
Traitors Collaborating in Public: Pirates 2.0

Olivier Billet1 and Duong Hieu Phan2

1 Orange Labs, Issy-les-Moulineaux, France
2 Université Paris 8, Saint-Denis, France

olivier.billet@orange-ftgroup.com, hieu.phan@univ-paris8.fr

Abstract. This work introduces a new concept of attack against traitor
tracing schemes. We call attacks of this type Pirates 2.0 attacks as they
result from traitors collaborating together in a public way. In other
words, traitors do not secretly collude but display part of their secret
keys in a public place; pirate decoders are then built from this public
information. The distinguishing property of Pirates 2.0 attacks is that
traitors only contribute partial information about their secret key mate-
rial which suffices to produce (possibly imperfect) pirate decoders while
allowing them to remain anonymous. The side-effect is that traitors can
publish their contributed information without the risk of being traced;
giving such strong incentives to some of the legitimate users to become
traitors allows coalitions to attain very large sizes that were deemed
unrealistic in some previously considered models of coalitions.

This paper proposes a generic model for this new threat, that we use to
assess the security of some of the most famous traitor tracing schemes.
We exhibit several Pirates 2.0 attacks against these schemes, providing
new theoretical insights with respect to their security. We also describe
practical attacks against various instances of these schemes. Eventually,
we discuss possible variations on the Pirates 2.0 theme.

1 Introduction

Traitor tracing is a cryptographic primitive introduced by Chor, Fiat, and Naor
in [9] in the context of secure content distribution. This context covers for in-
stance multimedia content rental, or broadcasting to a very large number of
subscribers like in pay-TV systems, mass distribution of high value DVDs, or in
web-based distribution of various multimedia contents. In all of these settings,
the content is encrypted before its distribution in order to prevent illegal access
which helps ensuring the revenues of the distributor. To decrypt the content,
every legitimate user is provided with a decryption means, commonly called
decoder. The main issue faced by the distributor is the construction and dissem-
ination of unauthorized decoders, possibly creating a parallel market.

Hardware tamper resistant solutions are often too expensive compared to the
price of the offered services. Furthermore, it would not prevent an organization
from breaking into one box and extracting the necessary information to build
and resell unauthorized decoders.

This is where traitor tracing schemes step into the game: the key material
embedded in the decoders is diversified on a user basis. Thus, decoders are
‘marked’ with the identity of the user and traitor tracing allows the authority
to trace a user that produced a pirate decoder. Such users, called traitors, are
more powerful when they collude to create a pirate decoder. In this case, traitor
tracing should allow the tracing of at least one of the traitors that took part in the
coalition. A trivial solution to the problem of traitor tracing is to provide every
user with a randomly chosen key that identifies him and encrypt the content as
many times as there are users in the system. Obviously, such a solution is totally
impracticable due to bandwidth restrictions. Hence, bandwidth preservation in
traitor tracing schemes is of crucial importance.

Since the seminal work of Chor, Fiat, and Naor, there have been several
proposals and improvements in traitor tracing schemes. We give a few landmarks
of the work in traitor tracing but this list is of course not exhaustive. Boneh and
Franklin exposed an elegant algebraic construction coming with a deterministic
tracing procedure in [4]. Fiat and Tassa proposed a way to dynamically remove
traitors from the system once they are caught, see [12]. Kiayias and Yung gave a
powerful method to turn black-box tracing against stateless decoders into black-
box tracing against stateful decoders in [16]. In [6], Boneh, Sahai, and Waters
introduced a full collusion traitor tracing scheme with sub-linear ciphertext size
and constant size private keys. Traitor tracing schemes based on codes have been
much investigated since the seminal work of Boneh and Shaw [7]: Kiayias and
Yung [17] proposed a scheme with constant rate, [8, 19] relaxed the assumption
that the tracer is a trusted third party, and [3, 5] recently achieved constant size
ciphertexts. Among the most famous traitor tracing schemes are schemes from
the NNL framework [18] as they were used as a basis to design the widely spread
content protection system for HD-DVDs and Blu-ray disks called AACS [1].
These are not exactly traitor tracing schemes, but rather very efficient broadcast
encryption schemes with some black-box tracing abilities.

Pirates 2.0 attacks are primarily targeted to code based schemes and schemes
from the NNL framework, but might be used against other combinatoric schemes.

1.1 Collaborative Traitors: Pirates 2.0

From the point of view of the attack model for traitor tracing schemes, there
has been no radical change since the introduction of the concept in [9]. One
remarkable exception is Pirate Evolution from [15] which exposes a new threat
against trace and revoke schemes such as [18]. In this paper, we introduce another
new threat that we call Pirates 2.0 against both traitor tracing schemes and the
trace and revoke schemes from [18].

The main characteristics of our new Pirates 2.0 threat are as follows:

Anonymity Guarantee: Traitors that participate in a Pirates 2.0 attack are
provided with a guarantee (through the exhibition of a mathematical proof)
that they cannot be traced by the authority.

Partial Contributions: Traitors never need to reveal their whole secret key.

Public Collusions: Traitors operate in a public environment: they publish se-
cret data from their decoders.

Large Coalitions: Traitors take part in unusually large coalitions.
Dynamic Coalitions: Traitors can come into action only when necessary.

The anonymity guarantee together with considerations on imperfect decoders
makes the basis of our attack scenario and everything else heavily relies on it.
The anonymity guarantee indeed gives strong incentives to potential traitors to
actually take the plunge: With ubiquitous access to the Internet, leaking secret
data, say, in a peer-to-peer network without further action can be done very
quickly and in a straightforward way. This makes it an appealing scenario among
the ever growing [11, 10, 24] set of users hostile to the currently deployed Digital
Rights Management systems (DRM). The characteristic that large coalitions can
easily be achieved is therefore a direct consequence of the fact that traitors are
guaranteed not to be traced by an authority.

Considerations on imperfect decoders are the other determinant ingredient:
A pirate decoder is considered to be useful if it can decrypt (resp. decrypt with a
high probability) valid ciphertexts; such a pirate decoder is called perfect (resp.
imperfect) decoder. In previous work, it is assumed that a pirate decoder always
decrypts ciphertexts from the tracer when it is not able to detect the presence of
the tracing procedure, i.e. it is assumed that the pirate decoder is either perfect
or only slightly imperfect. This assumption makes sense in the classical model
of coalitions since any coalition, knowing at least one legitimate key, is able to
decrypt all valid ciphertexts anyway. However, in the Pirates 2.0 setting, we show
that another trade-off is possible for the pirates when the scheme uses variable
length ciphertexts: the pirate decoder is only required to decrypt ciphertexts
reasonably shaped. As an example of this scenario, consider the NNL scheme
where the expansion of valid ciphertexts can vary a lot: A pirate decoder that
can decrypt ciphertexts of size lower than, say 1 GB, is highly imperfect, but
still useful to pirates.

In this paper, we show that some traitor tracing schemes and trace and
revoke schemes (including the NNL scheme from [18] and code based schemes)
are susceptible to Pirates 2.0 attacks. We give several practical attacks against
various instances of such schemes, most notably against the AACS. We then
derive the theoretical implications for all these traitor tracing schemes.

1.2 Comparing Pirates 2.0 and the Classical Setting

We summarize below the main differences between our new attack model and
the classical one:

Motivation: The classical model for coalitions captures the fact that pirates
might invest some amount of money in order to sell unauthorized decoder to
the black market. In the case of Pirates 2.0, the motivation might be to get
rid of a protection system to which a large number of users are hostile. In the
history of DVDs for instance, the main motivation to crack the system came
from compatibility issues: the protection was thought to be too restrictive.

Static vs. Adaptive: The classical model of pirates is static. The coalitions
consist of randomly chosen decoders. Therefore it is not possible to bias the
collection process. In a Pirates 2.0 attack, traitors are able to contribute
information adaptively, that is, depending on the current state of affair at
the moment of the contribution. Therefore, even if during the publication
process each traitor operates isolated (i.e. without communication with the
other traitors), having access to published information at the time of the
contribution makes it a collaborative process.

Anonymity: In the classical model of coalitions, traitors colluding must trust
each other, or at least, one third party (say the pirate who collects the secret
data). In contrast, the Pirates 2.0 attack only requires that the partial secret
information provided by the traitors guarantees their anonymity.

Size of Coalitions: In the classical models, one usually assumes a small num-
ber of traitors (especially for combinatorial schemes like those relying on
codes or those based on trees). This assumption seems reasonable in the
classical model because each traitor must trust a third party and even in the
case of an isolated traitor, getting a large number of decoder legally might
be very expensive. In Pirates 2.0, this assumption becomes wrong, since the
traitors guaranteed to remain anonymous can form a very large coalition.

2 Formalization of Pirates 2.0

There are many possible settings for a Pirates 2.0 attack. For instance, the
construction of a pirate decoder can be active or passive. In the active case, the
contributions made by the traitors are driven by the pirate upon building the
pirate decoder. In the passive case, the traitors contribute information at their
discretion. In this work, we focus on the last of these scenarios which leaves more
freedom to the traitors and makes the attack even more realistic.

Also, there are two possible ways of collecting the information contributed by
the traitors: in a centralized way or in a distributed way. Again, the distributed
way leads to a stronger attack with less constraints in practice: traitors can easily
use peer-to-peer networks to contribute their information, whereas a centralized
server is more susceptible to shut down by legal action. We therefore choose to
focus on the distributed setting, though in some cases, assuming a centralized
entity like a pirate server would render the work of contributing for the traitors
and of building a pirate decoder easier than in a peer-to-peer network. In the
rest of the paper, we point out where it is relevant to use the facilities that a
pirate server would provide.

2.1 A Setting for Pirates 2.0

We now describe several concepts that we use in the Pirates 2.0 setting:
Traitors and Pirates. As usual, a traitor is a legitimate user in possession of

some secret data that we call his secret key and who leaks part of this secret key.
Pirates are not legitimate users: they are not entitled to secret data but are able

to collect relevant information from their public environment in order to produce
a pirate decoder. We naturally assume that pirates and traitors respectively
collect and contribute information in a stateful way: a traitor keeps track of (all)
the information he contributed to the public, whereas both pirates and traitors
can keep track of all of the information that was contributed to the public.

Contributed Information. The contributed information is the sum of in-
formation that was put into the public domain by the traitors at a given point
in time, i.e. the secret data leaked from the system. The current contributed
information at any point in time is denoted by C. Initially, C = ∅.

Traitor’s Strategy. A traitor’s strategy is a publicly available probabilistic
algorithm Contribute that traitors execute to provide information to pirates. A
traitor’s strategy comes with a certificate that information leaked following this
strategy allows the traitors to preserve some anonymity level. Traitors might
in principle use different strategies, but for simplicity we only consider in the
following the case where all traitors implement the same strategy.

The strategy Contribute, takes as input the traitor’s secret key sk, some
information I already contributed by other traitors (for instance the set C of
all contributed information at the time Contribute is run) as well as the his-
tory H of the contributions made by the traitor. The traitor’s strategy returns
Contribute(sk, I,H) as the traitor’s contribution to the public. (And therefore,
the overall information contributed to the public C is accordingly updated:
C ← C ∪ Contribute(sk, I,H).)

Public Information. The public information P consists of all the public
data available from the broadcaster (such as for instance its public key, the public
key of users if any, etc.) together with the contributed information C.

Anonymity Level. The public procedure Anonymity provides the level of
anonymity Anonymity(sk, S,P) of a traitor with the secret key sk who leaked an
information S (which corresponds to the sum of all his contributions) following
a public strategy (we refine this notion later on by using extraction functions).
The anonymity level output by the procedure corresponds to the uncertainty
on the traitor’s identity from the tracing authority point of view when provided
with the sequence of contributed information S. At level 1 the traitor is known,
while at level N , the traitor is undistinguishable from another user.

Pirate Decoder. We think of a pirate decoder as the output of an algorithm
called Pirate. If the amount of information available from P is large enough, Pirate
produces a pirate decoder Pirate(P) and simply outputs ‘failed’ otherwise.

In the following we assume that the contribution of secret data to the public
domain C by the traitors is a discrete process.

Definition 1 (Security against Pirates 2.0). A traitor tracing scheme is
said to be α−secure against Pirates 2.0 if it prevents the construction of pirate
decoders from information published by traitors with an anonymity level greater
than α.

Note that not all traitor tracing (or trace and revoke) schemes are susceptible
to Pirates 2.0 attacks. On the other hand, even fully collusion resistant schemes

might be at risk as Pirates 2.0 attacks allow highly imperfect decoders: decoder
can refuse to decrypt classes of specific ciphertexts—e.g. depending on their size.
As we will show in the next sections, some of the most famous schemes, including
the one used in the AACS, are susceptible to our new attack strategy.

2.2 A Concrete Treatment of Anonymity Estimation

The basic idea behind Pirates 2.0 attacks is that traitors are free to contribute
some piece of secret data as long as several users of the system could have
contributed exactly the same information following the same (public) strategy:
this way, they are able to remain somewhat anonymous. The anonymity level is
meant to measure exactly how anonymous they remain.

Definition 2 (Extraction Function). An extraction function is an efficiently
computable function f that outputs information about the secret key.

Definition 3 (Masked Traitor). A traitor t is said to be masked by a user u
for an extraction function f if f(sku) = f(skt).

This notion of a traitor being masked by another user in the system is the basic
undistinguishability notion that allows us to estimate the level of anonymity of
a traitor after his contribution:

Definition 4 (Anonymity Level). The level of anonymity of a traitor t after
a contribution ∪1≤i≤nfi(skt) is defined as the number α of users masking t for
each of the n extraction functions fi simultaneously:

α = #{u | ∀i, fi(skt) = fi(sku)} .

In the previous definitions, we use the equality between each extraction func-
tion fi to derive the anonymity level. One can wonder why not simply consider
equality between the global information leaked by a traitor and the global infor-
mation another user u could extract like ∪ifi(skt) = ∪jgj(sku) with any set of
extraction functions {gj}. The answer is that we do not want to keep the traitor
strategy secret and therefore, the authority can, at least from a theoretical point
of view, use its knowledge of the set of extraction functions {fi} used by the
traitors to gain additional information and to trace the traitors. (It might well
be that there exists another user u such that ∪ifi(skt) = ∪jgj(sku) holds, but
∪ifi(skt) = ∪ifi(skv) would have been impossible for any user v other than t.)

3 Pirates 2.0 and the Subset-Cover Framework

The subset-cover framework proposed by Naor, Naor, and Lotspiech in [18] is
a powerful tool to design efficient trace and revoke systems. It captures many
previously proposed traitor tracing systems and forms the basis of the so called
NNL scheme used in the content protection system for HD-DVDs known as
AACS [1]. However, as we show in this section, this scheme is susceptible to our
attack and we explain how to defeat the AACS system.

3.1 Brief Description of the Subset-Cover Framework

The subset-cover framework is a powerful means to capture several trace and
revoke designs. It encompasses several traitor tracing schemes proposed to date
and maybe even more importantly, serves as the basis for two of the most efficient
trace and revoke schemes: the complete subtree scheme and the subset difference
scheme.

In the subset-cover framework, the set N of users in the system is covered by
a collection of subsets Si such that ∪iSi ⊃ N and Si ∩ N 6= ∅. This covering is not
a partition of N and the sets Si rather overlap. To every subset Si corresponds a
long term secret key Li, and every user that belongs to Si is provided with this
secret key—or in an equivalent way, with some material that allows him to derive
this secret key. Therefore, every user u of the system is given a collection of long
term keys {Lik} that together form his secret key which we denote by sku.

In order to broadcast some content M , the center uses a standard hybrid
scheme: a session key K is first drawn randomly and used to encrypt (with
an encryption scheme E′) the content, before being encrypted under multiple
long term keys (with another encryption scheme E). The long term keys Lik ,
k = 1, . . . , l are chosen so that the corresponding subsets Si1 , . . . , Sil only cover
the set of users entitled to decrypt. Therefore, the center broadcasts ciphertexts
of the form:[(

i1, ELi1
(K)

)
,
(
i2, ELi2

(K)
)
, . . . ,

(
il, ELil

(K)
)
‖ E′K(M)

]
To decrypt, a valid decoder for user u performs the following sequence of oper-
ations: It first looks for an index ij in the first element of each of the l couples
(ik, Eik(K)) in turn such that Sij ⊂ sku. If no index correspond, the decoder
does not decrypt; otherwise, the decoder retrieves the corresponding long term
key Lij and uses it to decrypt the associated encrypted session key Eij (K) and
then decrypts the payload E′K(M).

Since the system is built to handle revoked users, let us also denote by R
the set of revoked users in the system at any point in time. In order to prevent
them (independently, but also working together as a coalition) from accessing
the encrypted content E′K(M), the collection Si1 , . . . , Sil is specially crafted so
that:

l⋃
k=1

Sik = N \ R .

The tracing procedure. Now that we showed how the system deals with
revoked users, we have to describe the way it disables pirate decoders. As is
usual, the tracing procedure works with black-box access to the pirate decoder
only. The idea is to refine the covering initially used to broadcast ciphertexts
so that the pirate decoder cannot decrypt with probability p higher than some
threshold. To this end, the authors of [18] suggest to use an hybrid argument:
the pirate box is provided with “ciphertexts” with payload E′K(M) and headers
of type j (for j = 1, . . . , l):(

i1, ELi1
(R)
)
, . . . ,

(
ij , ELij

(R)
)
,
(
ij+1, ELij+1

(K)
)
, . . . ,

(
il, ELil

(K)
)

where R is some randomly chosen element independent from K. If we denote
by pj the probability that the pirate box correctly decrypts the specially crafted
ciphertexts of type j, there must exist an index t such that |pt − pt−1| ≥ p

l
and therefore some traitor belongs to Sit . The tracer then iterates this basic
procedure, applying it to an arbitrary covering of Sit until either Sit contains a
single element (which thus matches a traitor) or the pirate box cannot decrypt
above the threshold (and no one is accused of being a traitor, but the new
partition renders the pirate box useless).

The authors of [18] showed that this tracing procedure is correct as soon as
the revocation scheme satisfies a so-called “bifurcation property”: every subset
can be split into two subsets of roughly the same size. As we will see, this is the
case for the two schemes complete subtree and subset difference.

3.2 General Attack Strategy against Subset-Cover Schemes

The generic process for the attack is relatively simple and runs in a few steps:

Elaborating the strategy
The main idea is to select a collection of subsets Sι1 , . . . , Sιw such that:
– The number of users in each subset Sιk is large, so that the anonymity

level of the traitors is guaranteed to remain high enough when they
contribute the associated long term key Lιk ;

– For any set R of revoked users and any method used by the broadcaster
to partition N \ R into subsets Si1 , . . . , Sim , the probability that one of
the subsets Sιk belongs to the partition Si1 , . . . , Sim is high—say exceeds
a given threshold τ—or the broadcaster exceeds its available bandwidth.

Contributing data
Let us define the extraction functions fi to be fi(sk) = Li if Li ∈ sk and
‘missing’ otherwise. To contribute part of his private key skt, a traitor t per-
forms the following sequence of lookups: for each index i from {ι1, ι2, . . . , ιw}
(taken in any order) the traitor computes C = fi(skt) and if C 6= failed
and C 6∈ P returns and outputs C. The information H about skt that the
traitor already contributed to the public is included in the argument list so
that the contribution is Contribute(skt,P, H).

Building pirate decoders
A pirate decoder simply embeds the public keys Lι1 , . . . , Lιw . Upon reception
of a ciphertext[(

i1, ELi1
(K)

)
,
(
i2, ELi2

(K)
)
, . . . ,

(
il, ELil

(K)
)
‖ E′K(M)

]
from the center, the pirate checks whether {ι1, . . . , ιw} ∩ {i1, . . . , im} = ∅.
If not, that is if there is an index ιk = il in both sets (which was assumed
to occur with high probability), the pirate box recovers the corresponding
key Lιk , uses it to decrypt the session key K from ELil

(K), and therefore is
able to correctly decrypt the payload.

Anonymity
The level of anonymity of a given traitor t in a subset cover scheme is related
to the number of users of the system that know the complete list of subsets
St1 , . . . , Stl for which the traitor contributed the keys Lt1 , . . . , Ltl to the
public.

3.3 Pirates 2.0 against the Complete Subtree Scheme

S1

S2

S3

S5

S6

S4

node hanging off the Steiner tree node covered by one Si node of a revoked user

Fig. 1. Complete subtree: leaves correspond to users, S1, . . . , S6 is the covering that
excludes revoked users in black while allowing other users to decrypt derived from the
Steiner tree associated to the set of revoked users R.

The complete subtree scheme. In this scheme, the users correspond to the
leaves of a complete binary tree whereas the collection of subsets Si exactly
corresponds to all the possible subtrees in the complete tree. When |N| = 2n, the
complete binary tree is of length n and there are exactly n subtrees that contain
a given leaf. Figure 1 shows a covering using six subsets of twelve users that
excludes four revoked users (depicted in black). This subset scheme complies
with the bifurcation property since any subset (or equivalently any subtree of
the complete binary tree) can be split into two subsets of equal size (the two
subtrees rooted at the two children of the root of the original subtree). Regarding
key assignment, each user represented by a leaf u in the complete binary tree is
provided with the keys Li associated to the nodes i on the path from the leaf u
to the root.

Covering algorithm. In the case of the complete subtree, the covering used
to exclude the r = |R| revoked users from N is the collection of subsets that hang
off the Steiner tree of the revoked leaves. (The Steiner tree of the revoked leaves
is the minimal subtree of the complete binary tree that connects all the revoked
leaves to the root and it is unique.) Since any user only knows the keys from its
leaf to the root and since this path is included in the Steiner tree for revoked
users, these users cannot decrypt anymore. This algorithm produces covers of
size O(r log(N/r)).

We now give a version of our attack against subset cover schemes in the case
of the complete subtree scheme:

Theorem 1. On average, a randomly chosen group of ρ log ρ traitors (operating
isolated) is able to mount a Pirates 2.0 attack against a complete subtree scheme
in which the center wants to ensure a ciphertext rate3 of at most ρ(N − r)/N .
Moreover, each traitor is guaranteed an anonymity level of N/ρ.

Proof. For simplicity we assume that no collision occurs during the contribution
process (the traitors contribute sequentially, although in a completely random
way, their share of secret data) and that the contribution of a traitor is readily
available to the public. (It is obviously possible to deal with these refinements by
considering statistical processes instead and then bounding the loss in efficiency
that would occur in such a general case.)

Following the general attack strategy described in the previous section, define
Sι1 , . . . , Sιw to be the subsets corresponding to all the subtrees of the complete
tree having more than N/ρ leaves so that for each ιk more than N/ρ users share
the corresponding long term keys Lιk . These subsets also correspond to all the
nodes between level 0 (the root) and the level λ = blog ρc and thus, there are
w = 2bρc of them. Then, a traitor contributing one of the Lιk at level λ together
with every Lιj on the path from node ιk to the root has a level of anonymity4

higher than N/ρ. (As mentioned above, more than N/ρ users share the key Lιk
and moreover the same users also know about Lιi for every node ιi on the
path from node ιk to the root because of the assignment scheme.) Now, the
number of traitors needed to collect the bρc long term keys (and those above) is
given by the answer to the classical coupon collection problem: to collect all the
m possible items when one receives a uniformly chosen item at each draw requires
m logm draws on average. This demonstrates the first part of the theorem.

It only remains to show that either a pirate is able to produce a working
decoder, or the center uses too much bandwidth (the ciphertext rate is bigger
than ρ). Let r be the number of revoked users. Let us assume that the broadcaster
only uses subsets rooted at a level l ≥ λ since otherwise the priate decoder is
able to decrypt the ciphertexts. Now every subset can cover at most N/2λ users
so that ρ(N − r)/N of them are needed to cover the N − r legitimate users. ut

Theoretical and practical impact. From a theoretical point of view, Theorem 1
shows that instead of the O(r log(N/r)) complexity that was first derived, the
bandwidth required for the complete subtree scheme to operate securely actually
is O(ρ(N − r)/N + r log(N/r)) for a number of ρ log ρ traitors taking part in a
Pirates 2.0 attack.

From a practical point of view, we note that we assumed that every long
term key can be leaked by at least one traitor. For a system accommodating
232 users and a long term key at the 12th level, this assumption translates into
the fact that among a million of users there is at least one that takes the step

3 the ciphertext rate is the number of subsets used by the center
4 having a lot of revoked users in the subtree does not affect the level of anonymity:

revoked users know the keys on their path to the root and could have contributed
them as well. This, however, affects the decryption threshold of the pirate decoder

of contributing it to the public (with the guarantee of remaining anonymous!);
this hypothesis seems reasonable to us.

Also, note that even in the case where one long term key is not contributed
by any user, the attack remains valid: the pirate box will not be able to decrypt
only with a very small probability.

3.4 Pirates 2.0 against the Subset Difference Scheme

The subset difference scheme has been introduced to lower the number of subsets
required to partition the set of legitimate users N\R. It improves on the complete
subtree scheme exposed above by a factor of log(N/r) in terms of bandwidth
usage for the headers.

u

Fig. 2. Key assignment. User u receives all the labels LABELi,j such that i is a parent
of j and i is on the path from the leaf of u to the root.

To attain this level of performance, the number of possible subsets has been
tremendously increased. Remember that Si denotes the full binary subtree of
the complete binary tree rooted at node i. Now, for each node j in Si different
from i, let us denote by Si,j the binary subtree rooted at node i of which the full
binary subtree rooted at node j has been removed. (See examples in Figure 3.)
A user will need to know all the keys Li,j such that he belongs to the subtree
rooted at i but not in the subtree rooted at j. However, it would be impossible
for each device to store such a huge number of long term keys. This is why a
key derivation procedure has been designed to allow the derivation of most of
the O(N) long term keys a user is entitled from a much smaller set of keys: a
user only needs to store O(log2(N)) keys. Each node i in the full binary tree is
first assigned a random label LABELi and labels LABELi,j together with their
corresponding long term keys Li,j are deduced (in a pseudo-random way) from
label LABELi. The key derivation procedure then works as follows: from each
LABELi, a pseudo-random value LABELi,j is obtained for each sub-node j using
the tree based construction proposed by Goldreich, Goldwasser, and Micali [13];
from this value, a long term key Li,j is eventually deduced (in a pseudo-random
way). Each user is then provided with labels LABELi,j for all nodes i that are
on the path from the leaf that represents the user to the root, and all nodes j
hanging off this path as described on Fig. 2. This key assignment ensures that
every user in the subtree rooted at node i but not in the subtree rooted at node j

is able to derive Li,j while every user in the subtree rooted at node j is not able
to derive Li,j .

Covering algorithm. The covering algorithm works by maintaining a sub-
tree T of the Steiner tree of R and removes nodes from it at each steps:
init: Make T the Steiner tree of R.
select: If there is only one leaf vk in T and it is not the root (or node 0),

add the subset S0,k and return. If there is only the root in T , return.
Otherwise, select two leaves vj1 and vj2 from T so that their least
common ancestor v does not contain any other leave of T than vj1
and vj2 . Call vi1 and vi2 the children of v such that vi1 is the ancestor
of vj1 and vi2 the ancestor of vj2 . Then, if vi1 6= vj1 add Si1,j1 to the
partition and similarly if vi2 6= vj2 add Si2,j2 to the partition. Remove
all the descendants of v from T , which makes v a leaf of T . Reiterate
the step ‘select’.

An example output of this procedure is shown in Figure 3.

S4,19 S5,10

S3,28

Fig. 3. Subset difference: leaves correspond to users and black nodes are not able to
derive the necessary information to decrypt. Therefore S4,19 prevents user 19 from
decrypting, S5,10 prevents users 20 and 21 from decrypting, and S3,28 prevents user 28
from decrypting. All other users are able to decrypt.

Theorem 2. On average, a randomly chosen group of ρ log ρ traitors (operating
isolated) is able to mount a Pirates 2.0 attack against a subset difference scheme
in which the center wants to ensure a ciphertext rate of at most ρ(N − r)/N .
Moreover, each traitor is guaranteed a level of anonymity of at least N/2ρ.

Proof. In the following proof we make use of labels of a special type, that we
call direct labels. Direct labels are LABELi,j
such that the node j is a direct descendant of
the node i. The first six direct labels of the
tree are described in the figure on the left.

First, note that a pirate knowing all the keys Li,j where the node i lies in
the first λ = blog ρ

2c levels, is able to decrypt all the ciphertexts where the rate
is lower than ρ(N − r)/N where r is the number of revoked users. Indeed, the
broadcaster must use subsets Sk,l where the node k does not lie in the first
λ levels in order to prevent the pirate from decrypting the ciphertexts. Since

each of these subsets covers less than N/2λ+1 users (those who are in the subtree
rooted at node k), the center must use at least ρ(N − r)/N subsets to cover all
the legitimate users.

Collecting all the keys rooted at a level l ≤ λ is however totally unpractical
since there are a tremendous number of such keys. The pirate can nevertheless
go around this difficulty by collecting labels LABELi,j instead of keys Li,j and
using the derivation procedure to lower the minimum information to be kept:
the labels that users possess allow to derive a large number of keys. Therefore,
we claim that it is enough for the pirate to collect all direct labels LABELi,j
where i is located in the first λ levels in order to derive all keys Li,k. (Once the
pirate knows the two direct labels at node i, he can derive all keys Li,k where k
is in the subtree rooted at i.)

To prove the theorem, we show that on average, ρ log ρ randomly chosen
traitors are able to contribute all the direct labels of the first λ levels. Each
traitor contributes all his direct labels LABELi,j for the nodes i located in the
first λ levels. Note that at each level, a traitor has been assigned exactly one
of the direct labels. Thus, when all direct labels at level exactly λ have been
contributed, so have the direct labels of all the first λ− 1 levels. As a randomly
chosen traitor knows a uniformly chosen direct label out of the ρ

2 direct labels of
level λ, a randomly chosen group of ρ log ρ traitors (operating isolated) is able
to contribute all direct labels LABELi,j where i is located in the first λ levels.

Moreover, such traitors share their contribution with every user in the same
subtree rooted at level λ+ 1: each traitor is covered by N/ρ users. ut

Remark 1. Theorem 2 is proven in the case of static attacks: traitors submit
information non-adaptively, such as in a peer-to-peer scenario. However, the
number of required traitors to mount a Pirate 2.0 attack can be lowered to ρ in
the case of an adaptive attack such as in a server-based scenario.

Impact on AACS. In the case of AACS, the subset difference scheme is used
with N = 231 users. The header is written in a so-called Media Key Block or
MKB for short which (among other) encodes the indices for the difference subsets
as well as the media key encrypted once for each of the corresponding long term
keys. These keys are 16 bytes long and the indices are encoded using 5 bytes.
According to Section 3.2.5.5 of AACS specifications [2]: “For the purposes of
designing performance, a one megabyte buffer is sufficient to process the MKB.”
Although this is not an intrinsic limitation of the system, very large MKBs would
decrease the performances of hardware devices and would increase their price.
This is why applications like disk replicators often only allocate 1MB space for
the MKB. In the case of AACS, this means that only 211.6 = 220/21 encrypted
keys will be able to fit this space and thus a Pirates 2.0 attack against the
AACS would only require some thousand collaborating traitors which, given the
guarantee offered to traitors (a million of other users cover each traitor), seems
very practicable.

Also note that once again the attack given here is just an illustration of our
general concept of attack. There are several possible improvements and refine-
ments such as taking advantage of the partition algorithm (remember that the

scheme is a trace and revoke scheme and not a full traitor tracing scheme, so
that it might fail to single out a traitor).

4 Pirates 2.0 and Code Based Schemes

Traitor tracing schemes based on codes (be it collusion secure codes [7, 25] or
identifiable parent property codes [14, 22]) have been proposed during more than
half a decade [17, 8, 21, 20, 23, 5]. Their main advantage is their efficiency in terms
of bandwidth requirements, but their main drawback is that their efficiency (in
terms of the size of the private key) is highly sensitive to the number of traitors
in the coalition.

4.1 General Framework of Codes Based Schemes

Traitor tracing schemes built on codes more or less fit in the following framework:

Setup: The scheme generates a code C of length ` which is either a collusion
secure code or a q-ary c-IPP code. The alphabet for the code is A = {0, 1}
in the case of a collusion secure code and A = {1, . . . , q} in the case of an
IPP code. Then, for each position i = 1, . . . , ` in a codeword and for each
possible letter a from A, a key Ki,a is randomly chosen. Hence, there are 2`
possible keys (resp. q` possible keys) in the system in the case of collusion
secure codes (resp. IPP codes).

Key assignment: Each user u is given a codeword Wu from C. Then, for
each position i = 1, . . . , ` in this codeword, the user is provided with the
key Ki,Wu[i] where Wu[i] is the letter at position i in the codeword Wu.
Thus, each user gets ` keys in its decoder.

Decoder: A ciphertext usually contains a header that specifies the positions
of the keys involved in the decryption process. For instance, in the case of
the scheme [17] proposed by Kiayias and Yung, all the keys of the user are
involved. In the case of the scheme [5] proposed by Boneh and Naor only
one key is involved during a decryption process.

4.2 Pirates 2.0 against Code Based Schemes

Our goal is to show how our generic attack can be applied to this class of schemes.
We do not focus on any concrete construction but rather deal with the underlying
codewords. For ease of exposition, we describe an attack when the underlying
code is a Tardos’ code [25] but this attack might easily translate to other codes.

First, recall that a Tardos’ code secure against coalitions of size at most c is
built as follows. First, the code length is set to be ` = d100c2 log(N/ε)e. Then, for
each integer i in the interval [1, . . . , `] a (secret) value 0 < pi < 1 heavily biased
towards 0 or 1 is randomly drawn. Then, any of the N codewords is constructed
by randomly choosing for each position i in [1, . . . , `] the bit ‘0’ or the bit ‘1’
according to the probability pi.

Theorem 3. For any traitor tracing scheme that relies on Tardos’ code for its
set of keys, a set of T traitors collaborating to mount a Pirates 2.0 attack allows
to produce a pirate decoder while maintaining a level of anonymity higher than
N · 2−`/T on the average.

Proof. Since contributing large amounts of a codeword makes your level of
anonymity drop a lot, a strategy that handles every traitor with equity is to
make them contribute the same amount of secret data. Since there are T traitors,
let them each contribute `/T elements of (the secret data associated with) their
codeword. Of course, people are then already able to construct pirate decoders
with the collected material. The anonymity level α a traitor can expect is easy
to assess: if m = d`/T e,

α = N
∏m
i=1

(
p2
σ(i) + (1− pσ(i))2

)
. (1)

Indeed, for a randomly chosen traitor, there is a probability pi that the letter at
position i is ‘0’ and for any other codeword randomly chosen a probability pi that
the letter at that position is also ‘0’. Similarly there is a probability 1−pi that the
letter at position i is ‘1’ and the same probability that another codeword gets the
same letter at that position. Therefore, the probability that another codeword
gets the same letter as that of the traitor for some position i is qi = p2

i +(1−pi)2.
The probability that a block of size m of the traitor’s codeword is the same as
that of another user is thus

∏m
i=1 qσ(i), where σ is a permutation of {1, . . . , `}

that accounts for the particular selection of the block of size m.
The sum from Eq. (1) takes into account every possible block of codeword of

length m and by multiplying by the total number of users in the system, we get
the average number of users masking a randomly chosen traitor, that is its level
of anonymity in the system. Now since p2

i + (1− pi)2 ≥ 1
2 we get a (very loose)

bound on the level of anonymity: α ≥ N · 2−`/T . ut

Theoretical and practical impact. From a theoretical point of view, the above
theorem shows that the number of traitors required to mount a Pirates 2.0 is
only linear in the size of the decoder and only logarithmic in the number of users
in the system. From a practical point of view, it would require about 217 traitors
to mount a Pirate 2.0 attack against a traitor tracing scheme that relies on a
30-collusion secure code with 232 users. Each traitor would be masked by about
a few thousand users in this case.

5 Conclusion

Throughout this paper we presented a novel concept of attack against combina-
torial traitor tracing schemes. We focused on the main ideas behind this concept
of attack, but some variations could be further investigated. For instance, it is
possible to consider the case of dishonest traitors (a common threat to collab-
orative work is bad contributions which have to be tracked and eliminated).

Dishonest traitors capture the fact that the authority could try to perturb the
creation of pirate decoders by publishing incorrect information. However, one
of the traitors might use its own authorized decoder to verify the contribution
of the other traitors: after having sorted out these contributions, he is able to
produce a pirate decoder.

Another direction is to consider probabilistic guarantees for the level of
anonymity of contributing traitors: the traitors are only certified to have a high
level of anonymity with some (possibly very high) probability. This is useful if
the authority tries to embed markers specific to a single user. However, there
is a trade-off for the authority between the effectiveness of this process against
Pirates 2.0 and the efficiency of the scheme.

Eventually, the most interesting direction is probably to provide modified
versions of the common traitor tracing schemes that resist Pirates 2.0 attacks
without sacrificing the efficiency of the original schemes.

References

1. AACS LA. AACS Specifications. At http://www.aacsla.com/specifications/.

2. AACS LA. Introduction and Common Cryptographic Elements. Downloaded from:
http://www.aacsla.com/specifications/specs091/AACS_Spec_Common_0.91.pdf.

3. Olivier Billet and Duong Hieu Phan. Efficient Traitor Tracing from Collusion
Secure Codes. In Reihaneh Safavi-Naini, editor, Information Theoretic Security—
ICITS 2008, volume 5155 of Lecture Notes in Computer Science, pages 171–182.
Springer, 2008.

4. Dan Boneh and Matthew K. Franklin. An Efficient Public Key Traitor Tracing
Scheme. In Michael J. Wiener, editor, Advances in Cryptology—CRYPTO ’99,
volume 1666 of Lecture Notes in Computer Science, pages 338–353. Springer, 1999.

5. Dan Boneh and Moni Naor. Traitor tracing with constant size ciphertexts, 2008.

6. Dan Boneh, Amit Sahai, and Brent Waters. Fully Collusion Resistant Traitor
Tracing with Short Ciphertexts and Private Keys. In Serge Vaudenay, editor,
Advances in Cryptology—EUROCRYPT 2006, volume 4004 of Lecture Notes in
Computer Science, pages 573–592. Springer, 2006.

7. Dan Boneh and James Shaw. Collusion-secure fingerprinting for digital data. In
Don Coppersmith, editor, Advances in Cryptology—CRYPTO ’95, volume 963 of
Lecture Notes in Computer Science, pages 452–465. Springer, 1995.

8. Hervé Chabanne, Duong Hieu Phan, and David Pointcheval. Public Traceability
in Traitor Tracing Schemes. In Ronald Cramer, editor, Advances in Cryptology—
EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages
542–558. Springer, 2005.

9. Benny Chor, Amos Fiat, and Moni Naor. Tracing Traitors. In Yvo Desmedt,
editor, Advances in Cryptology—CRYPTO ’94, volume 839 of Lecture Notes in
Computer Science, pages 257–270. Springer, 1994.

10. DefectiveByDesign. http://www.defectivebydesign.org/.

11. Electronic Frontier Foundation. http://www.eff.org/.

12. Amos Fiat and Tamir Tassa. Dynamic Traitor Training. In Michael J. Wiener,
editor, Advances in Cryptology—CRYPTO ’99, volume 1666 of Lecture Notes in
Computer Science, pages 354–371. Springer, 1999.

13. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct ran-
dom functions (extended abstract). In Symposium on Foundations of Computer
Science—FOCS 84, pages 464–479. IEEE, 1984.

14. Henk D. L. Hollmann, Jack H. van Lint, Jean-Paul M. G. Linnartz, and Ludo
M. G. M. Tolhuizen. On Codes with the Identifiable Parent Property. J. Comb.
Theory, Ser. A, 82(2):121–133, 1998.

15. Aggelos Kiayias and Serdar Pehlivanoglu. Pirate Evolution: How to Make the
Most of Your Traitor Keys. In Alfred Menezes, editor, Advances in Cryptology—
CRYPTO 2007, volume 4622 of Lecture Notes in Computer Science, pages 448–465.
Springer, 2007.

16. Aggelos Kiayias and Moti Yung. On Crafty Pirates and Foxy Tracers. In Tomas
Sander, editor, Security and Privacy in Digital Rights Management—DRM 2001,
volume 2320 of Lecture Notes in Computer Science, pages 22–39. Springer, 2002.

17. Aggelos Kiayias and Moti Yung. Traitor tracing with constant transmission rate.
In Lars R. Knudsen, editor, Advances in Cryptology—EUROCRYPT 2002, volume
2332 of Lecture Notes in Computer Science, pages 450–465. Springer, 2002.

18. Dalit Naor, Moni Naor, and Jeffery Lotspiech. Revocation and tracing schemes for
stateless receivers. In Joe Kilian, editor, Advances in Cryptology—CRYPTO 2001,
volume 2139 of Lecture Notes in Computer Science, pages 41–62. Springer, 2001.

19. Birgit Pfitzmann. Trials of Traced Traitors. In Ross J. Anderson, editor, Infor-
mation Hiding—IH ’96, volume 1174 of Lecture Notes in Computer Science, pages
49–64. Springer, 1996.

20. Duong Hieu Phan. Traitor tracing for stateful pirate decoders with con-
stant ciphertext rate. In Phong Q. Nguyen, editor, Progress in Cryptology—
VIETCRYPT 2006, volume 4341 of Lecture Notes in Computer Science, pages
354–365. Springer, 2006.

21. Duong Hieu Phan, Reihaneh Safavi-Naini, and Dongvu Tonien. Generic Con-
struction of Hybrid Public Key Traitor Tracing with Full-Public-Traceability. In
Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors, Au-
tomata, Languages and Programming—ICALP 2006, volume 4052 of Lecture Notes
in Computer Science, pages 264–275. Springer, 2006.

22. Palash Sarkar and Douglas R. Stinson. Frameproof and IPP Codes. In C. Pandu
Rangan and Cunsheng Ding, editors, Progress in Cryptology—INDOCRYPT 2001,
volume 2247 of Lecture Notes in Computer Science, pages 117–126. Springer, 2001.

23. Thomas Sirvent. Traitor tracing scheme with constant ciphertext rate against pow-
erful pirates. In Daniel Augot, Nicolas Sendrier, and Jean-Pierre Tillich, editors,
Workshop on Coding and Cryptography—WCC ’07, pages 379–388, April 2007.

24. Stop DRM Now! http://stopdrmnow.org/.
25. Gábor Tardos. Optimal probabilistic fingerprint codes. In ACM Symposium on

Theory of Computing—STOC 2003, pages 116–125. ACM, 2003.

