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Abstract. We present a new approach to the design of IND-CCA2 secure
hybrid encryption schemes in the standard model. Our approach pro-
vides an efficient generic transformation from 1-universal to 2-universal
hash proof systems. The transformation involves a randomness extractor
based on a 4-wise independent hash function as the key derivation func-
tion. Our methodology can be instantiated with efficient schemes based
on standard intractability assumptions such as Decisional Diffie-Hellman,
Quadratic Residuosity, and Paillier’s Decisional Composite Residuosity.
Interestingly, our framework also allows to prove IND-CCA2 security of
a hybrid version of 1991’s Damg̊ard’s ElGamal public-key encryption
scheme under the DDH assumption.
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1 Introduction

Chosen-Ciphertext Security. Indistinguishability against chosen-ciphertext
attack (IND-CCA2 security) is by now the accepted standard security definition
for public-key encryption schemes. It started with the development of security
under lunchtime attacks (also called IND-CCA1) by Naor and Yung [20], who
also gave a proof of feasibility using inefficient non-interactive zero-knowledge
techniques. This was extended to the more involved systems with IND-CCA2
security in their full generality [22, 9].

Known practical constructions. Efficient designs in the standard model
were first presented in the breakthrough works of Cramer and Shoup [2–4, 24].
At the heart of their design methodology is the notion of hash proof systems
(HPSs), generalizing the initial system based on the decisional Diffie-Hellman
(DDH) problem. Moreover, they are the first to formalize the notion of “Hybrid
Encryption,” where a public key cryptosystem is used to encapsulate the (ses-
sion) key of a symmetric cipher which is subsequently used to conceal the data.
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This is also known as the KEM-DEM approach, after its two constituent parts
(the KEM for key encapsulation mechanism, the DEM for data encapsulation
mechanism); it is the most efficient way to employ a public key cryptosystem
(and encrypting general strings rather than group elements).

Kurosawa and Desmedt [17] later improved upon the original work of Cramer
and Shoup with a new paradigm. Whereas Cramer and Shoup [4] require both the
KEM and the DEM IND-CCA2 secure, Kurosawa and Desmedt show that with a
stronger requirement on the DEM (i.e., one-time authenticated encryption), the
requirement on the KEM becomes weaker and can be satisfied with any strongly
2-universal hash proof system. (Cramer and Shoup need both a 2-universal and
a smooth hash proof system.)

Main Result. The main result of this work is a new paradigm for constructing
IND-CCA2 secure hybrid encryption schemes, based on the Kurosawa-Desmedt
paradigm. At its core is a surprisingly clean and efficient new method employing
randomness extraction (as part of the key derivation) to transform a universal1
hash proof system (that only assures IND-CCA1 security) into a universal2 hash
proof system. In fact, our method also works for a more general class of hash
proof systems which we denote “κ-entropic” hash proof systems. From that point
on we follow the Kurosawa-Desmedt paradigm: the combination of a universal2
HPS with a one-time authenticated encryption scheme (as DEM) will provide an
IND-CCA2 secure hybrid encryption scheme. The efficient transformation enables
the design of new and efficient IND-CCA2 secure hybrid encryption schemes
based on various hard subset membership problem, such as the DDH assumption,
Paillier’s Decisional Composite Residuosity (DCR) assumption [21], the family of
Linear assumptions [14, 23] that generalizes DDH, and the Quadratic Residuosity
(QR) assumption.

For the new transformation to work we require a sufficiently compressing
4-wise independent hash function (made part of the public key); we also need
a generalization of the leftover hash lemma [13] that may be of independent
interest.

Applications. One application of our method is centered around Damg̊ard’s
public-key scheme [5] (from 1991) which he proved IND-CCA1 secure under the
rather strong knowledge of exponent assumption.4 This scheme can be viewed
as a “double-base” variant of the original ElGamal encryption scheme [10] and
consequently it is often referred to as Damg̊ard’s ElGamal in the literature. We
first view the scheme as a hybrid encryption scheme (as advocated in [24, 4]),
applying our methodology of randomness extraction in the KEM’s symmetric
key derivation before the authenticated encryption (as DEM). The resulting
scheme is a hybrid Damg̊ard’s ElGamal which is IND-CCA2 secure, under the
standard DDH assumption. We furthermore propose a couple of variants of our
basic hybrid scheme that offer certain efficiency tradeoffs. Compared to Cramer

4 This assumption basically states that given two group elements (g1, g2) with un-
known discrete logarithm ω = logg1

(g2), the only way to efficiently compute (gx
1 , g

x
2 )

is to know the exponent x.
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and Shoup’s original scheme [2] and the improved scheme given by Kurosawa-
Desmedt [17], our scheme crucially removes the dependence on the hard to con-
struct target collision hash functions (UOWHF), using an easy-to-instantiate
4-wise independent hash function instead. Furthermore, the IND-CCA2 security
of hybrid Damg̊ard’s ElGamal can be directly explained through our randomness
extraction paradigm when applying it to the DDH-based universal1 hash proof
system. In contrast, due to the dependence on the target colission resistant hash
function, the efficient schemes from [2, 17] cannot be directly explained through
Cramer and Shoup’s hash proof system framework [3] and therefore all require
separate proofs.

Another application of our method is given by a κ-entropic HPS from the QR
assumption which is a variant of a HPS by Cramer and Shoup [3]. The resulting
IND-CCA2 secure encryption scheme has very compact ciphertexts which only
consist of one single element in Z∗N plus the symmetric part. Like the scheme by
Cramer and Shoup, the number of exponentiations in ZN (for encryption and
decryption) is linear in the security parameter. Hofheinz and Kiltz [15] give an
IND-CCA2 secure encryption scheme based on the factoring assumption that is
much more efficient than ours but has slightly larger ciphertexts.

Related Work. Cramer and Shoup [3] already proposed a generic transfor-
mation from universal1 to universal2 HPSs. Unfortunately their construction
involves a significant overhead: the key of their transformed universal2 HPS has
linearly many keys of the original universal1 HPS. We further remark that the
notion of randomness extraction has had numerous applications in complexity
and cryptography, and in particular in extracting random keys at the final step
of key exchange protocols. Indeed, Cramer and Shoup [3] already proposed using
a pairwise independent hash function to turn a universal1 HPS into a universal2
HPS. Our novel usage is within the context of hybrid encryption as a tool that
shifts the integrity checking at decryption time solely to the DEM portion. In
stark contrast to the generic transformations by Cramer and Shoup ours is prac-
tical.

Various previous proofs of variants of Damg̊ard’s original scheme have been
suggested after Damg̊ard himself proved it IND-CCA1 secure under the strong
“knowledge of exponent” assumption (an assumption that has often been criti-
cized in the literature; e.g., it is not efficiently falsifiable according to the clas-
sification of Naor [19]). More recent works are by Gjøsteen [12] who showed
the scheme IND-CCA1 secure under some interactive version of the DDH as-
sumption, where the adversary is given oracle access to some (restricted) DDH
oracle. Also, Wu and Stinson [26], and at the same time Lipmaa [18] improve
on the above two results. However, their security results are much weaker than
ours: they only prove IND-CCA1 security of Damg̊ard’s ElGamal, still requiring
security assumptions that are either interactive or of “knowledge of exponent”
type. Desmedt and Hieu [8] recently showed a hybrid variant that is IND-CCA2
secure, yet under an even stronger assumption than Damg̊ard’s. Finally, and
concurrently with our work, Desmedt et al. [7] recently showed a hybrid variant
IND-CCA1 secure under the DDH assumption and a weaker KDF than ours.
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2 Preliminaries

2.1 Notation

If x is a string, then |x| denotes its length, while if S is a set then |S| denotes
its size. If k ∈ N then 1k denotes the string of k ones. If S is a set then s←R S
denotes the operation of picking an element s of S uniformly at random. We
write A(x, y, . . .) to indicate that A is an algorithm with inputs x, y, . . . and by
z ←R A(x, y, . . .) we denote the operation of running A with inputs (x, y, . . .) and
letting z be the output. We write lg x for logarithms over the reals with base 2.
The statistical distance between two random variables X and Y having a com-
mon domain X is ∆ [X , Y ] = 1

2

∑
x∈X |Pr [X = x ]−Pr [Y = x ]|. We also define

the conditional statistical distance as ∆E [X , Y ] = 1
2

∑
x∈X |Pr [X = x | E ] −

Pr [Y = x | E ]|. The min-entropy of a random variableX is defined asH∞(X) =
− lg(maxx∈X Pr[X = x]).

2.2 Public-Key Encryption

A public key encryption scheme PKE = (Kg,Enc,Dec) with message spaceM(k)
consists of three polynomial time algorithms (PTAs), of which the first two, Kg
and Enc, are probabilistic and the last one, Dec, is deterministic. Public/secret
keys for security parameter k ∈ N are generated using (pk , sk) ←R Kg(1k).
Given such a key pair, a message m ∈M(k) is encrypted by C ←R Enc(pk ,m);
a ciphertext is decrypted by m←R Dec(sk,C ), where possibly Dec outputs ⊥ to
denote an invalid ciphertext. For consistency, we require that for all k ∈ N, all
messages m ∈ M(k), it must hold that Pr[Dec(sk ,Enc(pk ,m)) = m] = 1 where
the probability is taken over the above randomized algorithms and (pk , sk)←R

Kg(1k).
The security we require for PKE is IND-CCA2 security [22, 9]. We define the

advantage of an adversary A = (A1,A2) as

Advcca2
PKE,A(k) def=

∣∣∣∣∣∣∣∣Pr

b = b′ :

(pk , sk)←R Kg(1k)
(m0,m1,St)←R A

Dec(sk ,·)
1 (pk)

b←R {0, 1} ; C ∗ ←R Enc(pk ,mb)
b′ ←R A

Dec(sk ,·)
2 (C ∗,St)

− 1
2

∣∣∣∣∣∣∣∣ .
The adversary A2 is restricted not to query Dec(sk , ·) with C ∗. PKE scheme
PKE is said to be indistinguishable against chosen-ciphertext attacks (IND-CCA2
secure in short) if the advantage function Advcca2

PKE,A(k) is a negligible function in
k for all adversaries A = (A1,A2) with probabilistic PTA A1, A2.

For integers k, t,Q we also define Advcca2
PKE,t,Q(k) = maxA Advcca2

PKE,A(k), where
the maximum is over all A that run in time at most t while making at most Q
decryption queries.

We also mention the weaker security notion of indistinguishability against
lunch-time attacks (IND-CCA1 security), which is defined as IND-CCA2 security
with the restriction that the adversary is not allowed to make decryption queries
after having seen the challenge ciphertext.
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2.3 Hash Proof Systems

Smooth Projective Hashing. We recall the notion of hash proof systems as
introduced by Cramer and Shoup [3]. Let C,K be sets and V ⊂ C a language.
In the context of public-key encryption (and viewing a hash proof system as
a key encapsulation mechanism (KEM) [4] with “special algebraic properties”)
one may think of C as the set of all ciphertexts, V ⊂ C as the set of all valid
(consistent) ciphertexts, and K as the set of all symmetric keys. Let Λsk : C → K
be a hash function indexed with sk ∈ SK, where SK is a set. A hash function
Λsk is projective if there exists a projection µ : SK → PK such that µ(sk) ∈ PK
defines the action of Λsk over the subset V. That is, for every C ∈ V, the value
K = Λsk (C) is uniquely determined by µ(sk) and C. In contrast, nothing is
guaranteed for C ∈ C \ V, and it may not be possible to compute Λsk (C) from
µ(sk) and C. More precisely, following [14] we define universal1 and universal2
as follows.

universal1. The projective hash function is ε1-almost universal1 if for all C ∈
C \ V,

∆ [(pk , Λsk (C) , (pk ,K)] ≤ ε1 (1)

where in the above pk = µ(sk) for sk ←R SK and K ←R K.
universal2. The projective hash function is ε2-almost universal2 if for all

C,C∗ ∈ C \ V with C 6= C∗,

∆ [(pk , Λsk (C∗), Λsk (C) , (pk , Λsk (C∗),K)] ≤ ε2 (2)

where in the above pk = µ(sk) for sk ←R SK and K ←R K.

We introduce the following relaxation of the universal1 property which only
requires that for all C ∈ C \ V, given pk = µ(sk), Λsk (C) has high min entropy.

κ-entropic. The projective hash function is ε1-almost κ-entropic if for all C ∈
C \ V,

Pr [H∞(Λsk (C) | pk) ≥ κ ] ≥ 1− ε1 (3)

where in the above pk = µ(sk) for sk ←R SK.

From the above definitions, we get the following simple lemma.

Lemma 1. Every ε1-almost universal1 projective hash function is ε1-almost κ-
entropic, for κ = lg(|K|).

Collision probability. To a projective hash function we also associate the col-
lision probability, δ, defined as

δ = max
C,C∗∈C\V,C 6=C∗

(Prsk [Λsk (C) = Λsk (C∗) ]) . (4)
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Hash Proof System. A hash proof system HPS = (Param,Pub,Priv) consists
of three algorithms. The randomized algorithm Param(1k) generates parametrized
instances of params = (group,K, C,V,PK,SK, Λ(·) : C → K, µ : SK → PK),
where group may contain some additional structural parameters. The determin-
istic public evaluation algorithm Pub inputs the projection key pk = µ(sk),
C ∈ V and a witness r of the fact that C ∈ V and returns K = Λsk (C). The de-
terministic private evaluation algorithm Priv inputs sk ∈ SK and returns Λsk (C),
without knowing a witness. We further assume that µ is efficiently computable
and that there are efficient algorithms given for sampling sk ∈ SK, sampling
C ∈ V uniformly (or negligibly close to) together with a witness r, sampling
C ∈ C uniformly, and for checking membership in C.

We say that a hash proof system is universal1 (resp., κ-entropic, universal2)
if for all possible outcomes of Param(1k) the underlying projective hash function
is ε1(k)-almost universal1 (resp., ε1(k)-almost entropic, ε2(k)-almost universal2)
for negligible ε1(k) (resp., ε2(k)). Furthermore, we say that a hash proof system
is perfectly universal1 (resp., κ-entropic, universal2) if ε1(k) = 0 (resp., ε2(k)).

Subset Membership Problem. As computational problem we require that the
subset membership problem is hard in HPS which means that for random C0 ∈ V
and random C1 ∈ C \ V the two elements C0 and C1 are computationally indis-
tinguishable. This is captured by defining the advantage function Advsm

HPS,A(k)
of an adversary A as

Advsm
HPS,A(k) def=

∣∣Pr [ A(C,V, C1) = 1 ]− Pr [ A(C,V, C0) = 1 ]
∣∣

where C is taken from the output of Param(1k), C1 ←R C and C0 ←R C \ V.

Hash Proof Systems with Trapdoor. Following [17], we also require that
the subset membership problem can be efficiently solved with a master trap-
door. More formally, we assume that the hash proof system HPS additionally
contains two algorithms Param′ and Decide. The alternative parameter genera-
tor Param′(1k) generates output indistinguishable from the one of Param(1k) and
additionally returns a trapdoor ω. The subset membership deciding algorithm
Decide(params, ω, x) returns 1 if x ∈ V, and 0, otherwise. All known hash proof
systems actually have such a trapdoor.

2.4 Symmetric Encryption

A symmetric encryption scheme SE = (E,D) is specified by its encryption algo-
rithm E (encrypting m ∈M(k) with keys S ∈ KSE(k)) and decryption algorithm
D (returning m ∈ M(k) or ⊥). Here we restrict ourselves to deterministic algo-
rithms E and D.

The most common notion of security for symmetric encryption is that of
(one-time) ciphertext indistinguishability (IND-OT), which requires that all ef-
ficient adversaries fail to distinguish between the encryptions of two messages
of their choice. Another common security requirement is ciphertext authenticity.
(One-time) ciphertext integrity (INT-OT) requires that no efficient adversary
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can produce a new valid ciphertext under some key when given one encryption
of a message of his choice under the same key. A symmetric encryption scheme
which satisfies both requirements simultaneously is called secure in the sense of
authenticated encryption (AE-OT secure). Note that AE-OT security is a stronger
notion than chosen-ciphertext security. Formal definitions and constructions are
provided in the full version [16]. There we also recall how to build a symmetric
scheme with k-bit keys secure in the sense of AE-OT from a (computationally se-
cure) one-time symmetric encryption scheme, a (computationally secure) MAC,
and a (computationally secure) key-derivation function.

3 Randomness Extraction

In this section we review a few concepts related to probability distributions
and extracting uniform bits from weak random sources. As a technical tool for
our new paradigm, we will prove the following generalization of the leftover
hash lemma [13]: if H is 4-wise independent, then (H,H(X),H(X̃)) is close to
uniformly random, where X, X̃ can be dependent (but of course we have to
require X 6= X̃).

Let H be a family of hash functions H : X → Y. With |H| we denote the
number of functions in this family and when sampling from H we assume a
uniform distribution. Let k > 1 be an integer, the hash-family H is k-wise
independent if for any sequence of distinct elements x1, . . . , xk ∈ X the random
variables H(x1), . . . ,H(xk), where H←R H, are uniform random. We refer to [6]
for a simple and efficient construction of a compressing k-wise independent hash
function.

Recall that the leftover hash lemma states that for a 2-wise independent hash
function H and a random variable X with min-entropy exceeding the bitlength
of H’s range, the random variable (H,H(X)) is close to uniformly random [13].

Lemma 2. Let X ∈ X be a random variable where H∞(X) ≥ κ. Let H be a
family of pairwise independent hash functions with domain X and image {0, 1}`.
Then for H←R H and U` ←R {0, 1}`, ∆ [(H,H(X)) , (H, U`)] ≤ 2(`−κ)/2.

We will now prove a generalization of the leftover hash lemma that states
that even when the hash function is evaluated in two distinct points, the two out-
puts jointly still look uniformly random. To make this work, we need a 4-wise
independent hash function and, as before, sufficient min-entropy in the input
distribution. We do note that, unsurprisingly, the loss of entropy compared to
Lemma 2 is higher, as expressed in the bound on the statistical distance (or al-
ternatively, in the bound on the min-entropy required in the input distribution).

Lemma 3. Let (X, X̃) ∈ X ×X be two random variables (having joint distribu-
tion) where H∞(X) ≥ κ,H∞(X̃) ≥ κ and Pr[X = X̃] ≤ δ. Let H be a family of
4-wise independent hash functions with domain X and image {0, 1}`. Then for
H←R H and U2` ←R {0, 1}2`,

∆
[
(H,H(X),H(X̃)) , (H, U2`)

]
≤
√

1 + δ · 2`−κ/2 + δ .
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Proof. We will first prove the lemma for δ = 0, and at the end show how the
general case δ > 0 can be reduced to it. Let d = lg |H|. For a random variable
Y and Y ′ an independent copy of Y , we denote with Col[Y ] = Pr[Y = Y ′] the
collision probability of Y . In particular,

Col[(H,H(X),H(X̃))]

= Pr
H,(X,X̃),H′,(X′,X̃′)

[(H,H(X),H(X̃)) = (H′,H′(X ′),H′(X̃ ′))]

= Pr
H,H′

[H = H′] · Pr
H,(X,X̃),H′,(X′,X̃′)

[(H(X),H(X̃)) = (H′(X ′),H′(X̃ ′)) | H = H′]

= Pr
H,H′

[H = H′]︸ ︷︷ ︸
=2−d

· Pr
H,(X,X̃),(X′,X̃′)

[(H(X),H(X̃)) = (H(X ′),H(X̃ ′))] . (5)

We define the event E, which holds if X, X̃,X ′, X̃ ′ are pairwise different.

Pr
(X,X̃),(X′,X̃′)

[¬E] = Pr
(X,X̃),(X′,X̃′)

[X = X ′ ∨X = X̃ ′ ∨ X̃ = X ′ ∨ X̃ = X̃ ′]

≤ 4 · 2−κ = 2−κ+2

Where in the first step we used that δ = 0, and thus X 6= X̃,X ′ 6= X̃ ′. In
the second step we use the union bound and also our assumption that the min
entropy of X and X̃ is at least κ (and thus, e.g., Pr[X = X ′] ≤ 2−κ). With this
we can write (5) as

Col[H,H(X),H(X̃)] ≤ 2−d · (Pr[(H(X),H(X̃)) = (H(X ′),H(X̃ ′)) | E] + Pr[¬E])

≤ 2−d(2−2` + 2−κ+2)

where in the second step we used that H is 4-wise independent. Let Y be a
random variable with support Y and U be uniform over Y, then

‖Y − U‖22 = Col[Y ]− |Y|−1 .

In particular,

‖(H,H(X),H(X̃))− (H, U2`)‖22 = Col[H,H(X),H(X̃)]− 2−d−2`

≤ 2−d(2−2` + 2−κ+2)− 2−d−2` = 2−d−κ+2 .

Using that ‖Y ‖1 ≤
√
|Y|‖Y ‖2 for any random variable Y with support Y, we

obtain

∆
[
(H,H(X),H(X̃)) , (H, U2`)

]
=

1
2
‖(H,H(X),H(X̃))− (H, U2`)‖1

≤ 1
2

√
2d+2` · ‖(H,H(X),H(X̃))− (H, U2`)‖2

≤ 1
2

√
2d+2` ·

√
2−d−κ+2 = 2`−κ/2 .
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This concludes the proof of (3) for δ = 0. Now consider X, X̃ as in the statement
of the lemma where Pr[X = X̃] ≤ δ for some δ > 0. Let π denote any permuta-
tion over X without a fixpoint, i.e., π(x) 6= x for all x ∈ X . Let (Y, Ỹ ) be sampled
as follows: first sample (X, X̃), if X 6= X̃ let (Y, Ỹ ) = (X, X̃), otherwise sample
Y ←R X uniformly at random and set Ỹ := π(Y ). By definition Pr[Y = Ỹ ] = 0,
and as (Y, Ỹ ) has the same distribution as (X, X̃) except with probability δ,
∆
[
(X, X̃) , (Y, Ỹ )

]
≤ δ. Moreover, using that maxx∈X Pr[X = x] ≤ 2−κ

max
x∈X

Pr[Y = x] ≤ 2−κ + δ/|X | ≤ (1 + δ)2−κ .

Thus H∞(Y ) ≥ κ− lg(1 + δ), and similarly H∞(Ỹ ) ≥ κ− lg(1 + δ). We can now
apply the lemma for the special case δ = 0 (which we proved) and get

∆
[
(H,H(Y ),H(Ỹ )) , (H, U2`)

]
≤ 2`−(κ−lg(1+δ))/2 =

√
1 + δ · 2`−κ/2 .

The lemma now follows as

∆
[
(H,H(X),H(X̃)) , (H, U2`)

]
≤ ∆

[
(H,H(Y ),H(Ỹ )) , (H, U2`)

]
+∆

[
(X, X̃) , (Y, Ỹ )

]
≤
√

1 + δ · 2`−κ/2 + δ .

4 Hybrid Encryption from Randomness Extraction

In this section we revisit the general construction of hybrid encryption from
universal2 hash proof systems. As our main technical result we show an efficient
transformation from a κ-entropic to a universal2 HPS, so in particular also from
a universal1 to a universal2 HPS. Combining the latter universal2 HPS with
an AE-OT secure symmetric cipher gives an IND-CCA2 secure hybrid encryption
scheme. This result can be readily applied to all known hash proof systems with a
hard subset membership problem that are universal1 (e.g., from Paillier’s DCR,
the DDH/n-Linear [14, 23] assumptions) or κ-entropic (e.g., from the QR [3]
assumption) to obtain a number of new IND-CCA2 secure hybrid encryption
schemes. More concretely, in Section 5 we will discuss the consequences for DDH-
based schemes and in Section 6 for QR-based schemes.

4.1 Hybrid Encryption from HPSs

Recall the notion of a hash proof system from Section 2.3. Kurosawa and Desmedt
[17] proposed the following hybrid encryption scheme which improved the schemes
from Cramer and Shoup [3].

Let HPS = (Param,Pub,Priv) be a hash proof system and let SE = (E,D) be
an AE-OT secure symmetric encryption scheme whose key-space KSE matches
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the key-space K of the HPS.5 The system parameters of the scheme consist of
params ←R Param(1k).

Kg(k). Choose random sk ←R SK and define pk = µ(sk) ∈ PK. Return (pk , sk).
Enc(pk ,m). Pick C ←R V together with its witness r that C ∈ V. The session

key K = Λsk (C) ∈ K is computed as K ← Pub(pk , C, r). The symmetric
ciphertext is ψ ← EK(m). Return the ciphertext (C , ψ).

Dec(sk ,C ). Reconstruct the key K = Λsk (C) as K ← Priv(sk , C) and return
{m,⊥} ← DK(ψ).

Note that the trapdoor property of the HPS is not used in the actual scheme:
it is only needed in the proof. However, as an alternative the trapdoor can be
added to the secret key.6 This allows explicit rejection of invalid ciphertexts
during decryption. The security of this explicit-rejection variant is identical to
that of the scheme above.

The following was proved in [17, 11, 14].

Theorem 4. Assume HPS is (ε2) universal2 with hard subset membership prob-
lem (with trapdoor), and SE is AE-OT secure. Then the encryption scheme is
secure in the sense of IND-CCA2. In particular,

Advcca2
PKE,t,Q(k) ≤ Advsm

HPS,t(k) + 2Q · Advint-ot
SE,t (k) + Advind-ot

SE,t (k) +Q · ε2 .

We remark that even though in general the KEM part of the above scheme
cannot be proved IND-CCA2 secure [1], it can be proved “IND-CCCA” secure.
The latter notion was defined in [14] and proved sufficient to yield IND-CCA2
secure encryption when combined with an AE-OT secure cipher. We also remark
that the security bound in the above theorem implicitly requires that the image
of Λsk (·) restricted to V is sufficiently large (say, contains at least 2k elements).
This is since otherwise the key-space of the symmetric scheme is too small and
the two advantages functions Advint-ot

SE,t (k) and Advind-ot
SE,t (k) cannot be negligible.

There is also an analogue “lite version” for universal1 HPS, giving IND-CCA1
only (and using a slightly weaker asymmetric primitive). It can be stated as
follows.

Theorem 5. Assume HPS is universal1 with hard subset membership problem
and SE is WAE-OT secure. Then the encryption scheme is secure in the sense
of IND-CCA1.

We note that if the HPS is only κ-entropic then we can use the standard Leftover
Hash Lemma (Lemma 2) to obtain a universal1 HPS.

5 The requirement that KSE = K is not a real restriction since once can always apply
a key-derivation function KDF : K → KSE.

6 Strictly speaking the algorithm to sample elements in V (with witness) should then
be regarded as part of the public key instead of simply a system parameter.
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4.2 A generic transformation from κ-entropic to universal2 HPSs

We propose the following transformation. Given a projective hash function Λsk :
C → K with projection µ : SK → PK and a family of hash functions H with
H : K → {0, 1}`. Then we define the hashed variant of it as:

ΛHsk : C → {0, 1}`, ΛHsk (C) := H(Λsk (C)) .

We also define PKH = PK × H and SKH = SK × H, such that the hashed
projection is given by µH : SKH → PKH, µH(sk ,H) = (pk ,H). This also induces
a transformation from a hash proof system HPS into HPSH, where the above
transformation is applied to the projective hash function. Note that C and V are
the same for HPS and HPSH (so that in particular the trapdoor property for the
language V is inherited).

We are now ready to state our main theorem. To simplify the bounds, we
will henceforth assume that δ ≤ 1

2 and ` ≥ 6.

Theorem 6. Assume HPS is ε1-almost κ-entropic with collision probability δ ≤
1/2 and H is a family of 4-wise independent hash functions with H : K → {0, 1}`
and ` ≥ 6. Then HPSH is ε2-almost universal2 for

ε2 = 2`−
κ−1

2 + 3ε1 + δ .

Proof. Let us consider, for all C,C∗ ∈ C\V with C 6= C∗, the statistical distance
relevant for universal2 for HPS and let Y be the following random variable

Y := (pk ,H, U2`) ,

where pk = µ(sk) for sk ←R SK, H ←R H and U2` ←R {0, 1}2`. Then we can
use the triangle inequality to get

∆ [(pk ,H,H(Λsk (C∗)),H(Λsk (C)) , (pk ,H,H(Λsk (C∗)), U`)]

≤ ∆ [(pk ,H,H(Λsk (C∗)),H(Λsk (C))) , Y ] +∆ [Y , (pk ,H,H(Λsk (C∗)), U`)] (6)

where as before pk = µ(sk) for sk ←R SK, H ←R H and U` ←R {0, 1}`. In the
latter probability space, let EC∗ be the event that H∞(Λsk (C∗)) | pk) ≥ κ. We
can upper bound the second term of (6), using again the triangle inequality in
the first step, as

∆ [Y , (pk ,H,H(Λsk (C∗)), U`)] ≤ ∆EC∗ [Y , (pk ,H,H(Λsk (C∗)), U`)] + Pr
sk

[¬EC∗ ]

≤ 2
`−κ
2 + ε1 . (7)

In the last step we used the (standard) leftover hash-lemma (Lemma 2). Let EC
be the event that H∞(Λsk (C)) | pk) ≥ κ. Similarly, we now bound the first term
of (6) as

∆ [(pk ,H,H(Λsk (C∗)),H(Λsk (C))) , Y ]

≤ ∆EC∧EC∗ [(pk ,H,H(Λsk (C∗)),H(Λsk (C))) , Y ] + Pr
sk

[¬EC ∨ ¬EC∗ ]

≤
√

1 + δ · 2`−κ2 + δ + 2ε1 ,
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where in the last step we used Lemma 3. Combining this with (7) and using
δ ≤ 1/2 and ` ≥ 6 we obtain the required bound on ε2.

4.3 Hybrid Encryption from κ-entropic HPSs

Putting the pieces from the last two sections together we get a new IND-CCA2
secure hybrid encryption scheme from any κ-entropic hash proof system. Let
HPS = (Param,Pub,Priv) be a hash proof system, let H be a family of hash
functions with H : K → {0, 1}` and let SE = (E,D) be an AE-OT secure sym-
metric encryption scheme with key-space KSE = {0, 1}`. The system parameters
of the scheme consist of params ←R Param(1k).

Kg(k). Choose random sk ←R SK and define pk = µ(sk) ∈ PK. Pick a random
hash function H←R H. The public-key is (H, pk), the secret-key is (H, sk).

Enc(pk ,m). Pick C ←R V together with its witness r that C ∈ V. The session
key K = H(Λsk (C)) ∈ {0, 1}` is computed as K ← H(Pub(pk , C, r)). The
symmetric ciphertext is ψ ← EK(m). Return the ciphertext (C , ψ).

Dec(sk ,C ). Reconstruct the key K = H(Λsk (C)) as K ← H(Priv(sk , C)) and
return {m,⊥} ← DK(ψ).

Combining Theorems 4 and 6 gives us the following corollary.

Corollary 7. Assume HPS is (ε1-almost) κ-entropic with hard subset member-
ship problem and with collision probability δ(k), that H is a family of 4-wise
independent hash functions with H : K → {0, 1}`(k), and that SE is AE-OT se-
cure. If 2`(k)−κ(k)/2 and δ(k) are negligible, then the encryption scheme above is
secure in the sense of IND-CCA2. In particular,

Advcca2
PKE,t,Q(k) ≤ Advsm

HPS,t(k)+2Q·Advint-ot
SE,t (k)+Advind-ot

SE,t (k)+Q·(2`−
κ−1

2 +3ε1+δ).

5 Instantiations from the DDH Assumption

In this section we discuss two practical instantiations of our randomness extrac-
tion framework whose security is based on the DDH assumption.

5.1 The Decisional Diffie-Hellman (DDH) Assumption

A group scheme GS [4] specifies a sequence (GRk)k∈N of group descriptions. For
every value of a security parameter k ∈ N, the pair GRk = (Gk, pk) specifies
a cyclic (multiplicative) group Gk of prime order pk. Henceforth, for notational
convenience, we tend to drop the index k. We assume the existence of an efficient
sampling algorithm x ←R G and an efficient membership algorithm. We define
the ddh-advantage of an adversary B as

Advddh
GS,B(k) def=

∣∣Pr[B(g1, g2, gr1, g
r
2) = 1]− Pr[B(g1, g2, gr1, g

r̃
2) = 1]

∣∣ ,
where g1, g2 ←R G, r ←R Zp, r̃ ←R Zp \ {r}. We say that the DDH problem is
hard in GS if the advantage function Advddh

GS,B(k) is a negligible function in k for
all probabilistic PTA B.
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5.2 Variant 1: the Scheme HE1

The universal1 hash proof system. We recall a universal1 HPS by Cramer
and Shoup [3], whose hard subset membership problem is based on the DDH
assumption. Let GS be a group scheme where GRk specifies (G, p) and let g1, g2
be two independent generators of G. Define C = G2 and V = {(gr1, gr2) ⊂ G2 :
r ∈ Zp}. The value r ∈ Zp is a witness of C ∈ V. The trapdoor generator
Param picks a uniform trapdoor ω ∈ Zp and computes g2 = gω1 . Note that using
trapdoor ω, algorithm Decide can efficiently perform subset membership tests
for C = (c1, c2) ∈ C by checking whether cω1 = c2.

Let SK = Z2
p, PK = G, and K = G. For sk = (x1, x2) ∈ Z2

p, define µ(sk) =
X = gx1

1 gx2
2 . This defines the output of Param(1k). For C = (c1, c2) ∈ C define

Λsk (C) := cx1
1 cx2

2 . (8)

This defines Priv(sk , C). Given pk = µ(sk) = X, C ∈ V and a witness r ∈ Zp
such that C = (gr1, g

r
2) public evaluation Pub(pk , C, r) computes K = Λsk (C) as

K = Xr .

Correctness follows by (8) and the definition of µ. This completes the description
of HPS. Clearly, under the DDH assumption, the subset membership problem is
hard in HPS. Moreover, this HPS is known to be (perfect) universal1 [3].

Lemma 8. The above HPS is perfect universal1 (so ε1 = 0) with collision prob-
ability δ = 1/p.

Proof. To show that the HPS is universal1, it suffices to show that given the
public key X and any pair (C,K) ∈ (C \ V)×K, there exists exactly one secret
key sk such that µ(sk) = X and Λsk (C) = K. Let ω ∈ Z∗p be such that g2 = gω1 ,
write C = (gr1, g

s
2) for r 6= s and consider a possible secret key sk = (x1, x2) ∈ Z2

p.
Then we simultaneously need that µ(sk) = gx1+ωx2

1 = X = gx (for some x ∈ Zp)
and Λsk (C) = grx1+sωx2

1 = K = gy1 (for some y ∈ Zp). Then, using linear
algebra, x1 and x2 follow uniquely from r, s, x, y and ω provided that the relevant
determinant (s− r)ω 6= 0. This is guaranteed here since r 6= s and ω 6= 0.

To verify the bound on the collision probability δ it suffices —due to symmetry—
to determine for any distinct pair (C,C∗) ∈ (C\V)2 the probability Prsk [Λsk (C) =
Λsk (C∗)]. In other words, for (r, s) 6= (r′, s′) (with r 6= s and r′ 6= s′, but that is
irrelevant here) we have that

δ = Pr
x1,x2←RZp

[grx1+x2ωs
1 = gr

′x1+x2ωs
′

1 ]

= Pr
x1,x2←RZp

[rx1 + x2ωs = r′x1 + x2ωs
′]

= 1/p .

(For the last step, use that if r 6= r′ for any x2 only one x1 will “work”; if
r = r′ then necessarily s 6= s′ and for any x1 there is a unique x2 to satisfy the
equation.)
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The hybrid encryption scheme HE1. We apply the transformation from
Section 4.3 to the above HPS and obtain an hybrid encryption scheme which is
depicted in Figure 1.

Theorem 9. Let GS = (G, p) be a group scheme where the DDH problem is
hard, let H be a family of 4-wise independent hash functions from G to {0, 1}`(k)
with lg p ≥ 4`(k), and let SE be a symmetric encryption scheme with key-space
KSE = {0, 1}`(k). that is secure in the sense of AE-OT. Then HE1 is secure in
the sense of IND-CCA2. In particular,

Advcca2
HE1,t,Q(k) ≤ Advddh

GS,t(k) + 2Q · Advint-ot
SE,t (k) + Advind-ot

SE,t (k) +Q · 2−`(k)+1 .

Proof. By Lemma 8 the HPS is (perfectly) universal1 and therefore (by Lemma 1)
it is also (perfectly) κ-entropic with κ = lg(|K|) = lg p ≥ 4`(k). It leaves to bound
the loss due to the κ-entropic to universal2 HPS transformation from Corollary 7:

(1 + δ)2`−
κ
2 + 2

`−κ
2 + 3ε1 + δ ≤ 2−`+1

where we used that |K| = |G| = p ≥ 24` and (by Lemma 8) ε1 = 0 and δ = 1/p.

We remark that in terms of concrete security, Theorem 9 requires the image
{0, 1}`(k) of H to be sufficiently small, i.e., `(k) ≤ 1

4 lg p. For a symmetric cipher
with `(k) = k = 80 bits keys we are forced to use groups of order lg p = 4k = 320
bits. For some specific groups such as elliptic curves this can be a drawback since
there one typically works with groups of order lg p = 2k = 160 bits.

Kg(1k)
x1, x2 ←R Zp ; X ← gx1

1 gx2
2

Pick H←R H
pk ← (X,H) ; sk ← (x1, x2)
Return (sk , pk)

Enc(pk ,m)
r ←R Z∗p
c1 ← gr

1 ; c2 ← gr
2

K ← H(Xr) ∈ {0, 1}`
ψ ← EK(m)
Return C = (c1, c2, ψ)

Dec(sk ,C )
Parse C as (c1, c2, ψ)
K ← H(cx1

1 cx2
2 )

Return {m,⊥} ← DK(ψ)

Fig. 1. Hybrid encryption scheme HE1 = (Kg,Enc,Dec) obtained by applying our
randomness extraction framework to the HPS from Section 5.2.

Relation to Damg̊ard’s ElGamal. In HE1, invalid ciphertexts of the form
cω1 6= c2 are rejected implicitly by authenticity properties of the symmetric cipher.
Similar to [4], a variant of this scheme, HEer

1 = (Kg,Enc,Dec), in which such
invalid ciphertexts get explicitly rejected is given in Figure 2. The scheme is
slightly simplified compared to a direct explicit version that adds the trapdoor
to the secret key; the simplification can be justified using the techniques of
Lemma 8.

We remark that, interestingly, Damg̊ard’s encryption scheme [5] (also known
as Damg̊ard’s ElGamal) is a special case of HEer

1 from Fig. 2 where the hash
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Kg(1k)
ω, x←R Zp

g2 ← gω
1 ; X ← gx

1

Pick H←R H
pk ← (g2, X,H) ; sk ← (x, ω)
Return (sk , pk)

Enc(pk ,m)
r ←R Z∗p
c1 ← gr

1 ; c2 ← gr
2

K ← H(Xr)
ψ ← EK(m)
Return C = (c1, c2, ψ)

Dec(sk ,C )
Parse C as (c1, c2, ψ)
if cω1 6= c2 return ⊥
K ← H(cx1)
Return {m,⊥} ← DK(ψ)

Fig. 2. Hybrid encryption scheme HEer
1 = (Kg,Enc,Dec). A variant of HE1 with explicit

rejection.

function H is the identity function (or an easy-to-invert, canonical embedding of
the group into, say, the set of bitstrings) and SE is “any easy to invert group
operation” [5], for example the one-time pad with EK(m) = K⊕m. In his paper,
Damg̊ard proved IND-CCA1 security of his scheme under the DDH assumption
and the knowledge of exponent assumption in GS.7 Our schemes HEer

1 and HE1

can therefore be viewed as hybrid versions of Damg̊ard’s ElGamal scheme, that
can be proved IND-CCA2 secure under the DDH assumption.

5.3 Variant 2: the Scheme HE2

The universal1 hash proof system. We now give an alternative (and new)
universal1 hash proof system from the DDH assumption. Keep C and V as in
Section 5.2. Define SK = Z4

p, PK = G2, and K = G2. For sk = (x1, x2, x̂1, x̂2) ∈
Z4, define µ(sk) = (X, X̂) = (gx1

1 gx2
2 , gx̂1

1 gx̂2
2 ). For C = (c1, c2) ∈ C define

Λsk (C) := (cx1
1 cx2

2 , cx̂1
1 cx̂2

2 ) .

This also defines Priv(sk , C). Given pk = µ(sk), C ∈ V and a witness r ∈ Zp
such that C = (c1, c2) = (gr1, g

r
2), public evaluation Pub(pk , C, r) computes K =

Λsk (C) as
K = (Xr, X̂r) .

Similar to Lemma 8 we can prove the following.

Lemma 10. The above HPS is perfect universal1 with collision probability δ =
1/p2.

The scheme HE2. For our second hybrid encryption scheme HE2 we make the
same assumption as for HE1, with the difference thatH is now a family Hk : G2 →
{0, 1}`(k) of 4-wise independent hash functions with lg p ≥ 2`(k). The resulting
hybrid encryption scheme obtained by applying Corollary 7 (in conjuction with
Lemma 10) is depicted in Figure 3.
7 To be more precise, Damg̊ard only formally proved one-way (OW-CCA1) security of

his scheme, provided that the original ElGamal scheme is OW-CPA secure. But he
also remarks that his proof can be reformulated to prove IND-CCA1 security, provided
that ElGamal itself is IND-CPA secure. IND-CPA security of ElGamal under the DDH
assumption was only formally proved later [25].
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Theorem 11. Let GS = (G, p) be a group scheme where the DDH problem is
hard, let H be a family of 4-wise independent hash functions from G2 to {0, 1}`(k)
with lg p ≥ 2`(k), and let SE be a symmetric encryption scheme with key-space
KSE = {0, 1}`(k) that is secure in the sense of AE-OT. Then HE2 is secure in the
sense of IND-CCA2. In particular,

Advcca2
HE2,t,Q(k) ≤ Advddh

GS,t(k) + 2Q · Advint-ot
SE,t (k) + Advind-ot

SE,t (k) +Q · 2−`(k)+1 .

Note that HE2 now only has the restriction lg p ≥ 2`(k) which fits nicely with the
typical choice of `(k) = k and lg p = 2k. So one is free to use any cryptographic
group, in particular also elliptic curve groups.

Similar to HEer
1 , the variant HEer

2 with explicit rejection can again be proven
equivalent. In the explicit rejection variant, HEer

2 , the public-key contains the
group elements g2 = gω1 , X = gx1 , and X̂ = gx̂1 ), and decryption first checks if
cω1 = c2 and then computes K = H(cx1 , c

x̂
1).

Kg(1k)
x1, x2, x̂1, x̂2 ←R Zp

X ← gx1
1 gx2

2 ; X̂ ← gx̂1
1 gx̂2

2

Pick H←R H
pk ← (X, X̂,H)
sk ← (x1, x2, x̂1, x̂2)
Return (sk , pk)

Enc(pk ,m)
r ←R Z∗p
c1 ← gr

1 ; c2 ← gr
2

K ← H(Xr, X̂r)
ψ ← EK(m)
Return C = (c1, c2, ψ)

Dec(sk ,C )
Parse C as (c1, c2, ψ)

K ← H(cx1
1 cx2

2 , cx̂1
1 cx̂2

2 )
Return {m,⊥} ← DK(ψ)

Fig. 3. Hybrid encryption scheme HE2 = (Kg,Enc,Dec) obtained by applying our
randomness extraction framework to the HPS from Section 5.3.

Relation to a scheme by Kurosawa and Desmedt. We remark that,
interestingly, the scheme HE2 is quite similar to the one by Kurosawa and
Desmedt [17]. The only difference is that encryption in the latter defines the
key as K = Xrt · X̂r ∈ G, where t = T(c1, c2) is the output of a (keyed) target
collision-resistant hash function T : G×G→ Zp.

5.4 Efficiency Considerations

In this section we compare the efficiency of HE1/HE2 and their explicit rejection
variants HEer

1 /HEer
2 with the reference scheme KD by Kurosawa and Desmedt [17]

and its variants [11, 14].
The drawback of HE1 is that, in terms of concrete security, Theorem 9 re-

quires the image {0, 1}` of H to be sufficiently small, i.e., ` ≤ 1
4 lg p. Consequently,

for a symmetric cipher with ` = k = 80 bits keys we are forced to use groups
of order lg p ≥ 4k = 320 bits. For some specific groups such as elliptic curves
this can be a drawback since there one typically works with groups of order
lg p = 2k = 160 bits. However, for other more traditional groups such as prime
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subgroups of Z∗q one sometimes takes a subgroup of order already satisfying the
requirement lg p ≥ 4k. The scheme HE2 overcomes this restriction at the cost of
an additional exponentiation in the encryption algorithm.

Table 1 summarizes the efficiency of the schemes KD [17], HEer
1 , and HEer

2 .
(A comparison of the explicit rejection variants seems more meaningful.) It is
clear that when groups of similar size are used, our new scheme HEer

1 will be
the most efficient. But, as detailed above, typically HEer

1 will have to work in a
larger (sub)group. Even when underlying operations such as multiplication and
squaring remain the same, the increased exponent length will make this scheme
noticeably slower than the other two options.

Scheme Assumption Encryption Decryption Ciphertext Key-size Restriction
#[multi/sequential,single]-exp Size Public Secret on p = |G|

KD DDH & TCR [1, 2]+tcr [1, 0]+tcr 2|G|+|ψ| 4|G|+|T| 4|Zp| lg p ≥ 2`(k)
HEer

1 DDH [0, 3]+4wh [1, 0]+4wh 2|G|+|ψ| 3|G|+|H| 2|Zp| lg p ≥ 4`(k)
HEer

2 DDH [0, 4]+4wh [1, 0]+4wh 2|G|+|ψ| 4|G|+|H| 4|Zp| lg p ≥ 2`(k)

Table 1. Efficiency comparison for known CCA2-secure encryption schemes from the
DDH assumption. All “symmetric” operations concerning the authenticated encryption
scheme are ignored. The symbols “tcr” and “4wh” denote one application of a target
collision-resistant hash function and 4-wise independent hash function, respectively.

6 Instantiations from the Quadaratic Residuosity
Assumption

Quadratic residuosity assumption. Let b = b(k) : N→ N>0 be a function.
Let N = pq be an RSA modulus consisting of distinct safe primes of bit-length
b/2, i.e., p = 2P + 1 and q = 2Q + 1 for two primes P,Q. Let JN denote the
(cyclic) subgroup of elements in Z∗N with Jacobi symbol 1, and let QRN denote
the unique (cyclic) subgroup of Z∗N of order PQ (so in particular QRN ⊂ JN )
which is the group of all squares modulo N . We assume the existence of an RSA
instance generator RSAgen that generates the above elements, together with a
random generator g ∈ QRN . The quadratic residuosity (QR) assumption states
that distinguishing a random element from QRN from a random element from
JN is computationally infeasible.

The hash proof system. Define C = JN and V = QRN = {gr : r ∈ ZPQ}.
The value r ∈ Z is a witness of C ∈ V. (Note that it is possible to sample
an almost uniform element from V together with a witness by first picking r ∈
ZbN/4c and defining C = gr.) Define SK = Zn2PQ, PK = QRnN , and K = JnN . For
sk = (x1, . . . , xn) ∈ Zn2PQ, define µ(sk) = (X1, . . . , Xn) = (gx1 , . . . , gxn).

For C ∈ C define
Λsk (C) := (Cx1 , . . . , Cxn) .
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This defines Priv(sk , C). Given pk = µ(sk), C ∈ V and a witness r ∈ ZPQ such
that C = gr, public evaluation Pub(pk , C, r) computes K = Λsk (C) as

K = (Xr
1 , . . . , X

r
n) .

This completes the description of HPS. Under the QR assumption, the subset
membership problem is hard in HPS. (The statistical difference between the
uniform distribution over QRN and the proposed way of sampling above, is at
most 2−b/2, causing only a small extra term between the QR advantage and the
HPS membership advantage.)

Consider a pair (Xi, xi), where xi is from sk and Xi is from pk and note that
Xi does not reveal whether 0 ≤ xi < PQ or PQ ≤ xi < 2PQ. Therefore, for
C ∈ C \ V, given pk = µ(sk), each of the Cxi contains exactly one bit of min
entropy such that H∞((Cx1 , . . . , Cxn) | pk) = n. Therefore:

Lemma 12. The hash proof system is n-entropic with collision probability δ =
2−n.

The encryption scheme. Let H : JnN → {0, 1}k be a 4-wise independent hash
function and let SE be a symmetric cipher with key-space {0, 1}k, i.e., we set
`(k) = k. For the encryption scheme obtained by applying Corollary 7 (which
is depicted in Fig. 4) we choose the parameter n = n(k) = 4k + 1 such that
k − (n− 1)/2 = −k so we can bound ε2 by 2−k + 2−n using Theorem 6.

Theorem 13. Assume the QR assumption holds, let H be a family of 4-wise
independent hash functions from Jn(k)

N to {0, 1}k with n(k) ≥ 4k + 1, and let
SE be a symmetric encryption that is secure in the sense of AE-OT. Then the
encryption scheme from Fig. 4 is IND-CCA2 secure. In particular,

Advcca2
PKE,t,Q(k) ≤ 2−b/2 + Advqr

GS,t(k) + 2Q ·Advint-ot
SE,t (k) + Advind-ot

SE,t (k) +Q2−k+1 .

The scheme has very compact ciphertexts but encryption/decryption are quite
expensive since they require n = 4k + 1 exponentiations in Z∗N . (Note that
decryption can be sped up considerably compared to encryption by using CRT
and multi-exponentiation techniques.)

Kg(1k)

(N,P,Q, g)←R RSAgen(1k)
For i = 1 to n := 4k + 1 do
xi ←R Z2PQ ; Xi ← gxi

Pick H←R H
pk ← (N, g, (Xi),H) ; sk ← ((xi))
Return (sk , pk)

Enc(pk ,m)
r ←R ZbN/4c
c← gr

K ← H(Xr
1 , . . . , X

r
n)

ψ ← EK(m)
Return C = (c, ψ)

Dec(sk ,C )
Parse C as (c, ψ)
K ← H(cx1 , . . . , cxn)
Return
{m,⊥} ← DK(ψ)

Fig. 4. Hybrid encryption scheme HE3 = (Kg,Enc,Dec) obtained by applying our
randomness extraction framework to the HPS from Section 6.
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