
Resettably Secure Computation

Vipul Goyal? and Amit Sahai??

Department of Computer Science, UCLA

Abstract. The notion of resettable zero-knowledge (rZK) was intro-
duced by Canetti, Goldreich, Goldwasser and Micali (FOCS’01) as a
strengthening of the classical notion of zero-knowledge. A rZK protocol
remains zero-knowledge even if the verifier can reset the prover back to
its initial state anytime during the protocol execution and force it to
use the same random tape again and again. Following this work, vari-
ous extensions of this notion were considered for the zero-knowledge and
witness indistinguishability functionalities.
In this paper, we initiate the study of resettability for more general func-
tionalities. We first consider the setting of resettable two-party compu-
tation where a party (called the user) can reset the other party (called
the smartcard) anytime during the protocol execution. After being reset,
the smartcard comes back to its original state and thus the user has the
opportunity to start interacting with it again (knowing that the smart-
card will use the same set of random coins). In this setting, we show
that it is possible to secure realize all PPT computable functionalities
under the most natural (simulation based) definition. Thus our results
show that in cryptographic protocols, the reliance on randomness and
the ability to keep state can be made significantly weaker. Our simu-
lator for the aforementioned resettable two-party computation protocol
(inherently) makes use of non-black box techniques. Second, we provide
a construction of simultaneous resettable multi-party computation with
an honest majority (where the adversary not only controls a minority of
parties but is also allowed to reset any number of parties at any point).
Interestingly, all our results are in the plain model.

1 Introduction

The notion of resettable zero-knowledge (rZK) was introduced by Canetti et
al [CGGM00] with a motivation towards obtaining zero-knowledge protocols for
highly adversarial environments. In rZK, the verifier is given the additional power
that anytime during the protocol execution, it can “reset” the prover back to
its initial state thus restarting the prover with the same configuration and coin
? Research supported in part from Amit Sahai’s grants and a Microsoft Graduate

Research Fellowship.
?? Research supported in part from NSF grants 0627781, 0716389, 0456717, and

0205594, a subgrant from SRI as part of the Army Cyber-TA program, an equip-
ment grant from Intel, an Alfred P. Sloan Foundation Fellowship, and an Okawa
Foundation Research Grant.

tosses. This notion is motivated by several natural questions. Firstly, it address
the question: “is zero-knowledge possible when the prover uses the same random
coins in more than one execution?” and (surprisingly) gives a positive answer to
it. Secondly, it shows that zero-knowledge protocols can be securely implemented
by devices which can neither reliably keep state nor toss coins online. An example
of such a device might be a resettable stateless “smartcard” with secure hardware
(which can be reset, e.g., by switching off its power) [CGGM00]. Thus, rZK
can be viewed as “zero-knowledge protocols for stateless devices”. Canetti et
al [CGGM00] provide rZK proof system (for NP) with non-constant number
of rounds and resettable witness indistinguishable (rWI) proof system with a
constant number of rounds.

Canetti et al [CGGM00] observed that since the prover can be reset, an ad-
versarial verifier can actually achieve the effect of interacting with the prover
concurrently in several sessions, thus in particular implying concurrent zero
knowledge [DNS98]. In more detail, the verifier can start a session with the
prover and while the interaction is still in progress, can reset the prover to start
another interaction. It could reset the prover again in the middle to that inter-
action and come back to the previous interaction by just running the protocol
identically up to the point where it reset the prover before. Thus, the verifier
gets the flexibility of choosing its messages in one interaction based on the mes-
sages of the prover in some other interaction. In other words, the verifier can
essentially interact with the prover in various sessions and can interleave these
sessions as it pleases. Thus, a rZK protocol is a concurrent ZK protocol as well
[CGGM00]. Following this work, research on improving the round complexity of
concurrent ZK also led to rZK with improved round complexity [KP01,PRS02].

Subsequent to the introduction of this notion, various extensions were con-
sidered. Barak, Goldreich, Goldwasser and Lindell [BGGL01] studied resettably-
sound ZK (rsZK) where it is the verifier that can be reset by the prover. The
main challenge is to design a ZK protocol which retains its soundness even when
verifier uses the same random coins in multiple executions. Relying the non
black-box techniques of Barak [Bar01], Barak et al were able to construct con-
stant round rsZK arguments. These rsZK arguments were also used to construct
resettable zero-knowledge arguments of knowledge [BGGL01]. An open ques-
tion raised by [BGGL01] is: do there exist ZK protocols where both the prover
and the verifier are resettable by each other? While this still remains an open
problem, partial progress was made in [DL07]. The notion of resettability was
also studied extensively in the bare public key model introduced by [CGGM00]
with a goal of obtaining more efficient protocols (see [YZ07] and the references
therein).

Going Beyond ZK – Our Contributions. Common to all the prior work
on the notion of resettability is that they consider only the zero-knowledge (or
closely related) functionality. This raises the following natural question:

“Do there exist other classes of functionalities for which resettably secure
protocols can be obtained?”

In other words, do there exist protocols for other tasks such that the “security”
is retained even if one of parties participating in the protocol can be reset by the
other one? We initiate the study of general resettable computation and answer
the above question in the affirmative.

–Resettable Two-Party Computation. We prove a general completeness
theorem for resettable computation showing that it is possible to construct a
protocol to securely realize any PPT computable functionality. Our results are
for the setting where one party (called the user) can reset the other party (called
the smartcard) during the protocol execution. We first formalize this notion of
resettable two-party computation and give a natural simulation based security
definition for it. We then construct a general two-party computation protocol
under standard (polynomial time) cryptographic assumption. We in fact give
a “resettability compiler” which can compile any semi-honest secure (in the
standalone setting) protocol into one that is resettably secure. The simulator
for our resettable two-party computation protocol makes use of non-black box
techniques. We note that non-black box simulation is inherent since Barak et al
[BGGL01] show that it is impossible to obtain rsZK arguments (for languages
outside BPP) using black-box simulation and rsZK arguments for NP is only a
special case of a two-party functionality.

–Resettable Multi-Party Computation. Given the above results, two nat-
ural questions that arise then are: (a) Do there exists general secure resettable
multi-party computation protocols (where one or more of the parties are reset-
table)?, and, (b) Can the construction be extended to handle cases where both
parties can potentially reset each other? Towards that end, we first observe that
the our construction for resettable two-party computation can be extended using
standard techniques to show the existence of resettable multi-party computation
(where only one of the parties can be reset) with dishonest majority. Next, we
offer a construction of simultaneous resettable multi-party computation (where
all the parties are resettable) assuming a majority of the parties behave honestly.
That is, the adversary not only controls a minority of parties but is also allowed
to reset any number of honest parties at any point in the protocol execution.
At the core of our construction is a new construction of families of multi-party
1-round (and thus automatically resettable) zero-knowledge arguments of knowl-
edge which are simulation sound [Sah99].

Our results show that in cryptographic protocols, the reliance on randomness
and the ability to keep state can be made significantly weaker. We in fact show a
simple transformation from any resettably secure protocol (as per our definitions)
to a fully stateless one. By this we mean that the party which was resettable
in the original protocol need not maintain any state at all in the transformed
protocol.

Concurrency vs Resettability. As discussed earlier, if a party can be reset,
the other party can actually achieve the effect of interacting with it concurrently
in several sessions. This fact is the reason for the folklore that a resettably secure
protocol should also be concurrently secure (i.e., concurrently self-composable).

However far reaching impossibility results have been proven showing that a large
class of functionalities cannot be securely realized [Lin03,Lin04] (even in the fixed
roles setting) in the plain model. This stands in sharp contrast to our general
positive results for resettable two-party computation.

In resettable two-party computation, an adversarial user already has the
power to reset the smartcard and interact with it as many times as it likes.
This fact that the number of interactions cannot be controlled is precisely what
makes resettable two-party computation possible. In the formulation of our ideal
model for defining security, we give the adversarial user the power to interact
with the smartcard as many times it likes. Given that an adversarial user is
allowed to reset the smartcard in the real model (thus creating new problems),
emulating the view of such an adversary in the ideal world is only possible if
several interactions with the smartcard are allowed. In other words, we are only
allowing the user to do in the ideal world what he is already allowed to do in
reality. By giving our ideal adversary such extra power, we are able to construct
protocols satisfying our definition in the plain model. In our construction, the
number of times the simulator sends the reset request in the ideal world is
polynomially related to the number of times the real world adversary sends
the reset request. An open problem raised by the current work is to design a
construction having a precise simulation [MP06] with respect to the number of
outputs.

Combining our results with the impossibility results of Lindell [Lin03,Lin04],
we get a first separation between the notions of resetability and concurrency.
That is, a resettably secure protocol (as per our definitions) is not always a
concurrently secure protocol (even for fixed roles) and vice versa (this direction
is implicit in [CGGM00]). In fact there exists a large class of functionalities for
which concurrently self-composable protocols do not exist but resettably secure
protocols do (as we show that they exist for every two-party functionality).

Meaningful Resettable Functionalities. We stress that while the resettable
setting is unsuitable for several traditional functionalities, such as Yao’s Million-
aire function, it remains meaningful and highly non-trivial for a large class of
functions. For instance, consider the problem of “conditional blind signatures”,
where one is willing to sign unknown messages as long as they satisfy some
property P . If a resettable device were to use a traditional two-party computa-
tion protocol to do this, it might leak full knowledge of the secret signing key;
our protocols would ensure that only the power to sign messages satisfying P is
given to the holder of the device. In general, functionalities where the output is
“cryptographic” in nature, and where the input of the device is a cryptographic
key, will be meaningful for resettable devices in a variety of settings. Techniques
from the area of privacy-preserving data analysis (see [Dwo08] and the references
therein) may also be useful in designing other classes of functions suitable for
computation by resettable devices.

Stateless vs Stateful Devices. Our results have interesting implications about
the power of stateless devices. Consider a stateless device (holding an input, pos-
sibly unable to toss coins online) trying to run a protocol for secure computation

of some functionality with a user. Our results show that stateless devices can run
secure computation protocols for every task. Of course, stateless devices can only
be used when one does not want to limit the number of protocol executions that
the device carries out (with a particular input).

What if one does want to limit the number of interactions that the device
carries out? We remark that it is also possible to obtain the following “best of
both worlds” protocol in such a case. In case the adversary is not able to reset
the device during the protocol interaction, the protocol provides a traditional
security guarantee (i.e., security as per the ideal/real world simulation paradigm,
see Canetti [Can00]). However if it turns out that the adversary was successfully
able to reset the device, the maximum the adversary can do is to achieve the
effect of running the protocol several times with the device (possibly choosing
different input each time).

While “protocols for stateless devices” are naturally useful for weak and
inexpensive devices (e.g., smartcard), other applications of such protocols could
include making a powerful server (providing services to many clients) stateless
to prevent denial of service attacks.

Universally Composable Multi-Party Computation using Tamper
Proof Hardware. To show one example of the power of our results, we consider
the recent work on obtaining universally composable multi-party computation
using tamper proof hardware tokens [Kat07]. As noted before, broad impossibil-
ity results have been proven showing that a large class of functionalities cannot
be UC securely realized in the plain model [CF01,CKL06]. These severe impossi-
bility results motivated the study of other models involving some sort of trusted
setup assumptions (assuming a trusted third party), where general positive re-
sults can be obtained. To avoid these trust assumptions (while still maintaining
feasibility of protocols), Katz recently proposed using a physical setup. In his
model, the physical setup phase includes the parties exchanging tamper proof
hardware tokens implementing some functionality.

The security of the construction in [Kat07] relies on the ability of the tamper-
resistant hardware to maintain state (even when, for example, the power supply
is cut off). In particular, the parties need to execute a four-round coin flipping
protocol with the tamper-resistant hardware. Using our techniques, one can im-
mediately relax this requirement and make the token completely stateless. In
particular, we can apply our compiler to the coin flipping protocol in [Kat07]
and obtain a new construction where the token, when fed with an input x, only
outputs f(x) for a fixed f and halts. A construction having such a property was
first obtained recently by Chandran et al [CGS08] by relying on techniques that
are very specific to the setting of UC secure computation with tamper proof
hardware. However our construction has an added advantage that a possibly
adversarial token does not learn any information about the input of the honest
party using it (and hence the security is retained even when the adversarial cre-
ator of the token “recaptures” it at a later point of time). This is leads to the first
construction of UC secure computation with stateless and recapturable tokens.
On the downside, as opposed to [CGS08], the security of this construction would

rely on the adversary “knowing” the code of the tokens which it distributes to
the honest parties (see [CGS08] for more details).

Open Problems. The main question left open by the current work is: “Do
there exist two-party and multi-party computation protocols in the dishonest
majority setting where more than one party is resettable?”. Eventually, one
would like to construct simultaneous resettable multi-party computation where
the adversary can control any number of parties and can reset any number
of honest parties at any point (or show that such protocols cannot exist). The
apparent obstacle to making any progress towards answering the above questions
is the long-standing problem of constructing a simultaneous resettable zero-
knowledge argument (first mentioned as an open problem in the work of Barak
et al [BGGL01]). We recently settled this conjecture affirmatively in [GS08].

2 The Resettable Ideal Model

2.1 Resettable Two-Party Computation

Informally speaking, our model for resettable two-party computation is as fol-
lows. We consider a smartcard S holding several inputs x1

1, . . . , x
num
1 and random

tapes ω1
1 , . . . , ω

num
1 . We denote by X1 the full input and randomness vector (i.e.,

the concatenation of all the inputs and random tapes) held by S. The ith incar-
nation of the smartcard S is a deterministic strategy defined by the pair (xi1, ω

i
1)

as in [CGGM00]. We stress that while each incarnation has its own random tape,
as in [CGGM00], when a particular incarnation is reset, it starts over with the
same random tape. Thus, we model different smartcards as the different incar-
nations. We consider a user U holding an input x2 interested in interacting with
the ith incarnation of the smartcard S. The user activates the ith incarnation of
the smartcard and runs a protocol with it to securely compute a function f(., .).
We do not explicitly define a way of activating the ith incarnation; it could ei-
ther be through physical means or by sending an initial message to S specifying
the incarnation U would like to interact with. At any point during the protocol
execution, the user U can reset the smartcard S to its initial state, thus, having
a chance to start interaction again with any incarnation with a fresh input. At
the end of the protocol, both the parties get the output f(x1, x2), x1 = xi1 where
i and x2 are the incarnation and the inputs which were most recently selected
by the user U. We remark that we only consider one side resettability, that is,
the smartcard S is not allowed to reset the user U.

To formalize the above requirement and define security, we extend the stan-
dard paradigm for defining secure computation. We define an ideal model of
computation and a real model of computation, and require that any adversary
in the real model can be emulated (in the specific sense described below) by an
adversary in the ideal model. In a given execution of the protocol we assume that
all inputs have length κ, the security parameter. We consider a static adversary
which chooses whom to corrupt before execution of the protocol. In our model,
both the parties get the same output (the case where parties should get different

outputs can be easily handled using standard techniques). Finally, we consider
computational security only and therefore restrict our attention to adversaries
running in probabilistic polynomial time.

Ideal model. In the ideal model there is a trusted party which computes the
desired functionality based on the inputs handed to it by the players. Then an
execution in the ideal model proceeds as follows:

Select incarnation The user U sends an incarnation index i to the trusted
party which then passes it on to the smartcard S.

Inputs The smartcard S has input x1 while the user U has input x2.
Send inputs to trusted party Both S and U send their inputs to the trusted

party. An honest party always sends its real inputs to the trusted party. A
corrupted party, on the other hand, may decide to send modified value to
the trusted party.

Trusted party computes the result The trusted party sets the result to be
f(x1, x2). It generates and uses uniform random coin if required for the
computation of f .

Trusted party sends results to adversary The trusted party sends the re-
sult f(x1, x2) to either S or U depending upon whoever is the adversary.

Trusted party sends results to honest players The adversary, depending
on its view up to this point, does the following. It either sends the abort
signal in which case the trusted party sends ⊥ to the honest party. Or it
could signal the trusted party to continue in which case the trusted party
sends the result f(x1, x2) to the honest party.

Reset ideal world at any point In case the user U is the adversary, during
the execution of any of the above steps, it can send the signal reset to the
trusted party. In that case, the trusted party sends reset to the smartcard S
and the ideal world comes back to the select incarnation stage.

Outputs An honest party always outputs the response it received from the
trusted party. The adversary outputs an arbitrary function of its entire view
throughout the execution of the protocol.

For a given adversary A, the execution of f in the ideal model on X1, x2 is
defined as the output of the honest parties along with the output of the adversary
resulting from the process above. It is denoted by idealf,A(X1, x2).

Real model. An honest party follows all instructions of the prescribed protocol,
while a adversarial party may behave arbitrarily. If the user U is the adversarial
party, it can reset the smartcard S at any point during the protocol execution.
After getting reset, S comes back to its original state which it was in when
starting the protocol execution thus allowing U to choose a fresh input and start
interaction again with any incarnation of the smartcard S. At the conclusion of
the protocol, an honest party computes its output as prescribed by the protocol.
Without loss of generality, we assume the adversary outputs exactly its entire
view of the execution of the protocol.

For a given adversary B and protocol Σ for resettably computing f , the
execution of Σ in the real model on X1, x2 (denoted realΣ,B(X1, x2)) is defined

as the output of the honest parties along with the output of the adversary
resulting from the above process.

Having defined these models, we now define what is meant by a resettable
two-party computation protocol. By probabilistic polynomial time (ppt), we
mean a probabilistic Turing machine with non-uniform advice whose running
time is bounded by a polynomial in the security parameter κ. By expected prob-
abilistic polynomial time (eppt), we mean a Turing machine whose expected
running time is bounded by some polynomial, for all inputs.

Definition 1 Let f and Σ be as above. Protocol Σ is a secure protocol for
computing f if for every ppt adversary A corrupting either of the two players
in the real model, there exists an eppt adversary S corrupting that player in the
ideal model, such that:

{idealf,S(X1, x2)}(X1,x2)∈({0,1}∗)2
c≡ {realΣ,A(X1, x2)}(X1,x2)∈({0,1}∗)2 .

Our real model translates to the so called multiple incarnation non-
interleaving setting in the terminology of [CGGM00]. This setting was shown
to be equivalent to the multiple incarnation interleaving setting for the case of
zero-knowledge and their proof can be extended to the general case as well. In
other words, a protocol Σ which is secure when the user U is allowed only to
interact with one incarnation at a time remain secure even if U is allowed to
concurrently interact with any number of incarnation simultaneously. For sim-
plicity of exposition, we only consider the setting when the inputs of smartcard
S are all fixed in advance (while S is acting as honest party in the protocol).
However we remark that our protocols also work for the more general case when
the inputs of S are adaptively chosen possibly based on the outputs in the pre-
vious protocol executions. More details regarding these issues will be provided
in the full version.

2.2 Simultaneous Resettable Multi-Party Computation

For lack of space, we defer the model for this case to the full version of this paper.
The main changes from the two-party case is that we consider an adversary who
controls a minority of the parties and can reset any number of honest parties at
any point during the protocol.

2.3 Extensions

In this section, we informally describe two extensions which can be applied to
our constructions proven secure as per our definitions. More formal details will
be provided in the full version.

Going from Resettable to Stateless. Any protocol which is resettably secure
can be transformed to a stateless protocol using relatively standard techniques.
In other words, the parties which were allowed to be resettable in the original

protocol need not maintain any state at all in the transformed protocol. By a
stateless device we mean that the device only supports a “request-reply” inter-
action (i.e., the device just outputs f(x) when fed with x for some fixed f). We
describe the case of two party first assuming both the parties are resettable (the
case where one party is resettable is only simpler). Let we have parties P1 and
P2 participating in the original resettably secure protocol Σ. Now we define a
protocol Σ′ having parties P ′1 and P ′2. Each of these parties will have a secret
key of a CCA-2 secure encryption scheme and a secret MAC key. The party P ′1
computes the first message to be sent in the protocol Σ′ by running P1 internally.
However it then sends to P ′2 not only the computed message but also an encryp-
tion of the current state of P1 and a MAC on it. Party P ′2 similarly computes
the reply by feeding the received message to P2 and sends to P ′1 not only the
computed reply but also (a) the received encrypted state of P1 and the MAC,
and, (b) an encryption of the current state of P2 and a MAC on it using its own
keys. Thus for the next round, P ′1 can decrypt, verify and load the received state
into P1, feed it the incoming reply and then compute the next outgoing message.
P2 can similarly continue with the protocol. The case of multi-party protocols
can also be handled by first transforming the given protocol into one where only
one party sends a message in any given round and then applying ideas similar
to the one for the two party case to this resulting protocol.

Getting the Best of Both Worlds. One might ask the question: is it possible
to have a single protocol such that in case the adversary is not able to reset the
device, the protocol provides a traditional security guarantee (i.e., security as
per the ideal/real world simulation paradigm, see Canetti [Can00]). However if
it turns out that the adversary is successfully able to reset the device, the proto-
col still provides security as per the resettable ideal model definition presented
above. We remark that it is easy to transform both our constructions into ones
which provide such a best of both worlds guarantee (however we do not know if
our transformation works for all constructions). We build a counter into the de-
vice which gets incremented with every protocol execution (whether successfully
completed or not). The randomness used by the device for a protocol execution
comes from the application of a PRF to the current counter value. This guar-
antees that in case the device is able to keep such a counter successfully, the
randomness used in each execution is fresh and independent of others. Thus, it is
easy to show that one can use a significantly simpler simulator (which can only
handle standalone executions) to prove security of our constructions in such a
setting.

3 Building Blocks

Our protocols make use of the following building blocks: a commitment scheme
COM based on one way permutations, computational zero-knowledge proofs and
proofs of knowledge, zaps [DN00], resettable sound zero-knowledge arguments
[BGGL01] and the PRS concurrent zero-knowledge preamble [PRS02].

4 Resettable Two-Party Computation

4.1 The Construction

We now describe how to transform any given two party protocol Π (which is only
semi-honest secure) into a resettably secure protocol Σ. Prior to the beginning
of the protocol, we assume that the smartcard S and the user U have agreed
upon the incarnation of S for the protocol. Each incarnation of the smartcard
S has its own independent random tape. We assume that the private inputs
to S and U in the protocol Π are x1 and x2 respectively. The smartcard S
denotes the party which can be reset by the other party U in the protocol Σ.
We view the random tape of the smartcard as a tuple (G,Rrs). Here G denotes
the description of a function G : {0, 1}≤poly(κ) → {0, 1}poly(κ) taken from an
ensemble of pseudorandom functions and Rrs denotes a random string which S
will use while acting as a verifier of a resettable sound zero-knowledge argument.
Let R denote the uniform distribution. The protocol proceeds as follows.

PRS Preamble Phase

1. U → S: Generate r2
$← R and let β = (x2, r2). Here r2 is the randomness

to be used (after coin flipping with S) by the user U at various stages of the
protocol Σ (including to carry out the protocol Π) as explained later on.
We assume that r2 is of sufficient size to allow U to execute all such stages.
Generate random shares {β0

i,`}ki,`=1, {β1
i,`}ki,`=1 such that β0

i,` ⊕ β1
i,` = β for

every i, `. Using the commitment scheme COM, commit to all these shares.
Denote these commitments by {B0

i,`}ki,`=1, {B1
i,`}ki,`=1.

Let msg be the concatenation of all these commitment strings, i.e., msg =
B0

1,1|| . . . ||B0
k,k ||B1

1,1|| . . . ||B1
k,k. We call msg to be the determining message

of this session (since it commits the user U to its input and randomness).
The random tape used by the smartcard S to carry out rest of the protocol
Σ (except when acting as a verifier of a resettable sound ZK argument) will
be determined by the application of the pseudorandom function G to the
determining message msg. Again, we assume that G(msg) is of sufficient
size to allow the execution of all the steps.

2. U↔ S: The user U and the smartcard S will now use a resettable-sound zero-
knowledge argument system (rsP, rsV) (relying a non-black box simulator
[BGGL01]). U emulates the prover rsP and proves the following statement
to the resettable verifier rsV (emulated by S): the above PRS commit phase
is a valid commit phase In other words, there exist values β̂, {β̂0

i,`}ki,`=1,
{β̂1

i,`}ki,`=1 such that (a) β̂0
i,` ⊕ β̂1

i,` = β̂ for every i, `, and, (b) Commitments
{B0

i,`}ki,`=1, {B1
i,`}ki,`=1 can be decommitted to {β̂0

i,`}ki,`=1, {β̂1
i,`}ki,`=1.

The user U uses a fresh (uncommitted) random tape for emulation of the
prover rsP . The random tape used by S to emulate the resettable verifier rsV
comes from Rrs. Going forward, this will be the case with all the resettable
sound zero-knowledge arguments in our protocol Σ.

3. For ` = 1, . . . k:

(a) S→ U: Send challenge bits b1,`, . . . , bk,`
$← {0, 1}k.

(b) U→ S: Decommit to Bb1,`

1,` , . . . , B
bk,`

k,` .
The random tape required by S to generate the above challenge bits comes
from G(msg).

4. S → U: Since the underlying protocol Π is secure only against semi-honest
adversaries, the random coins used by each party are required to be unbiased.
Hence S generates r′2

$← R (using the random tape from G(msg)) and sends
it to U. Define r′′2 = r2 ⊕ r′2. Now r′′2 is the randomness which will be used
by U for carrying out the protocol Π (among other things).

Smartcard Input Commitment Phase

1. S → U: Generate a string r1
$← R and let α = (x1, r1). Commit to α using

the commitment scheme COM and denote the commitment string by A.
The random tape required to generate the string r1 and to compute the
commitment A comes from G(msg).

2. S↔ U: Now S has to give a proof of knowledge of the opening of the commit-
ment A to U. In other words, S has to prove that it knows a value α̂ = (x̂1, r̂1)
such that the commitment A can be decommitted to α̂. This proof is given
as follows. S and U use an ordinary computational zero-knowledge proof
of knowledge system (Ppok, Vpok) where S and U emulates the prover Ppok
(proving the above statement) and the verifier Vpok respectively. However
the random tape used by U to emulate the verifier Vpok is required to come
from r′′2 . To achieve this, the interaction proceeds as follows. Let t′pok be the
number of rounds in (Ppok, Vpok) where a round is defined to have a message
from Ppok to Vpok followed by a reply from Vpok to Ppok. For j = 1, . . . t′pok:

– S → U: S sends the next prover message computed as per the system
(Ppok, Vpok). The random tape used by S to emulate Ppok comes from
G(msg).

– U → S: U sends the next verifier message computed as per the system
(Ppok, Vpok) using randomness r′′2 .

– U ↔ S: U and S now execute a resettable-sound zero-knowledge argu-
ment where U emulates the prover rsP and proves the following state-
ment to rsV emulated by S: the PRS commit phase has a major decom-
mitment β̂ = (x̂2, r̂2) such that the sent verifier message is consistent
with the randomness r̂2 ⊕ r′2 (where r′2 was as sent by S in the PRS
preamble phase).

The above system can be seen as a resettable zero-knowledge argument of
knowledge system [BGGL01]. However when used in our context as above,
the simulator of this system will be straightline.

3. U → S: U generates r′1
$← R using the random tape r′′2 and sends it to S.

Define r′′1 = r1 ⊕ r′1. Now r′′1 is the randomness which will be used by S for
carrying out the protocol Π.

4. U↔ S: U and S now execute a resettable-sound zero-knowledge argument. U
emulates the prover rsP and proves the following statement to rsV emulated
by S: the PRS commit phase has a major decommitment β̂ = (x̂2, r̂2) such
that message r′1 is consistent with the randomness r̂2 ⊕ r′2.

Secure Computation Phase

Let the underlying protocol Π have t rounds1 where one round is defined
to have a message from S to U followed by a reply from U to S. Let transcript
T j1 (resp. T j2) be defined to contain all the messages exchanged between S and
U before the point party S (resp. U) is supposed to send a message in round j.
Now, each message sent by either party in the protocol Π is compiled into a
message block in Σ. For j = 1, . . . t:

1. S → U: S sends the next message mj
1 (= Π(T j1 , x1, r

′′
1)) as per the protocol

Π. Now S has to prove to U that the sent message mj
1 was honestly gen-

erated using input x1 and randomness r′′1 . In other words, S has to prove
the following statement: there exist a value α̂ = (x̂1, r̂1) such that: (a) the
message mj

1 is consistent with the input x̂1 and the randomness r̂1⊕ r′1 (i.e.,
mj

1 = Π(T j1 , x̂, r̂1 ⊕ r′1)), and, (b) commitment A can be decommitted to α̂.
This proof is given as follows. S and U use an ordinary computational zero-
knowledge proof system (P, V) where S and U emulates the prover P (proving
the above statement) and the verifier V respectively. However the random
tape used by U to emulate the verifier V is required to come from r′′2 . To
achieve this, the interaction proceeds as follows. Let t′ be the number of
rounds in (P, V) where a round is defined to have a message from P to V
followed by a reply from V to P . For j′ = 1, . . . t′:
– S → U: S sends the next prover message computed as per the system

(P, V). The random tape used by S to emulate P comes from G(msg).
– U → S: U sends the next verifier message computed as per the system

(P, V) using randomness r′′2 .
– U ↔ S: U and S now execute a resettable-sound zero-knowledge argu-

ment where U emulates the prover rsP and proves the following state-
ment to rsV emulated by S: the PRS commit phase has a major decom-
mitment β̂ = (x̂2, r̂2) such that the sent verifier message is consistent
with the randomness r̂2 ⊕ r′2.

To summarize, the random tape used by U to emulate the verifier V is re-
quired to be committed in advance. However S is free to use any random tape
while emulating the prover P (although in the interest of its own security, S
is instructed to use randomness from G(msg).

2. U sends the next message mj
2 (= Π(T j2 , x2, r

′′
2)) as per the protocol Π. U

and S now execute a resettable-sound zero-knowledge argument where U
1 This assumption is only made for simplicity of exposition. It is easy to extend our

construction to handle protocols whose round complexity is not upper bounded by
a fixed polynomial.

emulates the prover rsP and proves to S that mj
2 was honestly generated

using input x2 and randomness r′′2 . More precisely, U proves the following
statement: the PRS commit phase has a major decommitment β̂ = (x̂2, r̂2)
such that mj

2 is consistent with the input x̂2 and the randomness r̂2 ⊕ r′2.

This completes the description of the protocol Σ. The usage of randomness
in the above protocol can be summarized as follows. After sending the very
first message (i.e., the determining message msg), the only fresh randomness
that can be used by the user U is while emulating the prover rsP of resettable
sound zero-knowledge arguments. The smartcard S is essentially “free” to use
any randomness it wants (except while computing messages of the underlying
protocol Π). An honest S always sets its random tape to G(msg) to carry out
the protocol Σ .

At the end of above protocol Σ, both the parties will hold the desired output.
We stress that we require only standard (standalone) semi-honest security from
the underlying protocol Π. Thus, when we set the underlying protocol Π to be
the constant round two-party computation protocol of Yao [Yao86], the result-
ing protocol Σ has k (= ω(log κ)) rounds. To obtain a constant round protocol,
the first step would be the construction of a concurrent zero-knowledge argu-
ment system in a constant number of rounds. We also remark that the above
resettable two-party computation also implies (under standard assumptions) re-
settable multi-party computation (where only one of the parties can be reset)
with dishonest majority. The construction for resettable multi-party computa-
tion can be obtained using standard techniques from the two-party one (i.e.,
the n − 1 “non-resettable” parties will use a regular multi-party computation
protocol [GMW87] among them to emulate a single party holding n− 1 inputs).

We prove that the protocol Σ is a resettable two-party computation protocol
by proving the following two theorems; the proofs are deferred to the full version
of this paper.

Theorem 1 (Security Against a Malicious U∗) The compiled protocol Σ is
secure against a malicious U∗.

Theorem 2 (Security Against a Malicious S∗) The compiled protocol Σ is
secure against a malicious S∗.

5 Simultaneous Resettable Multi-Party Computation
with Honest Majority

5.1 The Construction

We now describe how to transform any given protocol Π (which is only semi-
honest secure) into a simultaneous resettably secure protocol Σ with honest
majority. We assume n parties P1, . . . , Pn where a majority of the parties behave
honestly. All the parties are “resettable”, or in other words, the adversarial
parties can reset any number of honest parties at any time during the protocol

execution. We assume that before the protocol starts, the parties have agreed
upon which incarnation will be used by which party. The private inputs of parties
P1, . . . , Pn are denoted by x1, . . . , xn respectively. Let R denote the uniform
distribution. The protocol Σ proceeds as follows.

Input Commitment Phase

Each party Pi does the following computations. Any randomness required
for these computations comes from the random tape of (appropriate incarnation
of) Pi which is potentially reusable in other sessions.

– Generate a function Gi : {0, 1}≤poly(κ) → {0, 1}poly(κ) randomly from an
ensemble of pseudorandom functions and let αi = (xi, Gi). Compute a com-
mitment to αi using the commitment scheme COM and denote it by Ai.

– Generate the first verifier message Zi ← fzaps(κ) of a zap system.
– Generate a pair (PKi, SKi) of public and secret keys using the key genera-

tion algorithm of a semantically secure public key encryption system having
perfect completeness.

– Generate n strings a1
i , . . . , a

n
i from the domain of a one way function F . For

all j, compute bji = F (aji).

Additionally, we assume that a party Pi has a random tape Ri,zkv which it
uses for the verification of messages of a 1 round ZKAOK system as we explain
later on. Pi now broadcasts the values Ai, Zi, PKi, b

1
i , . . . , b

n
i . Let the string

broadcast (i.e., Ai||Zi||PKi|| b1i || . . . ||bni) be denoted by msgi. The string msgi
is called the determining message of party Pi for this session. Note that since a
party Pi may have to reuse its random tape, the determining message msgi may
be identical across various protocol executions.

The random tape used by Pi to carry out rest of the protocol Σ (ex-
cept for the verification of the messages of the 1 round ZKAOK system) will
be determined by the application of the pseudorandom function Gi to the
(concatenation of) determining messages of all other parties. That is, denote
Ri = Gi(msg1|| . . . ||msgi−1||msgi+1|| . . . ||msgn). Now Ri serves as the random
tape of Pi for the rest of the protocol. We assume that Ri is of sufficient size to
allow the execution of all the steps.

Construction of a 1-round zero-knowledge argument of knowledge. We
now describe the construction of a family of 1-round zero-knowledge argument of
knowledge (ZKAOK) systems. The (i, j)th argument system is used by party Pi
to prove statements to party Pj . Additionally, the argument systems (i, j) and
(k, `), where i 6= k, are simulation sound w.r.t. each other. To prove a statement
x ∈ L to party Pj , a party Pi holding the witness w (for the given witness
relation) proceeds as follows:

– Pi breaks the witness w into n shares w1, . . . , wn using the Shamir threshold
secret sharing scheme [Sha79] such that a majority of the shares are sufficient
to reconstruct the witness w. For all k, Pi encrypts wk under the public key
PKk. Let the ciphertext be denoted by Ck. Pi now broadcasts all the n
ciphertexts so generated.

– Pi finally generates and sends the prover message of the zap system (acting
on the verifier message Zj) proving that one of the following statements is
true:

1. The ciphertexts C1, . . . , Cn represent the encryption of shares of a valid
witness. More precisely, there exists strings ŵ1, . . . , ŵn such that: (a) for
all k, Ck is a valid encryption of ŵk, and, (b) ŵ1, . . . , ŵn are valid shares
of a single string ŵ as per the Shamir secret sharing scheme, and, (c) ŵ
is a valid witness for the witness relation (i.e., x ∈ L).

2. The ciphertexts C1, . . . , Cn represent the encryption of shares of a ma-
jority of preimages of the strings bi1, . . . , b

i
n under the one way func-

tion F . More precisely, there exists strings ŝ1, . . . , ŝn such that: (a)
for all k, Ck is a valid encryption of ŝk, and, (b) ŝ1, . . . , ŝn are valid
shares of a single string ŝ as per the Shamir secret sharing scheme, and,
(c) ŝ = (â1

i, . . . , ân
i) and there exists a set Smaj of indices such that

|Smaj | > n/2 and for all ` ∈ Smaj , bi` = F (â`i).

Thus, we have a trapdoor condition which allows a party Pi to give a simulated
argument using the preimages of bi1, . . . , b

i
n. Note that the “trapdoor” for each

party is “independent”. That is, informally speaking, even given the preimages
of strings bi1, . . . , b

i
n, a party Pj with j 6= i will be unable to give a simulated

argument.

Coin Flipping Phase

Since the underlying protocol Π is secure only against semi-honest adver-
saries, the random coins used by each party in Π are required to be unbiased.
Hence the parties run a 2 round coin flipping phase to generate a long unbiased
public random string as given below. As noted before, the random tape that a
party Pi uses to execute this stage (i.e., generate of random strings, commitment
and messages of the 1-round ZKAOK system) comes from Ri. However the
random tape (if needed) used by Pi to verify the messages of the ZKAOK
system comes from Ri,zkv.

– In the first round, each party Pi generates R′i
$← R and broadcasts a commit-

mentBi toR′i using the commitment scheme COM. For all j 6= i, party Pi ad-
ditionally broadcasts a ZKAOK (using the (i, j)th 1-round ZKAOK system)
proving that the commitment Bi was correctly computed using randomness
Ri. More precisely, Pi proves that there exists a string α̂i = (x̂i, Ĝi) such
that: (a) the commitment Ai can be decommitted to α̂i, and, (b) the com-
mitment Bi to a random string (and the random string itself) was computed
using randomness Ĝi(msg1|| . . . ||msgi−1||msgi+1|| . . . ||msgn). Note that this
ZKAOK is given for a specific witness relation such that the witness allows
extraction of such a α̂i.

– In the second round, each party Pi broadcasts the committed string R′i
(without providing any decommitment information). For all j 6= i, party
Pi additionally broadcasts a ZKAOK (using the (i, j)th 1-round ZKAOK

system) proving that the commitment Bi can be decommitted to the string
R′i. Denote r′1|| . . . ||r′n = R′1 ⊕ · · · ⊕R′n. At this point, the strings r′1, . . . , r

′
n

are all guaranteed to be random.

Each Pi further privately generates a random ri. Define r′′i = ri ⊕ r′i. Now
r′′i is the randomness that will be used by party Pi to carry out the underlying
protocol Π in the next stage.

Secure Computation Phase

Let the underlying protocol Π have t rounds2 where any number of par-
ties can send a message in any given round. Let transcript T j be defined to
contain all the messages broadcast before the round j. Now, for j = 1, . . . t:

1. Pi sends the next message mj
i (= Π(T j , xi, r′′i)) as per the protocol Π. Note

that mj
i could potentially be ⊥.

2. For all k 6= i, party Pi additionally broadcasts a ZKAOK (using the (i, k)th
1-round ZKAOK system) proving that the sent message mj

i was honestly
generated using input xi and randomness r′′i . In other words, Pi proves the
following statement: there exist a value α̂i = (x̂i, Ĝi) such that: (a) the
message mj

i is consistent with the input x̂i and the randomness r̂i ⊕ r′i (i.e.,
mj
i = Π(T j , x̂i, r̂i⊕r′i)) where r̂i is generated from Ĝi, and, (b) commitment

Ai can be decommitted to α̂i. As before, the random tape used by Pi for
generation and verification of the messages of ZKAOK system comes from
Ri and Ri,zkv respectively.

This completes the description of the protocol Σ. The usage of randomness
in the above protocol can be summarized as follows. After sending the very first
message (i.e., the determining message msgi), the only fresh and uncommitted
random tape that can potentially be used by a malicious party Pi is for the gen-
eration and verification of the 1-round ZKAOK messages (although the honest
parties are instructed to use the committed random tape for the generation of
1-round ZKAOK messages).

Applying the above transformation to the constant round protocol of Beaver
et al [BMR90], we obtain a constant round protocol Σ (secure against a minority
of malicious parties). Our protocol is based on computational assumptions; the
existence of NIZK (or equivalently, two round zaps [DN00]) to be precise. We
note that it is easy to rule out information theoretically secure protocols in
our setting very similar to how Barak et al [BGGL01] ruled out resettably-
sound zero-knowledge proofs. The basic idea is that since an honest party has
only a bounded size secret information (i.e., the input and the random tape), an
unbounded dishonest party can interact with it several times (by resetting it each
time) so as to “almost” learn its input/output behavior (and hence an honest
party input “consistent” with that behavior). More details will be provided in
the full version.
2 As before, this assumption is only made for simplicity of exposition.

Let M be the list of malicious parties. Denote the list of honest parties
H = {P1, . . . , Pn} − M. We defer the proof the following theorem to the full
version of this paper for lack of space.

Theorem 3 (Security Against a Minority of Malicious Parties) The
compiled protocol Σ is secure as per definition 2.2 against the coalition of
malicious parties represented by M as long as |M| < n/2.

References

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In FOCS,
pages 106–115, 2001.

[BGGL01] Boaz Barak, Oded Goldreich, Shafi Goldwasser, and Yehuda Lindell.
Resettably-sound zero-knowledge and its applications. In FOCS, pages
116–125, 2001.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity
of secure protocols (extended abstract). In STOC, pages 503–513. ACM,
1990.

[Can00] R. Canetti. Security and composition of multiparty cryptographic proto-
cols. Journal of Cryptology: the journal of the International Association for
Cryptologic Research, 13(1):143–202, 2000.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In
CRYPTO, Lecture Notes in Computer Science, pages 19–40. Springer, 2001.

[CGGM00] Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Reset-
table zero-knowledge (extended abstract). In STOC, pages 235–244, 2000.

[CGS08] Nishanth Chandran, Vipul Goyal, and Amit Sahai. New constructions for
uc secure computation using tamper-proof hardware. EUROCRYPT, 2008.

[CKL06] R. Canetti, E. Kushilevitz, and Y. Lindell. On the limitations of univer-
sally composable two-party computation without set-up assumptions. J.
Cryptology, 19(2):135–167, 2006.

[DL07] Yi Deng and Dongdai Lin. Instance-dependent verifiable random functions
and their application to simultaneous resettability. In EUROCRYPT, pages
148–168, 2007.

[DN00] Cynthia Dwork and Moni Naor. Zaps and their applications. In FOCS,
pages 283–293, 2000.

[DNS98] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge.
In STOC, pages 409–418, 1998.

[Dwo08] Cynthia Dwork. Differential privacy: A survey of results. In Manindra
Agrawal, Ding-Zhu Du, Zhenhua Duan, and Angsheng Li, editors, TAMC,
volume 4978 of Lecture Notes in Computer Science, pages 1–19. Springer,
2008.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game.
In STOC ’87: Proceedings of the 19th annual ACM conference on Theory
of computing, pages 218–229, New York, NY, USA, 1987. ACM Press.

[GS08] Vipul Goyal and Amit Sahai. Resolving the simultaneous resettability con-
jecture and a new non-black-box simulation strategy. Cryptology ePrint
Archive, Report 2008/545, 2008. http://eprint.iacr.org/.

[Kat07] Jonathan Katz. Universally composable multi-party computation using
tamper-proof hardware. In EUROCRYPT, pages 115–128, 2007.

[KP01] Joe Kilian and Erez Petrank. Concurrent and resettable zero-knowledge in
poly-loalgorithm rounds. In STOC, pages 560–569, 2001.

[Lin03] Yehuda Lindell. Bounded-concurrent secure two-party computation with-
out setup assumptions. In STOC, pages 683–692. ACM, 2003.

[Lin04] Yehuda Lindell. Lower bounds for concurrent self composition. In Moni
Naor, editor, TCC, volume 2951 of Lecture Notes in Computer Science,
pages 203–222. Springer, 2004.

[MP06] Silvio Micali and Rafael Pass. Local zero knowledge. In Jon M. Kleinberg,
editor, STOC, pages 306–315. ACM, 2006.

[Nao07] Moni Naor, editor. Advances in Cryptology - EUROCRYPT 2007, 26th
Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Barcelona, Spain, May 20-24, 2007, Proceedings, vol-
ume 4515 of Lecture Notes in Computer Science. Springer, 2007.

[PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent zero knowl-
edge with logarithmic round-complexity. In FOCS, pages 366–375, 2002.

[Sah99] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive
chosen-ciphertext security. In FOCS, pages 543–553, 1999.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.
[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended

abstract). In FOCS, pages 162–167. IEEE, 1986.
[YZ07] Moti Yung and Yunlei Zhao. Generic and practical resettable zero-

knowledge in the bare public-key model. In EUROCRYPT, pages 129–147,
2007.

