6. Algebraic
manipulation and recalling that ε ≤ 1

2 , brings us to Equation 7.
We set ζmin = 1

8Q(n+1) from Claim 5. We know, for all queries, that Pr[abort] ≥
1 − ζmin − s1 where s1 = 3

8ζminε from Claim 5 and that Pr[abort] ≥ ζmin − s2
where s2 = 1

4ζminε from Claim 5. Plugging these values into Equations 7 and 8
establishes the lemma.

Lemma 2. AdvD[Game 3] = AdvD[Game 2].

Proof. We make the explicit observation that these games are equivalent by
observing that their only difference is the time at which the regular aborts occur.
The artificial abort stage is identical. All public parameters, evaluations and
proofs have the same distribution up to the point of a possible abortion. In
Game 2, the simulator receives all the queries −→x , then checks if τ(−→x ,−→r , k) = 1
and aborts, taking a random guess, if so. In Game 3, the simulator checks with
each new query x if K(x) = 0, which implies that the ending τ evaluation will be
1, and aborts, taking a random guess, if so. Therefore, the output distributions
will be the same.

Tightness of the Reduction. Using the (asymptotically) tighter analysis tech-
niques of Hofheinz and Kiltz [19], the 1/n factor loss in our reduction, that
occurs due to the Balancing Abort in Game 2, could be reduced to 1/

√
n. Since

the 1/Q factor loss is the dominating term in our concrete analysis, this improved
analysis may provide only modest gains in practice.

6 Conclusion and Open Directions

Verifiable random functions are an interesting and useful cryptographic primi-
tive, but to date, all known constructions for exponentially-large message spaces
required interactive complexity assumptions or their concrete security degraded
by an exponential factor. In this work, we presented an efficient construction
which can handle arbitrarily-large inputs (by first applying a collision-resistant
hash function) based on the `-Decisional Diffie-Hellman Exponent assumption.
Our security proof used techniques similar to the Waters IBE [29], where we par-
titioned the input space into those for which we can provide a proof and those
which we cannot. We then showed that with non-negligible probability, the ad-
versary will only query us on inputs for which we can provide proofs, except for



the challenge query, for which the proof is unknown. The main technical differ-
ence when applying Waters’ proof techniques is we must move from an additive
to a multiplicative structure, work without randomness in the output to manipu-
late during the reduction, and operate under a different complexity assumption.
Fortunately, we were still able to properly simulate access to an exponentially-
large input space using a complexity assumption with only a polynomial-size
input.

We believe this work is an important step towards better understanding
how to construct verifiable random functions. It leaves open many interesting
questions. First, it would be interesting to improve on the efficiency of our con-
struction, especially by realizing a seed, proof size and verification time that are
sublinear in the bit-length of the input. Second, one would like to know if it is
possible to realize a VRF under a complexity assumption with a fixed input size,
such as Decisional Diffie-Hellman. If this is not possible, perhaps one can show
that a q-based assumption (with at least a polynomial number of terms) is in-
herently necessary. Finally, it would be interesting to see if this new construction
allows for any additional applications of VRFs or if it can be used to reduce the
overall complexity assumptions required by any constructions using VRFs.
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A Proof of Claim 5

Proof. In other words, the probability of the simulation not triggering a general
abort is at least ζmin. This analysis follows that of [29], which we reproduce here
for completeness. Without loss of generality, we can assume the adversary always
makes the maximum number of queries Q (since the probability of not aborting
increases with fewer queries). Fix an arbitrary −→x = (x(1), . . . , x(Q), x∗) ∈ {0, 1}n.
Then, with the probability over the choice of −→r , k, we have that Pr[abort on −→x ]
is

= Pr[
Q∧
i=1

K(x(i)) = 1 ∧ r′ +
n∑
j=1

x∗jrj = m(n− k)] (10)

= (1− Pr[
Q∨
i=1

K(x(i)) = 0]) Pr[r′ +
n∑
j=1

x∗jrj = m(n− k)|
Q∧
i=1

K(x(i)) = 1](11)

≥ (1−
Q∑
i=1

Pr[K(x(i)) = 0]) Pr[r′ +
n∑
j=1

x∗jrj = m(n− k)|
Q∧
i=1

K(x(i)) = 1](12)

= (1− Q

m
) · Pr[r′ +

n∑
j=1

x∗jrj = m(n− k) |
Q∧
i=1

K(x(i)) = 1] (13)

=
1

n+ 1
· (1− Q

m
) · Pr[K(x∗) = 0 |

Q∧
i=1

K(x(i)) = 1] (14)

=
1

n+ 1
· (1− Q

m
) ·

Pr[K(x∗) = 0] · Pr[
∧Q
i=1K(x(i)) = 1] | K(x∗) = 0]

Pr[
∧Q
i=1K(x(i)) = 1]]

(15)

≥ 1
(n+ 1)m

· (1− Q

m
) · Pr[

Q∧
i=1

K(x(i)) = 1] | K(x∗) = 0] (16)

=
1

(n+ 1)m
· (1− Q

m
) · (1− Pr[

Q∨
i=1

K(x(i)) = 0] | K(x∗) = 0]) (17)

≥ 1
(n+ 1)m

· (1− Q

m
) · (1−

Q∑
i=1

Pr[K(x(i)) = 0] | K(x∗) = 0]) (18)

=
1

(n+ 1)m
· (1− Q

m
)2 (19)

≥ 1
(n+ 1)m

· (1− 2Q
m

) (20)

=
1

8Q(n+ 1)
(21)

Equations 13 and 16 derive from Pr[K(x) = 0] = 1
m for any query x. Equation 14

gets a factor of 1
n+1 from the simulator taking a guess of k. Equation 15 follows



from Bayes’ Theorem. Equation 19 follows from the pairwise independence of
the probabilities that K(x) = 0,K(x′) = 0 for any pair of queries x 6= x′, since
they will differ in at least one random rj value. Equation 21 follows from our
setting of m = 4Q.


