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Abstract. A weak pseudorandom function (wPRF) is a cryptographic
primitive similar to – but weaker than – a pseudorandom function: for
wPRFs one only requires that the output is pseudorandom when queried
on random inputs. We show that unlike “normal” PRFs, wPRFs are seed-
incompressible, in the sense that the output of a wPRF is pseudorandom
even if a bounded amount of information about the key is leaked.
As an application of this result we construct a simple mode of operation
which – when instantiated with any wPRF – gives a leakage-resilient
stream-cipher. The implementation of such a cipher is secure against ev-
ery side-channel attack, as long as the amount of information leaked per
round is bounded, but overall can be arbitrary large. The construction
is simpler than the previous one (Dziembowski-Pietrzak FOCS’08) as it
only uses a single primitive (a wPRF) in a straight forward manner.

1 Introduction

Traditionally, cryptographic algorithms are designed to withstand adversaries
that can attack the cryptosystem in a black-box fashion. This means that all
the adversary can do is to query the system at hand according to the security
definition. In many settings this is not a realistic assumption, as real-world ad-
versaries attack concrete implementations of cryptosystems, that possibly leak
information which cannot be efficiently computed from black-box access alone.
Attacks exploiting such leakage are called side-channel attacks. In the last two
decades we saw many cryptanalytic attacks exploiting side-channels as running-
time [31], electromagnetic radiation [39, 19], power consumption [33] and fault
detection [4, 3]. A recent example [18] is the side-channel attack against KeeLoq
(which refers to the “KeeLoq block-cipher” and some particular mode in which
this cipher is used), which is widely used as e.g. anti-theft mechanisms for cars.
Although the KeeLoq block-cipher seems not to be very secure to start with [9,
27], the devastating side-channel attack of [18] exploits a weakness in the mode
in which the cipher is used, rather than a weakness in the cipher itself, and it
would still be applicable even if the KeeLoq block-cipher was replaced with a
strong block-cipher, say AES ([18] Talk of Christof Paar). It is thus an intrigu-
ing question whether there exist modes of operation which are provably secure
against a wide class of side-channel attacks if instantiated with any block-cipher.

In this paper we answer this question affirmatively, by proposing a mode of
operation (cf. Figure 1) which turns any weak PRF into a stream-cipher which is
provably secure against all side-channel attacks, assuming only that the amount



of leakage in each round is bounded, and that only memory which is actually
accessed in some round leaks in this round. Such a “leakage-resilient” cipher was
recently constructed in [17], the main advantage of our new construction is its
simplicity, it can be instantiated with any weak PRF (e.g. with a block-cipher
like AES), whereas the construction from [17] additionally required extractors.

The simplicity of the construction (as compared to [17]) comes at the price of
more involved security proof. Besides the technical tools we already used in [17],
we will need new results concerning the security of weak PRFs when neither the
key nor the inputs are uniform. The technique we use to prove this results can
also be applied in other settings, e.g. for encryption schemes, and thus could be
of independent interest.

Why Leakage-Resilience. Leakage-resilience is an extremely strong security
notion considering adversaries who can choose arbitrary leakage functions. To
practitioners this may seem like an overkill, after all, why consider unrealistic
side-channels which leak some very involved function of the state instead of using
some ad-hoc countermeasures against “real” side-channels? A lesson cryptogra-
phers have learned in the last decades is that ad-hoc arguments usually result in
insecure systems, and this very much applies to the young history of side-channel
cryptanalysis. Implementing cryptographic algorithms in a straight forward way,
will almost certainly make them very susceptible to side-channel attacks. Often
– like in differential power analysis [33, 8] – such attacks extract a little bit of
information in each evaluation, and then combine this information to get the
secret key. Thus it is crucial that an implementation does not leak even small
amounts of (useful) information. In contrast, “leakage-resilient” algorithms as
considered in this work guarantee security even if in each invocation a bounded
amount of arbitrary information is leaked.

We advocate the following approach to side-channel security: first cryptogra-
phers design a leakage-resilient algorithm C, with the guarantee that whenever
you implement C such that in each invocation ≤ λ bits of information leak, the
implementation is safe. This still leaves the task of implementing C such that
the ≤ λ leakage bound is met.1 The rationale here is that this task is clearly
much more realistic than having to implement an algorithm in way where noth-
ing leaks at all, as it would be necessary if the algorithm would come with no
bound on the leakage that can be tolerated. (cf. Kocher [32] for a similar argu-
ment). It is only at this stage that one should consider using ad-hoc measures
like masking or blinding, using special circuit designs, and so on. Cryptography
seems to be of limited use at this stage, but a background on existing attacks and
implementation details is helpful here, thus this task is something that should
be left to security researchers and engineers.

Some Related Work. Most papers on side-channel security – like [31, 39, 19,
33, 4, 3] mentioned in the introduction – consider attacks and/or countermeasures

1 Note that this is unavoidable, as when one cannot keep at least some uncertainty
about the internal state, one cannot hope to get a secure implementation.



against a specific side-channel. From the papers considering general models for
side-channel attacks, the work of Micali and Reyzin [35] on “physically observable
cryptography” is particularly insightful and written in a language accessible to
cryptographers. Their model is based on five “axioms”, some of which are (more
or less explicitly) used in our model.

Ishai et al. [29, 28] consider a model where the adversary can choose some
wires in the circuit, and then learns the values carried by those wires during
the computation. What makes their work exceptional is that they were the first
to prove how to implement any algorithm secure against an interesting side-
channel (i.e. probing attacks).2 The field of exposure-resilient cryptography [11]
considers the more restricting case where the adversary could learn some of the
input bits.

Very recently [1] showed that some particular public-key encryption schemes
are surprisingly robust against leakage: the scheme stays secure even if the min-
entropy of the key is just a constant fraction of the min-entropy of a random key.
We prove a similar result for any weak PRFs, but in order prove security even
for keys with such low min-entropy, we need the weak PRF to be exponentially
hard, whereas [1] can do so with some particular superpolynomial assumptions
(learning with error and lattice assumptions).

Papers that consider constructions of stream-ciphers which withstand side-
channel attacks (as in this work and [17]) include [32, 35, 36]. Kocher [32] consid-
ers a very simple construction where one simply iterates a hash function (SHA256
is suggested). This work is kept informal, with no proofs or even formal claims,
but contains several interesting conceptual ideas. Micali and Reyzin [35] investi-
gate reductions of side-channel resistant primitives, in particular they show that
the Blum-Micali construction is secure, assuming the implementation of the un-
derlying permutation already satisfies some strong form of side-channel security.
The work which aims at a goal most similar to ours is Petit et al. [36]. They
propose and analyze a block-cipher based construction, where security against
sides-channels is achieved by making it hard to “combine” leakages from different
rounds.3 Their underlying model [41] is motivated by practical considerations,
considering leakage-functions and attacks that have been successfully used to
break systems. Compared to [36], we take a much more theoretical approach,
our setting is more general and the underlying assumptions are weaker in several

2 Formally, Ishai et al. do the following: let t ≥ 0 be some constant and let [X] denote
a (t + 1) out of (t + 1) secret sharing of the value X. They construct a general
compiler, which turns every circuit G(.) into a circuit Gt(.) (of size t2|G|) such that
[G(X)] = Gt([X]) for all inputs X, and moreover one does not learn any information
on G(X) even when given the value carried by any t wires in the circuit Gt(.) while
evaluating the input [X]. This transformation uses multiparty-computation, which
is quite different from all other approaches we discuss here.

3 By using a forward secure primitive, one can ensure that past keys cannot be com-
bined with the current key, as they cannot even be computed. For future keys, this
is more tricky, as the cipher itself must be able to efficiently derive that keys.



aspects.4 The tools and techniques from [17] and this paper cannot be used to
prove security of the constructions from [32, 35, 36] (or any other construction
we are aware of), as those constructions are insecure against arbitrary leakage
functions as considered in this work, even if the underlying primitives are ideal
(e.g. Random oracles in [32] or ideal ciphers in [36]) and only one bit of informa-
tion leaks per invocation of the underlying primitive. (but this does by no means
mean that they are insecure against side-channels that arise in practice.)5

Some interesting recent results in settings which are similar or otherwise
relevant to general models of side-channel security include [5], who show how to
securely realize protocols when perfect deletion is not possible. Goldwasser et al.
[22] construct “one-time programs” from simple hardware satisfying some weak
form of side-channel security. Dodis and Wichs [12] solve the long standing open
problem of two round authenticated key-agreement from non-uniform keys. (See
the full version [37] for a more detailed discussion on those papers.)

1.1 Leakage-Resilient Cryptography

In this section we informally introduce and motivate the model of “leakage-
resilient cryptography” from [17].

Consider some keyed cryptographic primitive CP. The most general side-
channel attack against CP(S0) – where S0 denotes the secret initial state – is to
allow an attacker to choose any leakage function f , which then is evaluated on
the initial state S0, and the adversary receives f(S0).

6 Clearly we cannot hope for
any security at all here, as f could simply output the complete state f(S0) = S0.
Thus, it is necessary to somehow restrict the range of the leakage function, we
will consider functions with range {0, 1}λ, where λ ≪ |S0| is some parameter.
The idea to define the set of leakage functions by restricting the output length
was inspired by the bounded-retrieval model [10, 14, 13, 6, 16], which in turn was
inspired by the bounded-storage model [34, 15, 42].

4 In particular 1. We prove security in the standard model, whereas [36] work in
the ideal-cipher model 2. The security notion considered in [36] is key-recovery,
whereas we use unpredictability (and, in a limited context, indistinguishability).
3. The leakage functions considered in [36] (namely Hamming weight or identity
plus noise) are motivated by leakages observed in practice, whereas we bound only
the amount, not the type of information leaked 4. Finally, and most importantly,
our approach differs in how the observed leakage (cf. point 3.) can be exploited in
order to break the security notion (cf. point 2.). [36] show that a so called template
attack [7] cannot recover the key, whereas we prove security against every efficient
adversary.

5 A crucial requirement we need from the construction in order to prove leakage-
resilience, is that the state can be split in (at least) two parts, and this parts evolve
independently, in the sense that any interaction between them is public. Formally,
one must be able to express the cipher as a process as in Lemma 5 in this paper.

6 Here the leakage function is applied only to the state S0, and not to any internal
variables appearing in the computation. This can be done without loss of generality
as all the internal variables are simply functions of the state S0, and thus can be
computed by f .



As the implementation of any cryptosystem will leak more information the
longer it runs, we want to allow the attacker A to adaptively choose different
leakage functions during the lifetime of the system. For this, we assume that CP

runs in rounds (where a “round” is just some well defined part of the computa-
tion), and denote with Si the state of CP after round i (to simplify the exposition
we assume that the size of the state remains constant).

The attacker A we consider can adaptively choose a leakage function fi be-
fore the ith round, and after round i receives fi(Si−1), i.e. the leakage function
evaluated on the state at the beginning of round i. Unfortunately also here no
security is possible beyond round t, where t · λ ≥ |S0|, as A can simply define
the fi’s such that fi(Si−1) will be some λ bits of St. (note that for i ≤ t, fi can
compute the future state St from its input Si−1.) After round t the attacker A

has learned the entire state St, and no security is possible beyond this point.
Thus if we want security even after (much) more than |S0| bits have leaked,

we need to further restrict the leakage functions. The restriction we use is one of
the “axioms” from [35], and states that “only computation leaks information”.
This means that fi does not get the entire state Si−1 as input, but only the part
of the state that is actually accessed by CP in the ith round.

On Efficient Leakage Functions. As we consider a computational primitive,
and the total leakage can be larger than the entire state, we can only allow
efficient leakage functions.7 This is not explicitly stated, but naturally comes up
in the model, where the main result (Theorem 2) puts an upper bound on the
size of a circuit computing the entire random experiment in which the cipher is
attacked.

On (non)-Uniformity. Throughout, we always consider non-uniform adver-
saries.8 In particular, our main reduction is non-uniform, which means we prove
that if an adversary exists who breaks the stream-cipher, then an adversary (of
related complexity) exists who breaks the underlying weak PRF. The only step
in the proof where we need non-uniformity is a lemma from [2] which relates
two types of pseudoentropy notions. As [2] also prove this lemma in a uniform
setting (albeit which much worse parameters), it should be possible (though we
didn’t check the details) to make our reduction uniform, that is to show how
to efficiently construct an adversary against the weak PRF from any adversary
against the stream-cipher. (we refer to Goldreich’s article [20] as to why such a
reduction is desirable.)

7 A computationally unbounded leakage function could simply compute and output
the initial state from the output of the stream cipher. If one assumes that the to-
tal leakage is smaller than the key [1, 12], considering computationally unbounded
leakage functions is meaningful.

8 Recall that a uniform adversary can be modelled as a Turing-machine which as input
gets a security parameter, whereas (more powerful) non-uniform adversaries will,
for each security parameter, additionally get a different polynomial-length advice
string. Equivalently, we can model non-uniform adversaries as a sequence of circuits
(indexed by the security parameter), which is what we will do.



Relaxing Bounded Leakage. As described above, in each round we allow the
adversary to choose any function f with range {0, 1}λ, and she then learns the
leakage f(S), where S is the state accessed in this round. Note that this also
captures any efficient leakage function g, where there exists another (efficient)
leakage function f with range {0, 1}λ such that S → f(S) → g(S) is a Markov
chain and where one can efficiently sample g(S) given f(S) (as an adversary in
our model can ask for f(S), and then compute g(S) himself). This e.g. covers
the case where the leakage function outputs a noisy version of S.

We chose to work with bounded leakage as it is a very clean and intuitive
model, but for the proof we actually only require that f(S) does not contain
more than λ bits of “useful” information on S. Formally, “useful” means that
the HILL-pseudoentropy (a notion to be defined in Section 4) of S does not drop
by much more than λ bits given f(S). Unfortunately this most general notion is
quite unintuitive to work with.9

Relaxing the “only computation leaks information” Axiom. The leakage
function in round i gets as input only that part of the state which is accessed
in that round. This translates to the requirement on the implementation that
memory which is not accessed, must not leak at all. In our model and for our
particular construction (and also [17]) allowing the adversary to choose a single
leakage function f with λ bits output, and then giving her the leakage f(S+)
(where with S+ we denote the part of the state which is accessed and S− denotes
the remaining state) is equivalent to let her choose two function f ′ and f ′′ with
λ/2 bits output respectively, and then output the leakage f ′(S+) and f ′′(S−).
Thus it is o.k. if the entire state leaks as long the leakage of S+ and S− is
independent. In particular, we also get security against attacks which seem not
to obey the “only computation leaks information” axiom, like the cold boot
attack from [23] (see also [1]), who show how measure significant parts of a key
that was stored on some memory, even after power is turned off.

1.2 Seed Incompressibility

As main new technical tools we prove bounds on the security of weak PRFs when
the key (or the inputs) are not uniformly random as assumed in the security
definition for weak PRFs.

Recall that the standard security notion for a pseudorandom function (PRF)
F : {0, 1}κ × {0, 1}n → {0, 1}m requires that for a random key k ∈ {0, 1}κ

no efficient attacker can distinguish F(k, .) from a uniformly random function.
Motivated by the question if random-oracles can (in some settings) be instanti-
ated with efficient functions, Halevi et al. [24] investigate the question whether

9 A special more intuitive case – which is still more general than bounded leakage –
is to consider any (not necessarily) efficient leakage function g where there exists
an efficient f with range {0, 1}λ, such that given f(S) one can efficiently sample
some “fake” leakage g̃(S) where [S, g(S)] is computationally indistinguishable from
[S, g̃(S)] (bounded leakage corresponds to g̃ = g). Note that here the sampling
algorithm only gets f(S), whereas the distinguisher gets S.



“seed-incompressible” functions exist. They consider a setting where an adver-
sary initially gets a “compressed key” f(k) (where f : {0, 1}κ → {0, 1}λ and
λ < κ). A simple observation is that by giving this extra input to an adversary,
no function F(k, .) can possibly be a PRF, as f(k) could e.g. encode the first λ
bits of F(k, X) (for some fixed X), and thus F(k, .) becomes easily distinguishable
from random.

In this paper we revisit the concept of seed incompressibility, but for weak
pseudorandom functions (wPRF): F is a wPRF, if F(k, .) cannot be distin-
guished from random, if queried on random inputs. Thus an adversary gets
to see X1, . . . , Xq and Z1, . . . , Zq, and then must guess whether Zi = F(k, Xi)
or Zi = R(Xi) where R is a uniformly random function. Unlike for normal
PRFs, for wPRFs it is not clear if and how a compressed seed f(k) helps the
distinguisher, e.g. now simply setting f(k) to denote the λ first bits of F(k, X)
for some fixed input X will not trivially break the security of F(k, .) as here the
adversary cannot choose the inputs X for which she gets to see F(k, X).

Of course by leaking λ bits of the key, we must tolerate some security loss. In
particular, if we use the trivial attack just described (leaking λ bits of F(k, X)),
the adversary can get “lucky”, and one of the q queries X1, . . . , Xq will hit
the fixed input X . Because of that, the adversary has some extra advantage
of roughly q/2n (compared to an adversary not getting f(k)). Further, if we
assume that the best attack against F is brute-force search over the keyspace,
then leaking λ bits of the key will degrade the security by a factor of 2λ. As
we prove in Lemma 2, it doesn’t get much worse than that: if F(k, .) cannot be
distinguished with advantage more than ǫ, then the advantage (against somewhat
smaller adversaries) is still bounded by roughly 2λ(ǫ + q2/2n+1) (here we set t
from Lemma 2 to n, and assume that n is large enough so that the last term in
(3) can be ignored.)

We actually do not consider the setting where the key k is random, and
then f(k), |f(k)| = λ is leaked, but the more general case where k is sampled
from some distribution with min-entropy at least |k| − λ. (and we need this
more general case later when proving the security of the leakage-resilient stream-
cipher), as for any function f and uniformly random k, k has still (expected)
min-entropy at least |k| − λ given f(k).

We then prove a similar result (Lemma 3) concerning the security of wPRFs
assuming the inputs (as opposed to the key) are not uniformly random.

Proof Sketch. We show that any wPRF is secure even when the secret key is
only sampled from some distribution with min-entropy |k| − λ by a (uniform)
reduction. Assume an adversary A can distinguish F(k, .) from a random func-
tion (when queried on random inputs X1, . . . , Xq) with advantage ǫ′. Using the
Markov bound one can show that this implies that a key k sampled from the
above distribution is “weak” with probability at least ǫ′/2, where a key k is said
to be weak, if the distinguishing advantage of A, conditioned on the key being
k, is at least ǫ′/2. If k is now sampled from the uniform distribution (and not
a distribution with min-entropy |k| − λ), then k will be weak with probabil-
ity at least ǫ′/2λ+1, i.e. we loose at most a factor 2λ. The crucial point is that



when observing the output of a function g(.) on sufficiently many random inputs,
then (using the Hoeffiding bound) one can almost certainly distinguish the cases
where g(.) is f(k, .) for a weak k and the case where g(.) is a random oracle,
as by definition of a weak key, the probability of A outputting 1 differs by at
least ǫ′/2 for both cases. Thus we can define an adversary which does the above
sampling and outputs 0 and 1 respectively in the two above cases. As outlined,
this adversary has a distinguishing advantage of at least ǫ′/2λ+1.10 In the above
argument it is important that in the case where g(.) is a random oracle, we can
sample many independent guess bits of A. This is not possible when considering
“normal” PRFs, as then the adversary A can simply query g(.) on some fixed
inputs, and her guess bits will be completely dependent. This is the point in the
proof where we exploit the fact that we consider weak PRFs.

1.3 Applications & Reductions

The unpredictability and indistinguishability based notions used in this paper
are the strongest possible considering general leakage-functions, and a stream
cipher satisfying them is sufficient to realize important primitives like stateful
leakage-resilient symmetric authentication and encryption.11

It would be very interesting to construct a leakage-resilient pseudorandom
function, as then we could implement those symmetric primitives in a stateless
way. Let us mention here that cryptographic reductions, like the GGM construc-
tion of PRFs form PRGs [21], will in general not preserve leakage-resilience.

1.4 Notation

For a set X , we denote with X
∗
← X that X is assigned a value sampled uniformly

at random from X . To save on notation, we write X i to denote a sequence
X1, . . . , Xi. Rn,m denotes a uniformly random function {0, 1}n → {0, 1}m, Rn

denotes Rn,n.

2 Leakage-Resilient Stream-Cipher from a weak PRF

Figure 1 illustrates the mode of operation for which we prove that it gives a
leakage-resilient stream cipher if instantiated with any weak PRF. Below we first

10 The expression (3) in Lemma 2 is a bit more complicated than that. The last term
in (3) is the error from the Hoeffding bound, and the second to last term is due to
the fact that the sampled outputs are not completely independent as required by
the Hoeffding bound.

11 For authentication it is sufficient that the secret Xi used is unpredictable, thus here
we can allow the adversary to observe the leakage in the round where Xi is computed.
For semantically secure encryption, e.g. when using a one-time pad C = M ⊕ Xi,
we need Xi to be indistinguishable, thus here the adversary cannot get the leakage
in round i, but can so for all other rounds j < i (and, as we have forward security,
also j > i).
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Fig. 1. Leakage resilient stream-cipher S
F from a seed-incompressible weak pseudoran-

dom function F. The regular evaluation is shown in black, the attack related part is
shown in gray with dashed lines.

define this construction, and state a Theorem which bounds the security of SF as
a normal stream-cipher. We then define what a leakage-resilient stream-cipher
is. Then we state our main theorem (Theorem 2) which bounds the security of
SF as a leakage-resilient stream-cipher in terms of the security of F as a weak
PRF.

The Construction: Let F : {0, 1}κ×{0, 1}n → {0, 1}κ+n be a function. Then,
with SF we denote the following simple construction of a stream cipher.

Initialization: The initial state is S0 = [K0, K1, X0], where K0, K1
∗
← {0, 1}κ

and X0
∗
← {0, 1}n. Only K0, K1 must be secret, X0 can be public.

State: The state before the ith round is Si−1 = [Ki−1, Ki, Xi−1].
Computation: In the ith round, SF(Si−1) computes

(Ki+1, Xi) := F(Ki−1, Xi−1)

and outputs Xi. Then the state Si−1 = [Ki−1, Ki, Xi−1] is replaced with
Si = [Ki, Ki+1, Xi] (note that Ki is not accessed in the ith round).

Security of S without Side-Channels: Theorem 1 below states that the
output of SF is pseudorandom (i.e. is a secure stream-cipher in the “classical”
sense) if F is a secure weak pseudorandom function. The proof of this theorem
is a straight forward hybrid argument and for space reasons only give in the full
version of this paper [37]. The security of SF is stated in terms of the security
of F as a weak pseudorandom function (wPRF), which is defined like a normal
PRF except that the inputs are random and not adversarially chosen.

Definition 1 (wPRF) F : {0, 1}κ×{0, 1}n → {0, 1}m is a weak (ǫprf , sprf , qprf)-
secure pseudorandom function (wPRF) if for all A of size sprf and for random

variables K
∗
← {0, 1}κ and for i = 1, . . . , qprf

Xi
∗
← {0, 1}m Yi = F(K, Xi) Ri = Rn,m(Xi)

we have Pr[A(Xqprf , Y qprf ) = 1]− Pr[A(Xqprf , Rqprf ) = 1] ≤ ǫprf



Theorem 1 (Security without Leakage) If F is a (ǫprf , sprf , 1) secure wPRF,
then for any ℓ ∈ N, no adversary of size sprf− ℓ · |F| can distinguish the first ℓ+1
blocks as output by SF from uniformly random with advantage more than ℓ · ǫprf .

Side-Channel Adversary: As outlined in Section 1.1, we consider an adver-
sary A who can attack SF by choosing any function fi : {0, 1}κ → {0, 1}λ before
round i, and at the end of the round receives the normal output Xi of SF and

also the leakage Λi
def
= fi(Ki−1). In round i, SF(Si−1) only access Ki−1 and Xi−1,

thus giving Ki−1 as input to fi means that fi can use the entire state that SF

accesses in round i. Note that we don’t have to explicitly give Xi−1 as input to
fi, as A must only decide on fi after she got Xi−1 and thus can hard-code it
into fi. We denote with Aλ the set of adversaries as just described restricted to
choose leakage functions with range {0, 1}λ.

Leakage-Resilient Security Notion: Let viewℓ denote the view of the ad-
versary after Xℓ has been computed, i.e.

viewℓ = [X0, . . . , Xℓ, Λ1, . . . , Λℓ].

With view
−
ℓ = viewℓ \Xℓ we denote viewℓ but without the last output Xℓ. The

security notion we consider requires that Xℓ+1 is indistinguishable from random,
even when given viewℓ (which will imply that it is unpredictable given view

−
ℓ+1).

We denote with S(S0)
ℓ
 A the random experiment where an adversary

A ∈ Aλ attacks S (initialized with S0 = [K0, K1, X0]) for ℓ rounds (cf. Fig. 1),

and with view(S(S0)
ℓ
 A) we denote the view viewℓ of A at the end of the

attack. For any circuit D : {0, 1}∗ → {0, 1} (with one bit output), we denote
with AdvInd(D, A, S, ℓ) the advantage of D in distinguishing Kℓ from a random

Un
∗
← {0, 1}n given view(S(S0)S

ℓ−1
 A), formally

AdvInd(D, A, S, ℓ) = |preal − prand| where

prand
def
= Pr

S0

[D(view(S(S0)
ℓ−1
 A), Un) = 1]

preal
def
= Pr

S0

[D(view(S(S0)
ℓ−1
 A), Xℓ) = 1]

Security of S against Side-Channel Attacks: The security of SF will depend
on the security of F as a weak pseudorandom function. Recall that the complexity
a non-uniform adversary is captured by the size of a circuit describing it. For

a circuit D, we let size(D) denote its size. We will also write size(S
ℓ−1
 A) to

denote the size of a circuit needed to implement the entire random experiment

S
ℓ−1
 A, as illustrated in Figure 1, where eval denotes a circuit which on input

the description of a function f : {0, 1}κ → {0, 1}λ and K ∈ {0, 1}κ computes
and outputs f(K).



Theorem 2 (Security with Leakage) Let F : {0, 1}κ × {0, 1}n → {0, 1}κ+n

be a (ǫprf , sprf , n/ǫprf)-secure wPRF where ǫprf ≥ n · 2−n/3 and n ≥ 20. Let λ =
log(ǫ−1

prf )/6 and s′ = sprfǫ
2
prf/2λ+2(n + κ)3. Then for any adversary A ∈ Aλ and

distinguisher D where size(S
ℓ−1
 A) + size(D) ≤ s′ we have for any ℓ ∈ N

AdvInd(D, A, S, ℓ) ≤ 8 · ℓ · ǫ
1/12
prf (1)

On λ: Note that the amount of leakage λ = log(ǫ−1
prf )/6 we tolerate depends on

the hardness of the underlying wPRF. Thus if F is secure against adversaries of
super-polynomial size, i.e. ǫprf = 2ω(log κ), then the amount of leakage is at least
super-logarithmic λ = ω(log κ). This already covers many practical attacks like
Hamming weight attacks (see e.g. [30]).

If F is exponentially hard, i.e. ǫprf = 2−Ω(κ), then λ = Ω(κ), and thus we can
even leak a constant fraction of the internal state in each round.

Security loss: The security loss in the theorem is significant: the 12th root of
ǫprf comes up in the distinguishing advantage. In the full version [37] we discuss
several approaches which potentially can be used to prove a much better bound.

Unpredictability: Theorem 2 states that when given the view of an adver-
sary A who attacked S for ℓ − 1 rounds, the next value Xℓ to be computed is
indistinguishable from random. If the adversary is also given Λℓ = fℓ(Kℓ−1) (i.e.
the leakage computed in round ℓ), Xℓ cannot be pseudorandom any more, as Λℓ

could e.g. be the λ first bits of Xℓ. In the case where Λℓ is also leaked, one can still
prove (using Lemma 4) that Xℓ is unpredictable: for any δ > 0, with probability
1−δ the random variable Xℓ has n−λ− log(δ−1) bits of “HILL-pseudoentropy”
(a notion to be defined in Section 4).

Forward Security: Like the construction from [17], also SF is forward secure:
Theorem 2 holds even for a stronger security notion than AdvInd, where the
distinguisher D is additionally given entire state of SF after round ℓ + 1.

Instantiation with a block-cipher: Our construction requires a wPRF F :
{0, 1}κ × {0, 1}n → {0, 1}κ+n. Such an F can be constructed from any secure
block-cipher BC : {0, 1}κ×{0, 1}n→ {0, 1}n like AES. (AES comes with different
security parameters κ = n = 128 and κ = n = 256). For this we have to do some
range expansion, e.g. by setting (‖ denotes concatenation)

F(K, X) = BC(K, X‖0))‖BC(K, X‖1). (2)

Here F : {0, 1}κ × {0, 1}n−1 → {0, 1}2n is a secure PRF (and thus wPRF)
assuming that BC : {0, 1}κ×{0, 1}n → {0, 1}n is a pseudorandom permutation,
which is the standard security notion for block-ciphers. 12

12 Let us stress, that just assuming that BC is a wPRF is not sufficient as (2) is not a
secure range expansion of wPRFs (see e.g. [38] for some secure constructions).



3 wPRF with Non-Uniform Keys and Inputs

We will need the following classical technical lemma several times.

Lemma 1 (Hoeffding’s inequality [26]) Let X1, . . . , Xt be independent ran-
dom variables where for 1 ≤ i ≤ t : Pr(Xi ∈ [ai, bi]) = 1. Then, for the sum of
these variables X = X1 + · · ·+ Xt we have the inequality:

Pr[X − E[X ] ≥ tǫ] ≤ exp

(

−
2 t2 ǫ2

∑t
i=1(bi − ai)2

)

Recall that a random variable Z has min-entropy k, denoted H∞(Z) = k if for
all z in the range of Z we have Pr[Z = z] ≤ 2−k.

Definition 2 (wPRF with non-uniform keys and inputs) We call a func-
tion F : {0, 1}κ × {0, 1}n → {0, 1}m a (ǫprf , sprf , qprf)-secure wPRF with α-low
keys, if it’s a wPRF as in Definition 1, whenever the key K comes from any
distribution with min-entropy κ− α (and not uniformly random).

Similarly, we say F is a (ǫprf , sprf , qprf)-secure wPRF with β-low inputs, if it’s
a wPRF as in Definition 1, except that the inputs Xi come from any distribution
with min-entropy m− β.

Non-Uniform Keys. By the following lemma, every wPRF (using uniform
keys) is a wPRF for α-low keys. The loss in security is roughly 2α+1, which is
almost optimal.

Lemma 2 For any α > 0 and t ∈ N: If F : {0, 1}κ × {0, 1}n → {0, 1}m is a
(ǫprf , sprf , qprf)-secure wPRF (for uniform keys), then it is a (ǫ′prf , s

′
prf , q

′
prf)-secure

wPRF with α-low keys if the following holds13

qprf ≥ q′prf · t

ǫprf ≤ ǫ′prf/2α+1 −
q2
prf

2n+1
− 2 · exp

(

−
t2 · ǫ′2prf

8

)

(3)

sprf ≥ s′prf · t

Proof. Assume there exists a random variable Kα where H∞(Kα) = κ − α,
but where F is not a (ǫ′prf , s

′
prf , q

′
prf)-secure wPRF if the key is Kα. To prove

the Lemma, we must show that then F is not (ǫprf , sprf , qprf)-secure wPRF for
uniformly random keys. By assumption, there exists an adversary A, |A| ≤ s′prf
such that

∑

k∈{0,1}κ

Pr[k = Kα] · ξk > ǫ′prf (4)

13 As ǫ′prf appears twice in eq.(3), we cannot easily express ǫ′prf as a function of ǫprf . One
can get a closed expression at the price of a worse bound by e.g. replacing ǫ′prf in (3)
with ǫprf , one then gets (for t ∈ N of our choice): q′prf := qprf/t, s′prf := sprf/t, ǫ′prf :=
2α+1

`

ǫprf + q2
prf/2

n+1 + 2 · exp
`

−t2 · ǫ2prf/8
´´

.



where ξk denotes A’s advantage conditioned on the key being k, i.e. with Xi
∗
←

{0, 1}n, Yi = F(k, Xi), Ri ← Rn,m(Xi) (for i = 1, . . . , q′prf)

ξk
def
= Pr[A(Xq′

prf , Y q′

prf ) = 1]− Pr[A(Xq′

prf , Rq′

prf ) = 1]

We say k ∈ {0, 1}κ is weak if ξk ≥ ǫ′prf/2, and let K ⊂ {0, 1}κ denote the set of
all weak keys. From (4) we get by Markov

Pr[Kα ∈ K] ≥ ǫ′prf/2.

Let K be uniform over {0, 1}κ. If we define an event E depending on K by
Pr[E|K = k] = Pr[Kα = k]/2α−κ it satisfies (see [37] for the proof)

Pr[E ] = 2−α and Pr[K = k|E ] = Pr[Kα = k]

With this we can lower bound the probability that the uniformly random key K
is weak as

Pr[K ∈ K] ≥ Pr[E ] Pr[K ∈ K|E ] = Pr[E ] Pr[Kα ∈ K] =
Pr[Kα ∈ K]

2α
≥

ǫ′prf
2α+1

(5)

We will construct an adversary Ã, where for Xi
∗
← {0, 1}n, Yi = F(k, Xi), Ri ←

Rn,m(Xi) the adversary Ã(Xqprf , Rqprf ) (where qprf = q′prf · t) will almost always

output 0, whereas Ã(Xqprf , Y qprf ) will almost always output 1 if k ∈ K. So Ã

breaks the security of F as a weak PRF with advantage at least ǫprf ≈ Pr[k ∈
K] ≥ ǫ′prf/2α+1. Let

φ = Pr[A(Xqprf , Rqprf ) = 1] (6)

where the probability if over the choice of the Xi
∗
← {0, 1}n, the random function

Rn,m used to compute Ri = Rn,m(Xi) and also A (if it’s not deterministic). Our

adversary Ã on input Xqprf , Zqprf , does the following.

– Split the input in t equal parts which we denote (X̂1, Ẑ1), . . . , (X̂t, Ẑt) (so
e.g. X̂i = X(i−1)q′

prf
+1, . . . , Xi·q′

prf
).

– For i = 1, . . . , t compute Ti ← A(X̂i, Ẑi) and let

T :=
t
∑

i=1

Ti

If (T − t · φ) ≤ t · ǫ′prf/4 then Ã outputs 0, otherwise she outputs 1.

By the following two claims, Ã will almost never output 1 if the Zi are random,
but will output 1 with probability almost ǫprf/2α+1 if the the Zi were computed
by F.

Claim 1 Let Xi
∗
← {0, 1}n and Ri = Rn,m(Xi), then

Pr[Ã(Xqprf , Rqprf ) = 1] ≤ exp

(

−
t2 · ǫ′2prf

8

)

+
q2
prf

2n+1



Proof. By definition Ã will output 1 iff (T − t · φ) > t · ǫ′prf/4. In the case where
the Zi are computed as Rn,m(Xi) (as it is the case for the Ri in this claim) we
have by eq.(6) t · φ = E[T ], thus

Pr[Ã(Xqprf , Rqprf ) = 1] = Pr

[

T − E[T ] > t ·
ǫ′prf
4

]

(7)

Let T ′1, . . . , T
′
t be independent binary random variables, where for j = 1, . . . , t

the Tj is sampled by choosing a uniformly random function Rj : {0, 1}n →

{0, 1}m and (for i = 1, . . . , q′prf) Xj,i
∗
← {0, 1}n, Rj,i = Rj(Xi) and setting

T ′j = A(Xj,1, . . . , Xj,q′

prf
, Rj,1, . . . , Rj,q′

prf
). Further let T ′ :=

∑t
j=1 T ′j. As the T ′j’s

are independent, we can use Hoeffding’s inequality (Lemma 1) to upper bound

Pr

[

T ′ − E[T ′] > t ·
ǫ′prf
4

]

≤ exp

(

−
t2 · ǫ′2prf

8

)

(8)

This bound does not apply to (7), as unlike the T ′j , the Tj are not completely
independent, as we use the same random function Rn,m for each Tj . We will
show that this is not a big problem if the domain is large enough, as conditioned
on all the Xi’s being different, the Ri’s will have the same distribution in the
computation of the Tj and T ′j; Let E denote the event, which holds if all the
qprf = q′prf · t values Xj,i (sampled to compute T or T ′) are pairwise distinct. As
those values are all sampled independently and uniformly from {0, 1}n, by the
birthday bound

Pr[¬E ] ≤
q2
prf

2n+1
(9)

Conditioned on E , the distribution of the Ti’s and T ′i (and thus of T and T ′) is
identical, in particular

Pr

[

T ′ − E[T ′] > t ·
ǫ′prf
4

∣

∣

∣

∣

E

]

= Pr

[

T − E[T ] > t ·
ǫ′prf
4

∣

∣

∣

∣

E

]

(10)

The claim now follows from (7)-(10). �

Claim 2 Let K
∗
← {0, 1}κ and for i = 1, . . . , qprf : Xi

∗
← {0, 1}n and Yi =

F(K, Xi), then

Pr[Ã(Xqprf , Y qprf ) = 1] ≥
ǫ′prf

2α+1

(

1− exp

(

−
t2 · ǫ′2prf

8

))

Proof. We have

Pr[Ã(Xqprf , Y qprf ) = 1] ≥ Pr[K ∈ K] · Pr[Ã(Xqprf , Y qprf ) = 1|K ∈ K] (11)

By (5) we can lower bound the first term on the right side in (11) as

Pr[K ∈ K] ≥ ǫ′prf/2α+1 (12)



It remains to upper bound the second term. For this recall that Ã outputs 0
if |T − t · φ| > t · ǫ′prf/4, where T =

∑t
j=1 Tj and each Tj is the output of

A(Xq′

prf , Y q′

prf ) where Yi = F(K, Xi) (here the Xq′

prf are independent for each j
but K is fixed). If K ∈ K, then by definition of K we have |E[Tj] − φ| ≥ ǫ′prf/2,

and thus Ã will only output 0, if the value of T is bounded away by at least
t · ǫ′prf/4 from its expectation, again using the Hoeffding bound

Pr[Ã(Xqprf , Y qprf ) = 0|K ∈ K] = Pr

[

T − φ > t ·
ǫ′prf
4

]

≤ exp

(

−
t2 · ǫ′2prf

8

)

The claim follows from this equation and (11),(12). �

The bound on Ã’s advantage ǫprf as claimed in the lemma follows from the two

claims above. The bound on the size sprf and number of queries qprf made by Ã

follows directly from the definition of Ã. �

Non-Uniform Inputs We just showed that a wPRF stays secure even if the
key is not uniform. In the full version of the paper we prove a similar result for
the case where the inputs are not uniformly random. We only consider the case
where the adversary gets a single input/output pair.

Lemma 3 Let β > 0, then if F : {0, 1}κ × {0, 1}n → {0, 1}m is a (ǫprf , sprf , 1)-
secure wPRF (for uniform inputs), it’s also a (ǫ′prf , s

′
prf , 1)-secure wPRF for β-low

entropy input, where for any t ∈ N

ǫprf ≤ ǫ′prf/2β+1 − 2 · exp

(

−
2 · t2 · ǫ′2prf

64

)

sprf ≥ s′prf · 2t

4 Proof of Theorem 2

Proof Sketch. We will prove the security of SF (cf. Figure 1) by proving
that if the state Xi−1, Ki−1 accessed in round i is independent and has HILL-
pseudoentropy n−2λ and κ−2λ, respectively, then also the output Xi, Ki+1 has
such a HILL-pseudoentropy given the leakage Λi = f(Xi−1, Ki−1) (Lemma 7).
Though we unavoidably get some degradation in the “quality” of the pseudoen-
tropy (in terms of ǫ, s in Definition 3 below), this degradation is only additive,
and thus we can sum it up over all rounds.14

14 This summation to bound the degradation in security is quite tedious. It might
seem that one could get a much simpler proof using a hybrid argument, where for
the jth hybrid one would simply replace the output in the first j rounds (having
high HILL-pseudoentropy) with some (indistinguishable) output having high min-
entropy. Unfortunately we can’t make this intuition work, the reason is that high
HILL-pseudoentropy only implies existence of an indistinguishable random variable
with high min-entropy, but gives no means as to how to sample it. Thus it is not
clear how to efficiently sample the hybrids just described.



Basic Definitions. We denote with δD(X ; Y ) the advantage of a circuit D in

distinguishing the random variables X, Y , i.e.: δD(X ; Y )
def
= |Pr[D(X) = 1] −

Pr[D(Y ) = 1]|. With δs(X ; Y ) we denote maxDδD(X ; Y ) where the maximum is
over all circuits D of size s.

Definition 3 (HILL-pseudoentropy[25, 2]) We say X has HILL pseudoen-
tropy k, denoted by HHILL

ǫ,s (X) ≥ k, if there exists a distribution Y with min-
entropy H∞(Y ) = k where δs(X ; Y ) ≤ ǫ.

Definition 4 (PRG) A function prg : {0, 1}n → {0, 1}m is a (δ, s)-secure pseu-
dorandom generator (PRG) if δs(prg(Un) ; Um) ≤ δ.

Thus prg(Z) is indistinguishable from random if Z
∗
← {0, 1}n. If some function

f(Z) of the seed is leaked, then prg(Z) will not look random any more, as e.g.
f(Z) could just output some bits of prg(Z). The following lemma states that if
the range of f is not too big, then prg(Z) will still have high HILL-pseudoentropy.

Lemma 4 (Pseudoentropy of a PRG, [17]) Let prg : {0, 1}n → {0, 1}m

and f : {0, 1}n → {0, 1}λ (where 1 ≤ λ < n < m) be any functions. If prg

is a (ǫprg, sprg)-secure pseudorandom-generator, then for any ǫ, ∆ > 0 satisfying

ǫprg ≤
ǫ2

2λ − 2−∆, we have with Z
∗
← {0, 1}n and for any ǫHILL > 0

Pr
Z

∗

←{0,1}n

[HHILL
ǫ+ǫHILL,ŝ

(prg(Z)|f(Z)) ≥ m−∆] ≥ 1− ǫ (13)

where ŝ ≈ ǫ2HILLsprg/8m.

We will use the following technical lemma about some general random processes
to show that the inputs Xi and keys Ki in the computation of SF are independent.

Lemma 5 ([16]) Let A0, B0 be independent random variables, and φ1, φ2, . . . be
any sequence of functions. Let A1, A2, . . ., B1, B2, . . . and V1, V2, . . . be defined
as

((Ai+1, Vi+1), Bi+1) := (φi+1(Ai, V1, . . . , Vi), Bi)
if i is even

(Ai+1, (Vi+1, Bi+1)) := (Ai, φi+1(Bi, V1, . . . , Vi))
otherwise

Then Bi → {V1, . . . , Vi} → Ai (and Ai → {V1, . . . , Vi} → Bi) is a Markov chain
(or equivalently, Ai and Bi are independent given the V1, . . . , Vi)

Combining Lemmata 2, 3 and 4, we can prove Lemma 6 below, which states that
the output F(K, X) of a wPRF has high HILL-pseudoentropy, even if K and X
have high min-entropy (but are independent) and given some leakage f(K, X).
We set t = n/ǫprf in Lemma 2 and 3, moreover we need the domain {0, 1}n of F

to be large enough, in particular, we will assume that (with ǫprf as in the lemma
below)

ǫprf ≥
n2

2n+1 · ǫ2prf
+ 2 exp(−n2/32) (14)



Note that the term on the right side drops exponentially in n, thus this restriction
is a very weak one, and is e.g. satisfied for any ǫprf ≥ n · 2−n/3 and n ≥ 20.

Lemma 6 Let F : {0, 1}κ × {0, 1}n → {0, 1}m be a (ǫprf , sprf , n/ǫprf)-secure
wPRF. Let K ∈ {0, 1}κ and X ∈ {0, 1}n be independent where H∞(K) = κ−2λ
and H∞(X) = n − 2λ and let f : {0, 1}κ+n → {0, 1}λ be any leakage function,
then for large enough n (as just described) and λ ≤ log(ǫ−1

prf )/6

Pr
X,Y

[HHILL
ǫ′,s′ (F(K, X)|X, f(K, X)) ≥ m− 2λ] ≥ 1− 2−λ/2+1

with ǫ′ = 2−λ/2+2 and s′ = sprf/2λ+3(n + κ)3.

Proof. We set ∆ := 2λ and ǫ = ǫHILL := 2−λ/2+1, and require that

λ ≤ 2 + log(ǫ−1
prg)/2 (15)

so that it satisfies the condition ǫprg ≤
ǫ2

2λ − 2−∆ from Lemma 4, where now we
can write (13) as

Pr
Z

∗

←{0,1}n

[HHILL
2−λ/2+2,ŝ(prg(Z)|f(Z)) ≥ m− 2λ] ≥ 1− 2−λ/2+1 (16)

where ŝ = sprg/2λ+1(n + κ). Now consider the wPRF F from the statement of
the lemma, first we apply Lemma 2 with t = n/ǫprf and qprf = t to get for a
uniformly random X ′ (in the second step below we use eq.(14)).

δsprfǫprf/n(F(K, X ′)‖X ′ ; Um‖X
′) ≤

ǫprf · 2
∆+1 + 2∆+1

(

n2/2n+1 · ǫ2prf + 2 exp
(

−n2/8
))

≤ ǫprf · 2
∆+2

Thus F is a (sprfǫprf/n, ǫprf · 2
∆+1, 1) secure wPRF even if we use a non-uniform

key K. Now we apply Lemma 3 (again with t = n/ǫprf and using eq.(14) in the
second step)

δsprfǫ
2
prf

/2n2(F(K, X)‖X ; Um‖X) ≤

ǫprf · 2
2∆+3 + 2∆+1 · 2 · exp(−n2/32) ≤ ǫprf · 2

2∆+4

Thus we can see F on input K, X as an (ǫprg, sprg)-secure pseudorandom generator
where sprg = sprfǫ

2
prf/2n2 and ǫprg = ǫprf ·2

2∆+4 (note that eq.(15) is still satisfied

as in the statement of the lemma we require λ ≤ log(ǫ−1
prf )/6).

Now consider any function f : {0, 1}κ+n → {0, 1}λ, by (16)

Pr
K,X

[HHILL
ǫ′,s′ (F(K, X)|f(K, X), X) ≥ m− 2λ] ≥ 1− 2−λ/2+1

with ǫ′ = 2−λ/2+2 and s′ = sprg/2λ+1(n + κ) > sprfǫ
2
prf/2λ+2(n + κ)3. �

The following lemma quantifies the security loss in one round of our stream
cipher. Let sizei denote the size of the circuit realizing the ith round of the

experiment SF ℓ
 A, then

∑ℓ
i=1 sizei = size(S

ℓ
 A).



Lemma 7 (The ith round) Consider the random experiment SF ℓ
 A. Then

if before round i ≤ ℓ for some si−1 ≤ s′ (with s′, ǫ′, λ are as in the previous
lemma)

HHILL
ǫi−1,si−1

(Ki−1|viewi−1) ≥ κ− 2λ

HHILL
ǫi−1,si−1

(Xi−1|view
−
i−1) ≥ n− 2λ

then with probability 1−2−λ/2+1 the output (Ki+1, Xi) = F(Ki−1, Xi−1) satisfies

HHILL
ǫi,si

(F(Ki−1, Xi−1)|view
−
i ) ≥ κ + n− 2λ

where ǫi = ǫi−1 + ǫ′, si = si−1 + sizei

Proof. Consider random variables K ′i−1, X
′
i−1 which have high min-entropy

H∞(K ′i−1|viewi−1) ≥ κ− λ and H∞(X ′i−1|view
−
i−1) ≥ n− λ

By Lemma 6 with probability at least 1− 2−λ/2+1

HHILL
ǫ′,s′ (F(K ′i−1, X

′
i−1)|view

−
i ) ≥ κ + n− 2λ

holds with ǫ′ = 2−λ/2+2 and s′ =
sprf

2λ+3·(n+κ)3
. If we now use the random variables

Ki−1, Xi−1 (only having high HILL-pseudoentropy) instead of K ′i−1, X
′
i−1, we

get (recall that si−1 < s′)

HHILL
ǫ′+ǫi−1,si−1−sizei

(F(Ki−1, Xi−1)|view
−
i ) ≥ κ + n− 2λ

Let us stress that here the new error ǫi is ǫ′ + ǫi−1, and not ǫ′ + 2ǫi−1, as one
would think because we must add an error term of ǫi−1 for Ki−1 and Xi−1

respectively. Such a weaker bound would render the lemma useless, as then ǫi

would grow exponentially in i. The reason we only have to add ǫi−1, is that in
round i−1, F outputs (Xi−1, Ki), and it’s this tuple that cannot be distinguished
with advantage more than ǫi−1. Thus by adding an error ǫi−1 for Xi−1 in round
i, we also account for Ki to be used in the next round, and we won’t have to
add an extra error term there. �

The bound on the security of SF as stated in Theorem 2 now follows by summing
up the security decrease in each round as stated in the previous lemma. To apply
the lemma, one must show that for each i, the Ki and Xi are independent given
the view of the adversary, this follows from Lemma 5 by identifying Ai (from
the Lemma) with K2(i−1) (as computed by SF), identifying Bi with K2(i−1)+1

and Vi with viewi. In particular, after ℓ round, the error adds up to

AdvInd(D, A, S, ℓ) ≤ ℓ · 2−λ/2+3.

Note that this is a bit strange, as the advantage decreases by increasing the
leakage λ, but this is only due to the fact that we explicitly set the error pa-
rameters ǫ and ǫHILL as functions of λ in the proof of Lemma 6 in order to keep
the number of parameters down. Setting λ = log(ǫ−1

prf )/6 (note that this is the
largest value allowed in the statement of Lemma 6), we get the bound as claimed
in the theorem.
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